(A卷)2015级场论与无穷级数(信)考试试卷
- 格式:doc
- 大小:76.50 KB
- 文档页数:4
2015年普通高等学校招生全国统一考试(课标全国卷Ⅰ)理数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z满足1+z1-z=i,则|z|=( )A.1B.2C.3D.22.sin20°cos10°-cos160°sin10°=()A.-32B.32C.-12D.123.设命题p:∃n∈N,n2>2n,则¬p为( )A.∀n∈N,n2>2nB.∃n∈N,n2≤2nC.∀n∈N,n2≤2nD.∃n∈N,n2=2n4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A.0.648B.0.432C.0.36D.0.3125.已知M(x0,y0)是双曲线C:x 22-y2=1上的一点,F1,F2是C的两个焦点.若MF1·MF2<0,则y0的取值范围是( )A.-33,33B.-36,36C.-223,223D.-233,2336.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛7.设D为△ABC所在平面内一点,BC=3CD,则( )A.AD=-13AB+43AC B.AD=13AB-43ACC.AD=43AB+13AC D.AD=43AB-13AC8.函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为( )A. kπ-14,kπ+34,k∈Z B.2kπ-14,2kπ+34,k∈ZC. k-14,k+34,k∈Z D.2k-14,2k+34,k∈Z9.执行下面的程序框图,如果输入的t=0.01,则输出的n=( )A.5B.6C.7D.810.(x2+x+y)5的展开式中,x5y2的系数为( )A.10B.20C.30D.6011.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( )A.1B.2C.4D.812.设函数f(x)=e x(2x-1)-ax+a,其中a<1,若存在唯一的整数x 0使得f(x 0)<0,则a 的取值范围是( ) A. -32e ,1B. -32e ,34C. 32e ,34D. 32e ,1第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.若函数f(x)=xln(x+ a +x 2)为偶函数,则a= .14.一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .15.若x,y 满足约束条件 x -1≥0,x -y ≤0,x +y -4≤0,则y x的最大值为 . 16.在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是 .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)S n 为数列{a n }的前n 项和.已知a n >0,a n 2+2a n =4S n +3.(Ⅰ)求{a n }的通项公式; (Ⅱ)设b n =1a n a n +1,求数列{b n }的前n 项和.18.(本小题满分12分)如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC. (Ⅰ)证明:平面AEC⊥平面AFC;(Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i = x i ,w =8∑i =18w i. (Ⅰ)根据散点图判断,y=a+bx 与y=c+d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利润z 与x,y 的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题: (i)年宣传费x=49时,年销售量及年利润的预报值是多少? (ii)年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v=α+βu 的斜率和截距的最小二乘估计分别为β^=∑i =1n(u i -u )(v i -v )∑i =1n(u i -u )2,α^=v -β^u .20.