2020邹城八中模拟冲刺数学试题4
- 格式:pdf
- 大小:281.97 KB
- 文档页数:3
邹城八中中考模拟数学试题5一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求).1.如果分式有意义,则x的取值范围是()A.x≠1B.x=1C.全体实数D.x=02.用公式法解方程4y2=12y+3,得到()A.y B.y C.y D.y3.今年,我市继续落实“精准扶贫”为贫困学生发放营养餐工作,某校为了了解七年级贫困生人数,对该校七年级6个班进行摸排,得到各班贫困生人数分别为12,12,14,10,18,16,这组数据的众数和中位数分别是()A.12和10B.12和13C.12和12D.12和144.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a,小明的作法如图所示,以AB为直径作⊙0,以B点为圆心以a的长为半径画弧交⊙0于点C,连接AC,得到Rt△ABC,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.勾股定理是逆定理C.直径所对的圆周角是直角D.90°的圆周角所对的弦是直径5.对于二次函数y=x2–2mx–3,下列结论错误的是()A.它的图象与x轴有两个交点B.方程x2–2mx=3的两根之积为–3C.它的图象的对称轴在y轴的右侧D.x<m时,y随x的增大而减小6.四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为()A.12 B.14 C.34 D.17.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式x3﹣xy2,取x=20,y=10,用上述方法产生的密码不可能是()A.201010B.203010C.301020D.2010304题图8题图9题图10题图8.如图,平行四边形ABCD 的顶点C 在y 轴正半轴上,CD 平行于x 轴,直线AC 交x 轴于点E,BC⊥AC,连接BE,反比例函数(x>0)的图象经过点D.已知S △BCE =2,则k 的值是()A.2B.﹣2C.3D.49.如图,在半径为6cm 的⊙O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC 是菱形.其中正确结论的序号是()A.①③B.①②③④C.②③④D.①③④10.如图,O 是边长为4cm 的正方形ABCD 的中心,M 是BC 的中点,动点P 由A 开始沿折线A﹣B﹣M 方向匀速运动,到M 时停止运动,速度为1cm/s.设P 点的运动时间为t(s),点P 的运动路径与OA、OP 所围成的图形面积为S(cm 2),则描述面积S(cm 2)与时间t(s)的关系的图象可以是().A.B.C.D.二、填空题:(本大题共5小题,共15分)11.若正多边形的一个内角等于150°,则这个正多边形的边数是______.12.已知x,y 满足方程组⎩⎨⎧=+=+4252y x y x ,则22x y -的值是.13.如图,将半径为3的圆形纸片,按下列顺序折叠.若弧AB 和弧BC 都经过圆心O,则阴影部分的面积是_____(结果保留π)13题图15题图14.在数-2,0,1,2中任取两个数作为点坐标,那么该点刚好在一次函数2y x =-图象上的概率是.15.如图,以等边△OAB 的高OC 为边向逆时针方向作等边△OCD,CD 交OB 于点E,再以OE 为边向逆时针方向作等边△OEF,EF 交OD 于点G,再以OG 为边向逆时针方向作等边△OGH,…,按此方法操作,最后得到△OMN,此时N 在AO 延长线上.若AB=1,则ON=_____.三、解答题:(本大题共7小题,共55分.)16.(本小题满分6分)(1)先化简,再求值:(a﹣b)2+b(3a﹣b)﹣a 2,其中a=,b=.(2)解方程:x 2﹣2x=x﹣2.17.(本小题满分6分)近年来,某市旅游事业蓬勃发展,吸引大批海内外游客前来观光旅游、购物度假,下面两图分别反映了该市2014——2017年游客总人数和旅游业总收入情况.2014-2017年游客总人数统计图2014201520162017年份图12014-2017年游客总人数统计图2014201520162017年份图2根据统计图提供的信息,解答下列问题:(1)2017年游客总人数为万人次,旅游业总收入为万元;(2)在2015年,2016年,2017年这三年中,旅游业总收入增长幅度最大的是年,这一年的旅游业总收入比上一年增长的百分率为(精确到0.1%);(3)2017年的游客中,国内游客为1200万人次,其余为海外游客,据统计,国内游客的人均消费约为700元,问海外游客的人均消费约为多少元?(注:旅游收入=游客人数×游客的人均消费)18.(本小题满分9分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.19.(本小题满分6分)如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,求巡逻船从出发到成功拦截捕鱼船所用的时间.20.(本小题满分9分)为了贯彻落实“精准扶贫”精神,济宁市某县市特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费:运往A村的运费大货车800元/辆,小货车400元/辆;运往B村的运费大货车900元/辆,小货车600元/辆(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.21.(本小题满分8分)小明手上一张扇形纸片OAB.现要求在纸片上截一个正方形,使它的面积尽可能大.小明的方案是:如图(1),在扇形纸片OAB内,画正方形CDEF,使C、D在OA上,F在OB上;连接OE并延长交弧AB于I,画IH∥ED交OA于H,IJ∥OA交OB于J,再画JG∥FC交OA于G.(1)你认为小明画出的四边形GHIJ是正方形吗?如果是,请证明.如果不是,请说明理由.(2)如果扇形OAB的圆心角∠AOB=30°,OA=6cm,小明截得的四边形GHIJ面积是多少(结果精确到0.1cm).(3)(1)中小明画出的四边形GHIJ如果是正方形,我们把它叫做扇形的内接正方形(四个顶点分别在扇形的半径和弧上).请你图(2)再画出一种不同于图(1)的扇形的内接正方形(保留画图痕迹,不要求证明)图(1)图(2)22.(本小题满分11分)如图,抛物线y=ax2+bx+1经过点(2,6),且与直线y=x+1相交于A,B两点,点A在y轴上,过点B作BC⊥x轴,垂足为点C(4,0).(1)求抛物线的解析式;(2)若P是直线AB上方该抛物线上的一个动点,过点P作PD⊥x轴于点D,交AB于点E,求线段PE的最大值;(3)在(2)的条件,设PC与AB相交于点Q,当线段PC与BE相互平分时,请求出点Q的坐标;(4)在(2)的条件,设PC与AB相交于点Q,直接写出△BCQ与△PCD相似时的P点坐标.邹城八中中考模拟数学试题6一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求).1.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B. 4.4×109C.4.4×108D.4.4×10102.下列关于的说法中错误的是()A.是无理数B.3<<4C.是12的算术平方根D.不能再化简3.下面四个几何体中,主视图与俯视图不同的共有()A.1个B.2个C.3个D.4个4.九年级举行篮球赛,初赛采用单循环制(每两个班之间都进行一场比赛),据统计,比赛共进行了28场,求九年级共有多少个班.若设九年级共有x个班,根据题意列出的方程是A.12x(x–1)=28B.x(x–1)=28C.2x(x–1)=28D.12x(x+1)=285.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有两个不相等的实数根,则整数m的最小值为()A.–3B.–2C.–1D.26.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=().A.40°B.30°C.20°D.10°7.下列说法正确的是()A.为了解苏州市中学生的睡眠情况,应该采用普查的方式B.某种彩票的中奖机会是1%,则买100张这种彩票一定会中奖C.一组数据1,5,3,2,3,4,8的众数和中位数都是3D.若甲组数据的方差s甲2=0.1,乙组数据的方差s乙2=0.2,则乙组数据比甲组数据稳定5题图6题图8题图8.已知如图,圆锥的母线长6cm,底面半径是3cm,在B 处有一只蚂蚁,在AC 中点P 处有一颗米粒,蚂蚁从B 爬到P 处的最短距离是()A.3cmB.6cmC.3cmD.9cm9.将一副三角板按如图①的位置摆放,将△DEF 绕点A (F)逆时针旋转60°后,得到如图②,测得CG=6,则AC 长是()A.6+2B.9C.10D.6+69题图10题图10.如图,点P 是y 轴正半轴上的一动点,过点P 作AB∥x 轴,分别交反比例函数(x<0)与(x>0)的图象于点A,B,连接OA,OB,则以下结论:①AP=2BP;②∠AOP=2∠BOP;③△AOB 的面积为定值;④△AOB 是等腰三角形,其中一定正确的有()个.A.1B.2C.3D.4二、填空题:(本大题共5小题,共15分)11.若a+b=3,ab=2,则a 2+b 2=_____.12.如图,将矩形ABCD 绕点A 旋转至矩形AB′C′D′位置,此时AC 的中点恰好与D 点重合,AB′交CD 于点E.若DE=1,则旋转过程中C 点到C 点所经过的路径长为_____.13.如果x 1,x 2是关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个根,那么x 1+x 2,x 1x 2与系数a ,b ,c 的关系是:x 1+x 2=-b a ,x 1x 2=c a.已知一元二次方程x 2-5x+2=0的两个根分别为x 1、x 2,则1212·x x x x +-的值为__________.12题图14题图15题图14.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,能求出A,B间距离的有(填写正确的序号).15.如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有_____个.三、解答题:(本大题共7小题,共55分.)16.(本小题满分5分)解不等式组:,并写出它的非负整数解.17.(本小题满分6分)暑期,某学校将组织部分优秀学生分别到A、B、C、D四个地方进行夏令营活动,学校按定额购买了前往四地的车票.如图1是未制作完成的车票种类和数量的条形统计图,请根据统计图回答下列问题:(1)若去C地的车票占全部车票的30%,则去C地的车票数量是张,补全统计图;(2)若学校采用随机抽取的方式分发车票,每人一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么李明同学抽到去B地的概率是多少?(3)若有一张去A地的车票,红红和天天都想要,决定采取旋转转盘的方式来确定.其中甲转盘被分成四等份且标有数字1、2、3、4,乙转盘分成三等份且标有数字7、8、9,如图2所示.具体规定是:同时转动两个转盘,当指针指向的两个数字之和是偶数时,票给红红,否则票给天天(指针指在线上重转).试用“列表法”或“树状图”的方法分析这个规定对双方是否公平.18.(本小题满分9分)如图,已知在Rt△ABC 中,∠C=90°,AD 是∠BAC 的角分线.(1)以AB 上的一点O 为圆心,AD 为弦在图中作出⊙O.(不写作法,保留作图痕迹);(2)试判断直线BC 与⊙O 的位置关系,并证明你的结论.(3)若∠B=30°,计算S △DAC :S △ABC 的值.19.(本小题满分6分)我市某高档楼盘准备以每平方米6000元的均价对外销售,由于受市场影响,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,另送两年物业管理费,物业管理费每平方米每月1.5元.试问哪种方案更优惠?20.(本小题满分9分)如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.(1)求证:△ODM∽△MCN;(2)设DM=x,求OA的长(用含x的代数式表示);(3)在点O的运动过程中,设△CMN的周长为P,试用含x的代数式表示P,你能发现怎样的结论?21.(本小题满分8分)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.22.(本小题满分12分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A (1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)Q为线段BC上一点,连接AC,AQ,若∠ACB=∠QAB,求点Q的坐标.(4)设点P为抛物线的对称轴x=﹣1上的一个动点,直接写出使△BPC为直角三角形的点P坐标.。
2020年中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点M(1﹣m,2﹣m)在第三象限,则m的取值范围是()A.m>3 B.2<m<3 C.m<2 D.m>2【答案】D【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.根据题意知,解得m>2,故选:D.2.已知x=2是方程2x﹣3a+2=0的根,那么a的值是()A.﹣2 B.C.2 D.【答案】C【解析】根据一元一次方程的解定义,将x=2代入已知方程列出关于a的新方程,通过解新方程即可求得a的值.∵x=2是方程2x﹣3a+2=0的根,∴x=2满足方程2x﹣3a+2=0,∴2×2﹣3a+2=0,即6﹣3a=0,解得,a=2;故选:C.3.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.【答案】B【解析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.已知给出的三角形的各边AB、CB、AC分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.故选:B.4.某高速公路概算总投资为79.67亿元,请将79.67亿用科学记数法表示为()A.7.967×101B.7.967×1010C.7.967×109D.79.67×108【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于79.67亿有10位,所以可以确定n=10﹣1=9.79.67亿=7 967 000 000=7.967×109.故选:C.5.已知圆锥的底面半径为6cm,高为8cm,则圆锥的侧面积为()A.36πcm2B.48πcm2C.60πcm2D.80πcm2【答案】C【解析】根据圆锥的底面半径和高求出圆锥的母线长,再根据圆锥的底面周长等于圆锥的侧面展开扇形的弧长,最后利用扇形的面积计算方法求得侧面积.由勾股定理得:圆锥的母线长==10,∵圆锥的底面周长为2πr=2π×6=12π,∴圆锥的侧面展开扇形的弧长为12π,∴圆锥的侧面积为:×12π×10=60π.故选:C.6.已知,且﹣1<x﹣y<0,则k的取值范围为()A.﹣1<k<﹣B.0<k<C.0<k<1 D.<k<1【答案】D【解析】利用第二个方程减去第一个方程,得到一个不等式,根据﹣1<x﹣y<0得到一个不等式,组成不等式组解这个不等式即可.第二个方程减去第一个方程得到x﹣y=1﹣2k,根据﹣1<x﹣y<0得到:﹣1<1﹣2k<0即解得<k<1,k的取值范围为<k<1.故选:D.7.如图所示实数a,b在数轴上的位置,以下四个命题中是假命题的是()A.a3﹣ab2<0 B.C.D.a2<b2【答案】B【解析】由数轴可知a>0,b<0,且|a|<|b|,由此可判断a+b<0,a﹣b>0,再逐一检验.依题意,得a>0,b<0,且|a|<|b|,∴a+b<0,a﹣b>0,A、a3﹣ab2=a(a+b)(a﹣b)<0,正确;B、∵a+b<0,∴=﹣(a+b),错误;C、∵0<a<a﹣b,∴<,正确;D、∵(a+b)(a﹣b)<0,∴a2﹣b2<0,即a2<b2,正确.故选:B.8.如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP,若阴影部分的面积为9π,则弦AB的长为()A.3 B.4 C.6 D.9【答案】C【解析】本题可先由题意OD=PC=r,再根据阴影部分的面积为9π,得出R2﹣r2=9,即AD==3,进而可知AB=2×3=6.设PC=r,AO=R,连接PC,⊙O的弦AB切⊙P于点C,故AB⊥PC,作OD⊥AB,则OD∥PC.又∵AB∥OP,∴OD=PC=r,∵阴影部分的面积为9π,∴πR2﹣πr2=9π,即R2﹣r2=9,于是AD==3.∵OD⊥AB,∴AB=3×2=6.故选:C.9.因为sin30°=,sin210°=,所以sin210°=sin(180°+30°)=﹣sin30°;因为sin45°=,sin225°=,所以sin225°=sin(180°+45°)=﹣sin45°,由此猜想,推理知:一般地当α为锐角时有sin(180°+α)=﹣sinα,由此可知:sin240°=()A.B.C.D.