安培力(精华版)讲义
- 格式:ppt
- 大小:1.00 MB
- 文档页数:34
磁场、安培力一、一周知识概述本周我们学习磁场、磁场对通电导线的作用力。
磁场、磁感线这一节是以后学习磁场这一章的基础,正确理解磁场的物质性及其基本性质、掌握常见的几种磁场的磁感线分布情况,能用安培定则熟练地判定电流磁场方向,对以后分析磁学问题至关重要。
磁感应强度是为描述磁场而引入的一个物理量。
它是由磁场本身唯一决定的矢量,与其他因素无关。
安培力是磁场基本性质的体现,要注意其大小的计算和方向的判断(即左手定则),学习这两节内容时可以和前面学的电场、电场线、电场力、电场强度进行对比,找出它们的异同,将有助于我们的理解。
二、重难点知识归纳与讲解1、磁场(1)磁场是存在于磁极或电流周围空间里的一种特殊的物质,磁场和电场一样,都是“场形态物质”。
(2)磁场的方向:物理学规定,在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是那一点磁场的方向。
(3)磁场的基本性质:磁场对处在它里面的磁极或电流有磁场力的作用。
磁极和磁极之间、磁场和电流之间、电流和电流之间的相互作用都是通过磁场来传递的。
2、磁感线(1)磁感线:是形象地描述磁场而引入的有方向的曲线。
在曲线上,每一点切线方向都在该点的磁场方向上,曲线的疏密反映磁场的强弱。
(2)磁感线的特点:a.磁感线是闭合的曲线,磁体的磁感线在磁体外部由N极到S极,内部由S极到N 极。
b.任意两条磁感线不能相交。
3、几种常见磁场的磁感线的分布(1)条形磁铁和碲形磁铁的磁感线条形磁铁和蹄形磁铁是两种最常见的磁体,如图所示的是这两种磁体在平面内的磁感线形状,其实它们的磁感线分布在整个空间内,而且磁感线是闭合的,它们的内部都有磁感线分布。
(2)通电直导线磁场的磁感线通电直导线磁场的磁感线的形状与分布如图所示,通电直导线磁场的磁感线是一组组以导线上各点为圆心的同心圆。
需要指出的是,通电直导线产生的磁场是不均匀的,越靠近导线,磁场越强,磁感线越密。
电流的方向与磁感线方向的关系可以用安培定则来判断,如图所示。
安培力,左手定则1、安培力:磁场对的作用叫安培力。
2、安培力的大小:(1)安培力的计算公式:,θ为磁场B与直导体L之间的夹角。
L为与磁感线垂直的平面上的有效长度(2)当θ=90°时,导体与磁场垂直,安培力F m=;当θ=0°时,导体与磁场平行,安培力为零。
(3)F=BILsinθ要求L上各点处磁感应强度相等,故该公式一般只适用于。
3、安培力的方向:(1)安培力方向用左手定则判定:伸开左手,使大拇指和其余四指垂直,并且都跟手掌在同一个平面内,把手放入磁场中,让磁感线穿入手心,并使伸开的四指指向,那么所指的方向就是通电导体在磁场中的受力方向。
(2)F、B、I三者间方向关系:已知B、I的方向(B、I不平行时),可让磁感应强度的一个分量B sinθ垂直穿过手心,也可用左手定则能确定F的唯一方向:F⊥B,F⊥I,则F垂直于B和I所构成的平面(如图所示),但已知F和B的方向,不能唯一确定I的方向。
由于I可在图中平面α内与B成任意不为零的夹角。
同理,已知F和I的方向也不能唯一确定B的方向。
(3)用“同向电流相吸,反向电流相斥”(反映了磁现象的电本质)。
只要两导线不是互相垂直的,都可以用“同向电流相吸,反向电流相斥”判定相互作用的磁场力的方向;当两导线互相垂直时,用左手定则判定。
4、安培力的作用点:安培力是分布在导体的各部分,但直导线在匀强磁场中受安培力的作用点是导体受力部分的几何中心。
