等轴双曲线与圆相交的优美性质
- 格式:doc
- 大小:651.01 KB
- 文档页数:5
双曲线的标准方程及其几何性质一、双曲线的标准方程及其几何性质。
1.双曲线的定义:平面内与两定点F 1、F 2的距离差的绝对值是常数(大于零,小于|F 1F 2|)的点的轨迹叫双曲线.两定点F 1、F 2是焦点,两焦点间的距离|F 1F 2|是焦距,用2c 表示,常数用2a 表示. (1)若|MF 1|-|MF 2|=2a 时,曲线只表示焦点F 2所对应的一支双曲线. (2)若|MF 1|—|MF 2|=—2a 时,曲线只表示焦点F 1所对应的一支双曲线.(3)若2a =2c 时,动点的轨迹不再是双曲线,而是以F 1、F 2为端点向外的两条射线。
(4)若2a >2c 时,动点的轨迹不存在.2。
双曲线的标准方程:22a x -22b y =1(a >0,b >0)表示焦点在x 轴上的双曲线;22a y -22bx =1(a >0,b >0)表示焦点在y 轴上的双曲线。
判定焦点在哪条坐标轴上,不像椭圆似的比较x 2、y 2的分母的大小,而是x 2、y 2的系数的符号,焦点在系数正的那条轴上。
4.直线与双曲线的位置关系,可以通过讨论直线方程与双曲线方程组成的方程组的实数解的个数来确定。
(1)通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式∆,则有:⇔>∆0直线与双曲线相交于两个点;⇔=∆0直线与双曲线相交于一个点;⇔<∆0 直线与双曲线无交点.(2)若得到关于x (或y )的一元二次方程,则直线与双曲线相交于一个点,此时直线平行于双曲线的一条渐近线.(3)直线l 被双曲线截得的弦长2212))(1(x x k AB -+=或2212))(11(y y k-+,其中k 是直线l 的斜率,),(11y x ,),(22y x 是直线与双曲线的两个交点A ,B 的坐标,且212212214)()(x x x x x x -+=-,21x x +,21x x 可由韦达定理整体给出.二、例题选讲例1、中心在原点,焦点在x 轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为2,则双曲线方程为 ( )A .x 2-y 2=1 B .x 2-y 2=2 C .x 2-y 2=错误! D .x 2-y 2=错误!解析:由题意,设双曲线方程为x 2a2-错误!=1(a >0),则c =错误!a ,渐近线y =x ,∴错误!=错误!,∴a 2=2。
第二十九章 双曲线的性质及应用【基础知识】双曲线具有一般圆锥曲线的性质外,还具有下述有趣性质:性质1双曲线()222210,0x y a b a b -=>>的左、右焦点为1F ,2F ,其上任意一点()00,P x y 处的两条焦半径长,当0x a≥以时,10PF ex a=+,20PF ex a=-;当0x a≤时,()10PF ex a =-+,()200PF ex a a ex =--=-. 性质2以焦半径为直径的圆与以实轴为直径的圆外切.证明设双曲线方程为()222210,0x y a b a b-=>>,其上任一点()00,P x y ,设两焦点为1F ,2F ,2PF 的中点为M ,中心O 为12F F 的中点,则()101122OM PF ex a ==+,但以实轴为直径的圆222x y a +=与以2PF 为直径的圆的半径之和为()()200111222a PF a ex a ex a +=+-=+,即证. 性质3设1F ,2F 是双曲线()222210x y a b a b -=>>的左、右焦点,点P 是双曲线上异于顶点的任意一点,(I )12PF PF ⋅的最小值为2b ;(Ⅱ)设122F PF θ∠=,则2122sin b PF PF θ⋅=,且1222cot F PF S b θ=⋅△;(Ⅲ)设12PF F α∠=,21PF F β∠=,则当点P 在双曲线右支上时,1tan cot 221e e αβ-⋅=+;当点P 在双曲线左支上时,1cottan221e e αβ-⋅=+.