第三节 大气物理性质
- 格式:ppt
- 大小:4.97 MB
- 文档页数:88
第三节大气的基本物理性质一、主要的气象要素(meteorological elements)气象要素:定性或定量描述大气物理现象和大气状态特征的物理量。
它们包括太阳辐射、温度、湿度、气压、云、降水、蒸发、能见度和各种天气现象等。
其中以温度、气压、湿度和风最为重要。
气象要素表征着大气的宏观物理状态,是大气科学研究的基础。
(一)气压(air pressure)1、气压的定义气压:大气压强的简称,从观测高度到大气上界,单位面积上垂直空气柱的重量。
气压常用的单位是百帕(hpa),或以水银柱高度的毫米(mm)数、厘米(cm)数表示。
一个标准大气压:国际上规定,温度为0℃,纬度为450的海平面上,760mm水银所具有的压强称为一个标准大气压。
2、气压单位的换算p=(s×h×ρHg×g)/s=0.76×1.35951×104(kg/m3)×9.80665(m/s2)=101325(N/m2)g=9.80665(1-0.00259cos2φ)(1+Z/R)-2在国际单位制中,压强的单位是帕斯卡(Pa)。
1帕斯卡=1牛顿/平方米,所以,1个标准大气压=101325N/m2=101325Pa=1013.25hpa≈1000hpa气象学上以前曾用毫巴作为气压的单位,1mb=1000达因/平方厘米,因1帕斯卡=10达因/平方厘米,所以1mb=100帕斯卡=1百帕(hpa),1牛顿=105达因1mb=1hpa 一个标准大气压=760mmHg=1000hpa 1mmHg=4/3hpa 可以由式mg/4лR2容易地计算出地球表面的平均气压。
式中的m为大气的总质量5.13×1018Kg,g为平均重力加速度9.8m/s2,R为地球的平均半径,地球表面上的平均气压为:105pa=1000mb=1000hpa。
3、测定气压的仪器气压表(动槽式、定槽式)、气压计、空盒气压表等。
大气物理要点总结1. 引言大气物理是研究大气现象和过程的科学学科。
它涉及天气、气候、空气质量等多个方面。
本文将总结大气物理的一些重要要点,包括大气层结、气压和风、大气湍流以及气象雷达等内容。
2. 大气层结大气层结是指大气垂直方向上的温度和湿度的分布特征。
常见的大气层结类型包括对流层、平流层和跳跃层。
•对流层:位于地球表面以上的大约0-12公里范围内,温度随着高度的升高而逐渐下降。
这是因为地球表面受到太阳辐射的加热,导致空气通过对流传热来保持温度梯度。
•平流层:位于对流层上方的大约12-50公里范围内,温度随高度变化的规律性不明显。
这是因为在平流层内,大气层结主要由平流引起,而非对流。
•跳跃层:位于平流层和中间层之间,通常在大约50-80公里高度范围内,具有温度跃变的特点。
大气层结对大气运动和气象现象有重要影响,是大气物理研究中的关键概念。
3. 气压和风气压是大气分子对单位面积的压力。
高压区域的空气密度较大,气压较高;低压区域的空气密度较小,气压较低。
气压的水平分布会导致风的产生和改变。
风是空气相对于地面的水平运动。
风的形成和变化是由气压的差异引起的。
气压梯度越大,风的强度越大。
此外,科里奥利力和摩擦力也会对风产生影响。
科里奥利力是地球自转引起的一种偏转力,会使北半球的风向向右偏转,南半球的风向向左偏转。
摩擦力会使风向与地面摩擦层的地形和摩擦表面有关。
风的强度和方向可以通过风速和风向来描述。
风速可以用各种单位来表示,常见的有米每秒(m/s)和千米每小时(km/h)。
风向通常使用罗盘方向来表示,例如北风、西风等。
4. 大气湍流大气湍流是大气中运动的一种特殊形式,具有不规则和随机性。
它是由于流体中的速度和压力的不规则变化而产生的。
湍流可以发生在各种尺度上,从小到大可以分为微观湍流、中等尺度湍流和大尺度湍流。
•微观湍流:通常发生在小于1毫米的尺度上,例如空气中的微观气泡运动。
•中等尺度湍流:例如对流层中的湍流运动,其尺度通常在1-1000千米之间。
气象物理知识点总结1. 大气结构和成分地球大气主要分为四层:对流层、平流层、中间层和外层。