(正如重心)判别物体在安培力作用下的运动方向,常用方法有以下四种:1、电流元受力分析法:即把整段电流等效为很多段直线电流元,先用左手定则判出每小段电流元受安培力方向,从而判出整段电流所受合力方向,最后确定运动方向。
2、特殊值分析法:把电流或磁铁转到一个便于分析的特殊位置(如转过90°)后再判所受安培力方向,从而确定运动方向。
3、等效分析法:环形电流可以等效成条形磁铁、条形磁铁也可等效成环形电流、通电螺线管可等效成很多的环形电流来分析。
《探究安培力》讲义一、安培力的引入在学习电磁学的过程中,我们经常会遇到一个重要的概念——安培力。
那么,什么是安培力呢?当通电导线置于磁场中时,导线会受到一种力的作用,这种力就被称为安培力。
想象一下,一根通有电流的导线,放在一个磁场中,它不再像平常那样“安静”,而是会受到一种力量的推动或者拉扯。
这种神奇的现象引起了科学家们的极大兴趣,也为我们理解电磁世界打开了一扇新的大门。
为了更深入地探究安培力,我们需要先了解一些相关的基础知识。
二、安培力的基本概念安培力的大小与多个因素有关。
首先是电流的大小,电流越大,安培力通常也会越大;其次是导线在磁场中的长度,长度越长,受到的安培力往往也会更强;还有就是磁场的磁感应强度,磁场越强,安培力也就越显著。
安培力的方向则由左手定则来判断。
伸出左手,让磁感线垂直穿过手心,四指指向电流的方向,那么大拇指所指的方向就是安培力的方向。
这个定则简单而实用,能够帮助我们快速准确地确定安培力的方向。
三、安培力的公式安培力的大小可以用公式 F =BILsinθ 来计算。
其中,F 表示安培力的大小,B 是磁感应强度,I 是电流强度,L 是导线在磁场中的有效长度,θ 是电流方向与磁场方向的夹角。
这个公式告诉我们,当电流方向与磁场方向垂直时(θ = 90°),sinθ = 1,安培力达到最大值 F = BIL;当电流方向与磁场方向平行时(θ = 0°或 180°),sinθ = 0,安培力为零。
四、安培力的实际应用安培力在我们的日常生活和现代科技中有着广泛的应用。
在电动机中,安培力就是让电动机转动的关键力量。
通过在磁场中放置通电线圈,安培力使得线圈不断旋转,从而将电能转化为机械能,驱动各种设备工作,比如风扇、洗衣机、电动车等等。
磁悬浮列车也是安培力的一个精彩应用。
利用超导材料产生强大的磁场,通过安培力让列车悬浮在轨道上,大大减少了摩擦力,使得列车能够高速行驶。
《探究安培力》讲义一、什么是安培力当我们把一根通电的导线放置在磁场中时,这根导线就会受到一种力的作用,这种力就被称为安培力。
简单来说,安培力是磁场对电流的作用力。
为了更清楚地理解安培力,我们可以想象这样一个场景:有一条河流(电流)在流淌,而周围存在着强风(磁场),风会对水流产生一种推动或者阻碍的力量,这就类似于安培力对电流的作用。
安培力的大小与多个因素有关,比如电流的大小、导线在磁场中的长度、磁场的强弱以及电流与磁场方向的夹角等。
二、安培力的大小安培力的大小可以用一个公式来表示:F =BILsinθ。
其中,F 表示安培力的大小,B 表示磁场的磁感应强度,I 是电流的大小,L 是导线在磁场中的有效长度,θ 是电流方向与磁场方向的夹角。
当电流方向与磁场方向垂直时(θ = 90°),sinθ = 1,安培力最大,F = BIL;当电流方向与磁场方向平行时(θ = 0°),sinθ = 0,安培力为零。
我们通过一些具体的例子来感受一下这个公式的应用。
假设有一根长度为 1 米的直导线,通过的电流为 2 安培,处于磁感应强度为 05 特斯拉的匀强磁场中,并且电流方向与磁场方向垂直。