【答案】C【解析】阅读理解:240°=180°+60°,因而sin240°就可以转化为60°的角的三角函数值.根据特殊角的三角函数值,就可以求解.∵当α为锐角时有sin(180°+α)=﹣sinα,∴sin240°=sin(180°+60°)=﹣sin60°=﹣.故选:C.10.如图,两个反比例函数和(其中k1>k2>0)在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,下列说法正确的是()①△ODB与△OCA的面积相等;②四边形PAOB的面积等于k2﹣k1;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.A.①②B.①②④C.①④D.①③④【答案】C【解析】根据反比例函数系数k所表示的意义,对①②③④分别进行判断.①A、B为上的两点,则S△ODB=S△OCA=k2,正确;②由于k1>k2>0,则四边形PAOB的面积应等于k1﹣k2,错误;③只有当P的横纵坐标相等时,PA=PB,错误;④当点A是PC的中点时,点B一定是PD的中点,正确.故选:C.第二部分非选择题(共110分)二.填空题(本大题共6小题,每小题4分,共24分.)11.分解因式:ax2﹣2ax+a=.【答案】a(x﹣1)2【解析】本题考查了用提公因式法和公式法进行因式分解,先提公因式a,再利用完全平方公式继续分解因式.ax2﹣2ax+a=a(x2﹣2x+1)=a(x﹣1)2.12.暑假中,小明,小华将从甲、乙、丙三个社区中随机选取一个参加综合实践活动,若两人不在同一社区,则小明选择到甲社区、小华选择到乙社区的可能性为.【答案】【解析】画树状图得:,∵共有9种等可能的结果,小明选择到甲社区、小华选择到乙社区的有1种情况,∴小明选择到甲社区、小华选择到乙社区的可能性为:.故答案为:.13.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E =度.【答案】80【解析】设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∵AB∥CD,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.14.一个多边形的每一个外角为30°,那么这个多边形的边数为.【答案】12【解析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.15.如图,点A,B,是⊙O上三点,经过点C的切线与AB的延长线交于D,OB与AC交于E.若∠A =45°,∠D=75°,OB=,则CE的长为.【答案】2【解析】连接OC,如图,∵∠A=45°,∠D=75°,∴∠ACD=60°,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠BOC=2∠A=90°,∴OB∥CD,∴∠CEO=∠ACD=60°,在Rt△COE中,sin∠CEO=,∴CE===2.故答案为2.16.如图,点A是反比例函数y=图象上的任意一点,过点A做AB∥x轴,AC∥y轴,分别交反比例函数y=的图象于点B,C,连接BC,E是BC上一点,连接并延长AE交y轴于点D,连接CD,则S△DEC﹣S△BEA=.【答案】【解析】点A是反比例函数y=图象上的任意一点,可设A(a,),∵AB∥x轴,AC∥y轴,点B,C,在反比例函数y=的图象上,∴B(,),C(a,),∴AB=a,AC=,∴S△DEC﹣S△BEA=S△DAC﹣S△BCA=××(a﹣a)=××a=.故答案为:.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)计算:﹣12019+|﹣2|+2cos30°+(2﹣tan60°)0.【解析】直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.解:原式=﹣1+2﹣++1=2.18.(本小题满分8分)先化简,,然后从﹣1≤x≤2的范围内选取一个合适的整数作为x的值代入求值.【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.解:原式=[﹣]÷=•=﹣,∵x≠±1且x≠0,∴在﹣1≤x≤2中符合条件的x的值为x=2,则原式=﹣=﹣2.19.(本小题满分8分)如图,已知点E、C在线段BF上,且BE=CF,CM∥DF,(1)作图:在BC上方作射线BN,使∠CBN=∠1,交CM的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:AC=DF.【解析】(1)①以E为圆心,以EM为半径画弧,交EF于H,②以B为圆心,以EM为半径画弧,交EF于P,③以P为圆心,以HM为半径画弧,交前弧于G,④作射线BG,则∠CBN就是所求作的角.(2)证明△ABC≌△DEF可得结论.解:(1)如图所示,即为所求;(2)∵CM∥DF,∴∠MCE=∠F,∵BE=CF,∴BE+CE=CF+CE,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF,∴AC=DF.20.(本小题满分8分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?【解析】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得5000×=750(册).答:学校购买其他类读物750册比较合理.21.(本小题满分8分)某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?销售价(元/箱)类别/单价成本价(元/箱A品牌20 32B品牌35 50【解析】解:(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,依题意,得:,解得:.答:该超市进A品牌矿泉水400箱,B品牌矿泉水200箱.(2)400×(32﹣20)+200×(50﹣35)=7800(元).答:该超市共获利润7800元.22.(本小题满分10分)如图,在Rt△ABC中,∠BAC=90°,AD平分∠BAC,过AC的中点E作FG ∥AD,交BA的延长线于点F,交BC于点G,(1)求证:AE=AF;(2)若BC=AB,AF=3,求BC的长.【解析】解:(1)∵∠BAC=90°,AD平分∠BAC,∴∠DAB=∠CAB=×90°=45°,∵FG∥AD,∴∠F=∠DAB=45°,∠AEF=45°,∴∠F=∠AEF,∴AE=AF;(2)∵AF=3,∴AE=3,∵点E是AC的中点,∴AC=2AE=6,在Rt△ABC中,AB2+AC2=BC2,AB2+32=()2,AB=,BC=.23.(本小题满分10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=(1)求该反比例函数和一次函数的解析式;(2)连接OB,求S△AOC﹣S△BOC的值;(3)点E是x轴上一点,且△AOE是等腰三角形请直接写出满足条件的E点的个数(写出个数即可,不必求出E点坐标).【解析】解:(1)∵AD⊥x轴,∴∠ADO=90°,在Rt△ADO中,AD=3,tan∠AOD==,∴OD=2,∴A(﹣2,3),∵点A在反比例函数y=的图象上,∴n=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣,∵点B(m,﹣1)在反比例函数y=﹣的图象上,∴﹣m=﹣6,∴m=6,∴B(6,﹣1),将点A(﹣2,3),B(6,﹣1)代入直线y=kx+b中,得,∴,∴一次函数的解析式为y=﹣x+2;(2)由(1)知,A(﹣2,3),直线AB的解析式为y=﹣x+2,令y=0,∴﹣x+2=0,∴x=4,∴C(4,0),∴S△AOC﹣S△BOC=OC•|y A|﹣OC•|y B|=×4(3﹣1)=4;(3)设E(m,0),由(1)知,A(﹣2,3),∴OA2=13,OE2=m2,AE2=(m+2)2+9,∵△AOE是等腰三角形,∴①当OA=OE时,∴13=m2,∴m=±,∴E(﹣,0)或(,0),②当OA=AE时,13=(m+2)2+9,∴m=0(舍)或m=4,∴E(4,0),③当OE=AE时,m2=(m+2)2+9,∴m=﹣,∴E(﹣,0),即:满足条件的点P有四个.24.(本小题满分12分)如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF.(1)求证:∠ACD=∠F;(2)若tan∠F=①求证:四边形ABCD是平行四边形;②连接DE,当⊙O的半径为3时,求DE的长.【解析】(1)证明:∵CD与⊙O相切于点D,∴OD⊥CD,∵半径OD⊥直径AB,∴AB∥CD,∴∠ACD=∠CAB,∵∠EAB=∠F,∴∠ACD=∠F;(2)①证明:∵∠ACD=∠CAB=∠F,∴tan∠GCD=tan∠GAO=tan∠F=,设⊙O的半径为r,在Rt△AOG中,tan∠GAO==,∴OG=r,∴DG=r﹣r=r,在Rt△DGC中,tan∠DCG==,∴CD=3DG=2r,∴DC=AB,而DC∥AB,∴四边形ABCD是平行四边形;②作直径DH,连接HE,如图,OG=1,AG==,CD=6,DG=2,CG==2,∵DH为直径,∴∠HED=90°,∴∠H+∠HDE=90°,∵DH⊥DC,∴∠CDE+∠HDE=90°,∴∠H=∠CDE,∵∠H=∠DAE,∴∠CDE=∠DAC,而∠DCE=∠ACD,∴△CDE∽△CAD,∴=,即=,∴DE=.25.(本小题满分14分)如图,在平面直角坐标系xOy第一象限中有正方形OABC,A(4,0),点P(m,0)是x轴上一动点(0<m<4),将△ABP沿直线BP翻折后,点A落在点E处,在OC上有一点M(0,t),使得将△OMP沿直线MP翻折后,点O落在直线PE上的点F处,直线PE交OC 于点N,连接BN.(I)求证:BP⊥PM;(II)求t与m的函数关系式,并求出t的最大值;(III)当△ABP≌△CBN时,直接写出m的值.【解析】解:(Ⅰ)由折叠知,∠APB=∠NPB,∠OPM=∠NPM,∵∠APN+∠OPN=180°,∴2∠NPB+2∠NPM=180°,∴∠NPB+∠NPM=90°,∴∠BPM=90°,∴BP⊥PM;(Ⅱ)∵四边形OABC是正方形,∴∠OAB=90°,AB=OA,∵A(4,0),∴AB=OA=4,∵点P(m,0),∴OP=m,∵0<m<4,∴AP=OA﹣OP=4﹣m,∵M(0,t),∴OM=t,由(1)知,∠BPM=90°,∴∠APB+∠OPM=90°,∵∠OMP+∠OPM=90°,∴∠OMP=∠APB,∵∠MOP=∠PAB=90°,∴△MOP∽△PAB,∴,∴,∴t=﹣m(m﹣4)=﹣(m﹣2)2+1∵0<m<4,∴当m=2时,t的最大值为1;(Ⅲ)∵△ABP≌△CBN,∴∠CBN=∠ABP,BP=BN,由折叠知,∠ABP=∠EBP,∠BEP=∠BAP=90°,∴NE=PE,∠NBE=∠PBE,∴∠CBN=∠NBE=∠EBP=∠PBA,∴∠CBE=∠ABE=45°,连接OB,∵四边形OABC是正方形,∴∠OBC=∠OBA=45°,∴点E在OB上,∴OP=ON=m,∴PN=m,∵OM=t,∴MN=ON=OM=m﹣t,如图,过点N作OP的平行线交PM的延长线于G,∴∠OPM=∠G,由折叠知,∠OPM=∠NPM,∴∠NPM=∠G,∴NG=PN=m,∵GN∥OP,∴△OMP∽△NMG,∴,∴=①,由(2)知,t=﹣m(m﹣4)②,联立①②解得,m=0(舍)或m=8﹣.。
2022-2023学年八上数学期末模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁 2.012⎛⎫ ⎪⎝⎭等于( ) A .2 B .-2 C .1 D .0 3.若直线y kx b =+经过第一、二、四象限,则k ,b 的取值范围是( ) A .0k >,0b > B .0k >,0b < C .0k <,0b > D .0k <,0b <4.如图,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( )A .△ACE ≌△BCDB .△BGC ≌△AFC C .△DCG ≌△ECFD .△ADB ≌△CEA5.如图,两车从南北方向的路段AB 的A 端出发,分别向东、向西行进相同的距离到达C D 、两地,若C 与B 的距离为a 千米,则D 与B 的距离为( )A .a 千米B .12a 千米C .2a 千米D .无法确定6.若分式()31x x x +-有意义,则x 的取值范围是 ( ) A .0x ≠ B .1x ≠ C .3x ≠ D .0x ≠且1x ≠7.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是( )A .2018B .2019C .2020D .20218.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为m ,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4nB .4mC .2()m n +D .4()m n +9.以下列各组线段为边作三角形,不能构成直角三角形的是( )A .3,5,6B .3,4,5C .5,12,13D .9,40,4110.如图,过边长为2的等边三角形ABC 的顶点C 作直线l ⊥ BC ,然后作△ABC 关于直线l 对称的△A ′B ′C ,P 为线段A ′C 上一动点,连接AP ,PB ,则AP +PB 的最小值是 ( )A .4B .3C .2D .2+3二、填空题(每小题3分,共24分)11.如图,在等腰三角形ABC 中,90ABC ∠=,D 为AD 边上中点,多D 点作DE DF ⊥,交AB 于E ,交BC 于F ,若3AE =,2CF =,则ABC ∆的面积为______.12.一个多边形的每个外角都是36°,这个多边形是______边形.13.已知一个多边形的内角和是1620°,则这个多边形是_____边形.14.在等腰ABC 中,AB 为腰,AD 为中线,5AB =,3AD =,则ABD △的周长为________.15.点(−1,3)关于x 轴对称的点的坐标为____.16.如图,50AOB ∠=︒,CD OA ⊥于D ,CE OB ⊥于E ,且CD CE =,则DOC ∠=________.17.在ABC ∆中,10A ∠=︒,30B ∠=︒,则这个三角形是___________三角形.18.如图,等腰三角形ABC 的底边BC 长为6,面积是18,腰AC 的垂直平分线EF 分别交AC ,AB 于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则△CDM 的周长的最小值为_____.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,直线28y x =+与x 轴交于点A,与y 轴交于点B,过点B 的直线x 轴于点C ,且AB=BC .(1)求直线BC 的表达式(2)点P 为线段AB 上一点,点Q 为线段BC 延长线上一点,且AP=CQ,PQ 交x 轴于点P ,设点Q 的横坐标为m ,求PBQ ∆的面积(用含m 的代数式表示)(3)在(2)的条件下,点M 在y 轴的负半轴上,且MP=MQ ,若45BQM ︒∠=求点P 的坐标.20.(6分)先化简,再求值:221241442a a a a a a a -+⎛⎫⎛⎫-÷- ⎪ ⎪-+-⎝⎭⎝⎭ 21.(6分)先观察下列等式,再回答问题: 2211111111121112++=+-=+; 2211111111232216++=+-=+; 22111111113433112++=+-=+; (12211145++(直接写出结果) (2)根据上述规律,解答问题: 设2222222211111111111...112233420192020m =+++++++++求不超过m 的最大整数是多少?22.(8分)一次函数的图象经过点A (2,4)和B (﹣1,﹣5)两点.(1)求出该一次函数的表达式;(2)画出该一次函数的图象;(3)判断(﹣5,﹣4)是否在这个函数的图象上?(4)求出该函数图象与坐标轴围成的三角形面积.23.(8分)某超市用5000元购进某种干果后进行销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,购进干果的数量是第一次的1.5倍,但这次每干克的进价比第一次的进价提高了5元.(1)该种干果第一次的进价是每千克多少元?(2)如果超市按每千克40元的价格销售,当大部分干果售出后,余下的100千克按售价的6折售完,超市销售这种干果共盈利多少元?24.(8分)分解因式:(1)﹣3a2+6ab﹣3b2;(2)9a2(x﹣y)+4b2(y﹣x).25.(10分)若∠1=∠2,∠A=∠D,求证:AB=DC26.(10分)小明与他的爸爸一起做“投篮球”游戏,两人商定规则为:小明投中1个得3分,小明爸爸投中1个得1分.结果两人一共投中20个,经计算,发现两人得分恰好相等.你能知道他们两人各投中几个吗?