8.2串联型晶体管稳压电源
- 格式:ppt
- 大小:1.03 MB
- 文档页数:26
江苏省XY中等专业学校2021-2022-2教案编号:备课组别电子上课日期主备教师授课教师课题:8.1直流稳压电流教学目标1.了解直流稳压电源的作用、分类2.能画出简单串联稳压电源的组成,能分析稳压过程重点分类、组成、稳压过程难点稳压过程教法讲授法、探究法、讨论法教学设备教学平台、虚拟实验室、实验室教学环节教学活动内容及组织过程个案补充教学内容A.复习1.硅稳压管的特性。
2.硅稳压二极管稳压电路。
B.引入1.直流稳压电源的作用:当电网电压变化或负载发生变化时,输出电压能基本保持不变。
2.按电压调整元件与R L连接可分为以下两种。
C.新授课8.1两种稳压类型概述一、并联型稳压电路1.框图:教学内容2.电路组成:(1)找出分析关系式:I R = I Z + I LV R = I R RV O = V Z = V I-I R R(2)稳压过程V I↑→V O↑→I Z↑→I R↑V O↓————↓问:①V I极性接反时,能否稳压?②R = 0时,能否稳压?3.特点(1)优点:电路简单,调试方便。
(2)缺点:输出电流较小(几十毫安),带负载能力低,应用于要求不高的小型电子设备中。
随堂练习:(1)说明R L↓ 时,稳压过程。
(2)已知:V I = 9 V,V Z = 6 V, R =21kΩ,R L = 2 kΩ。
求:I R,I Z解:I R = mA6mA0.569EI=-=-RVVI L = mA3mA26=I Z = I R- I L = (6-3)mA = 3 mA教学内容三、串联型稳压电路:1.框图:2.基本原理I B↑→V CE↓ 输出特性曲线I B↓→V CE↑3.V为调整管——作为调整元件的晶体管。
8.2串联型晶体管稳压电源一、简单串联型晶体管稳压电源1.电路:2.元件作用:V1——调整管;V2——稳压管,为V1的基极提供稳定的基准电压;R1——V2限流电阻;R1——V1偏置电阻;R2 ——V1发射极电阻。
串联型三极管稳压电路1.电路构成用三极管V代替图8.2中的限流电阻R,就得到图8.3所示的串联型三极管稳压电路。
在基极电路中,V DZ与R组成参数稳压器。
图 8.3 串联型三极管稳压电路2. 工作原理〔实验〕:①按图8.3连接电路,检查无误后,接通电路。
②保持输入电压U i不变,改变R L,观察U0。
③保持负载R L不变,改变U L,观察U0。
结论:输出电压U0基本保持不变。
该电路稳压过程如下:(1)当输入电压不变,而负载电压变化时,其稳压过程如下:(2)当负载不变,输入电压U增加时,其稳压过程如下:(3)当UI增加时,输出电压U0有升高趋势,由于三极管T基极电位被稳压管DZ固定,故U0的增加将使三极管发射结上正向偏置电压降低,基极电流减小,从而使三极管的集射极间的电阻增大,UCE增加,于是,抵消了U0的增加,使U0基本保持不变.上述电路虽然对输出电压具有稳压作用,但此电路控制灵敏度不高,稳压性能不理想。
8.3.2 带有放大环节的串联型稳压电路1.电路组成在图8.3电路加放大环节.如图8.4所示。
可使输出电压更加稳定。
图8.4带放大电路的串联型稳压电路取样电路:由R1、RP、R2组成,当输出电压变大时,取样电阻将其变化量的一部分送到比较放大管的基极,基极电压能反映出电压的变化,称为取样电压;取样电压不宜太大,也不宜太小,若太大,控制的灵敏度下降;若太小,带负载能力减弱。
基准电路:由RZ、V DZ组成,给V2发射极提供一个基准电压,RZ为限流电阻,保证V DZ有一个合适的工作电流。
比较放大管V2:R4既是V2的集电极负载电阻,又是V1的基极偏置电阻,比较放大管的作用是将输出电压的变化量,先放大,然后加到调整管的基极,控制调整管工作,提高控制的灵敏度和输出电压的稳定性。
调整管V1:它与负载串联,故称此电路为串联型稳压电路,调整管V1受比较放大管控制,集射极间相当于一个可变电阻,用来抵消输出电压的波动。
晶体管稳压电路