那么根据公式 F = BIL,安培力 F = 05×2×1 = 1 牛顿。
再比如,如果电流方向与磁场方向的夹角为 60°,那么安培力 F =BILsin60°=05×2×1×√3/2 ≈ 087 牛顿。
三、安培力的方向安培力的方向可以用左手定则来判断。
左手定则的内容是:伸开左手,让磁感线垂直穿过手心,四指指向电流的方向,那么大拇指所指的方向就是安培力的方向。
为了更好地理解左手定则,我们可以这样想:磁感线就像是从手掌正面垂直穿进去,而电流就像是从手指尖流进去,大拇指的指向就是安培力推动导线的方向。
例如,当磁场方向是水平向右,电流方向是竖直向上时,根据左手定则,安培力的方向是垂直纸面向外。
专题20 安培力及其应用(讲义)一、核心知识一、磁场、磁感应强度1.磁场(1)基本特性:磁场对处于其中的磁体、电流和运动电荷有磁场力的作用.(2)方向:小磁针静止时N极所指的方向,即是N极所受磁场力的方向.2.地磁场的特点(1)在地理两极附近磁场最强,赤道处磁场最弱.(2)地磁场的N极在地理南极附近,地磁场的S极在地理北极附近.(3)在赤道平面(地磁场的中性面)附近,距离地球表面相等的各点,地磁场的强弱程度相同,且方向水平.3.磁感应强度(1)物理意义:描述磁场的强弱和方向.(2)定义式:B=FIL(通电导线垂直于磁场).(3)方向:小磁针静止时N极的指向.二、磁感线电流的磁场1.磁感线(1)引入:在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致.(2)特点:磁感线的特点与电场线的特点类似,主要区别在于磁感线是闭合的曲线.(3)条形磁铁和蹄形磁铁的磁场(如图所示).2.安培定则(1)通电直导线:右手握住导线:让伸直的拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向.(2)环形电流:让右手弯曲的四指与环形电流的方向一致,伸直的拇指所指的方向就是环形导线轴线上磁感线的方向.如图,分别表示通电直导线、环形电流、通电线圈周围的磁场,①表示电流的方向,②表示磁感线的方向.3.匀强磁场强弱、方向处处相同的磁场.三、安培力的大小和方向1.大小(1)公式:F=ILB sinθ.(其中θ为B与I之间的夹角)(2)说明:①公式F=ILB中L指的是“有效长度”.当B与I垂直时,F最大,F=ILB;当B与I平行时,F=0.②弯曲导线的有效长度L,等于连接两端点线段的长度.③闭合线圈通电后,在匀强磁场中受到的安培力的矢量和为零.2.方向(1)用左手定则判定:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向.如图,①表示电流的方向,②表示磁场的方向,③表示安培力的方向.(2)安培力的方向特点:F⊥B,F⊥I,即F垂直于B和I决定的平面.(注意:B和I可以有任意夹角)四、安培力作用下受力模型通电导体棒在磁场中的平衡加速问题是一种常见的力学综合模型,该模型一般由倾斜导轨、导体棒、电源和电阻等组成.解题时一定要先把立体图转化成平面图,通过受力分析建立各力的平衡关系或牛顿第二定律关系,如图所示.二、重点题型分类例析题型1:磁感线【例题1】(2020·浙江高三一模)冰箱门软磁条的外部磁感线正面图如图所示,以下说法正确的是()A.磁感线越密的地方磁场越弱B.软磁条内部a位置应为N极C.磁感线与电场线一样真实存在于空间之中D.软磁条内部ab之间的磁感线方向应为a指向b题型2:地磁场【例题2】(2020·福建厦门市·厦门双十中学高三月考)运动电荷在磁场中受到洛伦兹力的作用,运动方向会发生偏转,这一点对地球上的生命来说有十分重要的意义.