参考答案一、选择题(每小题3分,共30分)1、D【解析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x -÷--=22211x x x x x ---=() 2212·1xx xx x----=()()221·1x x xx x----=()2xx --=2xx-,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.2、C【解析】根据任何非0数的0次幂都等于1即可得出结论.【详解】解:11 2⎛⎫= ⎪⎝⎭故选C.【点睛】此题考查的是零指数幂的性质,掌握任何非0数的0次幂都等于1是解决此题的关键.3、C【分析】根据一次函数y kx b=+图象在坐标平面内的位置关系先确定k,b的取值范围,从而求解.【详解】∵一次函数y kx b=+的图象经过第一、二、四象限,当k>0时,直线必经过一、三象限;当k<0时,直线必经过二、四象限;∴k<0当b>0时,直线必经过一、二象限;当b<0时,直线必经过三、四象限;∴b>0故选C.【点睛】本题考查一次函数图象与系数的关系,掌握一次函数的系数与图象的关系是解题关键.4、D【详解】试题分析:△ABC 和△CDE 是等边三角形BC=AC ,CE=CD ,60BCA ACD ECD ACD ︒∠+∠=∠+∠=60BCA ECD ︒∠=∠=即在△BCD 和△ACE 中CD CE ACE BCD BC AC =⎧⎪∠=∠⎨⎪=⎩△BCD ≌△ACE故A 项成立;在△BGC 和△AFC 中60ACB ACD AC BC CAE CBD ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩△BGC ≌△AFCB 项成立;△BCD ≌△ACE,在△DCG 和△ECF 中60ACD DCE CE CD CDB CEA ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩△DCG ≌△ECFC 项成立D 项不成立.考点:全等三角形的判定定理.5、A【分析】先由条件证明ABC ABD ∆∆≌,再根据全等三角形的性质即可得出结论.【详解】解:由题意得:AC=AD ,90BAC BAD ∠=∠=︒,=CB a∴在ABC ∆和ABD ∆中AC AD BAC BAD AB AB =⎧⎪∠=∠⎨⎪=⎩∴()ABC ABD SAS ∆∆≌ ∴CB DB a ==∴D 与B 的距离为a 千米故选:A .【点睛】本题全等三角形的应用,读懂图信息,将文字语言转化为几何语言是解题关键.6、D 【解析】∵分式3(1)x x x +-有意义, ∴(1)0x x -≠,∴0x ≠且10x -≠,解得0x ≠且1x ≠.故选D.7、D【分析】根据勾股定理和正方形的面积公式,知“生长”1次后,以直角三角形两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,即所有正方形的面积和是2×1=2;“生长”2次后,所有的正方形的面积和是3×1=3,推而广之即可求出“生长”2020次后形成图形中所有正方形的面积之和.【详解】解:设直角三角形的是三条边分别是a ,b ,c .根据勾股定理,得a 2+b 2=c 2,即正方形A 的面积+正方形B 的面积=正方形C 的面积=1.正方形D 的面积+正方形E 的面积+正方形F 的面积+正方形G 的面积=正方形A 的面积+正方形B 的面积=正方形C 的面积=1.推而广之,即:每次“生长”的正方形面积和为1,“生长”了2020次后形成的图形中所有的正方形的面积和是2×1=2. 故选D .【点睛】此题考查了正方形的性质,以及勾股定理,其中能够根据勾股定理发现每一次得到的新的正方形的面积和与原正方形的面积之间的关系是解本题的关键.8、A【分析】设图①小长方形的长为a ,宽为b ,由图②表示出上面与下面两个长方形的周长,求出之和,根据题意得到a+2b=m ,代入计算即可得到结果.【详解】设小长方形的长为a ,宽为b ,上面的长方形周长:2(m-a+n-a ),下面的长方形周长:2(m-2b+n-2b ),两式联立,总周长为:2(m-a+n-a )+2(m-2b+n-2b )=4m+4n-4(a+2b ), ∵a+2b=m (由图可得),∴阴影部分总周长为4m+4n-4(a+2b )=4m+4n-4m=4n .故选:A .【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.9、A【解析】根据勾股定理逆定理依次计算即可得到答案.【详解】A. 222356+≠,故不能构成直角三角形;B. 222345+=,能构成直角三角形;C. 22251213+=,能构成直角三角形;D. 22294041+=,能构成直角三角形;故选:A.【点睛】此题考查勾股定理的逆定理,熟记定理并正确计算是解题的关键.10、A【分析】连接AA′,根据现有条件可推出△A′B′C ≌△AA′C ,连接AB′交A′C 于点E , 易证△A′B′E ≌△A′AE ,可得点A 关于A′C 对称的点是B′,可得当点P 与点C 重合时,AP +PB 取最小值,即可求得答案.【详解】解:如图,连接AA′,由对称知△ABC ,△A′B′C 都是等边三角形,∴∠ACB=∠A′CB′=60°,∴∠A′CA=60°,由题意得△ABC ≌△A′B′C ,∴AC=A′C ,∴△ACA′是等边三角形,∴△A′B′C ≌△AA′C ,连接AB′交A′C 于点E ,易证△A′B′E ≌△A′AE ,∴∠A′EB′=∠A′EA=90°,B′E=AE ,∴点A 关于A′C 对称的点是B′,∴当点P 与点C 重合时,AP +PB 取最小值,此时AP +PB=AC+BC=2+2=4, 故选:A .【点睛】本题考查了轴对称——最短路线问题,等边三角形的判定和性质,全等三角形的判定和性质,掌握知识点是解题关键.二、填空题(每小题3分,共24分)11、252【分析】利用等腰直角三角形斜边中点D 证明AD=BD ,∠DBC=∠A=45︒,再利用DE DF ⊥证得∠ADE=∠BDF ,由此证明△ADE ≌△BDF ,得到BC 的长度,即可求出三角形的面积.【详解】∵90ABC ∠=︒,AB=BC,∴∠A=45︒,∵D 为AC 边上中点,∴AD=CD=BD ,∠DBC=∠A=45︒,∠ADB=90︒,∵DE DF ⊥,∴∠EDB+∠BDF=∠EDB+∠ADE=90︒,∴∠ADE=∠BDF,∴△ADE ≌△BDF,∴BF==AE=3,∵CF=2,∴AB=BC=BF+CF=5,∴ABC ∆的面积为212BC ⋅=252, 故答案为:252. 【点睛】此题考查等腰直角三角形的性质,三角形全等的判定及性质.12、十【分析】根据正多边形的性质,边数等于360°除以每一个外角的度数.【详解】∵一个多边形的每个外角都是36°,∴n=360°÷36°=10,故答案为:十.【点睛】本题考查多边形内角与外角,掌握多边形的外角和为解题关键.13、十一【详解】设所求多边形的边数是n,则(n-2)•180°=1620°,解得n=1.故答案为:十一14、12或10.1.【分析】如图1,根据等腰三角形的性质得到AD⊥BC,由勾股定理得到BD=4,于是得到△ABD的周长为12,如图2,在等腰△ABC中,AB=BC,求得BD=2.1,于是得到△ABD的周长为10.1.【详解】解:如图1,在等腰△ABC中,AB=AC,∵AD为中线,∴AD⊥BC,∴BD=2222534AB AD,∴△ABD的周长=1+4+3=12,如图2,在等腰△ABC中,AB=BC,∵AD为中线,∴BD=12BC=2.1,∴△ABD的周长=1+3+2.1=10.1,综上所述,△ABD的周长为12或10.1,故答案为:12或10.1.【点睛】本题考查了等腰三角形的性质以及勾股定理的应用,正确的分情况讨论是解题的关键.15、(-1,-3).【分析】根据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x 轴对称的点的坐标为(-1,-3),故答案是:(-1,-3).【点睛】此题主要考查了关于x 轴的对称点的坐标,关键是掌握点的坐标变化规律. 16、25︒【分析】根据角平分线性质求出OC 平分∠AOB ,即可求出答案.【详解】∵CD ⊥OA 于D ,CE ⊥OB ,CD =CE ,∴OC 平分∠AOB ,∵∠AOB =50°,∴∠DOC =12∠AOB =25°, 故答案为:25°.【点睛】本题考查了角平分线的判定,注意:在角的内部到角的两边距离相等的点在角的平分线上.17、钝角【分析】根据三角形的内角和求出∠C 即可判断.【详解】在ABC ∆中,10A ∠=︒,30B ∠=︒,∴1801030140C ∠=︒-︒-︒=︒∴这个三角形是钝角三角形,故答案为:钝角.【点睛】此题主要考查三角形的分类,解题的关键是熟知三角形的内角和.18、1.【分析】连接AD ,AM ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线可知,点A 关于直线EF 的对称点为点C ,MA=MC ,推出MC+DM=MA+DM≥AD ,故AD 的长为BM+MD 的最小值,由此即可得出结论.【详解】连接AD ,MA .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴S△ABC=12BC•AD=12×6×AD=18,解得AD=6,∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,MA=MC,∴MC+DM=MA+DM≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+12BC=6+12×6=6+3=1.故答案为:1.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质,轴对称-最短路线问题.能根据轴对称的性质得出AM=MC,并由此得出MC+DM=MA+DM≥AD是解决此题的关键.三、解答题(共66分)19、(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC的解析式;(2)过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,由“AAS”可证△AGP≌△CHQ,可得AG=HC=m-4,PG=HQ=2m-8,由“AAS”可证△PEF≌△QCF,可得S△PEF=S△QCF,即可求解;(3)如图2,连接AM,CM,过点P作PE⊥AC,由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=4,可求m的值,可得点P的坐标.【详解】解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B,∴点B(0,8),点A(-4,0)∴AO=4,BO=8,∵AB=BC,BO⊥AC,∴点C(4,0),设直线BC解析式为:y=kx+b,由题意可得:804bk b=⎧⎨=+⎩,解得:28kb=-⎧⎨=⎩,∴直线BC解析式为:y=-2x+8;(2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,设△PBQ的面积为S,∵AB=CB,∴∠BAC=∠BCA,∵点Q横坐标为m,∴点Q(m,-2m+8)∴HQ=2m-8,CH=m-4,∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°,∴△AGP≌△CHQ(AAS),∴AG=HC=m-4,PG=HQ=2m-8,∵PE∥BC,∴∠PEA=∠ACB,∠EPF=∠CQF,∴∠PEA=∠PAE,∴AP=PE,且AP=CQ,∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ,∴△PEF≌△QCF(AAS)∴S△PEF=S△QCF,=四边形BCFP的面积+△CFQ的面积=四边形BCFP的面积+△PEF的面积=四边形PECB的面积,∴S=S△ABC-S△PAE=12×8×8-12×(2m-8)×(2m-8)=16m-2m2;(3)如图2,连接AM,CM,过点P作PE⊥AC,∵AB=BC,BO⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠PAM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=4,∴2m-8=4,∴m=6,【点睛】本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.20、2144a a -+ 【分析】根据运算顺序,先计算括号里边的式子,发现两分式的分母不相同,先把分母中的多项式分解因式,然后通分,再利用分式的减法法则,分母不变只把分子相减,然后分式的除法法则计算即可.【详解】解:原式=2124(2)(2)a a a a a a a a ⎛⎫-+⎛⎫-÷- ⎪ ⎪--⎝⎭⎝⎭ =22(1)(2)(2)4(2)(2)a a a a a a a a a a ⎡⎤-+---÷⎢⎥--⎣⎦=2(1)(2)(2)4(2)a a a a a a a a --+--÷- =24(2)4a a a a a-⨯-- =21(2)a - =2144a a -+ 【点睛】此题考查了分式的混合运算,也考查了公式法、提公因式法分解因式的运用,是一道综合题.解答此题的关键是把分式化到最简.21、(1)1120;(2)不超过m 的最大整数是1. 【分析】(1)由①②③的规律写出式子即可;(2)根据题目中的规律计算即可得到结论.【详解】解:(11120;(2)m =112+116+1112+…+1120192020⨯ =1×1+(12+16+112+…+1120192020⨯) =1+(1﹣1+1﹣1+1﹣1+…+11-)=1+(1﹣1 2020)=2019 20192020,∴不超过m的最大整数是1.【点睛】本题主要考查了二次根式的性质与化简,解题的关键是找出规律.22、(1)y=3x﹣2;(2)图象见解析;(3)(﹣5,﹣4)不在这个函数的图象上;(4)23.【分析】(1)利用待定系数法即可求得;(2)利用两点法画出直线即可;(3)把x=﹣5代入解析式,即可判断;(4)求得直线与坐标轴的交点,即可求得.【详解】解:(1)设一次函数的解析式为y=kx+b∵一次函数的图象经过点A(2,4)和B(﹣1,﹣5)两点∴245 k bk b+=⎧⎨-+=-⎩,解得:k3 b2=⎧⎨=-⎩∴一次函数的表达式为y=3x﹣2;(2)描出A、B点,作出一次函数的图象如图:(3)由(1)知,一次函数的表达式为y=3x﹣2将x=﹣5代入此函数表达式中得,y=3×(﹣5)﹣2=﹣17≠﹣4 ∴(﹣5,﹣4)不在这个函数的图象上;(4)由(1)知,一次函数的表达式为y=3x﹣2令x =0,则y =﹣2,令y =0,则3x ﹣2=0,∴x =23, ∴该函数图象与坐标轴围成的三角形面积为:12×2×23=23. 【点睛】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,一次函数的图象以及三角形的面积,熟练掌握待定系数法是解题的关键.23、(1)25元;(2)超市销售这种干果共盈利4400元【分析】(1)分别设出该种干果第一次和第二次的进价,根据“第二次购进干果的数量是第一次的1.5倍”列出方程,解方程即可得出答案;(2)先求出两次购进干锅的数量,再根据利润公式计算利润即可得出答案.【详解】解:(1)设该种干果第一次的进价是每千克x 元,则第二次的进价是每千克(5)x +元. 根据题意得500090001.55x x ⨯=+, 解得25x =.经检验,25x =是所列方程的解.答:该种干果第一次的进价是每千克25元(2)第一次购进该种干果的数量是500025200÷=(千克),再次购进该干果的数量是200 1.5300⨯=(千克),获得的利润为(200300100)+-40100400.6⨯+⨯⨯500090004400--=(元). 答:超市销售这种干果共盈利4400元.【点睛】本题考查的是分式方程在实际生活中的应用,难度适中,需要熟练掌握销售利润相关的计算公式.24、(1)﹣3(a ﹣b )2;(2)(x ﹣y )(3a +2b )(3a ﹣2b ).【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提取公因式,再利用平方差公式分解即可.【详解】(1)原式=﹣3(a 2﹣2ab +b 2)=﹣3(a ﹣b )2;(2)原式=(x ﹣y )(3a +2b )(3a ﹣2b ).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.25、见详解.【分析】通过AAS 证明三角形全等,然后根据全等三角形对应边相等即可证明.【详解】证明:在△ABC 和△DCB 中,=21A D BC CB ∠∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCB∴AB=DC.【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.26、小明投中了5个,爸爸投中15个.【分析】本题有两个相等关系:小明投中的个数+爸爸投中的个数=20,小明投篮得分=爸爸投篮得分;据此设未知数列方程组解答即可.【详解】解:设小明投中了x 个,爸爸投中y 个,依题意列方程组得203x y x y +=⎧⎨=⎩,解得515x y =⎧⎨=⎩. 答:小明投中了5个,爸爸投中15个.【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.。