证明(I )当P 为双曲线顶点时,即取最小值. (Ⅱ)在12PF F △中,由余弦定理,22212122cos24PF PF PF PF c θ+-⋅⋅=,由122PF PF a -=,有222121224PF PF PF PF a +-⋅=,两式相减,化简即得2212221cos2sin b b PF PF θθ⋅==-. 122121sin 2cot 2PF F S PF PF b θθ=⋅⋅=⋅△. (Ⅲ)P 在右支上时,由122PF PF a -=及正弦定理,有()1212sin sin sin PF PF F F βααβ==+.由等比定理,有()22sin sin sin c a αββα=+-.故()1tancotsin 22sin sin 1tan cot 22c e a αβαβαββα+⋅+===--⋅,故1tan cot 221e e αβ-⋅=+. P 点在左支上时,同理可证.性质4P 是双曲线()222210,0x y a b a b-=>>上异于顶点的一点,O 是中心,1F ,2F 为其左、右焦点,令OP d =,则22212PF PF d b a ⋅-=-.其证明与椭圆性质8的证明类似.性质5直线0Ax By C ++=与双曲线()222210,0x y a b a b-=±>>相交、相切、相离的充要条件是2222A a B b - 2C ±且22220A a B b -≠. 其证明与椭圆性质9的证明类似. 推论直线0Ax By C ++=与双曲线()()()222210,0x m y n a b a b ---=>>相交、相切、相离的充要条件是2222A a B b -()2Am Bn C ++.性质6设双曲线的一个焦点为F ,直线l 与过顶点A ',A 的切线相交于M ',M ,则 (1)0FM FM '⋅=⇔直线l 与双曲线相切或l 为双曲线的一渐近线; (2)0FM FM '⋅<⇔直线l 与双曲线相离;(3)0FM FM '⋅>⇔直线l 与双曲线相交(或相交于一点).证明设双曲线方程()222210,0x y a b a b-=>>,(),0F c ,(),0A a '-,(),0A a ,直线l :y kx m =+.()(),,FM FM a c m ka a c m ka '⋅=---⋅-+()22222c a m k a =-+-2222m b k a =+-.由22221x y a b y kx m ⎧-=⎪⎨⎪=+⎩消去y ,得 ()()2222222220a kb x a kmx a m b -+++=.()2222224a b m b a k ∆=+-.(1)222222220000FM FM m b k a m a k b '⋅=⇔+-=⇔=-=⇔∆=或0m =,bk a=±⇔直线l 与双曲线相切或l 为双曲线的一渐近线;(2)222200FM FM m a k b '⋅<⇔<-⇔∆<⇔直线l 与双曲线要离;(3)2222222200FM FM m a k b m a k b '⋅>⇔>-⇔>-≠或222200m a k b >-=⇔∆>或l 平行于双曲线的一渐近线⇔直线l 与双曲线相交(或相交于一点).性质7设P ,Q 是双曲线()222210x y b a a b -=>>上的两点,O 为中心,若OP OQ ⊥,则22221111a b OPOQ+=-.证明设OP 的倾斜角为α,将其参数方程cos sin x t y t αα=⎧⎨=⎩(t 为参数)代入双曲线方程,得2222222cos sin a b t b a αα=-,故22222221cos sin b a a b OPαα-=. 同理,22222221sin cos b a a b OQαα-=.两式相加即证. 注类似地可证明如下结论:(Ⅰ)AB ,CD 是过双曲线()222210,0x y a b a b -=>>焦点F 的弦,若AB CD ⊥,则(i )当弦AB ,CD 的端点均在双曲线的同一支或均在两支上时,有2221111a AB CD a b⎛⎫+=- ⎪ ⎪⎝⎭;(ii )当弦AB 与CD 的端点一组在双曲线的同一支上,另一组在两支上时,有2221111a AB CD a b-=-. (Ⅱ)AB 是过双曲线()222210x y b a a b -=>>焦点F 的弦,O 为中心,Q 为双曲线上一点,若OQ AB ⊥,则(i )当A ,B 在双曲线的两支上时,有2222211a AB ab OQ +=-;(ii )当A ,B 在双曲线的同一支时,有2222211a ABb aOQ -=-. 