从太阳和其他星体发射出的高能粒子流,称为宇宙射线,在射向地球时,由于地磁场的存在,改变了带电粒子的运动方向,对地球起到了保护作用.如图所示为地磁场对宇宙射线作用的示意图.现有来自宇宙的一束质子流,以与地球表而垂直的方向射向赤道上空的某一点,则这束质子在进入地球周围的空间将()A.竖直向下沿直线射向地面B.向东偏转C.向西偏转D.向北偏转题型3:环形电流的磁场【例题3】(2021·浙江高考真题)(多选)如图所示是通有恒定电流的环形线圈和螺线管的磁感线分布图。
安培力精华版课件教学内容:本节课的教学内容选自人教版小学科学教材第六册第十章“电与磁”主题下的“电流产生的磁效应”一节。
具体内容包括:安培力的定义、安培力的大小与方向、安培力的作用效果以及安培力的产生条件。
教学目标:1. 让学生了解安培力的概念,知道安培力的大小与方向,理解安培力的作用效果和产生条件。
2. 通过观察和实验,培养学生的观察能力、实验能力和思维能力。
3. 引导学生运用科学知识解决实际问题,培养学生的实践能力。
教学难点与重点:难点:安培力的大小与方向的判断,安培力的作用效果和产生条件的理解。
重点:安培力的概念,安培力的大小与方向的判断,安培力的作用效果和产生条件的掌握。
教具与学具准备:教具:电流表、电压表、导线、磁铁、多媒体课件。
学具:导线、磁铁、实验记录表。
教学过程:一、情景引入(5分钟)通过多媒体课件展示安培力的实际应用场景,如电动机、电磁起重机等,引导学生了解安培力的存在和作用。
二、知识讲解(10分钟)1. 讲解安培力的定义:电流在磁场中受到的力。
2. 讲解安培力的大小与方向:安培力的大小与电流的大小、磁场的强度和电流与磁场的夹角有关;安培力的方向由右手定则判断。
3. 讲解安培力的作用效果:安培力可以使电流的方向发生改变,也可以使电流的运动状态发生改变。
4. 讲解安培力的产生条件:电流和磁场的存在,电流与磁场的相对运动。
三、实验演示(10分钟)引导学生观察实验演示,包括电流在磁场中的受力情况,安培力的方向和大小判断等。
四、随堂练习(5分钟)让学生运用所学的安培力知识,解答一些相关的练习题目。
五、知识拓展(5分钟)通过多媒体课件介绍安培力的应用领域,如电动机、发电机、电磁起重机等。
六、板书设计(课堂板书)安培力:定义:电流在磁场中受到的力。
大小与方向:与电流大小、磁场强度、电流与磁场夹角有关;用右手定则判断方向。
作用效果:改变电流方向,改变电流运动状态。
产生条件:电流、磁场存在,电流与磁场相对运动。
2024年安培力精华版课件.一、教学内容本课件基于《电磁学》教材第四章“安培力”相关内容展开。
详细内容包括:安培力定律的原理阐述,安培力公式的推导和应用,以及安培力在实践中的应用实例。
二、教学目标1. 理解安培力定律的内涵,掌握安培力公式的推导和应用。
2. 学会利用安培力解决实际问题,提高学生的实际应用能力。
3. 培养学生的科学思维能力和团队合作精神。
三、教学难点与重点教学难点:安培力公式的推导和应用。
教学重点:安培力定律的理解和实践应用。
四、教具与学具准备教具:磁铁、电流表、导线、电源、演示用安培力实验装置。
学具:计算器、笔记本、教材。
五、教学过程1. 实践情景引入演示实验:展示磁铁对通电导线的作用,引导学生观察电流与安培力的关系。
2. 理论知识讲解安培力定律的原理阐述。
安培力公式的推导。
3. 例题讲解选取一道具有代表性的例题,详细讲解解题步骤。
让学生跟随讲解,进行随堂练习。
4. 随堂练习分组讨论,共同完成练习题。