(本小题满分12分)在直角坐标系xOy 中,曲线C:y=x 24与直线l:y=kx+a(a>0)交于M,N 两点. (Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P,使得当k 变动时,总有∠OPM=∠OPN?说明理由.21.(本小题满分12分)已知函数f(x)=x 3+ax+14,g(x)=-lnx.(Ⅰ)当a 为何值时,x 轴为曲线y=f(x)的切线?(Ⅱ)用min{m,n}表示m,n 中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,AB是☉O的直径,AC是☉O的切线,BC交☉O于点E.(Ⅰ)若D为AC的中点,证明:DE是☉O的切线;(Ⅱ)若OA=求∠ACB的大小.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积. (Ⅱ)若直线C3的极坐标方程为θ=π424.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x+1|-2|x-a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.。
2015年全国联考综合能力真题说明:由于2015年试题为一题多卷,因此现场试卷中的选择题顺序及每道题的选项顺序,不同考生有所不同。
请在核对答案时注意题目和选项的具体内容。
一、问题求解:第1-15小题,每小题3分,共45分,下列每题给出的五个选项中,A 、B 、C 、D 、E 只有一个项符合试题要求。
请在答题卡上将所选项字母涂黑。
1.若实数,,a b c 满足::1:2:5a b c =,且24a b c ++=,则222a b c ++=( )(A )30 (B )90 (C )120 (D )240 (E )2702.某公司共有甲、乙两个部门,如果从甲部门调10人到乙部门,那么乙部门人数是甲部门人数的2倍,如果把乙部门员工的15调到甲部门,那么两个部门的人数相等,该公司的总人数为( )(A )150 (B )180 (C )200 (D )240 (E )2503.设,m n 是小于20的质数,满足条件2m n -=的{},m n 共有( )(A )2组 (B )3组 (C )4组 (D )5组 (E )6组4.如图1,BC 是半圆的直径,且4BC =,30ABC ∠=,则图中阴影部分的面积为(A )43π (B )43π- (C )23π(D )23π+ (E )2π-5.某人驾车从A 地赶往B 地,前一半路程比计划多用时45分钟,平均速度只有计划的80%,若后一半路程的平均速度为120千米/小时,此人还能按原定时间到达B 地。
A 、B 两地的距离为( )(A )450千米 (B )480千米 (C )520千米 (D )540千米 (E )600千米6.在某次考试中,甲、乙、丙三个班的平均成绩分别为8081、和81.5,三个班的学生得分之和为6952,三个班共有学生( )(A ) 85名 (B )86名 (C )87名 (D )88名 (E )90名7.有一根圆柱形铁管,管壁厚度为0.1米,内径为1.8米,长度为2米,若将该铁管熔化后浇铸成长方体,则该长方体体积为(单位:3m ; 3.14π≈)( )(A )0.38 (B )0.59 (C )1.19 (D )5.09 (E )6.288.如图2,梯形ABCD 的上底与下底分别为5,7,E 为AC 与BD 的交点,MN 过点E 且平行于AD ,则MN =( )(A ) 265 (B ) 112 (C ) 356 (D ) 367 (E ) 4079.已知1x ,2x 是方程210x ax --=的两个实根,则2212x x +=( )(A )22a + (B )21a + (C )21a - (D ) 22a - (E )2a +10.一件工作,甲、乙合作需要2天,人工费2900元,乙、丙两人合作需要4天,人工费2600元,甲、丙两人合作2天完成全部工作量的56,人工费2400元,则甲单独完成这件工作需要的时间与人工费为( )(A )3天,3000元 (B )3天,2580元(C )4天,3000元 (D )4天,3000元 (E )4天,2900元11.