代谢控制发酵-第二章 微生物的细胞代谢(一)
- 格式:pdf
- 大小:3.75 MB
- 文档页数:56
《代谢控制发酵》复习题1.名词解释代谢控制发酵:所谓代谢控制发酵就是利用遗传学的方法或其他生物化学的方法,人为地在脱氧核糖核苷酸的分子水平上,改变和控制微生物的代谢,使有用目的产物大量生成、积累发酵。
关键酶:参与代谢调节的酶的总称。
作为一个反应链的限速因子,对整个反应起限速作用。
变构酶:有些酶在专一性的变构效应物的诱导下,结构发生变化,使催化活性改变,称为变构酶。
诱导酶:诱导酶是在环境中有诱导物(通常是酶的底物)存在的情况下,由诱导物诱导而生成的酶。
调节子:就是指接受同一调节基因所发出信号的许多操纵子。
温度敏感突变株:通过诱变可以得到在低温下生长,而在高温下却不能生长繁殖的突变株。
碳分解代谢物阻遏:可被迅速利用的碳源抑制作用于含碳底物的酶的合成,就称为碳分解代谢阻遏。
氮分解代谢物阻遏:可被迅速利用的氮源抑制作用于含氮底物的酶的合成,就称为氮分解代谢阻遏。
营养缺陷型突变菌株:原菌株由于发生基因突变,致使合成途径中某一步骤发生缺陷,从而丧失了合成某些物质的能力,必须在培养基中外源补加该营养物质才能生长的突变菌株。
渗漏突变株:由于遗传性障碍的不完全缺陷,使它的某一种酶的活性下降而不是完全丧失。
因此,渗漏突变菌株能少量的合成某一种代谢最终产物,能在基本培养基上进行少量的生长。
代谢互锁:从生物合成途径来看,似乎是受一种完全无关的终产物的控制,它只是在较高浓度下才发生,而受这种抑制(阻遏)作用是部分性的,不完全的。
平衡合成:底物A经分支合成途径生成两种终产物E与G,由于a酶活性远远大于b 酶,结果优先合成E。
E过量后就会抑制a酶,使代谢转向合成G。
G过量后,就会拮抗或逆转E的反馈抑制作用,结果代谢流转向又合成E,如此循环。
(P45图)优先合成:底物A经分支合成途径生成两种终产物E和G,由于a酶的活性远远大于b酶的活性,结果优先合成E。
E合成达到一定浓度时,就会抑制a酶,使代谢转向合成G。
G合成达到一定浓度时就会对c酶产生抑制作用。
微生物代谢的掌控突破微生物的自我代谢调整机制,使代谢产物积累的有效措施有三种:应用营养缺陷型菌株,利用其合成代谢途径中某一步发生的缺陷,解除反馈调整作用,从而使产物大量积累。
选育抗反馈调整的突变菌株,使其不再受正常反馈调整的影响,*终达到产物积累的目的。
更改细胞膜的通透性,使*终代谢产物不能在细胞内大量积累达到引起反馈调整的浓度,从而达到解除反馈调整的目的。
一、发酵过程掌控微生物发酵的过程掌控应当从两个方面来实现:1. 微生物菌体本身的性能掌控2. 微生物发酵环境条件掌控。
(一)发酵过程的一般性规律1.发酵的基本过程原材料的预处理,发酵培育基的制备,**,大型发酵,发酵液的预处理和固液分别,发酵液的纯化,发酵液的精制及成品加工2.发酵过程的一般性规律(1)发酵用培育基供菌种生长、繁殖和合成产物使用。
(2)种子扩大培育供给大量菌体应使用处于对数增长期末期的菌种。
(3)发酵工艺掌控调控发酵条件包括:发酵温度、发酵醪基质浓度、含氧量、酸碱度、发酵时间掌控方法有:通风、供热(冷)、调整培育基发酵掌控要解决的两个问题:发酵代谢途径问题发酵代谢速度问题(二)发酵过程需要过程掌控(三)发酵过程掌控的基本途径发酵原材料的掌控发酵菌体的掌控发酵条件的掌控二、微生物代谢调整与发酵掌控实例分析谷氨酸棒状杆菌合成谷氨酸的途径菌种的选择只有选择细胞膜通透较强,在细胞内不积累谷氨酸的谷氨酸棒状杆菌做菌种才有可能获得大量的谷氨酸。