性质8过双曲线的一个焦点,(I )且与双曲线交于同支的弦,以通径为最短,对于大于通径长的任何一个长度L ,在同一支上过焦点可作两条不同的弦;(Ⅱ)且与双曲线交于异支的弦,以其实轴长为最短,对于大于实轴长的一个长度L ,过一个焦点可作两条交于异支的弦.证明设双曲线方程为()222210,0x y a b a b -=>>.由双曲线的对称性,不妨设弦过双曲线的右焦点,弦的端点分别为()11,A x y ,()22,B x y ,AB L =.当焦点弦为通径时,容易求得22b L a=,且该弦是唯一的.当焦点弦不是通径时,设弦所在直线方程为()y k x c =-,并代入双曲线方程得()2222222222220ba k x a ck x a c k ab -+--=.由此,得22122222a ck x x a k b +=-.(I )当焦点弦与双曲线交于右支上两点时, 易知222212222222a c ab k ab L AB x x c a a k b ⎛⎫+==+-⋅= ⎪-⎝⎭.于是()()22222b a L k a La b +=-. ①若22b L a <,则220La b -<,①式右边为负数,k 无实数解,即不存在小于通径的同支焦点弦;若22b L a >,则①中k 的两解为k =易知此时bk a>,所以交于右支的弦有两条. (Ⅱ)当焦点弦的端点A ,B 在双曲线异支上时, 易知222212222222a c ab k ab L AB x x c a b a k ⎛⎫+==--⋅= ⎪-⎝⎭. 于是()()22222b L a k a La b-=+. ②若2L a <,则②式右边为负,k 无实数解,即不存在小于实数的交于异支的焦点弦;若2L a =,则0k =,即交于异支的焦点弦以实轴为最短;若2L a >,则②中k 的两解为k =且易知0bk a<<,即交于异支的焦点弦有两条.注由上述性质,可得如下易于操作的结论:(1)若22min 2,b L a a ⎧⎫<⎨⎬⎩⎭,则这样的焦点弦不存在;(2)若22min 2,b L a a ⎧⎫=⎨⎬⎩⎭,且双曲线非等轴,则弦唯一;(3)若双曲线等轴,且2L a =,则焦点弦有两条,分别为实轴和通径;(4)若a b <(或b a <)且当222b a L a <<(或222b L a a<<)时,焦点弦有两条,它们都交于异支(或同支)上;(5)若222b L a a =>(或222b L a a=>),焦点弦有三条,一条为实轴,另两条交于同支(或一条为通径,另两条于异支)上;(6)若22max 2,b L a a ⎧⎫>⎨⎬⎩⎭,焦点弦有四条,两条交于同支上,另两条交于异支上.性质9等轴双曲线222x y a -=上点()00,P x y 对弦AB 的张角为直角的充要条件是0AB y k x =-. 性质10设()00,M x y ,双曲线方程为()222210,0x y a b a b-=>>,对于直线l 的方程00221x x y y a b -=,则(1)当M 在双曲线上时,l 为双曲线的切线;(2)当M 在双曲线外时,l 为双曲线的切点弦直线;(3)当M 在双曲线内时,l 为以M 为中点的弦平行且过此弦端点切线交点的直线.事实上,这可由第二十五章的性质7推论后的注即得,这里,其实l 为点M 关于双曲线的极线. 【典型例题与基本方法】例1过双曲线2212y x -=的右焦点作直线l 交双曲线于A ,B 两点,若实数λ使得AB λ=的直线l 恰有3条,则λ=_____________ (1997年全国高中联赛题)解填4.理由是:首先注意到,过双曲线2212y x -=的右焦点且与右支交于两点的弦,当且仅当该弦与x 轴垂直时,取得最小长度224ba =.(事实上,在极坐标系中,可设双曲线的方程为ρ=,设()1,A ρθ,()()212,0,0B ρθρρ=π+>>,则24413cos AB θ=+=-≥,当2θπ=时,等号成立.