若直线y ax =与圆22()1x a y -+=相切,则2a =( )(A ) (B ) 1+ (C (D ) 1+ (E ) 12.设点(0,2)A 和(1,0)B ,在线段AB 上取一点(,)(01)M x y x <<,则以,x y 为两边长的矩形面积的最大值为( )(A ) 58 (B ) 12 (C ) 38 (D ) 14 (E ) 1813.某新兴产业在2005年末至2009年末产值的年平均增长率为q ,在2009年末至2013年末产值的年平均增长率比前四年下降了40%,2013年末产值约为2005年产值的14.46(41.95≈)倍,则q 为( )(A )30% (B )35% (C )40% (D )45% (E )50%14.某次网球比赛的四强对阵为甲对乙,丙对丁,两场比赛的胜者将争夺冠军选手之间相互获胜的概率如下:甲获得冠军的概率为( )(A )0.165 (B )0.245 (C )0.275 (D )0.315 (E )0.33015.平面上有5条平行直线与另一组n 条平行直线垂直,若两组平行直线共构成280个矩形,则=n ( )(A )5 (B )6 (C )7 (D )8 (E )9二、条件充分性判断:第16-25小题,每小题3分,共30分。
第十一章 无穷级数(A)用定义判断下列级数的敛散性1. n 2n 1; .1;3. 11 。
2n 1 2n 2n2n 13 n5 nn 1判断下列正项级数的敛散性.n! ;5. n e; 6.n 1;7. 2n 3;8. n 4 ;n 1 e n1 2nn 1 n n 3 n 1 n! n 1 100 n nn nn1 n9.;10.3n n 12n。
n 11求下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛.1n 1n 1 ; 12.1n1; 13.1.1 1.01 1.001 1.0001;112 nln nn 1n 214.122 2 3 1 4 1 ;21 32 4 2求下列幂级数的收敛半径和收敛区间.3n x n;16.1 n x n ; 17.n! xn; .1 n;n n n 1 2n n n 1 n n 1n 119.1 2n 1; 20. n 2n;1 2 n 1xn 1 3 n xn求下列级数的和函数21. n 1 nxn 1; 22. n 1 21n 1 x2n 1;将下列函数展开成 x x 0 的幂的级数23. shx e xe x , x 00 ;24. cos 2 x , x 00 ;225. 1 x ln 1 x , x 00 ; 26. 1, x 0 3 ;x将下列函数在区间, 上展开为付里叶级数27. A xcos x,x。
28. f x 2t , x22x , 3x t 029.将函数 f x, 0 t 3 展开成付里叶级数。
xx, 0 xl2分别展开成正弦级数和余弦级数。
30.将函数 f xllx , x l2(B)用定义判断下列级数的敛散性1.1;2.1; 3.n 2 2 n 2n 03n 1 3n4n 1n n 1 n2n 1判断下列正项级数的敛散性2n n!2n2n3n na n. ; 5.;6. ,( a 0 );4n3n 12n nn 1nn1n 11nb7.,其中 a na ( n), a n , b , a 均为正数;n 1a n11x8.n,( a 0);9. n 42x ;1 n 1 0 1 x n 1 1判断下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛n 12 n 2n 1ln 2110.1;11.n 1;12.1n 1 nn!12 n 13n 2 3nn 1n 1nn 1求下列幂级数的收敛半径和收敛域.nx 2 n;14.x n ,( a 0 ,b 0 ); 1312n!n 1 anb nn 115.n12 n 1; 16. 3n2 nn;12 n4 n x 5x 1 n 1n 1n求下列级数的和函数17. nx 2n ;18.2n 1x 2 n ; 19. n 2 x n ;n 1n 1n ! n 120.求证: ln 21;n ;; 2将下列函数展开成 xx 0 的幂的级数21.f x21,x 0 0 ;22.f x12 ,x 01;23. x ,x 0 0 ; 2x3x 1x1 x 224.证明偶函数的付里叶级数数仅含余弦项;25.写出函数 f x1 x 2k , x2k 1 , 2k1 , k 0, 1, 2,的2付里叶级数,并讨论收敛情况。