2020年中考数学模拟试题 (二)、选一选,相信自己的判断!(本大题共12小题,每小题3分, 36分.在每小题给出的四个选项中只有一项是符合题目要求的, 不涂、错涂或涂的代号超过一个,一律得 0分)D.3. 如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯 视图是4. 已知。
1的半径是4cm , OO 2的半径是2cm , OQ = 5cm ,则两圆的 位置关系是1. 2的相反数是 A. 2 B. 1 C.D. 2. F 列计算正确的是 2 3 6 A . a • a = a B 3 2 6 .(x ) = x C .3nn+ 2n = 5mn5. 下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状 况的调查可以了解我国公民的健康状况; ③把(a 2). £ 1玄根号外 的因式移到根号内后,其结果是 .2 a ;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.其中真命题的 个数有6. 如图,数轴上A 、B 两点表示的数分别为一1和“.3,点B 关于点A的对称点为C,则点C 所表示的数为r~ r~ J -------- 1——L -- a -------- *-A .— 2— 3B . — 1— 3C. — 2+] 3 D . 1+ 37.如图,均匀地向此容器注水 ,直到把容器注满.在注水的过程中 下列图象能大致反映水面高度h 随时间t 变化规律的是A.外离 B .外切 .相交 D .内含A . 1B 8在厶ABC 中,/ C = 90o , BC= 4cm AC= 3cm 把厶ABC 绕点 A 顺时针旋转90o 后,得到△ ABG (如图所示),则点B 所走过的路径长为C. ^^cm D9.如图,有一矩形纸片 ABCD AB= 6, AD= 8,将纸片折叠使AB 落 在AD边上,折痕为AE 再将△ ABE 以 BE 为折痕向右折叠,AE 与CFCD 交于点F ,则_CD 的值是A. 5 2cm B cmB ACEC10.若函数y2 ;2(烏;2),则当函数值严8时,自变量x 的值是A. 士、6B. 4C. 士 6 或 4D. 4 或—611.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中 白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一 个球,两次都摸到红球的概率是① x 2 y 2 49,② x y 2,③ 2xy 4 49,④ x y 9.其中说法正确的是A .①② B. ①②③ C. ①②④ D. ①②③④ 二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分, 共18分.请将12.如图是用4个全等的直角三角形与正方形图案, 已知大正方形面积为 49,小正方形面积:若用 x , y 表示直角三角形的两直角边( x y ),下列四个说法:1个小正方形镶成的结果直接填写在答题卡相应位置上)13.如图,数轴上表示的是一个不等式组的解集,这个不等式组的整 数解是 _______________ 。
2020年山东省邹城市第八中学九年级中考一模数学试题(word无答案)一、单选题(★★★★) 1 . 若a≠b,且则的值为()A.B.1C..4D.3(★★) 2 . 关于x的方程kx 2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1B.k≥﹣1且k≠0C.k≤﹣1D.k≤1且k≠0(★★) 3 . 函数y= 与y=-kx 2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.(★★) 4 . 如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570D.32x+2×20x﹣2x2=570(★★) 5 . 如图是抛物线y=ax 2+bx+c(a≠0)的部分图象,其顶点是(1,n),且与x的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c>0;②3a+b=0;③b 2=4a(c-n);④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是()A.1B.2C.3D.4(★★) 6 . 甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示,则下列结论错误的是( )A.甲车间每小时加工服装80件B.这批服装的总件数为1140件C.乙车间每小时加工服装为60件D.乙车间维修设备用了4小时(★★) 7 . 如图,在平面直角坐标系中, A(1,2), B(1,﹣1), C(2,2),抛物线 y= ax 2(a≠0)经过△ ABC区域(包括边界),则 a的取值范围是()A.a≤﹣1或a≥2B.≤a≤2C.﹣1≤a<0或1<a≤D.﹣1≤a<0或0<a≤2(★) 8 . 如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律,A 2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)二、填空题(★) 9 . 因式分解x 3-9x= __________ .(★★) 10 . 已知= + ,则实数A= _____ .(★★) 11 . 如图,菱形 ABCD的顶点 A, B的横坐标分别为1,4,BD∥ x轴、双曲线 y=( x>0)经过 A, B两点,则菱形 ABCD的面积为_____.(★★) 12 . 如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.(★★) 13 . 已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为 _____ .三、解答题(★★) 14 . 计算:.(★★) 15 . 如图, AB为的直径,弦, E是 AB延长线上一点,.是的切线吗?请说明理由;求证:.(★★) 16 . 某中学计划购买A型和B型课桌凳共200套,经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,,且购买4套A型和6套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?(★★★★★) 17 . 如图,二次函数的图象与 x轴交于点和点 B,与 y轴交于点.求该二次函数的表达式;过点 A的直线且交抛物线于另一点 D,求直线 AD的函数表达式;在的条件下,在 x轴上是否存在一点 P,使得以 B、 C、 P为顶点的三角形与相似?若存在,求出点 P的坐标;若不存在,请说明理由.。
邹城八中《初中数学代数部分测试》一、选择题(本大题共10小题,每小题3分,共30分)1.在实数|﹣3|,﹣2,0,π中,最小的数是( )A .|﹣3|B .﹣2C .0D .π2.下列各选项中因式分解正确的是( )A .x 2﹣1=(x ﹣1)2B .a 3﹣2a 2+a =a 2(a ﹣2)C .﹣2y 2+4y =﹣2y (y+2)D .m 2n ﹣2mn+n =n (m ﹣1)23.已知,点A (1,y 1),B (2,y 2)在抛物线y =-(x+1)2+2上,则下列结论正确的是( )A. 2> y 1> y 2B. 2 > y 2 > y 1C. y 1> y 2>2D. y 2 > y 1>2 4.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差如表所示:如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( ) A. 甲 B. 乙C. 丙D. 丁5. A 、B 两地相距180km ,新修的高速公路开通后,在A 、B 两地间行驶的长途客车平均车速提高了50%,而从A 地到B 地的时间缩短了1h .若设原来的平均车速为xkm/h ,则根据题意可列方程为( ) A. 1801801(150%)x x-=+ B. 1801801(150%)x x-=+C.1801801(150%)x x-=- D.1801801(150%)x x-=-6.若x 、y 满足方程组37{35x y x y +=+=,则x ﹣y 的值等于( ) A. ﹣1B. 1C. 2D. 37.如果2210a a +-=,那么代数式242a a a a ⎛⎫- ⎪-⎝⎭g 的值是( )A . -3B . -1 C. 1 D .3 8.已知反比例函数()0ay a x=≠的图象,在每一象限内,y 的值随x 值的增大而减少,则一次函数y ax a =-+的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 如图,平行四边形ABCD 中,对角线AC 、BD 相交于点O ,且AC =6,BD =8,P 是对角线BD 上任意一点,过点P 作EF ∥AC ,与平行四边形的两条边分别交于点E 、F .设BP =x ,EF =y ,则能大致表示y 与x 之间关系的图象为( )甲 乙丙 丁平均数 7 987 方差11.2 11.8A .B .C .D .10.如图,在反比例函数3 2yx=的图象上有一动点A,连接并AO延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C 始终在函数kyx=的图象上运动,若tan2CAB∠=,则k 的值为()A. -3B. -6C. -9D. -129题图 10题图 15题图二、填空题:(本大题共5小题,共15分)11.二次根式在实数范围内有意义,则x应满足的条件是().12.方程20x x+=的解是.13.已知二次函数23y ax bx=+-自变量x的部分取值和对应函数值y如下表:x…-2 -1 0 1 2 3 …y… 5 0 -3 -4 -3 0 …则在实数范围内能使成立的的取值范围是______.14.若数a使关于x的分式方程2411ax x+=--的解为正数,且使关于y的不等式组y21{322()0yy a+->-≤的解集为2y-<,则符合条件的所有整数a的和为.15.如图,点A1(1,1)在直线y=x上,过点A1分别作y轴、x轴的平行线交直线32y x=于点B1,B2,过点B2作y轴的平行线交直线y=x于点A2,过点A2作x轴的平行线交直线3y x=于点B3,…,按照此规律进行下去,则点A n的横坐标为______.三、解答题:(本大题共7小题,共55分)16.(本题满分6分)计算:.17.(本题满分7分)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛. 赛后组委会整理参赛同学的成绩,并制作了如下不完整的频数分布表和频数分布直方图,请根据图表提供的信息,解答下列问题:分数段(分数为x分)频数百分比60≤x<70 8 20%70≤x<80 a 30%80≤x<90 16 b%90≤x<100 4 10%(1)表中的a=,b=;(2)请补全频数分布直方图;(3)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应的圆心角的度数是;(4)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽取2名同学接受电视台记者采访,请用列表或画树状图的方法求正好抽到一名男同学和一名女同学的概率.18.(本题满分8分)如图,直线y =x +2与抛物线y =ax 2+bx +6相交于A(12,52)和B(4,m),点P 是线段AB 上异于A ,B 的动点,过点P 作PC ⊥x 轴,交抛物线于点C. (1)点B 坐标为 ,并求抛物线的解析式; (2)求线段PC 长的最大值.19.(本题满分8分)某学校为改善办学条件,计划采购A 、B 两种型号的空调,已知采购3台A 型空调和2台B 型空调,需费用39000元;4台A 型空调比5台B 型空调的费用多6000元. (1)求A 型空调和B 型空调每台各需多少元;(2)若学校计划采购A 、B 两种型号空调共30台,且A 型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?20.(本题满分8分)如图,直角坐标系xOy 中,一次函数y =-12x +5的图象l 1分别与x ,y 轴交于A ,B两点,正比例函数的图象l 2与l 1交于点C(m ,4). (1)求m 的值及l 2的解析式; (2)求S △AOC -S △BOC 的值;(3)一次函数y =kx +1的图象为l 3,且l 1,l 2,l 3不能围成三角形,直接写出k 的值.21.(本题满分11分)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,若两车合作,各运12趟才能完成,需支付运费共4 800元.若甲、乙两车单独运完此堆垃圾,则乙车所运趟数是甲车的2倍,已知乙车每趟运费比甲车少200元. (1)分别求出甲、乙两车每趟的运费; (2)若单独租用甲车运完此堆垃圾,需多少趟?(3)若同时租用甲、乙两车,则甲车运x 趟,乙车运y 趟,才能运完此堆垃圾,其中x ,y 均为正整数. ①当x =10时,y = ;当y =10时,x = ; ②用含x 的代数式表示y ; (4)在(3)的条件下探究: ①用含x 的代数式表示总运费w ;②要想总运费不大于4 000元,甲车最多需运多少趟?22.(本题满分7分)如图,反比例函数y=kx(x>0)的图象与直线y=x交于点M,∠AMB=90°,其两边分别与两坐标轴的正半轴交于点A,B,四边形OAMB的面积为6.(1)求k的值;(2)点P在反比例函数y=kx(x>0)的图象上,若点P的横坐标为3,∠EPF=90°,其两边分别与x轴的正半轴,直线y=x交于点E,F,问是否存在点E,使得PE=PF?若存在,求出点E的坐标;若不存在,请说明理由.。
中考数学一模试卷题号一二三总分得分一、选择题(本大题共8小题,共32.0分)1.若a≠b,且a2-4a+1=0,b2-4b+1=0,则的值为( )A. B. 1 C. .4 D. 32.关于x的方程kx2+2x-1=0有实数根,则k的取值范围是( )A. k≥-1B. k≥-1且k≠0C. k≤-1D. k≤1且k≠03.函数y=与y=-kx2+k(k≠0)在同一直角坐标系中的图象可能是( )A. B.C. D.4.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A. (32-2x)(20-x)=570B. 32x+2×20x=32×20-570C. (32-x)(20-x)=32×20-570D. 32x+2×20x-2x2=5705.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.其中正确结论的个数是( )A. 1B. 2C. 3D. 46.甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示,则下列结论错误的是( )A. 甲车间每小时加工服装80件B. 这批服装的总件数为1140件C. 乙车间每小时加工服装为60件D. 乙车间维修设备用了4小时7.如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是( )A. a≤-1或a≥2B. ≤a≤2C. -1≤a<0或1<a≤D. -1≤a<0或0<a≤28.如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为( )A. (-1008,0)B. (-1006,0)C. (2,-504)D. (1,505)二、填空题(本大题共5小题,共25.0分)9.因式分解:x3-9x=______.10.已知=+,则实数A=______.11.如图,菱形ABCD的顶点A,B的横坐标分别为1,4,BD∥x轴、双曲线y=(x>0)经过A,B两点,则菱形ABCD的面积为______.12.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加_____m.13.已知直线y=kx(k≠0)经过点(12,-5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为______.三、解答题(本大题共4小题,共43.0分)14.计算:+--()-1.15.如图,AB为⊙O的直径,弦CD∥AB,E是AB延长线上一点,∠CDB=∠ADE.(1)DE是⊙O的切线吗?请说明理由;(2)求证:AC2=CD•BE.16.某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?17.如图,二次函数y=ax2+2x+c的图象与x轴交于点A(-1,0)和点B,与y轴交于点C(0,3).(1)求该二次函数的表达式;(2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;(3)在(2)的条件下,在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:由题意可知:a、b是方程x2-4x+1=0的两个不同的实数根,∴由根与系数的关系可知:ab=1,a+b=4,∴a2+1=4a,b2+1=4b,∴原式=+===1,故选:B.