对流层是地球大气最底层,它的高度约为0-10公里,这一层大气的物理性质和气象现象最为活跃。
平流层位于对流层之上,高度约为10-50公里,中间层和外层则分别位于平流层之上,其高度和物理性质有着显著的不同。
地球大气主要成分包括氮气、氧气、水蒸气、稀有气体、臭氧等,这些气体对于大气的物理性质和气象现象都有着重要的影响。
2. 大气压力和温度大气压力是指大气对地球表面或物体单位面积所施加的压力,它随着海拔的增加而逐渐减小。
气温是指大气中分子的热运动程度,气温的变化对于天气的形成和气象现象的发生都具有重要的影响。
大气的温度和压力分布有着明显的规律性,了解这些规律对于天气预测和气候研究都具有重要的意义。
3. 气象现象和天气预测气象现象是指大气中各种物理现象和过程,如气压变化、温度变化、湿度变化、降水、云层等。
天气预测是指根据气象现象和规律,对未来天气情况进行预测。
传统的天气预测主要依靠气象观测和经验判断,随着气象卫星、雷达等现代技术的发展,天气预测的准确性得到了显著提高。
4. 气候变化和全球变暖气候是指长时间范围内的天气状况,包括温度、湿度、降水、风向等气象要素。
气候变化是指气候长期平均状态和分布发生的变化,全球变暖是指地球表面温度不断升高的现象。
气候变化和全球变暖对于人类社会和自然生态系统都具有重大影响,因此对其进行深入研究具有重要的意义。
5. 天气系统和气象灾害大气环流系统是地球大气中一系列有规律的空气运动,它是天气形成和分布的重要原因。
气象灾害是指由气象现象和天气系统引起的对人类生产生活和生态环境造成危害的自然灾害。
了解天气系统和气象灾害的形成和规律性,对于预防和减轻气象灾害的影响具有重要的意义。
总结:气象物理学作为研究地球大气的一门科学,对于我们了解气象现象、预测天气、研究气候变化等方面都具有重要的意义。
通过学习气象物理学的相关知识,我们可以更好地了解地球大气的物理性质和规律,为我们的生产生活和自然环境的保护提供重要的科学依据。
大气物理知识点总结大气物理是研究大气运动、气象现象和大气环境的学科。
它涉及了大气的结构、运动规律、热力学和动力学过程等多个方面。
在现代大气物理研究中,人们不仅仅关注天气预报和气候变化,还涉及到了空气污染、天然灾害等问题。
下面将对大气物理的一些重要知识点进行总结。
大气的成分和结构大气是地球表面上的气体层,由各种气体组成。
主要成分包括氮气(78%)、氧气(21%)、稀有气体(1%)、水蒸气(变化范围大)等。
大气主要分为四层:对流层(最底层)、平流层、中间层和外部层。
大气的运动规律大气运动包括垂直运动和水平运动。
垂直运动主要是对流运动和垂直运动。
而水平运动则包括风、地转风、切向速度、螺旋速度、地面风、垂直风等。
大气的热力学过程大气中的热力学过程包括气体的热胀冷缩、热传导、对流传热、辐射传热等。
这些过程对大气的热力学结构和气候有着重要的影响。
大气的动力学过程大气中的动力学过程主要包括了地球的自转和公转、大气的环流、热带气旋、高空急流、地理风等。
通过这些过程,可以了解大气的轨迹和运动规律。
大气现象大气现象主要包括天气、云、雨、雪、冰雹、雾、霾、龙卷风、飓风、台风、雷电、飞沙走石等。
这些现象对人类的生活和生产有着重要的影响。
气象预报气象预报是利用大气物理的知识对气象现象进行预测和预报。
它可以帮助人们更好地安排生活和工作,预防天气灾害等。
气候变化气候变化是指地球气候系统长期的变化。
它包括了气温、降水量、风向等的变化。
近些年来,由于人类活动的影响,气候变化已成为一个重要的全球性问题。
空气污染空气污染是指大气中出现的污染物质,包括了颗粒物、二氧化硫、氮氧化物等。
空气污染对人类的健康、环境等都具有严重的影响。
天然灾害天然灾害包括了台风、龙卷风、地震、洪水、干旱等。
它们对人类的生产和生活造成了很大的损失。
在大气物理研究中,人们不断地深入探索大气的奥秘,致力于提高气象预报的准确性、探索气候变化的规律、减少空气污染和防范天然灾害。
有关大气的物理性状在气象学上,大气的物理性状主要以气象要素和空气状态方程来表征。