无穷级数同步测试一、单项选择题1.下列结论中,错误的是( )()A 若lim 0→∞≠n n u ,则级数21∞=∑n n u 发散.()B 若级数1∞=∑n n u 绝对收敛,则21∞=∑n n u 收敛.()C 若级数1∞=∑n n u 收敛,则21∞=∑n n u 收敛.()D 若级数21∞=∑n n u 收敛,则lim 0→∞=n n u 收敛.2.已知幂级数1(1)∞=−∑nn n a x 在0=x 处收敛,在2=x 处发散,则该级数的收敛域( )()[0,2)()(0,2]()(0,2)()[0,2]A B C D3.已知幂级数1∞=∑nn n a x 的收敛半径1=R ,则幂级数0!∞=∑n n n a x n 的收敛域为( )()(1,1)()[1,1)()(1,1]()(,)−−−−∞+∞A B C D4. 设常数0>x ,则级数11(1)sin ∞−=−∑n n x n ( ). ()A 发散 ()B 条件收敛 ()C 绝对收敛 ()D 收敛性与x 有关二、填空题5. 级数11()2∞=∑nn n 的和为 .6.2!lim(!)→∞=n n n .7.已知级数22116π∞==∑n n ,则级数211(1)∞=−=∑n n n .8.幂级数2101!∞+=∑n n x n 的和函数()=S x . 三、解答题9.判断下列运算过程是否正确,若不正确,指出错误所在,并给出正确解法.级数∞=n n .又由于0=n,但=n u 不是单调递减的,由此得出该级数不满足莱布尼茨定理的第二个条件,故级数发散.10.讨论级数21(0)(1)(1)(1)∞=≥+++∑nn n x x x x x 的敛散性.11.求级数11(21)2∞=+∑nn n n 的和. 12.将2()ln(3)=−f x x x 展开为1−x 的幂级数. 13.求极限2313521lim()2222→∞−++++nn n . 14.验证函数3693()1()3!6!9!(3)!=++++++−∞<<+∞n x x x x y x x n 满足微分方程()()()'''++=xy x y x y x e ,并求幂级数30(3)!∞=∑nn x n 的和函数.第九章 多元函数微分法及其应用同步测试B 答案及解析一、单项选择题答案详细解析1. 解 利用级数的性质.若lim 0→∞≠n n u ,则2lim 0→∞≠nn u ,因此级数21∞=∑n n u 发散, ()A 正确;若1∞=∑n n u 绝对收敛,即1∞=∑n n u 收敛,则lim 0→∞=n n u ,2lim lim 01→∞→∞==<nn n n nu u u根据正项级数的比较审敛法知21∞=∑n n u 收敛,()B 正确;若级数21∞=∑n n u 收敛,则2lim 0lim 0→∞→∞=⇒=nn n n u u ,()D 正确; 故选()C .事实上,令(1)=−nn u ,则1∞=∑n n u 收敛,但2111∞∞===∑∑n n n u n发散. 『方法技巧』 本题考查级数收敛的必要条件及正项级数的比较审敛法. 『特别提醒』 比较审敛法只限于正项级数使用.2.解 由于幂级数1(1)∞=−∑n n n a x 在0=x 处收敛,则该级数在以1为中心,以0和1之间的距离1为半径的开区间11−<x ,即02<<x 内,级数绝对收敛.又级数在2=x 处发散,则在以1为中心,以1和2之间的距离1为半径的区间外11−>x ,即0<x 或2>x 内,级数发散.因此级数的收敛区间(不含端点)为(0,2),则收敛域为[0,2),故选()A .『方法技巧』 本题考查幂级数的阿贝尔定理.『特别提醒』 阿贝尔定理经常出现在各类考试的选择题或填空题中,要求大家熟练掌握它.3. 解 由于1∞=∑n n n a x 的收敛半径1=R ,则有1lim1→∞+=nn n a a . 幂级数0!∞=∑nn n a x n 的收敛半径为 11!lim lim (1)(1)!→∞→∞++'==+=+∞+nn n n n n a an R n a a n ,因此收敛域为(,)−∞+∞,故选()D .『方法技巧』 本题考查幂级数的收敛半径和收敛域. 