根据根与系数的关系即可求出答案.本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根与系数的关系,本题属于基础题型.2.【答案】A【解析】解:(1)当k=0时,-6x+9=0,解得x=;(2)当k≠0时,此方程是一元二次方程,∵关于x的方程kx2+2x-1=0有实数根,∴△=22-4k×(-1)≥0,解得k≥-1,由(1)、(2)得,k的取值范围是k≥-1.故选:A.由于k的取值范围不能确定,故应分k=0和k≠0两种情况进行解答.本题考查了根的判别式,解答此题时要注意分k=0和k≠0两种情况进行讨论.3.【答案】D【解析】解:A、由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,矛盾,故A错误.B、由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,矛盾,故B错误;C、由双曲线的两支分别位于二、四象限,可得k<0,则-k>0,抛物线开口方向向上、抛物线与y轴的交点在y轴的负半轴上,矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故D正确;故选:D.先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.4.【答案】A【解析】【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.此题主要考查了由实际问题抽象出一元二次方程,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,即可列出方程.【解答】解:设道路的宽为xm,根据题意得:(32-2x)(20-x)=570,故选A.5.【答案】C【解析】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y>0,即a-b+c>0,所以①正确;∵抛物线的对称轴为直线x=-=1,即b=-2a,∴3a+b=3a-2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac-4an=4a(c-n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选:C.利用抛物线的对称性得到抛物线与x轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到=n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c):抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.6.【答案】D【解析】解:由图象可知,甲车间每小时加工零件个数为720÷9=80个,则A正确;由题意总零件个数为720+420=1140个,则B正确;乙车间生产速度为120÷2=60个/时,则C正确;乙车间复工后生产时间为(420-120)÷60=5小时,故乙车间维修设备时间为9-5-2=2小时,则D错误.故选:D.根据图象确定两个车间的生产速度,再由乙车间剩余工作量推得复工后生产时间,得到乙车间加工零件数量y与x之间的函数关系式即可.本题为一次函数实际应用问题,考查了一次函数图象的实际意义和根据图象确定一次函数关系式.7.【答案】D【解析】解:如图所示,∵A(1,2),B(1,-1),C(2,2),当抛物线经过点A时,a=2,当抛物线经过点B时,a=-1,当抛物线经过C时,a=,∵a>0时,a越大,开口越小;a<0时,a越大,开口越大;∴抛物线y=ax2(a≠0)经过△ABC区域(包括边界),a的取值范围是:0<a≤2或-1≤a<0;故选:D.当抛物线经过点A时,a=2,当抛物线经过点B时,a=-1,当抛物线经过C时,a=,根据二次函数开口大小的性质可得结论.本题考查二次函数的开口大小的性质、图象上点的坐标等知识,解题的关键是理解题意,学会利用特殊点解决问题.8.【答案】A【解析】解:观察图形可以看出A1--A4;A5---A8;…每4个为一组,∵2019÷4=504 (3)∴A2019在x轴负半轴上,纵坐标为0,∵A3、A7、A11的横坐标分别为0,-2,-4,∴A2019的横坐标为-(2019-3)×=-1008.∴A2019的坐标为(-1008,0).故选:A.观察图形可以看出A1--A4;A5---A8;…每4个为一组,由于2019÷4=504…3,A2019在x 轴负半轴上,纵坐标为0,再根据横坐标变化找到规律即可解答.本题考查了等腰直角三角形、点的坐标,主要是根据坐标变化找到规律,再依据规律解答.9.【答案】x(x+3)(x-3)【解析】解:x3-9x=x(x2-9)=x(x+3)(x-3).故答案为x(x+3)(x-3).先提取公因式x,再利用平方差公式进行分解.本题主要考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解,注意分解因式要彻底.10.【答案】1【解析】解:+=+=,∵=+,∴,解得:,故答案为:1.先计算出+=,再根据已知等式得出A、B的方程组,解之可得.本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则,并根据题意得出关于A、B的方程组.11.【答案】【解析】解:连接AC,与BD交于点M,∵菱形对角线BD∥x轴,∴AC⊥BD,AC∥y轴,∵点A、B横坐标分别为1和4,双曲线y=(x>0)经过A,B两点,将x=1代入y=中,求得y=5,将x=4代入y=中,求得y=,∴A(1,5),B(4,),∴AM=5-=,BM=4-1=3,∴AC=2AM=,BD=2BM=6,∴菱形ABCD的面积:AC•BD=,故答案为.连接AC,与BD交于点M,通过A、B两点的坐标,求得AM=,BM=3,即可求得AC=,BD=6,根据菱形的面积公式即可求得.本题考查了反比例函数图象上点的坐标特征以及菱形的性质,解题的关键是求出菱形的对角线.本题属于基础题,难度不大.12.【答案】(4-4)【解析】【分析】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=-2代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,代入A点坐标(-2,0)到抛物线解析式得出:a=-0.5,所以抛物线解析式为y=-0.5x2+2,当水面下降2米,通过抛物线在图上的观察可转化为:当y=-2时,对应的抛物线上两点之间的距离,也就是直线y=-2与抛物线相交的两点之间的距离,可以通过把y=-2代入抛物线解析式得出:-2=-0.5x2+2,解得:x=±2,所以水面宽度增加到4米,比原先的宽度增加了(4-4)米,故答案为:4-4.13.【答案】0<m<【解析】解:把点(12,-5)代入直线y=kx得,-5=12k,∴k=-;由y=-x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=-x+m(m>0),设直线l与x轴、y轴分别交于点A、B,(如下图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m;在Rt△OAB中,AB=,过点O作OD⊥AB于D,∵S△ABO=OD•AB=OA•OB,∴OD•m=×m×m,∵m>0,解得OD=m由直线与圆的位置关系可知<6,解得0<m<.故答案为:0<m<.利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.此题主要考查直线与圆的关系,关键是根据待定系数法、勾股定理、直线与圆的位置关系等知识解答.14.【答案】解:原式=2+--=.【解析】原式利用负整数指数幂法则,以及二次根式性质化简,合并即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.【答案】(1)解:结论:DE是⊙O的切线.理由:连接OD.∵∠CDB=∠ADE,∴∠ADC=∠EDB,∵CD∥AB,∴∠CDA=∠DAB,∵OA=OD,∴∠OAD=∠ODA,∴∠ADO=∠EDB,∵AB是直径,∴∠ADB=90°,∴∠ADB=∠ODE=90°,∴DE⊥OD,∴DE是⊙O的切线.(2)∵CD∥AB,∴∠ADC=∠DAB,∠CDB=∠DBE,∴=,∴AC=BD,∵∠DCB=∠DAB,∠EDB=∠DAB,∴∠EDB=∠DCB,∴△CDB∽△DBE,∴=,∴BD2=CD•BE,∴AC2=CD•BE.【解析】(1)连接OD.只要证明OD⊥DE即可;(2)只要证明:AC=BD,△CDB∽△DBE即可解决问题;本题考查相似三角形的判定和性质、圆周角定理、切线的判定等知识,解题的关键是学会添加常用辅助线,准确寻找相似三角形解决问题,属于中考常考题型.16.【答案】解:(1)设A型每套x元,则B型每套(x+40)元.由题意得:4x+5(x+40)=1820.解得:x=180,x+40=220.即购买一套A型课桌凳和一套B型课桌凳各需180元和220元;(2)设购买A型课桌凳a套,则购买B型课桌凳(200-a)套.由题意得:,解得:78≤a≤80.∵a为整数,∴a=78或79或80.∴共有3种方案,设购买课桌凳总费用为y元,则y=180a+220(200-a)=-40a+44000.∵-40<0,y随a的增大而减小,∴当a=80时,总费用最低,此时200-a=120,即总费用最低的方案是:购买A型80套,购买B型120套.【解析】此题主要考查了一元一次方程的应用,不等式组的应用以及一次函数的增减性,根据已知得出不等式组,求出a的值是解题关键.(1)根据购买一套A型课桌凳比购买一套B型课桌凳少用40元,以及购买4套A型和5套B型课桌凳共需1820元,得出等式方程求出即可;(2)利用要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,得出不等式组,求出a的值即可,再利用一次函数的增减性得出答案即可.17.【答案】解:(1)∵次函数y=ax2+2x+c的图象经过点A(-1,0)和点C(0,3),∴,解得,∴二次函数的表达式为y=-x2+2x+3;(2)在y=-x2+2x+3中,令y=0,则-x2+2x+3=0,解得:x1=-1,x2=3,∴B(3,0),由已知条件得直线BC的解析式为y=-x+3,∵AD∥BC,∴设直线AD的解析式为y=-x+b,∴0=1+b,∴b=-1,∴直线AD的解析式为y=-x-1.(3)①∵BC∥AD,∴∠DAB=∠CBA,又∵D(4,-5),∴∠ABD≠45°,点P在点B得到左侧,∴只可能△ABD∽△BPC或△ABD∽△BCP,∴=或=时,∵A(-1,0),B(3,0),C(0,3),D(4,-5),∵AD=5,AB=4,BC=3,即=或=,解得BP=或BP=,∵3-=,3-=-,∴P(,0)或P(-,0).【解析】(1)把A(-1,0),C(0,3)代入y=ax2+2x+c即可得到结果;(2)在y=-x2+2x+3中,令y=0,则-x2+2x+3=0,得到B(3,0),由已知条件得直线BC 的解析式为y=-x+3,由于AD∥BC,设直线AD的解析式为y=-x+b,即可得到结论;(3)①由BC∥AD,得到∠DAB=∠CBA,只要当=或=时,△PBC∽△ABD,求出AD=5,AB=4,BC=3,代入比例式解得BP的长度,即可得到P(,0)或P(-,0).本题主要考查了二次函数解析式的确定、函数图象交点的求法,锐角三角函数,最值的求法,相似三角形的判定和性质,解答(3)题时,要分类讨论,以防漏解或错解.。
2020年山东省济宁市邹城八中中考数学一模试卷一、选择题(每小题4分,共32分)1.(4分)若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1C..4D.32.(4分)关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1B.k≥﹣1且k≠0C.k≤﹣1D.k≤1且k≠03.(4分)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.4.(4分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570D.32x+2×20x﹣2x2=5705.(4分)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1B.2C.3D.46.(4分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示,则下列结论错误的是()A.甲车间每小时加工服装80件B.这批服装的总件数为1140件C.乙车间每小时加工服装为60件D.乙车间维修设备用了4小时7.(4分)如图,在平面直角坐标系中,A(1,2),B(1,﹣1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是()A.a≤﹣1或a≥2B.≤a≤2C.﹣1≤a<0或1<a≤D.﹣1≤a<0或0<a≤28.(4分)如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)二、填空题(每小题5分,共25分)9.(5分)因式分解:x3﹣9x=.10.(5分)已知=+,则实数A=.11.(5分)如图,菱形ABCD的顶点A,B的横坐标分别为1,4,BD∥x轴、双曲线y=(x>0)经过A,B两点,则菱形ABCD的面积为.12.(5分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.13.(5分)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.三、解答题(满分43分)14.(5分)计算:+﹣﹣()﹣1.15.(12分)如图,AB为⊙O的直径,弦CD∥AB,E是AB延长线上一点,∠CDB=∠ADE.(1)DE是⊙O的切线吗?请说明理由;(2)求证:AC2=CD•BE.16.(12分)某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?17.(14分)如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3).(1)求该二次函数的表达式;(2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;(3)在(2)的条件下,在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由.2020年山东省济宁市邹城八中中考数学一模试卷参考答案与试题解析一、选择题(每小题4分,共32分)1.【解答】解:由题意可知:a、b是方程x2﹣4x+1=0的两个不同的实数根,∴由根与系数的关系可知:ab=1,a+b=4,∴a2+1=4a,b2+1=4b,∴原式=+===1,故选:B.2.【解答】解:(1)当k=0时,﹣6x+9=0,解得x=;(2)当k≠0时,此方程是一元二次方程,∵关于x的方程kx2+2x﹣1=0有实数根,∴△=22﹣4k×(﹣1)≥0,解得k≥﹣1,由(1)、(2)得,k的取值范围是k≥﹣1.故选:A.3.【解答】解:A、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故A错误.B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故B错误;C、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故D正确;故选:D.4.【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.5.【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选:C.6.【解答】解:由图象可知,甲车间每小时加工零件个数为720÷9=80个,则A正确;由题意总零件个数为720+420=1140个,则B正确;乙车间生产速度为120÷2=60个/时,则C正确;乙车间复工后生产时间为(420﹣120)÷60=5小时,故乙车间维修设备时间为9﹣5﹣2=2小时,则D错误.故选:D.7.【解答】解:如图所示,∵A(1,2),B(1,﹣1),C(2,2),当抛物线经过点A时,a=2,当抛物线经过点B时,a=﹣1,当抛物线经过C时,a=,∵a>0时,a越大,开口越小;a<0时,a越大,开口越大;∴抛物线y=ax2(a≠0)经过△ABC区域(包括边界),a的取值范围是:0<a≤2或﹣1≤a<0;故选:D.8.【解答】解:观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;...每4个为一组,∵2019÷4=504 (3)∴A2019在x轴负半轴上,纵坐标为0,∵A3、A7、A11的横坐标分别为0,﹣2,﹣4,∴A2019的横坐标为﹣(2019﹣3)×=﹣1008.∴A2019的坐标为(﹣1008,0).故选:A.二、填空题(每小题5分,共25分)9.