教师巡回指导,解答学生疑问。
5. 应用实例分析分析安培力在现实生活中的应用实例。
引导学生思考如何将安培力应用到实际问题中。
六、板书设计1. 安培力定律的原理。
2. 安培力公式:F = BILsinθ。
3. 例题及解答步骤。
4. 课后作业。
七、作业设计1. 作业题目:计算给定电流、磁场强度和夹角下的安培力。
分析一个实际应用安培力的案例。
2. 答案:安培力计算题的答案。
实际案例分析报告。
八、课后反思及拓展延伸1. 反思本次课程的教学效果,针对学生的掌握情况调整教学方法。
2. 拓展延伸:引导学生学习电磁学其他相关内容,如洛伦兹力、电磁感应等。
3. 鼓励学生进行课外阅读,深入了解安培力的发现历程及其在科技发展中的重要作用。
重点和难点解析1. 安培力公式的推导。
2. 例题讲解和随堂练习的设置。
3. 实践情景引入的设计。
4. 作业设计和课后反思。
一、安培力公式的推导1. 详细阐述安培力定律的原理,解释电流产生的磁场如何与磁铁的磁场相互作用,从而产生安培力。
安培力完整版课件.一、教学内容本节课我们将学习《电磁学》教材第五章第三节“安培力”的内容。
详细内容包括安培力定律的表述、安培力大小的计算、安培力方向的判定以及安培力在实践中的应用。
二、教学目标1. 让学生掌握安培力定律的表述,理解安培力与电流、磁场的关系。
2. 使学生能够运用安培力公式进行相关计算,并能判断安培力的方向。
3. 培养学生运用安培力解决实际问题的能力,提高学生的实践操作技能。
三、教学难点与重点教学难点:安培力方向的判定,安培力公式的运用。
教学重点:安培力定律的理解,安培力大小的计算。
四、教具与学具准备教具:磁性演示棒、电流表、磁场演示器、安培力演示装置。
学具:电流表、导线、磁铁、直尺、计算器。
五、教学过程1. 实践情景引入:展示磁性演示棒吸引铁屑的实验,引导学生思考磁场对电流的作用。
2. 理论讲解:讲解安培力定律,阐述安培力与电流、磁场的关系。
3. 例题讲解:通过具体例题,演示安培力大小的计算方法和安培力方向的判定。
4. 随堂练习:布置相关练习题,让学生巩固所学知识,及时发现问题并解答。
5. 实践操作:组织学生进行安培力演示实验,观察安培力的作用,加深对安培力的理解。
六、板书设计1. 安培力定律2. 安培力公式:F = BILsinθ3. 安培力方向判定:右手定则4. 实践应用:安培力在电流表、电动机等设备中的应用七、作业设计1. 作业题目:(1)计算题:已知电流和磁场,求安培力的大小和方向。
(2)实践题:设计一个实验,验证安培力定律。
2. 答案:(1)计算题答案:根据安培力公式,结合给定的电流、磁场和角度计算得出。
(2)实践题答案:根据实验原理和操作步骤,完成实验并得出结论。
八、课后反思及拓展延伸1. 反思:本节课学生对安培力的理解程度,以及在实际操作中遇到的问题和解决方法。
2. 拓展延伸:引导学生了解安培力的应用领域,如电流表、电动机等,激发学生的学习兴趣。
同时,鼓励学生深入研究安培力在高新技术领域的应用,如磁悬浮列车、磁流体动力装置等。
《安培力与磁电式仪表》讲义一、安培力的基本概念在物理学中,安培力是指通电导线在磁场中所受到的力。
这个力的大小与电流强度、导线长度、磁感应强度以及电流方向与磁场方向的夹角有关。
安培力的大小可以用公式 F =BILsinθ 来计算,其中 F 表示安培力,B 表示磁感应强度,I 表示电流强度,L 表示导线在磁场中的有效长度,θ 表示电流方向与磁场方向的夹角。
当电流方向与磁场方向垂直时,sinθ = 1,安培力最大;当电流方向与磁场方向平行时,sinθ = 0,安培力为零。