晶体管稳压电路是一种用晶体管组成的电路,用于稳定输出电压。
它通常由一个晶体管、一个二极管和几个电阻组成。
常见的晶体管稳压电路有两种类型:串联稳压电路和并联稳压电路。
1.串联稳压电路(也称为基准电压稳压电路):它使用一个晶体管作为一个可变电阻,通过负反馈的原理来稳定输出电压。
当输入电压上升时,通过调节晶体管的电阻,输出电压将下降,从而保持在一个较稳定的水平。
常见的串联稳压电路有基准二极管稳压器(例如,Zener二极管稳压器)和传统电流源稳压器(例如,穆斯堡尔电源)。
2.并联稳压电路(也称为电流限制稳压电路):它使用晶体管和电阻组成一个负反馈回路,通过限制输出电流来稳定输出电压。
当输入电压增加时,输出电流增加,并通过电阻来产生一个反馈信号,使晶体管逐渐关闭,进而限制输出电流和稳定输出电压。
一种常见的并联稳压电路是电流源稳压器,它通常由一个晶体管、一个电流源和几个电阻组成。
晶体管稳压电路在电子设备中广泛应用,用于稳定电源电压,以确保电子元器件在合适的工作范围内运行。
这些电路对于许多应用,如电子设备、通信系统、工业控制和自动化等,都起到了关键的作用。
第8章直流稳压电源8.1 单相整流滤波电路教学要求:1.掌握单相桥式整流电路的工作原理;2.掌握电容滤波电路的工作原理;3.了解电感滤波电路、∏型滤波电路的结构及原理。
引言直流稳压电源是将交流电变换成功率较小的直流电,一般由变压、整流、滤波和稳压等几部分组成。
整流电路用来将交流电压变换为单向脉动的直流电压;滤波电路用来滤除整流后单向脉动电压中的交流成分,使之成为平滑的直流电压;稳压电路的作用是输入交流电源电压波动、负载和温度变化时,维持输出直流电压的稳定。
一、单相整流电路(一)半波整流电路单相半波整流电路如下图(a)所示,图中Tr为电源变压器,用来将市电220V交流电压变换为整流电路所要求的交流低电压,同时保证直流电源与市电电源有良好的隔离。
设V为整流二极管,令它为理想二极管,R L为要求直流供电的负载等效电阻。
由图可见,负载上得到单方向的脉动电压,由于电路只在u2的正半周有输出,所以称为半波整流电路。
半波整流电路结构简单,使用元件少,但整流效率低,输出电压脉动大,因此,它只使用于要求不高的场合。
(二)桥式整流电路为了克服半波整流的缺点,常采用桥式整流电路,如下图所示,图中V1、V2、V3、V4四只整流二极管接成电桥形式,故称为桥式整流。
1.工作原理和输出波形设变压器二次电压u2=21/2U2sinωt,波形如电压、电流波形图(a)所示。
在u2的正半周,即a点为正,b 点为负时,V1、V3承受正向电压而导通,此时有电流流过R L,电流路径为a→V1→R L→V3→b,此时V2、V4因反偏而截止,负载R L上得到一个半波电压,如电压、电流波形图(b)中的0~π段所示。
若略去二极管的正向压降,则u O≈u2。
电压、电流波形在u2的负半周,即a点为负b点为正时,V1、V3因反偏而截止,V2、V4正偏而导通,此时有电流流过R L,电流路径为b→V2→R L→V4→a。
这时R L上得到一个与0~π段相同的半波电压如电压、电流波形图(b)中的π~2π段所示,若略去二极管的正向压降,uO≈-u2。
晶体管串联稳压电路工作原理是引言:稳压电路是电子电路中常见的一种电路,其作用是在输入电压发生波动时,输出电压保持稳定。
晶体管串联稳压电路是一种常用的稳压电路,本文将介绍晶体管串联稳压电路的工作原理及其应用。
一、晶体管的基本原理晶体管是一种半导体器件,由P型、N型半导体材料组成。
它具有三个引脚,分别是发射极(Emitter)、基极(Base)和集电极(Collector)。
晶体管的工作原理是基于PN结的导电特性。
当晶体管的基极-发射极间的电压大于某个阈值时,PN结会呈现正向偏置。
此时,电子从N型半导体注入到P型半导体中,同时空穴从P型半导体注入到N型半导体中,形成电流。
这个过程被称为晶体管的放大作用。
二、晶体管串联稳压电路的工作原理晶体管串联稳压电路是一种基于晶体管的负反馈电路。