【解答】解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).10.【解答】解:+=+=,∵=+,∴,解得:,故答案为:1.11.【解答】解:连接AC,与BD交于点M,∵菱形对角线BD∥x轴,∴AC⊥BD,∵点A、B横坐标分别为1和4,双曲线y=(x>0)经过A,B两点,∴AM=5﹣=,BM=4﹣1=3,∴AC=,BD=6,∴菱形ABCD的面积:AC•BD=,故答案为.12.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA=OB=AB=2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过将A点坐标(﹣2,0)代入抛物线解析式可得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降2米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2=﹣0.5x2+2,解得:x=±2,所以水面宽度增加到4米,比原先的宽度当然是增加了(4﹣4)米,故答案为:4﹣4.13.【解答】解:把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m(m>0),设直线l与x轴、y轴分别交于点A、B,(如下图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m;在Rt△OAB中,AB=,过点O作OD⊥AB于D,∵S△ABO=OD•AB=OA•OB,∴OD•m=×m×m,∵m>0,解得OD=m由直线与圆的位置关系可知<6,解得0<m<.故答案为:0<m<.三、解答题(满分43分)14.【解答】解:原式=2+﹣﹣=.15.【解答】(1)解:结论:DE是⊙O的切线.理由:连接OD.∵∠CDB=∠ADE,∴∠ADC=∠EDB,∵CD∥AB,∴∠CDA=∠DAB,∵OA=OD,∴∠OAD=∠ODA,∴∠ADO=∠EDB,∵AB是直径,∴∠ADB=90°,∴∠ADB=∠ODE=90°,∴DE⊥OD,∴DE是⊙O的切线.(2)∵CD∥AB,∴∠ADC=∠DAB,∠CDB=∠DBE,∴=,∴AC=BD,∵∠DCB=∠DAB,∠EDB=∠DAB,∴∠EDB=∠DCB,∴△CDB∽△DBE,∴=,∴BD2=CD•BE,∴AC2=CD•BE.16.【解答】解:(1)设A型每套x元,则B型每套(x+40)元.由题意得:4x+5(x+40)=1820.解得:x=180,x+40=220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元;(2)设购买A型课桌凳a套,则购买B型课桌凳(200﹣a)套.由题意得:,解得:78≤a≤80.∵a为整数,∴a=78、79、80.∴共有3种方案,设购买课桌凳总费用为y元,则y=180a+220(200﹣a)=﹣40a+44000.∵﹣40<0,y随a的增大而减小,∴当a=80时,总费用最低,此时200﹣a=120,即总费用最低的方案是:购买A型80套,购买B型120套.17.【解答】解:(1)∵次函数y=ax2+2x+c的图象经过点A(﹣1,0)和点C(0,3),∴,解得,∴二次函数的表达式为y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中,令y=0,则﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴B(3,0),由已知条件得直线BC的解析式为y=﹣x+3,∵AD∥BC,∴设直线AD的解析式为y=﹣x+b,∴0=1+b,∴b=﹣1,∴直线AD的解析式为y=﹣x﹣1.(3)①∵BC∥AD,∴∠DAB=∠CBA,又∵D(4,﹣5),∴∠ABD≠45°,点P在点B得到左侧,∴只可能△ABD∽△BPC或△ABD∽△BCP,∴=或=时,∵A(﹣1,0),B(3,0),C(0,3),D(4,﹣5),∵AD=5,AB=4,BC=3,即=或=,解得BP=或BP=,∵3﹣=,3﹣=﹣,∴P(,0)或P(﹣,0).。
2020年中考数学仿真试卷(四)一、选择题1.﹣7的绝对值是()A.7B.﹣7C.D.﹣2.下列计算正确的是()A.a+a2=a3B.a6b÷a2=a3bC.(a﹣b)2=a2﹣b2D.(﹣ab3)2=a2b63.如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是()A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳4.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为3,∠C=140°,则弧BD的长为()A.πB.πC.πD.2π5.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个B.2个C.3个D.4个6.如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点时,他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第20次“移位”后,他所处顶点的编号是()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分)7.若代数式1+在实数范围内有意义,则实数x的取值范围为.8.已知a、b是一元二次方程x2+2x﹣4=0的两个根,则a+b﹣ab=.9.当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是.10.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.11.如图,P是抛物线y=x2﹣x﹣4在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为.12.如图,反比例函数y=(x>0)的图象与直线AB交于点A(2,3),直线AB与x轴交于点B(4,0),过点B作x轴的垂线BC,交反比例函数的图象于点C,在平面内存在点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,则点D的坐标是.三、(本大题共6小题,13,14题每题3分,15-18题每小题3分,共30分)13.计算:|1﹣|+20200﹣﹣()﹣1;14.如图,在Rt△ABC中,∠ACB=90°,分别以AC、BC为底边,向△ABC外部作等腰△ADC和△CEB,点M为AB中点,连接MD、ME分别与AC、BC交于点F和点G.求证:四边形MFCG是矩形.15.解不等式组:,并将解集在数轴上表示.16.如图,在四边形ABDC中,AB=AC,BD=DC,BE∥DC,请仅用无刻度的直尺按下列要求画图.(1)在图1中,画一个以AB为边的直角三角形;(2)在图2中,画一个菱形,要求其中一边在BE上.17.一只不透明的袋子中装有4个球,其中两个红球,一个黄球、一个白球,这些球除颜色外都相同.(1)搅匀后从中任意摸出1个球,恰好是红球的概率为.(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,用列表法或树形图的方法,求两次都是红球的概率.18.如图,一次函数y=k1x+3的图象与坐标轴相交于点A(﹣2,0)和点B,与反比例函数y=(x>0)相交于点C(2,m).(1)填空:k1=,k2=;(2)若点P是反比例函数图象上的一点,连接CP并延长,交x轴正半轴于点D,若PD:CP=1:2时,求△COP的面积.四、(本大题共3小题,每小题8分,共24分)19.为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查.结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?20.小亮将笔记本电脑水平放置在桌子上,显示屏OA与底板OB所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架BCO'后,电脑转到BO′A′位置(如图3),侧面示意图为图4.已知OA=OB=28cm,O′C⊥OB于点C,O′C=14cm.(参考数据:≈1.414,≈1.732,≈2.236)(1)求∠CBO'的度数.(2)显示屏的顶部A'比原来升高了多少cm?(结果精确到0.1cm)(3)如图4,垫入散热架后,要使显示屏O′A′与水平线的夹角仍保持120°,则显示屏O′A′应绕点O'按顺时针方向旋转多少度?(不写过程,只写结果)21.如图,AB是⊙O的直径,C,D在⊙O上两点,连接AD,CD.(1)如图1,点P是AC延长线上一点,∠APB=∠ADC,求证:BP与⊙O相切;(2)如图2,点G在CD上,OF⊥AC于点F,连接AG并延长交⊙O于点H,若CD 为⊙O的直径,当∠CGB=∠HGB,BG=2OF=6时,求⊙O半径的长.五、(本大题共2小题,每小题9分,共18分)22.某店因为经营不善欠下38000元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息)已知该店代理的某品牌服装的进价为每件40元,该品牌服装日的售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)当销售价为多少元时,该店的日销售利润最大;(3)该店每天支付工资和其它费用共250元,该店能否在一年内还清所有债务.23.如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE 为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是OA的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP 的长.六、(本大题共12分)24.我们定义:有一组邻边相等且有一组对角互补的凸四边形叫做等补四边形(1)概念理解①根据上述定义举一个等补四边形的例子:;②如图1,四边形ABCD中,对角线BD平分∠ABC,∠A+∠C=180°,求证:四边形ABCD是等补四边形.(2)性质探究:③小明在探究时发现,由于等补四边形有一组对角互补,可得等补四边形的四个顶点共圆,如图2,等补四边形ABCD内接于⊙O,AB=AD,则∠ACD∠ACB(填“>”“<”或“=“);④若将两条相等的邻边叫做等补四边形的“等边”,等边所夹的角叫做“等边角”,它所对的角叫做“等边补角”连接它们顶点的对角线叫做“等补对角线”,请用语言表述③中结论:(3)问题解决在等补四边形ABCD中,AB=BC=2,等边角∠ABC=120°,等补对角线BD与等边垂直,求CD的长.参考答案一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.﹣7的绝对值是()A.7B.﹣7C.D.﹣【分析】根据绝对值的性质解答,当a是负有理数时,a的绝对值是它的相反数﹣a.解:|﹣7|=7.故选:A.2.下列计算正确的是()A.a+a2=a3B.a6b÷a2=a3bC.(a﹣b)2=a2﹣b2D.(﹣ab3)2=a2b6【分析】根据同类项合并、整式的除法、完全平方公式和积的乘方判断即可.解:A、a与a2不能合并,错误;B、a6b÷a2=a4b,错误;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(﹣ab3)2=a2b6,正确;故选:D.3.如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是()A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳【分析】折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好解:A.甲的数学成绩高于班级平均分,且成绩比较稳定,正确;B.乙的数学成绩在班级平均分附近波动,且比丙好,正确;C.丙的数学成绩低于班级平均分,但成绩逐次提高,正确D.就甲、乙、丙三个人而言,丙的数学成绩最不稳,故D错误.故选:D.4.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为3,∠C=140°,则弧BD的长为()A.πB.πC.πD.2π【分析】连接OB、OC,根据圆内接四边形的性质求出∠A的度数,根据圆周角定理求出∠BOD的度数,利用弧长公式计算即可.解:连接OB、OC,∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∴∠A=180°﹣∠C=40°,由圆周角定理得,∠BOD=2∠A=80°,∴==π,故选:B.5.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个B.2个C.3个D.4个【分析】结合二次函数解析式,根据函数的性质对各小题分析判断解答即可.解:①∵2>0,∴图象的开口向上,故本小题错误;②图象的对称轴为直线x=3,故本小题错误;③其图象顶点坐标为(3,1),故本小题错误;④当x<3时,y随x的增大而减小,正确;综上所述,说法正确的有④共1个.故选:A.6.如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点时,他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第20次“移位”后,他所处顶点的编号是()A.1B.2C.3D.4【分析】根据“移位”的特点确定出前几次的移位情况,从而找出规律,然后解答即可.解:根据题意,小宇从编号为2的顶点开始,第1次移位到点4,第2次移位到达点3,第3次移位到达点1,第4次移位到达点2,…,依此类推,4次移位后回到出发点,20÷4=5.所以第20次移位为第5个循环组的第4次移位,到达点2.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)7.若代数式1+在实数范围内有意义,则实数x的取值范围为x≠1.【分析】直接利用分式有意义的条件分析得出答案.解:∵代数式1+在实数范围内有意义,∴x﹣1≠0,解得:x≠1,∴则实数x的取值范围为:x≠1.8.已知a、b是一元二次方程x2+2x﹣4=0的两个根,则a+b﹣ab=2.【分析】根据一元二次方程的根与系数的关系求得a+b、ab的值,然后将其代入所求的代数式并求值.解:∵a,b是一元二次方程x2+2x﹣4=0的两个根,∴由韦达定理,得a+b=﹣2,ab=﹣4,∴a+b﹣ab=﹣2+4=2.故答案为:2.9.当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是1<k<3.【分析】根据一次函数y=kx+b,k<0,b<0时图象经过第二、三、四象限,可得2﹣2k <0,k﹣3<0,即可求解;解:y=(2﹣2k)x+k﹣3经过第二、三、四象限,∴2﹣2k<0,k﹣3<0,∴k>1,k<3,∴1<k<3;故答案为1<k<3;10.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.【分析】根据函数的图形可以得到甲用了30分钟行驶了12千米,乙用12分钟行驶了12千米,分别算出速度即可求得结果.解:∵据函数图形知:甲用了30分钟行驶了12千米,乙用(18﹣6)分钟行驶了12千米,∴甲每分钟行驶12÷30=千米,乙每分钟行驶12÷12=1千米,∴每分钟乙比甲多行驶1﹣=千米,故答案为:.11.如图,P是抛物线y=x2﹣x﹣4在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为10.【分析】设P(x,x2﹣x﹣4)根据矩形的周长公式得到C=﹣2(x﹣1)2+10.根据二次函数的性质来求最值即可.解:设P(x,x2﹣x﹣4),四边形OAPB周长=2PA+2OA=﹣2(x2﹣x﹣4)+2x=﹣2x2+4x+8=﹣2(x﹣1)2+10,当x=1时,四边形OAPB周长有最大值,最大值为10.故答案为10.12.如图,反比例函数y=(x>0)的图象与直线AB交于点A(2,3),直线AB与x轴交于点B(4,0),过点B作x轴的垂线BC,交反比例函数的图象于点C,在平面内存在点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,则点D的坐标是(2,)或(2,)或(6,﹣).【分析】先将A点的坐标代入反比例函数求得k的值,然后将x=4代入反比例函数解析式求得相应的y的值,即得点C的坐标;然后结合图象分类讨论以A、B、C、D为顶点的平行四边形,如图所示,找出满足题意的D的坐标即可.解:把点A(2,3)代入y=(x>0)得:k=xy=6,故该反比例函数解析式为:y=.∵点B(4,0),BC⊥x轴,∴把x=4代入反比例函数y=,得y=.则C(4,).①如图,当四边形ACBD为平行四边形时,AD∥BC且AD=BC.∵A(2,3)、B(4,0)、C(4,),∴点D的横坐标为2,y A﹣y D=y C﹣y B,故y D=.所以D(2,).②如图,当四边形ABCD′为平行四边形时,AD′∥CB且AD′=CB.∵A(2,3)、B(4,0)、C(4,),∴点D的横坐标为2,y D′﹣y A=y C﹣y B,故y D′=.