安培力的方向可以用左手定则来判断:伸出左手,让磁感线垂直穿过手心,四指指向电流的方向,那么大拇指所指的方向就是安培力的方向。
二、安培力的产生原理安培力的产生是由于磁场对运动电荷的洛伦兹力的宏观表现。
当导线中有电流通过时,导线中的自由电子会在电场的作用下定向移动。
这些定向移动的电子在磁场中会受到洛伦兹力的作用,由于电子的定向移动形成了电流,所以从宏观上看,就表现为导线受到了安培力。
三、安培力的应用安培力在实际生活中有很多重要的应用,其中之一就是磁电式仪表。
四、磁电式仪表的结构和工作原理磁电式仪表主要由永久磁铁、铁芯、线圈、指针、游丝等部分组成。
永久磁铁提供一个稳定的磁场,铁芯用于增强磁场的强度和均匀性。
线圈是通过电流的部分,当有电流通过线圈时,线圈在磁场中受到安培力的作用而发生转动。
指针与线圈相连,随着线圈的转动而偏转,从而指示出电流的大小。
游丝则提供一个恢复力矩,使指针在电流消失后能够回到零位。
磁电式仪表的工作原理是基于安培力的作用。
当有电流通过线圈时,线圈在磁场中受到安培力的作用而发生转动,安培力的大小与电流的大小成正比。
通过合理的设计和校准,可以使指针的偏转角度与通过线圈的电流大小成正比,从而实现对电流的测量。
五、磁电式仪表的特点1、灵敏度高由于其结构和工作原理的特点,磁电式仪表能够检测到非常微小的电流变化,具有很高的灵敏度。
2、准确度高在适当的使用条件下,磁电式仪表能够提供较为准确的测量结果。
第五章·磁场第1节安培力(1)◎目标导航知识要点难易度1.安培力F=IlB sinθ2.安培力方向:左手定则判定安培力方向3.等效长度计算安培力4.平衡状态下含有安培力的受力分析★★★★★★★★★★★★◎知识精讲一、安培力的方向1.安培力:通电导线在磁场中受的力.因果关系:先有磁场和电流,再有安培力。
2.左手定则:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线垂直穿过掌心,使四指指向电流的方向,则拇指指向是通电导线在磁场中所受安培力的方向。
3.安培力方向与磁场方向、电流方向的关系:F⊥B,F⊥I,即F垂直于B与I所决定的平面.B和I可能:(1)垂直;(2)平行;(3)斜交(1)垂直受安培力(2)平行不受安培力(3)斜交,垂直投影部分受力即安培力方向的特点:(1)当电流方向跟磁场方向垂直时,安培力的方向、磁场方向和电流方向两两相互垂直。
(2)当电流方向跟磁场方向不垂直时,安培力的方向仍垂直于电流方向,也垂直于磁场方向。
4.平行电流间作用力同向电流相互吸引,反向电流相互排斥。
5.直线电流和平行线框电流间作用力抵消思想:合力只看靠近直线电流的边的电流方向。
例1. 画出图中各磁场对通电导线的安培力的方向。
【答案】根据左手定则可判断通电导线的安培力的方向如图所示例2. 两平行直导线cd和ef竖直放置,通电后出现如图所示现象,图中a、b两点位于两导线所在的平面内。
则()(A)两导线中的电流方向相同(B)两导线中的电流大小一定相同(C)b点的磁感应强度方向一定向里(D)同时改变两导线中电流方向,两导线受到的安培力方向不变【答案】D【详解】通电直导线的电流,同向相吸,异向相斥,可知两导线电流方向相反,所以A错误;由于两导线间的安培力为相互作用力,所以两导线中的电流大小不一定相同,所以B错误;由图可判断两导线电流方向相反,但具体方向不确定,所以b点的磁感应强度方向不确定,C错误;同时改变两导线中电流方向,电流方向还是相反,两导线间的安培力方向不变,仍是互斥,D正确。