其次,满足题设条件的直线恰有三条时,只有两种可能:(i )与双曲线左、右两支都相交的只有一条,而仅与右支相交的有两条.此时,与双曲线左、右两支都相交的必是x 轴,而其两交点间的距离为22a =.但仅与右支相交的两条的弦长4λ>,这不满足题设条件.(ii )与双曲线左、右两支都相交的有两条,而仅与右支相交的只有一条,且这条弦必与x 轴垂直(否则,由对称性知仅与右支相交的有两条弦),此时,4AB λ==,且与双曲线左、右两支都相交的弦长也可满足这个条件.所以4λ=.例21F ,2F 为双曲线221445x y -=的两个焦点,P 是双曲线上一点,已知2PF ,1PF ,12F F 成等差数列(或12122PF PF F F =+),且公差大于0.试求12F PF ∠.解由题设,知24a =,245b =,则7c =. 又1222PF PF c =+,则12214PF PF -=.而1224PF PF a -==,从而求得110PF =,26PF =.于是由性质3(Ⅱ),知22122260sin 1cos2b b PF PF θθ=⋅==-,即得1cos 2θ=-. 从而120θ=︒,即12120F PF ∠=︒.例31F ,2F 是双曲线()222210,0x y a b a b -=>>的左、右焦点,ab ,直线l 与2F 与x 轴的夹角为θ,tan θ=且22QP PF =∶.求双曲线方程. (1991年全国高考题)解设()1,0F c -,()2,0F c ,在2Rt OQF △中,由tan θ=可得0,Q ⎛⎫⎪ ⎪⎝⎭.于是1116PF c =,256c PF =,223736OP c =.由性质4,有222255373636c c b a -=-,即223b a =,与已知223a b =联立求得21a =,23b =.故所求双曲线方程为2233x y -=.例4求过点()6,7P ,且与双曲线221916x y -=相切的方程.解运用性质5,联立方程670A B C ++=与222916A B C -=消去C ,可得()()359130A B A B ++=.求得53A B =-或139A B =-,因此求得3C B =或53C B =,即所求切线方程为5303Bx By B -++=与135093Bx By B -++=,即5390x y --=与139150x y --=为所求. 例5设点P 为双曲线()222210,0x y a b a b -=>>右支异于顶点的一点,1F ,2F 分别为其左、右焦点,试证:12PF F △的1F ∠的内角平分线上的旁心的轨迹方程为:()()()()222c a x c a y c a c x c --+=->.证明设12PF F α∠=,21PF F β∠=,由性质3(Ⅱ),在12PF F △中,有()1212sin sin sin PF PF F F βααβ==+,即()22sin sin sin a c βααβ=-+,从而亦即tan cot 22c ac aαβ-⋅=+.设1F ∠的内角平分线上的旁心(),Q x y ,则1QF y k x c =+,2QF yk x c=-.由22MF QF ⊥,有12tancot22QF QF k k αβ⋅=⋅,即y y c ax c x c c a-⋅=+-+,故 ()()()()222c a x c a y c a c x c --+=->.例6设点P 是双曲线()222210,0x y a b a b-=>>上任意一点,过点P 的直线与两渐近线1l :b y x a =,2l :by x a =-分别交于点1P ,2P ,设入12P P PP λ=.求证:()12214OP P S ab λλ+=△.证明依题意,设111,b P x x a ⎛⎫ ⎪⎝⎭,222,b P x x a ⎛⎫- ⎪⎝⎭,(),P x y ,则有121x x x λλ+=+,且121211b bx x y y a a y λλλλ-+==++.即121x x x λλ+=+,①且121x x a y b λλ-=+.② 由①2-②2得()222122241x x a x y b λλ-=+. 