由于级数是标准的幂级数,直接代入公式即可求出收敛半径=+∞R .4. 解 由于存在充分大的n ,有,sin 02π<>x xn n,所以从某时刻开始,级数1(1)sin ∞−=−∑k k nxk 是交错级数,且满足 sin sin ,limsin 01→∞≤=+k x x x k k k ,即满足莱布尼茨定理的条件,所以此交错级数收敛,而前有限项(1−n 项)不影响级数的敛散性,因此原级数11(1)sin ∞−=−∑n n xn 收敛.又由于sinlim 01→∞=>n xn x n,因此级数111(1)sin sin ∞∞−==−=∑∑n n n x x n n 发散,所以原级数11(1)sin ∞−=−∑n n xn 条件收敛,故选()B .『方法技巧』 本题考查正项项级数的比较审敛法及绝对收敛、条件收敛的概念和级数的性质.『特别提醒』 解题中需要说明,此级数可能不是从第一项就是交错级数,从某项以后为交错级数,而前有限项不影响级数的敛散性. 二、填空题 5. 2 6. 0 7. 212π− 8. 2x xe答案详细解析5. 解 考查幂级数1∞=∑n n nx ,其收敛域为(1,1)−.由111∞∞−===∑∑nn n n nx x nx,令11()∞−==∑n n f x nx ,则111()1∞∞−=====−∑∑⎰⎰xxn n n n x f x dx nx dx x x因此21()()1(1)'==−−x f x x x ,故21()(1)∞===−∑nn x nx xf x x ,所以 2111112()()21222(1)2∞====−∑n n n f 『方法技巧』 本题考查幂级数的收敛域及和函数.求常数项级数的和经常转化为讨论幂级数的和函数在确定点的值.『特别提醒』 在幂级数求和时,经常使用逐项积分和逐项求导的方法,将其转化为熟悉的幂级数(如等比级数),注意级数的第一项(0=n 或1=n ).6. 解 考虑级数21!(!)∞=∑n n n ,由比值审敛法 212(1)!(!)1lim lim lim 01![(1)!]1+→∞→∞→∞+===<++n n n n nu n n u n n n 因此级数21!(!)∞=∑n n n 收敛,由收敛级数的必要条件得2!lim 0(!)→∞=n n n . 『方法技巧』 本题考查利用收敛级数的必要条件求极限.这是求数列极限的一种方法,有些数列变形十分复杂,可考虑将其作为级数的一般项讨论.7. 解 由题设 222211111236π∞==+++=∑n n,则2222222111111111(2)42464624ππ∞∞====++=⨯=∑∑n n n n 22222222111111111(21)35(2)6248πππ∞∞∞====+++=−=−=−∑∑∑n n n n n n 故 222222222111111111(1)122234(21)6812πππ∞∞∞===−=−+−+−=−=−⨯=−−∑∑∑nn n n n n n 『方法技巧』 本题考查收敛级数的性质——收敛级数的代数和仍收敛(此性质只适用于收敛级数).『特别提醒』 一些同学不熟悉符号∑,可以将其写成普通和的形式,看起来会方便一些.8. 解 由于函数xe 的幂级数展开式为 01()!∞==−∞<<+∞∑xnn e x x n ,而 2122000111()!!!∞∞∞+=====∑∑∑n n n n n n x x x x x n n n 因此 22120011()()!!∞∞+=====∑∑n n x n n S x x x x xe n n .『方法技巧』 本题考查指数函数()=x f x e 的幂级数展开式01()!∞==−∞<<+∞∑xnn e x x n 一般而言,若幂级数的系数为1!n 时,求和时可能与指数函数x e 有关;若幂级数的系数为1(21)!−n 或1(2)!n 时,求和时可能与三角函数sin x 或cos x 有关.三、解答题9. 解 判断条件收敛的运算过程是错误的.由于lim11→∞→∞===n n n n u ,因此由比较审敛法知,级数∞=n2∞=n n 不是绝对收敛的.错误在于:莱布尼茨定理是判断交错级数收敛的一个充分条件,不是必要的,因此并不能说明不满足莱布尼茨定理的第二个条件,级数就一定不收敛.本题的正确解法要用级数收敛的充分必要条件,即研究lim →∞n n S 是否存在.