培育基的选择发酵罐示意图发酵条件掌控发酵温度:谷氨酸菌*适生长温度35~34℃;*适发酵温度35~37℃发酵pH:7.0~7.2发酵溶解氧:大量氧气三、微生物的纯种发酵与多菌种的协同发酵(一)微生物的纯种发酵1.纯种发酵对生产菌种的要求高产性;无害型;适应性;稳定性2.纯种发酵对生产过程的要求生产过程无菌化3.纯种发酵的生产特点菌种单一,易于生产掌控液态基质,易于自动化掌控产品**,牢靠性强产品风味纯正(二)多菌种的协同发酵(二)多菌种协同发酵的特点多菌种的协同作用发酵界面多而杂且产品风味多样化产品的区域性特征显著设备投入少,生产快捷性强发酵机理不清,生产阅历性强。
第一章:微生物代谢小结:1、能量代谢是生物新陈代谢的核心2、化能异养微生物的生物氧化必须经历脱氢、递氢和受氢3个阶段,依据受体的不同将生物氧化分为三种:呼吸、无氧呼吸和发酵3、化能自养微生物利用无机氧化获得ATP,产能少,生长得率极低4、字样微生物通过光和磷酸化获得ATP,包括循环光合酸化、分循环光和磷酸化和紫膜光合磷酸化三种5、微生物具有固氮作用复习题:1、名词解释:生物氧化:在生物体内,从代谢物脱下的氢及电子﹐通过一系列酶促反应与氧化合成水﹐并释放能量的过程。
有氧呼吸:微生物在降解底物过程中,将释放出电子传给NAD(P)+、FAD或FMN等电子载体,在经电子传递系统传给外源电子受体,以分子氧作为最终电子受体,从而生成水或其它还原型产物并释放出能量的过程无氧呼吸:微生物在降解底物过程中,将释放出电子传给NAD(P)+、FAD或FMN等电子载体,在经电子传递系统传给外源电子受体,以氧化型化合物作为最终电子受体,从而生成水或其它还原型产物并释放出能量的过程发酵:是指微生物细胞将有机物氧化释放的电子直接交给底物本身未完全氧化的某种中间产物,同时释放能量并产生各种不同的代谢产物。
电子传递链(呼吸链):多种递电子体或递氢体按次序排列的连接情况。
生物氧化过程中各物质氧化脱下的氢,大多由辅酶接受,这些还原性辅酶的氢在线粒体内膜上经一系列递电子体(或递氢体)形成的连锁链,逐步传送到氧分子而生成水。
此种连锁过程与细胞内呼吸过程密切相关。
植物的叶绿体中则存在光合电子传递链以传递电子,完成光合作用中水分解出氧,形成NADPH的过程。
光和磷酸化(循环/非循环):一种存在于厌氧光合细菌中的利用光能产生ATP的磷酸化反应,由于它是一种在光驱动下通过电子的循环式传递而完成的磷酸化,故称循环光合磷酸化。
生物固氮:生物固氮是指分子氮通过固氮微生物固氮酶系的催化而形成氨的过程。
自生/共生/联合固氮菌:自生固氮菌:独立进行固氮,但并不将氨释放到环境中,而是合成氨基酸;固氮效率较低。
微生物的代谢调控与发酵生产技术培训1. 引言微生物是一类非常重要的生物资源,对于人类的生活和产业发展起着不可忽视的作用。
微生物的代谢调控与发酵生产技术是微生物应用领域的核心内容。
本培训将介绍微生物代谢调控的基本原理和发酵生产技术的关键知识,帮助学员更好地了解微生物的代谢特点,掌握发酵工艺的操作技术,为微生物相关领域的研究和应用提供基础支持。
2. 微生物代谢调控的基本原理2.1 代谢调控的概念和意义代谢调控是指生物体对代谢过程的控制机制,通过对代谢途径中关键酶的调节,微生物能够根据环境变化和能源需求来调整代谢途径的流动,以更高效地利用营养物质并适应外界环境的变化。