即()()()()222222222222122222111444x y x x b xa y ab a bb a b λλλλλλ+++⎛⎫=-=⋅-= ⎪⎝⎭. 从而222221211221221b b b OP OP x x x x x x a a a ⎛⎫⎛⎫⎛⎫⋅++-+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()222222211144b a a b a λλλλ++⎛⎫=+⋅⋅=+ ⎪⎝⎭.故()()12222121222111sin 2241OP P ba S OP OP POP ab b a λλ⋅+=⋅⋅∠=⋅⋅+⋅⎛⎫+ ⎪⎝⎭△ ()214ab λλ+=.【解题思维策略分析】1.注意曲线方程形式的巧设例7过双曲线上任一点P 作倾斜角为α(定值)的直线l 与双曲线两渐近线交于Q ,R ,则PQ PR ⋅为定值.证明双曲线方程为()222210,0x y a b a b -=>>,则渐近线方程为0bx ay ±=.设00P x y (,)是双曲线上的点,则过P 的直线l 的参数方程为00cos ,sin x x t y y t αα=+⎧⎨=+⎩(t 为参数) 由()()00cos sin 0b x t a y t αα+±+=,可得001sin cos bx ay t a b αα+=-+,002sin cos bx ay t a b αα-=-.于是22122222sin cos a b PQ PR t t a b αα⋅=⋅=-(定值). 例8过双曲线上任一点P 的切线与双曲线两渐近线交于A ,B 两点.求证:点P 是线段AB 的中点,证明设双曲线方程为22221x y a b -=,两渐近线方程为22220x y a b-=.过双曲线上任意一点()11,P x y 的切线方程为11221x x y ya b-=,切线方程与渐近线方程联立消去y ,整理得()22222224211120b x a y x a b x x a b --⋅+=,即22120x x x a -+=.由韦达定理,知AB 的中点的横坐标1x x =,代入切线方程得1y y =,从而AB 的中点坐标为()11,x y 和点P 坐标相同,由此即证. 2.关注以坐标轴为渐近线的等轴双曲线问题例9求双曲线1xy =在第一象限内一支上的一定点(),Q a b 与它在第三象限内一支上的一动点Px y (,)之间的最短距离(以a 的解析式表示).解当以点Q 为中心,QP 为半径的圆与双曲线()10,0xy x y =<<相切时,QP 达到最小值.此时过点P 的双曲线1xy =(0x <,0y <)的切线与QP 垂直.设切点P 的坐标为()11,x y ,过()11,P x y 的双曲线的切线方程为112y x x y +=(即用112y x x y+代xy ),故11111y b y x a x ⎛⎫-⋅-=- ⎪-⎝⎭,且111x y =,1a b ⋅=.于是11111111x a x x a x -⋅=-,即211ax =-,从而131x a -=-,131y a -=-.所以()()22211QP x a y b =-+-223112213333a a a a a a ----⎛⎫⎛⎫⎛⎫=--+--=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故322233min QP a a-⎛⎫=+ ⎪⎝⎭. 例10设双曲线1xy =的两支1C ,2C 如图29-1,正三角形PQR 的三顶点位于此双曲线上.(Ⅰ)求证:P ,Q ,R 不能都在双曲线的同一支上;(Ⅱ)设11P -(,)在2C 上,Q ,R 在1C 上,求顶点Q ,R 的坐标.(1997年全国高中联赛题)(I )证法1假设P ,Q ,R 在双曲线1xy =的同一支如1C 上,其坐标分别为111,x x ⎛⎫ ⎪⎝⎭,221,x x ⎛⎫ ⎪⎝⎭,331,x x ⎛⎫⎪⎝⎭.设1230x x x <<<,则直线PQ 的斜率1121k x x =-,直线QR 的斜率2231k x x =-,()2121212123tan 011x x x k k PQR k k x x x --∠==<++. 