一、主要气象要素气象要素是指表示大气属性和大气现象的物理量,如气温、气压、湿度、风向、风速、云量、降水量、能见度等等。
(一)气温在必然的容积内,必然质量的空气,其温度的高低只与气体分子运动的平均动能有关。
即这一动能与绝对温度T 成正比。
因此,空气冷热的程度,实质上是空气分子平均动能的表现。
当空气取得热量时,其分子运动的平均速度增大,平均动能增加,气温也就升高。
反之当空气失去热量时,其分子运动平均速度减小,平均动能随之减少,气温也就降低。
气温的单位:目前我国规定用摄氏度(°C )温标,以气压为时纯水的冰点为零度(0°C ),沸点为100度(100°C )。
理论研究常常利用绝对温标以K 表示,这种温标中1度的距离和摄氏度相同,但其零度称为“绝对零度”,规定为等于摄氏°C 。
因此水的冰点为,沸点为。
两种温标之间的换算关系如下:27315.273+≈+=t t T大气中的温度一般以百叶箱中干球温度为代表。
(二)气压气压指大气的压强。
它是空气的分子运动与地球重力场综合作用的结果。
若以P 代表气压,F 代表面积A 上所经受的力,则:AF P = 若M 为任何面积A 上的大气质量,在地球重力场中,g 为重力加速度,则那个面积A 上大气柱的重力和该面上所经受的压力为:AMg P Mg F == 即静止大气中任意高度上的气压值等于其单位面积上所经受的大气柱的重量。
当空气有垂直加速运动时,气压值与单位面积上经受的大气柱重量就有必然的差值,但在一般情形下,空气的垂直运动加速度是很小的,这种不同能够忽略不计。
一般情形下气压值是用水银气压表测量的。
设水银柱的高度为h ,水银密度为ρ,水银柱截面积为S ,则水银柱的重量W=ρgh ·S 。
由于水银柱底面积的压强和外界大气压强是一致的,从而所测大气压强为:gh SS gh S W P ρρ=⋅== 1(hPa )等于1(cm 2)面积上受到10-2(N )压力时的压强值,即:22101cm N hPa -=被选定温度为0°C ,纬度为45°的海平面作为标准时,海平面气压为,相当于760mm 的水银柱高度,曾经称此压强为1个大气压。
第一章引论第二节气候系统概述气候系统是一个包括大气圈、水圈、陆地表面、冰雪圈和生物圈在内的,能够决定气候形成、气候分布和气候变化的统一的物理系统。
一、大气圈概述大气圈是气候系统中最活跃、变化最大的组成部分。
1)大气圈的组成:大气是由多种气体混合组成的,此外,还悬浮由一些固体杂质和液体微粒;大气的气体组成成分:主要成分——氮、氧、氩,99.96%;微量气体成分——二氧化碳、臭氧、甲烷等;干洁空气:90km以下可以看成是分子量为28.97的“单一成分”的气体;大气中的氧气:大气中的氧是一切生命所必须的,这是因为动物和植物都要进行呼吸,都要在氧化作用中得到热能以维持生命大气中臭氧的形成、分布与作用: 大气中的臭氧主要是由于在太阳的短波辐射下,通过光化学作用,氧分子分解成氧原子后再和另外的氧分子结合而成的,另外有机物的氧化和雷电的作用也能形成臭氧,臭氧可以大量吸收太阳紫外线使臭氧层增暖,影响大气温度的垂直分布,从而对地球大气环流和气候的形成起着重要的作用。
大气中的氮气:大气中的氮气能够冲淡氧气,使氧气不至太浓,氧化作用不过于激烈,大量的氮气可以通过豆科植物的根瘤菌固定到土壤中,成为植物体内不可缺少的养料大气中的二氧化碳、甲烷、一氧化碳等都是温室气体,它们对太阳辐射吸收甚少,但却能强烈地吸收地面辐射,同时又向周围空气和地面放射长波辐射。
因此它们都有使空气和地面增温的效应。
大气中的水汽:大气中的水汽来自江、河、湖、海及潮湿物体表面的水分蒸发和植物蒸腾,并借助空气的垂直交换向上传输。
空气中的水汽含量夏季多于冬季,随高度的增加而减少。
水汽可以凝结或凝华为水滴或冰晶,成为淡水的主要来源。
大气气溶胶粒子:大气中悬浮的多种固体微粒和液体微粒,统称大气气溶胶粒子。
固体微粒有的来源于自然界,如火山喷发的烟尘,被风吹起的土壤颗粒,海水飞溅扬入大气后而被蒸发的盐粒,细菌、微生物、孢子花粉,流星燃烧所产生的细小微粒和宇宙尘埃等;有的是由于人类活动,如燃烧物质排放至空气中的大量烟粒等。