所以D′(2,).③如图,当四边形ABD″C为平行四边形时,AC=BD″且AC∥BD″.∵A(2,3)、B(4,0)、C(4,),∴x D″﹣x B=x C﹣x A即x D″﹣4=4﹣2,故x D″=6.y D″﹣y B=y C﹣y A即y D″﹣0=﹣3,故y D″=﹣.所以D″(6,﹣).综上所述,符合条件的点D的坐标是:(2,)或(2,)或(6,﹣).故答案为:(2,)或(2,)或(6,﹣).三、(本大题共6小题,13,14题每题3分,15-18题每小题3分,共30分)13.计算:|1﹣|+20200﹣﹣()﹣1;【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及二次根式性质计算即可求出值.解:原式=﹣1+1﹣3﹣4=﹣2﹣4.14.如图,在Rt△ABC中,∠ACB=90°,分别以AC、BC为底边,向△ABC外部作等腰△ADC和△CEB,点M为AB中点,连接MD、ME分别与AC、BC交于点F和点G.求证:四边形MFCG是矩形.【分析】由题意可得点M在AC,BC的垂直平分线上,可得∠MFC=90°,∠MGC=90°,即可得结论.【解答】证明:连接CM,∵Rt△ABC中,∠ACB=90°,M为AB中点,∴CM=AM=BM=AB.∴点M在线段AC的垂直平分线上.∵在等腰△ADC中,AC为底边,∴AD=CD.∴点D在线段AC的垂直平分线上.∴MD垂直平分AC.∴∠MFC=90°.同理:∠MGC=90°.∴四边形MFCG是矩形.15.解不等式组:,并将解集在数轴上表示.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解:由①得,x≤2,由②得,x>﹣1,故不等式组的解集为:﹣1<x≤2.在数轴上表示为:16.如图,在四边形ABDC中,AB=AC,BD=DC,BE∥DC,请仅用无刻度的直尺按下列要求画图.(1)在图1中,画一个以AB为边的直角三角形;(2)在图2中,画一个菱形,要求其中一边在BE上.【分析】(1)在图1中,画一个以AB为边的直角三角形即可;(2)在图2中,画一个菱形,要求其中一边在BE上即可.解:(1)如图,Rt△AOB即为所求;(2)如图,菱形BFCD即为所求.17.一只不透明的袋子中装有4个球,其中两个红球,一个黄球、一个白球,这些球除颜色外都相同.(1)搅匀后从中任意摸出1个球,恰好是红球的概率为.(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,用列表法或树形图的方法,求两次都是红球的概率.【分析】(1)直接利用概率公式计算可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.解:(1)搅匀后从中任意摸出1个球,恰好是红球的概率为=,故答案为:.(2)画树状图为:共有16种等可能的结果数,其中两次都是红球的有4种结果,所以两次都是红球的概率为.18.如图,一次函数y=k1x+3的图象与坐标轴相交于点A(﹣2,0)和点B,与反比例函数y=(x>0)相交于点C(2,m).(1)填空:k1=,k2=12;(2)若点P是反比例函数图象上的一点,连接CP并延长,交x轴正半轴于点D,若PD:CP=1:2时,求△COP的面积.【分析】(1)先根据点A求出k1,再根据一次函数解析式求出m值,利用待定系数法求反比例函数的解析式;(2)先根据三角形相似求得P点的坐标,然后利用三角形的面积差求解.S△COP=S△COD ﹣S△POD.解:(1)∵一次函数y=k1x+3的图象与坐标轴相交于点A(﹣2,0),∴﹣2k1+3=0,解得k1=,∴一次函数为:y1=x+3,∵一次函数y1=x+3的图象经过点C(2,m).∴m=×2+3=6,∴C点坐标为(2,6),∵反比例函数y=(x>0)经过点C,∴k2=2×6=12,故答案为,12.(2)作CE⊥OD于E,PF⊥OD于F,∴CE∥PF,∴△PFD∽△CED,∴=,∵PD:CP=1:2,C点坐标为(2,6),∴PD:CD=1:3,CE=6,∴=,∴PF=2,∴P点的纵坐标为2,把y=2代入y2=求得x=6,∴P(6,2),设直线CD的解析式为y=ax+b,把C(2,6),P(6,2)代入得,解得,∴直线CD的解析式为y=﹣x+8,令y=0,则x=8,∴D(8,0),∴OD=14,∴S△COP=S△COD﹣S△POD=×8×6﹣=16.四、(本大题共3小题,每小题8分,共24分)19.为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查.结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?【分析】(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有×2000=720(人).20.小亮将笔记本电脑水平放置在桌子上,显示屏OA与底板OB所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架BCO'后,电脑转到BO′A′位置(如图3),侧面示意图为图4.已知OA=OB=28cm,O′C⊥OB于点C,O′C=14cm.(参考数据:≈1.414,≈1.732,≈2.236)(1)求∠CBO'的度数.(2)显示屏的顶部A'比原来升高了多少cm?(结果精确到0.1cm)(3)如图4,垫入散热架后,要使显示屏O′A′与水平线的夹角仍保持120°,则显示屏O′A′应绕点O'按顺时针方向旋转多少度?(不写过程,只写结果)【分析】(1)通过解直角三角形即可得到结果;(2)通过解直角三角形求得AO,由C、O′、A′三点共线可得结果;(3)显示屏O′A′应绕点O′按顺时针方向旋转30°,求得∠EO′A′=∠FO′B=30°,既是显示屏O′A′应绕点O′按顺时针方向旋转30°.解:(1)在Rt△CBO′中,∵O′C:O′B=14:28=0.5,∴∠CBO′=30°;(2)A′C=A′O′+O′C=28+14=42(cm)AO•sin60°=14≈24.25(cm)42﹣24.25≈17.8(cm);(3)显示屏O'A'应绕点O'按顺时针方向旋转30°.理由如下:如图,电脑显示屏O'A’绕点O'按顺时针方向旋转α度至O'E处,O'F∥OB.∵电脑显示屏O'A’与水平线的夹角仍保持120°,∴∠EO'F=120°.∴∠FO'A=∠CBO'=30°.∴∠BO'A'=120°.∴∠EO'A'=∠FO'B=30°,即α=30°.∴显示屏O'A'应绕点O'按顺时针方向旋转30°.21.如图,AB是⊙O的直径,C,D在⊙O上两点,连接AD,CD.(1)如图1,点P是AC延长线上一点,∠APB=∠ADC,求证:BP与⊙O相切;(2)如图2,点G在CD上,OF⊥AC于点F,连接AG并延长交⊙O于点H,若CD 为⊙O的直径,当∠CGB=∠HGB,BG=2OF=6时,求⊙O半径的长.【分析】(1)如图1,连接BC,根据圆周角定理得到∠ACB=90°,得到∠ABC=∠P,求得∠ABP=90°,于是得到结论;(2)如图2中,连接BC,BH,作BM⊥CD于M,AN⊥CD于N.想办法证明OM=ON =GN,MG=DN,设OM=ON=a,构建方程求出a即可解决问题.解:(1)如图1,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∵∠ABC=∠D,∠D=∠P,∴∠ABC=∠P,∴∠P+∠PAB=90°,∴∠ABP=90°,∴BP与⊙O相切;(2)如图2,连接BC,BH,作BM⊥CD于M,AN⊥CD于N.∵CD,AB是直径,∴OA=OD=OC=OB,∵∠AOD=∠BOC,∴△AOD≌△BOC(SAS),∴AD=BC=2OF=6,∵OA=OB,∠AON=∠BOM,∠ANO=∠BMO=90°,∴△AON≌△BOM(AAS),∴OM=ON,AN=BM,设OM=ON=a,∵∠CGB=∠HGB,∴∠OGH=2∠CGB,∵∠BOG=∠OCB+∠OBC=2∠GCB,∠GCB=∠BGC,∴∠BOG=∠OGH,∴∠AOG=∠AGO,∴AO=AG,∵AN⊥OG,∴ON=NG=a,∵BG=AD,BM=AN,∠AND=∠BMG=90°,∴Rt△BMG≌Rt△AND(HL),∴MG=DN=3a,OD=OA=OB=OC=4a,∴BM==a,在Rt△CBM中,∵BC2=BM2+CM2,∴36=15a2+9a2,∵a>0,∴a=,∴MG=CM=3a=,∴DG=2a=,∴CD=2×+=4,∴⊙O半径的长为2.五、(本大题共2小题,每小题9分,共18分)22.某店因为经营不善欠下38000元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息)已知该店代理的某品牌服装的进价为每件40元,该品牌服装日的售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)当销售价为多少元时,该店的日销售利润最大;(3)该店每天支付工资和其它费用共250元,该店能否在一年内还清所有债务.【分析】(1)利用待定系数法,即可求得日销售量y(件)与销售价x(元/件)之间的函数关系式(2)根据销售利润=销售量×(售价﹣进价),列出每天的销售利润w(元)与销售价x(元/件)之间的函数关系式,再依据函数的增减性求得最大利润.(3)根据(2)中的最大利润,可求得除去其他支出的利润,即可判断能否在一年内还清所有债务解:(1)由图象可得,当40≤x<58时,设y=k1x+b1,代入得,解得∴y=﹣2x+140(40≤x<58)当58≤x≤71时,设y=k2x+b2,代入得,解得∴y=﹣x+82(58≤x≤71)故日销售量y(件)与销售价x(元/件)之间的函数关系为:y=(2)由(1)得利润w=整理得w=故当40≤x<58时,w=﹣2(x﹣55)2+450∵﹣2<0∴当x=55时,有最大值450元当58≤x≤71时,w=﹣(x﹣61)2+441∵﹣1<0∴当x=61时,有最大值441元综上可得当销售价为55元时,该店的日销售利润最大,最大利润为450元(3)由(2)可知每天的最大利润为450元则有450﹣250=200元一年的利润为:200×365=73000元所有债务为:30000+38000=68000元∵73000>68000∴该店能在一年内还清所有债务23.如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE 为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是OA的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP 的长.【分析】(1)作OH⊥AC于H,如图,利用等腰三角形的性质得AO平分∠BAC,再根据角平分线性质得OH=OE,然后根据切线的判定定理得到结论;(2)先确定∠OAE=30°,∠AOE=60°,再计算出AE=3,然后根据扇形面积公式,利用图中阴影部分的面积=S△AOE﹣S扇形EOF进行计算;(3)作F点关于BC的对称点F′,连接EF′交BC于P,如图,利用两点之间线段最短得到此时EP+FP最小,通过证明∠F′=∠EAF′得到PE+PF最小值为3,然后计算出OP和OB得到此时PB的长.【解答】(1)证明:作OH⊥AC于H,如图,∵AB=AC,AO⊥BC于点O,∴AO平分∠BAC,∵OE⊥AB,OH⊥AC,∴OH=OE,∴AC是⊙O的切线;(2)解:∵点F是AO的中点,∴AO=2OF=6,而OE=3,∴∠OAE=30°,∠AOE=60°,∴AE=OE=3,∴图中阴影部分的面积=S△AOE﹣S扇形EOF=×3×3﹣=;(3)解:作F点关于BC的对称点F′,连接EF′交BC于P,如图,∵PF=PF′,∴PE+PF=PE+PF′=EF′,此时EP+FP最小,∵OF′=OF=OE,∴∠F′=∠OEF′,而∠AOE=∠F′+∠OEF′=60°,∴∠F′=30°,∴∠F′=∠EAF′,∴EF′=EA=3,即PE+PF最小值为3,在Rt△OPF′中,OP=OF′=,在Rt△ABO中,OB=OA=×6=2,∴BP=2﹣=,即当PE+PF取最小值时,BP的长为.六、(本大题共12分)24.我们定义:有一组邻边相等且有一组对角互补的凸四边形叫做等补四边形(1)概念理解①根据上述定义举一个等补四边形的例子:;②如图1,四边形ABCD中,对角线BD平分∠ABC,∠A+∠C=180°,求证:四边形ABCD是等补四边形.(2)性质探究:③小明在探究时发现,由于等补四边形有一组对角互补,可得等补四边形的四个顶点共圆,如图2,等补四边形ABCD内接于⊙O,AB=AD,则∠ACD=∠ACB(填“>”“<”或“=“);④若将两条相等的邻边叫做等补四边形的“等边”,等边所夹的角叫做“等边角”,它所对的角叫做“等边补角”连接它们顶点的对角线叫做“等补对角线”,请用语言表述③中结论:等补四边形的“等补对角线”平分“等边补角”(3)问题解决在等补四边形ABCD中,AB=BC=2,等边角∠ABC=120°,等补对角线BD与等边垂直,求CD的长.【分析】(1)①正方形是等补四边形.②如图1中,作DM⊥BA于M,DN⊥BC于N,则∠DMA=∠DNC=90°,证明△ADM ≌△CDN(AAS),推出AD=DC,即可解决问题.(2)③根据弦,弧,圆周角之间的关系解决问题即可.④根据“等补对角线”,“等边补角”等定义,利用③中结论即可解决问题.(3)分两种情形:①如图3﹣1中,当BD⊥AB时.②如图3﹣2中,当BD⊥BC时,分别求解即可.【解答】(1)①解:正方形是等补四边形.②证明:如图1中,作DM⊥BA于M,DN⊥BC于N,则∠DMA=∠DNC=90°,∵∠A+∠BCD=180°,∠BCD+∠DCN=180°,∴∠A=∠DCN,∵BD平分∠ABC,∴DM=DN,在△ADM和△CDN中,,∴△ADM≌△CDN(AAS),∴AD=DC,∴四边形ABCD是等补四边形.(2)③解:如图2中,∵AD=AB,∴=,∴∠ACD=∠ACB.故答案为=.④解:由题意,等补四边形的“等补对角线”平分“等边补角”.故答案为等补四边形的“等补对角线”平分“等边补角”.(3)解:如图3﹣1中,当BD⊥AB时,∵∠ADC+∠ABC=180°,∠ABC=120°,∴∠ADC=60°,∵∠ABD=90°,∴AD是⊙O的直径,∴∠ACD=90°,∴∠DAC=∠DBC=30°,∵BA=BC,∠ABC=120°,∴∠BAC=∠ACB=30°,∴∠BAC=∠BDC=30°,∴∠CBD=∠CDB,∴DC=BC=2.如图3﹣2中,当BD⊥BC时,∵∠DBC=90°,∴CD是⊙O的直径,∵BA=BC,∠ABC=120°,∴∠BAC=∠ACB=30°,∴∠BAC=∠BDC=30°,∴CD=2BC=4,综上所述,满足条件的CD的值为2或4.。
1 普通高等学校2020年招生全国统一考试临考冲刺卷(四)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()1i 2i z -=+,则z 的共轭复数在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D【解析】()1i 2i z -=+,()()()()1i 1i 2+i 1i z ∴-+=+,213i z =+,13i 22z =+,13i 22z =-,z 的共轭复数在复平面内对应点坐标为13,22⎛⎫- ⎪⎝⎭,z 的共轭复数在复平面内对应的点在第四象限,故选D .2.设集合{}2=36M x x <,{}2,4,6,8N =,则M N =( )A .{}24,B .{}46,C .{}26,D .{}246,,【答案】A【解析】()6,6M =-,故{}2,4MN =.3.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( )2A .12B .13C .41-πD .42-π【答案】C【解析】令圆的半径为1,则()22'41S P S π-π-===-ππ,故选C . 4.将5个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ) A .42种 B .48种 C .54种 D .60种【答案】A【解析】最左端排甲时,有44A 24=种排法;最左端排乙时,有333A 18= 种排法,所以共有241842+=种排法,选A .5.如图所示是一个几何体的三视图,则这个几何体外接球的体积为( )A .323π B .643π C .32π D【答案】D【解析】由已知中的三视图可得,该几何体是一个以正视图为底面的四棱锥,3故该四棱锥的外接球,与以俯视图为底面,以4为高的直三棱柱的外接球相同. 由底面底边长为4,高为2,故底面为等腰直角三角形, 可得底面三角形外接圆的半径为2r =, 由棱柱高为4,可得22OO =,故外接球半径为R ==故外接球的体积为(3433V =π⨯=π.选D . 6.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后入称之为三角形的欧拉线.已知ABC △的顶点()2,0A ,()0,4B ,AC BC =,则ABC △的欧拉线方程为( ) A .230x y +-= B .230x y -+= C .230x y --= D .230x y -+=【答案】D【解析】线段AB 的中点为M (1,2),AB =﹣2, ∴线段AB 的垂直平分线为:y ﹣2=12(﹣1),即﹣2y +3=0. ∵AC =BC ,∴△ABC 的外心、重心、垂心都位于线段AB 的垂直平分线上, 因此△ABC 的欧拉线的方程为:﹣2y +3=0.