因此,PQR ∠是钝角,这与PQR △是正三角形相矛盾,故P ,Q ,R 不能都在双曲线1xy =的同一支上. 注由1230x x x <<<,有123y y y >>,于是()()()()()()222222222122313122313PQ QR PR x x x x x x y y y y y y ⎡⎤⎡⎤+-=-+---+-+---=⎣⎦⎣⎦()()()()()()22212231321223132123212322232222220xx x x x x x y y y y y y y x x x x y y y y --++--+=--+--<.即PQR △为钝角三角形.证法2设111,P x x ⎛⎫ ⎪⎝⎭,221,Q x x ⎛⎫ ⎪⎝⎭,331,R x x ⎛⎫ ⎪⎝⎭是双曲线1xy =上的三点,易得直线PR 的斜率1131k x x -=,PR 边上的高线方程为()13221y x x x x x -=-.同理,QR 边上的高线方程为()23111y x x x x x -=-. 联立上述两方程得PQR △的垂心1231231,H x x x x x x ⎛⎫-- ⎪⎝⎭,它显然在双曲线1xy =上.当P ,Q ,R 在双曲线的同一支如1C 上,则1230x x x -<,而H 在另一支2C 上,即H 在PQR △的外部,即PQR △为钝角三角形,故P ,Q ,R 不能都在双曲线的同一支上.(Ⅱ)设Q ,R 的坐标分别为111,x x ⎛⎫ ⎪⎝⎭,221,x x ⎛⎫⎪⎝⎭,这时QR 边上的高线方程为()1211y x x x +=+,它必过线段QR 的中点,因此QR 的中点的坐标满足上述方程,于是有121212111122x x x x x x ++⎛⎫+=+ ⎪⎝⎭,即()()()121212121120x x x x x x x x -+++=⎡⎤⎣⎦.因10x >,20x >,上式中括号的式子显然大于0,则1210x x -=,即121x x =.于是Q 点的坐标为221,x x ⎛⎫⎪⎝⎭,而R 点的坐标为221,x x ⎛⎫⎪⎝⎭,这说明Q ,R 关于直线y x =对称.PQ ,PR 所在的直线分别为过P 点与直线y x =交成30︒角的相互对称的两条直线,易见其倾斜角分别为75︒和15︒.不妨设PQ 的倾斜角为75︒,这时它的方程为()1tan 751y x +=︒⋅+,即(()121y x +=+.将其与双曲线方程1xy =联立,解得Q点坐标为(22-+,由对称性知R点的坐标为(22+-.注由(Ⅰ)的证法2,使我们获得如下结论:三个顶点都在同一等轴双曲线上的三角形的垂心也在此双曲线上.由此也启发我们:在处理某些等轴双曲线问题时,可考虑以坐标轴为渐近线的等轴双曲线来讨论. 例11一直角三角形的三顶点在等轴双曲线上.求证:直角顶点处的切线垂直于斜边.证明如图29-2,设等轴双曲线方程为2xy c =,直角三角形ABC 的三顶点在等轴双曲线上,直角顶点,c A ct t ⎛⎫ ⎪⎝⎭,其余两顶点1,c B ct t ⎛⎫ ⎪⎝⎭,22,c C ct t ⎛⎫ ⎪⎝⎭,直线AB ,AC ,BC 的斜率分别为11AB k tt =-,21AC k tt =-,121BC k t t =-.图29-2由AB AC ⊥,有21211t t t =-. 过点A 的切线为22x t y ct +=,此切线斜率为21k t =-,于是21211BC k k t t t ⋅==-,故直角顶点处的切线垂直于斜边.3.借用双曲线知识,求解函数等其他问题 例12求函数3y x =+解令3u x =,0,v v u =≥≥,则y u v =+且221188u v -=.视y 为参数,在uOv 坐标系中,作出直线系v u y =-+及双曲线部分()2210188u v v -=>,如图29-3.图29-3当直线过点()0时,直线在v轴上的截距y =,由切线公式y kx =y =故函数y 的值域是(),⎡-∞+∞⎣∪. 例13求二元函数()()221,1f x y x y x y ⎛⎫=-+++ ⎪⎝⎭的最小值.(1998年“希望杯”竞赛题) 解因()()221,1f x y x y x y ⎛⎫=-+--- ⎪⎝⎭可看作直线10x y ++=上的点(),1x x --和双曲线1xy =上的点1,y y ⎛⎫ ⎪⎝⎭的距离的平方式.