它由两个晶体管和若干个电阻组成。
在晶体管串联稳压电路中,一个晶体管被称为调整管(Adjusting Transistor),另一个晶体管被称为参考管(Reference Transistor)。
调整管的基极通过一个电阻与输入电压相连,调整管的发射极通过一个电阻与输出电压相连。
参考管的发射极通过一个电阻与输出电压相连,参考管的基极通过一个电阻与参考电压相连。
当输入电压发生波动时,调整管的工作状态也会发生变化。
调整管的发射极电压变化将导致参考管的工作状态发生变化,从而调整输出电压,使其保持稳定。
三、晶体管串联稳压电路的应用晶体管串联稳压电路在电子设备中有着广泛的应用。
它可以用于电源电压稳定,保护其他电子元件免受电压波动的影响。
例如,晶体管串联稳压电路可以用于手机充电器中。
当输入电压波动时,稳压电路可以使输出电压保持稳定,保护手机免受电压波动的损害。
晶体管串联稳压电路还可以用于电子仪器的电源稳定。
在实验室中,各种电子仪器需要稳定的电源供电,以确保实验结果的准确性和可靠性。
晶体管串联稳压电路可以起到稳定电源电压的作用,为实验仪器提供稳定的工作条件。
附件2:参考资料参考资料1、实验十八直流稳压电源─串联型晶体管稳压电源一、实验目的1、研究单相桥式整流、电容滤波电路的特性。
2、掌握串联型晶体管稳压电源主要技术指标的测试方法。
二、实验原理电子设备一般都需要直流电源供电。
这些直流电除了少数直接利用干电池和直流发电机外,大多数是采用把交流电(市电)转变为直流电的直流稳压电源。
图18-1 直流稳压电源框图直流稳压电源由电源变压器、整流、滤波和稳压电路四部分组成,其原理框图如图18-1 所示。
电网供给的交流电压u1(220V,50Hz) 经电源变压器降压后,得到符合电路需要的交流电压u2,然后由整流电路变换成方向不变、大小随时间变化的脉动电压u3,再用滤波器滤去其交流分量,就可得到比较平直的直流电压uI。
但这样的直流输出电压,还会随交流电网电压的波动或负载的变动而变化。
在对直流供电要求较高的场合,还需要使用稳压电路,以保证输出直流电压更加稳定。
图18-2 是由分立元件组成的串联型稳压电源的电路图。
其整流部分为单相桥式整流、电容滤波电路。
稳压部分为串联型稳压电路,它由调整元件(晶体管T1);比较放大器T2、R7;取样电路R1、R2、RW,基准电压DW、R3和过流保护电路T3管及电阻R4、R5、R6等组成。
整个稳压电路是一个具有电压串联负反馈的闭环系统,其稳压过程为:当电网电压波动或负载变动引起输出直流电压发生变化时,取样电路取出输出电压的一部分送入比较放大器,并与基准电压进行比较,产生的误差信号经T2放大后送至调整管T1的基极,使调整管改变其管压降,以补偿输出电压的变化,从而达到稳定输出电压的目的。
图18-2 串联型稳压电源实验电路由于在稳压电路中,调整管与负载串联,因此流过它的电流与负载电流一样大。
当输出电流过大或发生短路时,调整管会因电流过大或电压过高而损坏,所以需要对调整管加以保护。
在图18-2 电路中,晶体管T 3、R 4、R 5、R 6组成减流型保护电路。
晶体管串联稳压电路:工作原理与应用
晶体管串联稳压电路是一种常用的电子元件,它可以提供稳定的输出电压,在电子设备、电池充电器、LED灯等产品中广泛应用。
本文将介绍晶体管串联稳压电路的工作原理及其应用。
首先,我们需要了解晶体管的基本原理。
晶体管有三根引脚:发射极、基极和集电极。
当基极施加正向电压时,电子将从发射极流向集电极;而当基极施加反向电压时,电子则无法流动。
通过这种电子的控制方式,晶体管可以实现稳压的目的。
在晶体管串联稳压电路中,电压稳定器的核心是Zener二极管。
Zener二极管的正向额定电压(一般为0.7V)下,电流将通过晶体管的基极、发射极、Zener二极管的负极,再经过负载电阻,最后流回电源的负极。
当负载电流增加时,Zener二极管的负极电压不变,因此保持晶体管的输入电压稳定,从而实现稳定的输出电压。