2.2 代谢调控的方式代谢调控主要通过转录水平的调节和翻译后修饰来实现。
微生物中常见的代谢调控方式包括基因表达调控、底物浓度调控、反馈抑制调控等。
2.3 代谢网络的建立与调控代谢网络是由一系列相互作用的代谢途径构成的复杂网络系统。
微生物中的代谢网络涉及到多个途径和多个酶的相互作用,需要考虑途径之间的交叉调控和代谢产物之间的协同作用。
3. 发酵生产技术的关键知识3.1 发酵工艺的基本流程发酵工艺是利用微生物对底物进行代谢转化的过程。
发酵生产技术涉及到微生物的选取与培养、发酵条件的控制、产物的提取与纯化等关键步骤。
3.2 常用的发酵微生物常用的发酵微生物包括革兰氏阳性菌和革兰氏阴性菌等,它们具有不同的生理特点和产物合成能力,可以根据不同的需求选择合适的微生物进行发酵生产。
3.3 发酵条件的调控发酵条件的调控对于发酵过程中微生物的生长和产物的合成起着关键作用。
常见的发酵条件包括pH值、温度、氧气浓度、营养物质浓度等,通过调节这些条件可以控制微生物的生长速率和产物合成速率。
3.4 发酵产物的提取与纯化发酵产物的提取与纯化是发酵生产技术中的最后一个重要步骤。
通过适当的提取和纯化工艺,可以获得高纯度的发酵产物,并去除其中的杂质,以满足不同领域的应用需求。
代谢控制发酵的原理及应用1. 引言发酵作为一种重要的工业生产过程,广泛应用于食品工业、制药工业、化工工业等领域。
控制发酵过程中的代谢反应是提高发酵产物得率和质量的关键。
本文将介绍代谢控制发酵的原理及其在实际应用中的意义。
2. 代谢控制发酵的原理2.1 代谢途径代谢途径是细胞内各种代谢酶反应所组成的网络。
通过对代谢途径进行控制,可以实现对发酵过程中代谢产物的合成与降解的调控。
•代谢途径的分类:–糖代谢途径:通过调节糖酵解和糖异生途径的活性,实现对碳源代谢的控制。
–脂肪代谢途径:调节脂肪酸合成和降解途径,影响发酵产物的合成。
–氨基酸代谢途径:调控氨基酸的合成和降解,影响蛋白质合成和产物生成。
–核苷酸代谢途径:控制DNA和RNA的合成,对生物体的生长和发育起到重要作用。
2.2 代谢调控策略代谢调控策略是通过对代谢途径内关键酶的调控,实现对代谢产物合成和降解速率的调控。
•调控策略的分类:–底物浓度调控:通过调节底物浓度,影响酶催化反应速率,进而控制代谢产物的生成。
–反馈抑制:通过代谢产物对酶活性的抑制,调节代谢途径内各个酶的活性,从而控制代谢产物的生成。
–遗传调控:通过改变生物体内部基因表达水平,调节代谢途径内酶的含量,进而影响代谢产物的合成速率。
–外部条件调控:例如温度、pH值等环境条件的调控,对代谢产物合成有重要影响。
3. 代谢控制发酵的应用3.1 食品工业在食品工业中,利用代谢控制发酵技术可以实现食品添加剂、发酵食品等的生产。
•食品添加剂的生产:通过控制微生物发酵过程中的代谢途径和代谢产物的合成,可以高效生产食品添加剂,如谷氨酰胺、谷氨酰胺钠等。
•发酵食品的生产:利用代谢控制发酵技术,可以生产出口感好、品质优良的发酵食品,如酸奶、面包等。
3.2 制药工业代谢控制发酵技术在制药工业中有着广泛应用。
•抗生素的生产:通过调控微生物发酵过程中底物浓度、代谢途径和酶活性,可提高抗生素的产量和质量。
•生物药物的生产:通过遗传调控和代谢途径调控,可以实现生物药物的高效合成,如重组人胰岛素和重组人生长激素等。