由作图可知,所求最小值为12.4.注意知识的综合运用例13设直线l :y kx m =+(其中k ,m 为整数)与椭圆2211612x y +=交于不同两点A 、B ,与双曲线221412x y -=交于不同两点C 、D ,问是否存在直线l ,使得向量0AC BD +=.若存在,指出这样的直线有多少条?若不存在,请说明理由. 解由22,1,1612y kx m x y =+⎧⎪⎨+=⎪⎩消去y 化简整理,得()2223484480k xkmx m +++-=.设()11,A x y ,()22,B x y ,则122834kmx x k +=-+.()()()222184344480km k m ∆=-+->.①由22,1,412y kx m x y =+⎧⎪⎨-=⎪⎩消去y 化简整理,得()22232120k xkmx m ----=.设()33,C x y 、()44,D x y ,则34223kmx x k+=-. ()()()2222243120km k m ∆=-+-+>.②因为0AC BD +=,所以()()42310x x x x -+-=. 此时()()42310y y y y -+-=. 由1234x x x x +=+得2282343km kmk k -=+-. 于是20km =或2241343k k -=+-.从而由前一式解得0k =或0m =. 当0k =时,由①、②得m ->m 是整数,所以m 的值为3-,2-,1-,0,1,2,3. 当0m =时,由①、②得k <k 是整数,所以1,0,1k =-. 于是,满足条件的直线有9条. 【模拟实战】习题A1.设双曲线()222210,0x y a b a b -=>>,两焦点为()1,0F c -,()2,0F c ,点Q 是双曲线右(或左)支上除顶点外任一点,从焦点1F (或2F )作12F QF ∠的角平分线的垂线,垂足为P ,则P 点的轨迹是以原点为圆心,a为半径的圆(除点(),0a -,(),0a ).2.求曲线22916144x y +=与22732224x y -=的公切线方程.3.一直线截双曲线()222210,0x y a b a b -=>>于P ,Q 两点,与渐近线交于P ',Q '两点.求证:PP QQ ''=.4.已知双曲线中心为原点,焦点在x 轴上,离心率53e =,且与直线8160x +-=相切.求双曲线方程.习题B1.已知双曲线C :()2222211a x a y a a -=>+(),设该双曲线上支的顶点为A ,且上支与直线y x =-交于P 点,一条以A 为焦点,()0,M m 为顶点,开口方向向下的抛物线通过P 点,且PM 的斜率为k 满足1143k ≤≤.求实数a 的取值范围. 2.已知双曲线222210,0,x y a b a a b-=>>≡()b 上有一定点A ,点P ,Q 为满足PA QA ⊥的异于点A 的任意两点.求证:PQ 过定点.第二十九章 双曲线的性质及应用 习题A1.延长1F P 与2QF 的延长线交于R 点.由Q 在双曲线上,且1F ,2F 为其焦点,则22122F R QR QF QF QF a =-=-=,即212OP F R a ==.反之,可证以原点为圆心,a 为半径的圆(除点(),0a -,(),0a )上的点满足条件.2.曲线化为标准方程为221169x y +=与221327x y -=.由直线与两曲线相切的充要条件,有222222169,327A B c A B c⎧+=⎪⎨-=⎪⎩求得5A B C B =⎧⎨=±⎩或5A B C B =-⎧⎨=±⎩ 从而所求公切线方程为50x y +±=与50x y -±=.3.过P ,Q 点分别作两渐近线的垂线PA ,PB ,QC ,QD ,显然PBQ QCQ ''△∽△,则QQ QCPQ PB'='.同理PP PA QP QD '='.由于双曲线上任一点到两渐近线距离之积为定值,即PA PB QC QD ⋅=⋅,故QC PAPB QD=,即QQ PP PQ QP ''='',亦即QQ PP QQ PQ PP QP ''=''''++,故PP QQ ''=. 