除了基本的稳压电路之外,晶体管串联稳压电路还有一些扩展应用。
其中之一是电池充电器。
在这种应用中,稳压器将电压稳定在特定的电压水平,确保充电电流与电池容量的要求相匹配。
同时,稳定电池电压还有利于延长电池的使用寿命。
另一个应用是LED灯。
在LED 驱动电路中,晶体管串联稳压电路可实现稳定的直流电压供应,从而保证LED的正常发光。
总而言之,晶体管串联稳压电路是一种非常常用的电子元件,它具有稳压、降噪、保护负载等重要功能,并且在许多电子系统和应用中发挥着重要作用。
晶体管串联型稳压电路
晶体管串联型稳压电路是一种常见的线性稳压电源电路,它利用晶体管(通常是双极型晶体管BJT)作为调整元件,通过串联连接在电路中,以稳定输出电压。
这种电路通常包括以下七个部分。
1.输入整流滤波电路:输入交流电源首先通过整流电路(如全波整流或半波整流)进行整流,然后通过滤波电容滤波,得到平滑的直流电压。
2.基准电压源:提供一个稳定的参考电压,用于比较和调整输出电压。
3.比较放大电路:将基准电压与输出电压进行比较,并通过放大电路放大误差信号,以控制调整管的工作状态。
4.调整管:通常是双极型晶体管,它根据比较放大电路的信号来调整其导通程度,从而控制负载上的电压。
5.负载:电路的输出端,可以是直流负载,如电阻、灯泡等。
6.反馈网络:将输出电压的一部分反馈到比较放大电路,以形成一个闭环控制系统,确保输出电压的稳定性。
7.保护电路:在发生过载、短路或其他异常情况时,保护电路可以切断电源,防止电路损坏。
晶体管串联型稳压电路的工作原理是,当输出电压因负
载变化或输入电压波动而偏离设定值时,比较放大电路会检测到这一变化,并通过调整管来调节输出电压,使其恢复到设定值。
这样,通过不断的比较和调整,电路能够保持输出电压的稳定。
这种电路的优点是输出电压稳定,负载调整率低,但缺点是效率不高,因为调整管在调节电压时会消耗能量。
此外,当负载电流较大时,调整管可能会因为温升过高而影响电路的稳定性。
因此,在实际应用中,需要根据具体需求选择合适的电路设计和元件。
稳压电路具有自动维持输出电压稳定的功能。
稳压电路之所以能够自动稳压,关键是在电路中有一个自动可调的调整元件。
当输出电压升高时,调整元件会自动调整使输出电压降低;当输出电压降低时,调整元件又会自动调整使输出电压升高,从而使输出电压达到基本稳定。
按照调整元件在电路中与负载的连接方式,稳压电路分为并联型和串联型。
如图8. 4.1是最简单的并联型稳压电路,调整元件是稳压二极管Dz,电阻R起限流和电压补偿作用。
用稳压管构成酌稳压电路只适用于输出电压固定且稳定度不高的场合。
下面重点讨论用晶体管作为可调元件所构成的串联型稳压电路。
典型的串联型晶体管稳压电路由四部分组成,它们是调整管、取样电路、基准电压电路和比较放大电路。
图8.4.2是串联型晶体管稳压电路的框图。
尽管实际应用中的串联型稳压电路有各种形式,但是,上述四个组成部分是最基本的,也是必不可少的。
1.串联型线性稳压电路由于晶体管的集一射极电压UCE和集电极电流记受基极电流ZB的控制,即ZB增大时,zc增大,而UCE减小,这相当于集一射极间的电阻减小;相反,当ie减小时,ic减小,而UCE增大,这相当于集一射极间的电阻增大。
可见,晶体管集一射极间相当于一个受基极电流控制的可调电阻,因此,晶体管可以作为调整元件。
晶体管作为调整元件时又称为调整管。
典型的串联型晶体管稳压电路如图8.4.3所示。
在该电路中,晶体管Ti为调整管,因为调整管与负载RL串联,故称为串联型稳压电路。
R3和Dz组成稳压管稳压电路,给晶体管T2的射极提供稳定的电压,稳定电压Uz称为基准电压。
电阻Ri和Rz组成分压电路,又称取样电路,它的作用是取输出电压的一部分供给T2的基极。
晶体管T2的作用是将取样电路送来的取样电压咒Uo与基准电压UZ进行比较,并把输出电压中变化部分nAUo进行放大后去控制调整管的基极,故晶体管T2构成比较放大级,Rc为T2的集电极负载电阻。
该稳压电路的稳压原理如下:输入电压U.。