正确解法:212⎛=+++ ⎝n S n由于每个括号均为负数,因此2n S 单调递减,且有212⎛=+++⎝n S n12⎛>+++⎝n=> 因此2lim →∞n n S 存在,不妨设2lim →∞=n n S S ,而21221221lim lim()lim lim 0+++→∞→∞→∞→∞=+=+=+=+=n n n n n n n n n n S S u S u S S S从而得到lim →∞=n n S S ,即级数∞=n n .『方法技巧』 本题考查绝对收敛和条件收敛的概念、莱布尼茨定理的应用及级数收敛的充分必要条件.1∞=∑nn u收敛⇔部分和n S 的极限存在,即lim →∞=n n S S『特别提醒』 莱布尼茨定理是判断交错级数收敛的充分非必要条件,即使不满足莱布尼茨定理,级数也可能收敛.10. 解 由于级数的一般项中含有连乘的形式,所以用比值审敛法1111lim 0 111limlim0111 12→∞+++→∞→∞⎧⎪=>⎪⎪+⎪⎪==≤<⎨+⎪⎪=⎪⎪⎪⎩n n n n n n n nx x x u xx x u x x 故对任意的0≥x ,原级数均收敛.『方法技巧』 本题考查正项级数的比值审敛法.若正项级数的一般项中含有连乘(包括阶乘!n )时,一般考虑用比值审敛法判断级数的敛散性.『特别提醒』 由于x 的范围不同,1lim+→∞n n nu u 不同,故需要分别进行讨论,但不论什么情况,极限值均小于1,因此级数收敛.11. 解 考虑幂级数21(21)∞=+∑nn x n n由于2211(1)(23)limlim 1(21)+→∞→∞++==+n n n nu n n x x u n n ,故其收敛半径为1=R ,而当1=±x 时,级数11(21)∞=+∑n n n 均收敛,因此幂级数的收敛域为[1,1]−.令 22111()(1)(21)(21)+∞∞====<++∑∑n n n n x x S x x x n n n n则 2212112(),()21∞∞−=='''===−∑∑n n n n x xS x S x x n x 因此 22002()(0)()ln(1)1''''−===−−−⎰⎰xxxS x S S x dx dx x x又 (0)0'=S ,则 2()ln(1)'=−−S x x ,同理2201()(0)()ln(1)ln(1)2ln1+'−==−−=−−+−−⎰⎰xxxS x S S x dx x dx x x x x而 (0)0=S ,则 21()ln(1)2ln1+=−−+−−xS x x x x x,故1111)](21)22∞====+−+∑nn n n2ln 21)=++『方法技巧』 本题考查利用幂级数求常数项级数的和,这是一种常用方法,关键要做出合适的幂级数.本题由于级数一般项的分母中含有因式21+n ,故所做级数为21(21)∞=+∑n n x n n,此时只要令=x ,即为所求的常数项级数.『特别提醒』 在求幂级数的和时,不要忽略了收敛域的讨论,要保证常数项级数是幂级数取收敛域内的点.12. 解 2()ln(3)ln ln(3)=−=+−f x x x x x1ln[1(1)]ln[2(1)]ln[1(1)]ln 2ln[1()]2−=+−++−=+−+++xx x x 由于 234111ln(1)(1)(1)(11)234∞−−=+=−+−++−+=−−<≤∑nnn n n x x x x x x x x nn则 11111()(1)2()ln 2(1)(1)∞∞−−==−−=+−+−∑∑n nn n n n x x f x n n12111(1)(1)ln 2(1)(1)2∞∞−−==−−=+−+−∑∑n nn n nn n x x n n 111(1)ln 2[(1)]2∞−=−=+−−∑nn n n x n且满足1111112−<−≤⎧⎪⎨−−<≤⎪⎩x x,即 02<≤x . 『方法技巧』 本题考查形如()ln(1)=+f x x 的函数展开式及收敛域11−<≤x .首先将2()ln(3)=−f x x x 化为1()ln[1(1)]ln 2ln[1()]2−=+−+++xf x x ,将第一项中的1−x 看成标准形中的x ,第二项中的12−x看成标准形中的x ,再展开. 