故选:D . 7.执行如图所示的程序框图,则输出S 的值为( )A .4097B .9217C .9729D .204814【答案】B【解析】阅读流程图可知,该流程图的功能是计算:0129122232102S =⨯+⨯+⨯++⨯,则123102122232102S =⨯+⨯+⨯++⨯,以上两式作差可得:10191012012222210210212S --=++++-⨯=-⨯-,则:109219217S =⨯+=.本题选择B 选项.8.已知函数()()sin f x A x ωϕ=+(其中,,A ωϕ为常数,且0A >,0ω>,2ϕπ<)的部分图象如图所示,若()32f α=,则sin 26απ⎛⎫+ ⎪⎝⎭的值为( )A .34-B .18-C .18D .13【答案】B【解析】由函数图象可知:2A =,函数的最小正周期:724263T ππ⎛⎫=⨯-=π ⎪⎝⎭, 则21T ωπ==,当23x π=时,()212,2326x k k k ωϕϕϕπππ+=⨯+=π+∴=π-∈Z ,令0k =可得6ϕπ=-,函数的解析式:()2sin 6f x x π⎛⎫=- ⎪⎝⎭.由()32f α=可得:332sin ,sin 6264ααππ⎛⎫⎛⎫-=∴-= ⎪ ⎪⎝⎭⎝⎭,则:2π91sin 2sin 2cos 212sin 1263236168ααααππππ⎛⎫⎛⎫⎛⎫⎛⎫+=-+=-=--=-⨯=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.本题选择B 选项. 9.已知实数ln22a =,ln33b =,ln55c =,则,,a b c 的大小关系是( ) A .a b c << B .c a b << C .c b a << D .b a c <<【答案】B5 【解析】∵ln3ln22ln33ln2ln9ln803266b a ---=-==>,∴b a >; 又ln2ln55ln22ln5ln32ln250251010a c ---=-==>,∴a c >, ∴b a c >>,即c a b <<.选B .10.如图所示,在正方体1111ABCD A B C D -中,,E F 分别为1111,B C C D 的中点,点P 是底面1111A B C D 内一点,且AP ∥平面EFDB ,则1tan APA ∠的最大值是( )A.2B .1 CD.【答案】D【解析】由题意可得,点P 位于过点A 且与平面EFDB 平行的平面上, 如图所示,取1111,A D A B 的中点,G H ,连结,,,GH AH AG GE ,由正方形的性质可知:EF GH ∥,由ABEG 为平行四边形可知AG BE ∥, 由面面平行的判定定理可得:平面AGH ∥平面BEFD , 据此可得,点P 位于直线GH 上,如图所示,由1AA ⊥平面1111A B C D 可得11AA A P ⊥, 则111tan AA APA A P∠=,当1tan APA ∠有最大值时,1A P 取得最小值, 即点P 是GH 的中点时满足题意,结合正方体的性质可得此时1tan APA ∠的值是.本题选择D 选项.611.已知双曲线2221y x b-=的左右焦点分别为12F F 、,过点2F 的直线交双曲线右支于A B、两点,若1ABF △是等腰三角形,120A ∠=︒.则1ABF △的周长为( ) A.)21B.43+ C.43+ D.83+ 【答案】C【解析】双曲线的焦点在x 轴上,则1,22a a ==;设2AF m =,由双曲线的定义可知:1222AF AF a m =+=+, 由题意可得:1222AF AB AF BF m BF ==+=+, 据此可得:22BF =,又1212,4BF BF BF -=∴=,1ABF △由正弦定理有:11sin120sin30BF AF =︒︒,则11BF =,即:)42m +,解得:23m =-, 则△ABF 1的周长为:()42242433m ++=+⨯=+. 本题选择C 选项.12.已知函数()23e x f x -=,()1ln 42xg x =+,若()()f m g n =成立,则n m -的最小值为( )A .1ln22+B .ln2C .12ln22+D .2ln2【答案】A【解析】设()()f m g n t ==,()23e x f x -=,()1ln 42x g x =+,()231e ln 042m xt t -∴=+=>,1423ln e2t n m t -∴-==,,ln 32t m +∴=,142e t n -=,()14ln 32e 02t t n m t -+-=->, 令()()14ln 32e02t t h t t -+=->,则()()1412e 02t h t t t --'=>,()1'4212e 02t h t t-⎡⎤∴=+>⎣'⎦, ()h t ∴'在()0+∞,上为增函数,且104h ⎛⎫= ⎪⎭'⎝,当14t >时,()0h t '>,当104t <<时,()0h t '<,7 ()h t ∴在104⎛⎫ ⎪⎝⎭,上为减函数,在14⎛⎫+∞ ⎪⎝⎭,上为增函数,∴当14t =时,()h t 取得最小值, 此时11441ln 31142eln 2422h -+⎛⎫=⨯-=+ ⎪⎝⎭,即n m -的最小值为1ln 22+,故选A .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知向量()12,a k =,()1,14b k =-,若a b ⊥,则实数k =__________. 【答案】6-【解析】由题意,()121140k k -+=,则6k =-.14. ABC △的内角,,A B C 的对边分别为,,a b c ,)cos cos ,60a C c A b B -==︒,则A 的大小为__________. 【答案】75︒【解析】由)cos cos a C c A b -=)sin cos sin cos sin A C C A B -=,即()2A C -=,()1sin 2A C -=,1306A C -=π=︒,又180120A CB ︒-=︒+=,2150A ∴=︒,75A =︒,故答案为75︒.15.已知直线:l (0)x my n n =+>过点()A,若可行域0 0x my nx y +⎧⎪⎨⎪⎩≤≥≥的外接圆直径为20,则n =_____.【答案】【解析】由题意知可行域为图中△OAB 及其内部,解得(),0,B n AB =,又tan 3AOB ∠=,则∠AOB =30°,由正弦定理得2sin 20sin3010AB R AOB =∠=⨯︒=,解得n =816. “求方程34155x x ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭ 的解”有如下解题思路:设()3455x xf x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,则()f x 在R上单调递减,且()21f =,所以原方程有唯一解2x =.类比上述解题思路,不等式()()63222x x x x -+>+-的解集是__________. 【答案】()(),12,-∞-⋃+∞【解析】不等式6﹣(+2)>(+2)3﹣2变形为,6+2>(+2)3+(+2);令u =2,v =+2,则6+2>(+2)3+(+2)⇔u 3+u >v 3+v ; 考查函数f ()=3+,知f ()在R 上为增函数, ∴f (u )>f (v ),∴u >v ;不等式6+2>(+2)3+(+2)可化为2>+2,解得<﹣1或>2; ∴不等式的解集为:(﹣∞,﹣1)∪(2,+∞). 故答案为:(﹣∞,﹣1)∪(2,+∞).三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:60分,每个试题12分.17.已知数列{}n a 的前n 项和2n S n pn =+,且2a ,5a ,10a 成等比数列. (1)求数列{}n a 的通项公式; (2)若151n n n b a a +=+⋅,求数列{}n b 的前n 项和n T .【答案】(1)25n a n =+;(2)214541449n n nT n +=+.【解析】(1)当2n ≥时,121n n n a S S n p -=-=-+,9 当1n =时,111a S p ==+,也满足21n a n p =-+,故21n a n p =-+, ∵2510,,a a a 成等比数列,∴()()()23199p p p ++=+, ∴6p =.∴25n a n =+. (2)由(1)可得()()155511111252722527n n n b a a n n n n +⎛⎫=+=+=+- ⎪⋅++++⎝⎭,∴2511111151454279911252714491449n n n nT n n n n n n +⎛⎫=+-+-+⋯+-=+= ⎪++++⎝⎭. 18.某单位鼓励员工参加健身运动,推广了一款手机软件,记录每人每天走路消耗的卡路里;软件的测评人员从员工中随机地选取了40人(男女各20人),记录他们某一天消耗的卡路里,并将数据整理如下:(1)已知某人一天的走路消耗卡路里超过180千卡被评测为“积极型”,否则为“懈怠型”,根据题中数据完成下面的22⨯列联表,并据此判断能否有99%以上把握认为“评定类型”与“性别”有关?(2)若测评人员以这40位员工每日走路所消耗的卡路里的频率分布估计其所有员工每日走路消耗卡路里的频率分布,现在测评人员从所有员工中任选2人,其中每日走路消耗卡路里不超过120千卡的有X 人,超过210千卡的有Y 人,设X Y ξ=-,求ξ的分布列及数学期望. 附:()()()()()22n ad bc k a b c d a c b d -=++++,其中n a b c d =+++.10参考数据:【答案】(1)有99%以上把握认为“评定类型”与“性别”有关;(2)8.【解析】(1)由题意完成2×2列联表如下:则()224015155510>6.63520202020K ⨯-⨯==⨯⨯⨯,故有99%以上把握认为“评定类型”与“性别”有关.(2)任选一人,由题知:每日走路消耗卡路里不超过120千卡的概率为18,超过210千卡的概率为14, 所以ξ的分布列为:则数学期望为:()0126464648E ξ=⨯+⨯+⨯=. 19.如图,已知AB BC ⊥,BE CD ∥,90DCB ∠=︒,平面B C D E ⊥平面ABC ,2AB BC BE ===,4CD =,F 为AD 中点.(1)证明:EF ⊥平面ACD ;(2)求直线CE 与平面ABD 所成角的余弦值.【答案】(1)证明见解析;(2. 【解析】(1)证明:设AC 中点为G ,连,FG BG ,∵F 为AD 中点,∴1,2FG DC FG DC =∥, 又由题意BE CD ∥,12BE CD = ∴EB FG ∥,且EB FG =, ∴四边形BEFG 为平等四边形,∴,EF BG ∥∵90DCB ∠=︒ ∴DC BC ⊥,又∵平面BCDE ⊥平面ABC ,平面BCDE平面ABC BC =,DC ⊂平面BCDE , ∴DC ⊥平面ABC .又BG ⊂平面ABC ,∴DC BG ⊥,∴DC EF ⊥,又AB BC =,∴AC BG ⊥,∴AC EF ⊥,∵AC DC C =,AC ⊂平面ACD ,DC ⊂平面ACD ,∴EF ⊥平面ACD .(2)以点B 为原点,以BA 方向为x 轴,以BC 方向为y 轴,以BE 方向为z 轴,建立如图所示坐标系()0,0,0B ,()0,0,2E ,()2,0,0A ,()0,2,0C ,()0,2,4D ,设平面ABD 的法向量(),,n x y z =,则0 0n BA n BD ⋅=⋅⎧⎨⎩=,∴20 240x y z =+=⎧⎨⎩取1z =,()021n =-,,,()0,2,2CE =-,∴cos ,CE nCE nCE n ⋅〈〉== =,设直线CE 与平面ABD 所成角为θ,则sin θ=,∴cos θ=,即直线CE 与平面ABD .20.已知椭圆E :22221(0)x y a b a b +=>>经过点1,⎛ ⎝⎭,焦距为 (1)求椭圆E 的标准方程;(2)直线():l y m m =+∈R 与椭圆E 交于不同的两点A 、B ,线段AB 的垂直平分线交y 轴交于点M,若tan AMB ∠=-m 的值.【答案】(1)2214x y +=;(2)1m =或1m =-. 【解析】(1)由题意得2c =c =又点1,⎛ ⎝⎭在椭圆上,所以:22223141 3a b b a +==-⎧⎪⎪⎨⎪⎪⎩, 整理得:42419120a a -+=,解得:24a =或234a =(舍),∴21b =, ∴椭圆的标准方程为:2214x y +=. (2)设()()1122,,,A x y B x y ,线段AB 中点坐标()()330,,0,C x y M y ,由22 1,4y m x y ⎧=++=⎪⎨⎪⎩整理得:229440x m ++-=,∴()()2224944144160m m ∆=-⨯⨯-=->,∴29m <,又12x x +=212449m x x -⋅=,∴1232x x x +==∴339m y m =+=, ∴线段AB 的中点C坐标为9m ⎛⎫ ⎪ ⎪⎝⎭又12AB x =-=∴AC =又09MC m y k -==,∴03m y =-, ∴点M 坐标为0,3m ⎛⎫- ⎪⎝⎭, ∴MC==, ∵CM 垂直平分AB ,∴2AMB AMC ∠=∠,又22tan tan 1tan AMC AMB AMC∠∠==--∠ 解得tanAMC ∠=或tan 2AMC ∠=-(舍), ∴在Rt AMC ∆中,AC AMC MC ∠==2m =,=,∴2298m m -=, ∴1m =或1m =-.21.已知函数()()223e x f x x ax a =+--.(1)若2x =是函数()f x 的一个极值点,求实数a 的值.(2)设0a <,当[]1,2x ∈时,函数()f x 的图象恒不在直线2e y =的上方,求实数a 的取值范围.【答案】(1)5a =-;(2)[)e 2,0--.【解析】(1)由()()223e x f x x ax a =+--可得:()()()()222e 23e 23e x x x f x x a x ax a x a x a ⎡⎤=+++--=++--⎣⎦',∵2x =是函数()f x 的一个极值点,∴()20f '=,∴()25e 0a +=,计算得出5a =-.代入()()()()()31e 21e x x f x x a x x x =++=--'-,当12x <<时,()0f x '<;当2x >时,()0f x '>,∴2x =是()f x 的极值点.∴5a =-.(2)当[]1,2x ∈时,函数()f x 的图象恒不在直线2e y =上方,等价于[]1,2x ∈,()2e f x ≤恒成立,即[]1,2x ∈,()2max e f x ≤恒成立,由(1)知,()()()31e x f x x a x =++-',令()0f x '=,得13x a =--,21x =,①当5a -≤时,32a --≥,∴()f x 在[]1,2x ∈单调减,()()()2max 12e e f x f a ==--≤,e 2a --≥与5a -≤矛盾,舍去.②当54a -<<-时,132a <--<,()f x 在()1,3x a ∈--上单调递减,在()3,2x a ∈--上单调递增,∴()max f x 在()1f 或()2f 处取到,()()12e f a =--,()22e f =,∴只要()()212e e f a =--≤,计算得出e 24a --<-≤.③当40a -<≤时,31a --≤,()f x 在[]1,2x ∈上单调增,()()2max 2e f x f ==,符合题意,∴实数a 的取值范围是[)e 2,0--.(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分)22.在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l的参数方程为12 (x t y =-⎪=⎧⎪⎨⎪⎪⎩为参数),曲线C 的极坐标方程为4cos ρθ=;(1)求直线l 的直角坐标方程和曲线C 的直角坐标方程;(2)若直线l 与曲线C 交点分别为,A B ,点()1,0P ,求11PA PB+的值. 【答案】(1):10l x y +-=,曲线22:40C x y x +-=;(2. 【解析】(1):10l x y +-=,曲线22:40C x y x +-=; (2)将12 x y ⎧⎪==⎨-⎪⎪⎪⎩(t 为参数)代入曲线C的方程,得23=0t +-,12t t ∴-==,1212113t t PA PB t t -∴+==. 23.已知函数()2121f x x x =-++.(1)求函数()f x 的最小值m ;(2)若正实数,a b满足11a b +=,求证:2212m a b+≥. 【答案】(1)2;(2)见解析. 【解析】(1)()()212121212x x x x -++--+=≥当且仅当1122x -≤≤时,等式成立. (2)2221211112a b a b ⎛⎫⎛⎫⎛⎫+⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭≥则22122a b +≥, 当且仅当2b a =时取,等号成立.。