『特别提醒』 ()ln(1)=+f x x 的展开式可以用如下方法记忆:由于 231111111(1)(1)1∞−−−−==−+−++−+=−+∑n n n n n x x x xx x两边积分得11234011111(1)(1)ln(1)1234−−∞=−−+==−+−+++=+∑⎰n n xnnn x dx x x x x x x x n n13. 解 所求极限实际上是级数1212∞=−∑nn n 的和,因此可考虑幂级数 221(21)∞−=−∑n n n x令 22221222111()(21)()()1(1)∞∞−−==+''=−===−−∑∑n n n n x x S x n xxx x故2321113521112lim()31222222(1)2→∞+−++++===−n n n S 『方法技巧』 本题考查利用级数的和求其部分和的极限.关键是找到一个适当的幂级数,利用它求出常数项级数的和,再利用级数收敛的充要条件求极限.『特别提醒』 1212∞=−∑nn n 不刚好等于S ,而是相差12倍. 14. 解 当(,)∈−∞+∞x 时,3693()13!6!9!(3)!=++++++n x x x x y x n ,(0)1=y则 25831()2!5!8!(31)!−'=+++++−n x x x x y x n ,(0)0'=y4732()4!7!(32)!−''=+++++−n x x x y x x n ,故4732258314!7!(32)!2!5!8!(31)!−−'''++=+++++++++++−−n n x x x x x x x y y y x n n369313!6!9!(3)!+++++++n x x x x n2345612!3!4!5!6!!=++++++++++=n x x x x x x x x e n所以()y x 满足方程'''++=x y y y e .由于幂级数30(3)!∞=∑nn x n 的和函数为()y x ,因此所要求的是二阶常系数非齐次线性微分方程 '''++=x y y y e 的满足条件(0)1,(0)0'==y y 的特解()y x .其特征方程为210++=r r ,特征根为1,2122=−±r i ,对应的齐次方程的通解为212(cossin )22−=+x Y e C x C x ,又因1λ=不是特征根,则其特解形式为*=x y Ae ,代入原方程,解得13=A ,故微分方程的通解为11 2121(cos sin )223−=++x x y e C x C x e ,将(0)1,(0)0'==y y 代入得122,03==C C ,所求微分方程的特解为221cos 323−=+x x y e x e 因此32021cos (3)!323∞−==+∑x n x n x e x e n 『方法技巧』 本题考查幂级数逐项求导及二阶常系数非齐次线性微分方程的求通解和特解.。
南开大学2015级“场论与无穷级数(信)”结课统考试卷 (A 卷) 2016年6月13日 草稿区
(说明:答案务必写在装订线右侧,写在装订线左侧无效。
影响成绩后果自负。
)
一、判定下列级数的敛散性(2054=⨯分): (1) ∑∞
=+-1
2
21
n n n ;
(2) ∑∞
=12
3
n n n ;
(3) )0(,)1
(
1
>+∑∞
=a n an n n
;
(4) ∑∞
=-+-1
11ln )1(n n n n
.
二、求幂级数
∑∞
=+0
)12(n n
x
n 的收敛域,并求其和函数。
(本题10分).
三、求函数2
31
)(2++=
x x x f 在4-=x 处的泰勒展开.(本题10分) 草稿
四、求下列微分方程的通解或初值问题的解(每小题5分): (1)034'
''=++y y y ;
(2)122'
+=+x y y
(3)x
e y y y 2'
'
'56=++;
(4)4
y x y dx dy +=;
(5)1)0(,0)1(2==++y dy x dx y ;
五、计算下列广义积分(每小题5分): 草稿区
(1) ⎰
-1
2
31dx x
x ;
(2)
⎰
+1
32
3
)
1(x x dx
六、(本题9分)将函数)0(,1)(π≤≤+=x x x f 展开为正弦级数. .
场论与无穷级数(信)A4-3
七、(本题8分)讨论积分dx x x x F ⎰+∞
-+=
)
1()(αα的敛散性, 其中0>α. 草稿区
八、(8分)计算积分⎰-=2
/0
22)sin ln()(πdx x a a I ,其中1||>a .
场论与无穷级数(信)A4-4。