4.设双曲线方程为()222210,0x y a b a b-=>>因为2413b e a =-=,可设29a λ=,()2160b λλ=>,所以双曲线方程为221916x y λλ-=.因直线827160x y +-=与其相切,由性质5,有2649281616λλ⋅-⋅=,得2λ=,故所求双曲线方程为2211832x y -=.习题B1.在方程可化为()22221/1x y a a -=-.由1a >知2201a a >-.又()0,1A ,于是以A 为焦点,()0,M m 为顶点开口向下的抛物线方程为()()241x m y m =---.联立y x =-与()22221a x a y a -+=得(),P a a -. 又P 在抛物线上,有()()241a m a m =---.(*)而MP m ak a-=,即有MP m ak a =+并代入()*式,得()24410MP MP ak a k a +--=.因1143MP k ≤≤,且40a >,则关于MP k 的二次方程的判别式()241440a a a ∆=-+⋅⋅>⎡⎤⎣⎦成立.令()()2441f k ak a k a =+--,而此抛物线的对称轴方程为()411242a a k a a --=-=⋅,由1a >,则102aa-<.联立40a >与11043f f ⎛⎫⎛⎫⋅ ⎪ ⎪⎝⎭⎝⎭≤,即114441401693a a a a a a -⎛⎫⎛⎫⋅+--⋅⋅+- ⎪ ⎪⎝⎭⎝⎭≤,即17410493a a ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭≤,故1247a ≤≤为所求. 2.设()sec ,tan A a b θθ,()11sec ,tan P a b αα,()22sec ,tan Q a b αα,则PQl :()()()()112112sec tan tan tan sec sec x a b b y b a a αααααα--=--,即PQl :121212cossincos0222b x a y ab αααααα-++--⋅=.又11cos2sin 2AP b k a αθαθ-=+,22cos2sin 2AQ b k a αθαθ-=+,因此221211cos cos sin 222AP AQk k b a αθαθαθ--+⋅=-⇔⋅+⋅2221212121212sin0cos )cos cos cos )0cos 222222b a b αθααααααααααθθ++--+-⎡⎤⎡⎤=⇔-++-+=⇔⋅⋅⎢⎥⎢⎥⎣⎦⎣⎦()()()()222212122222sin sin cos 022cos cos a a b b a b a ab b a a b θααααθθ++++-⋅-=--2.由此式,知直线PQ 恒过定点22222222sec ,tan a b a b a b b a a b θθ⎛⎫++⋅⋅ ⎪--⎝⎭.。
今天我们研究等轴双曲线的性质.实轴和虚轴等长的双曲线叫做等轴双曲线。
等轴双曲线的主要性质有:两条渐近线互相垂直,渐近线方程是=±y x ,离心率2=e 。
先看例题:例:求过点(2,-5)且对称轴都在坐标轴上的等轴双曲线方程。
解:设等轴双曲线方程是22(0)-=≠x y k k ,将点(2,—5)代入 得222(5),21--==k k所求等轴双曲线方程是2221-=y x 。
说明:确定等轴双曲线的标准方程只需一个已知条件.整理:定义:实轴与虚轴长度相等的双曲线称为等轴双曲线。
等轴双曲线22(0)-=≠x y k k 的主要性质有:实轴和虚轴等长的双曲线叫做等轴双曲线渐近线方程是=±y x ,两条渐近线互相垂直, 离心率2=e 。
再看一个例题,加深印象例:如果双曲线的两条渐近线互相垂直,则双曲线的离心率是()。
解:不妨设双曲线22221(0,0)-=>>x y a b a b ,双曲线是等轴双曲线,离心率=e练习:1. 设CD是等轴双曲线的平行于实轴的任一弦,求证它的两端点与实轴任一顶点的连线成直角。
2。
以点(—4,0)、(4,0)为焦点的等轴双曲线的标准方程是()。
3.已知等轴双曲线过点4)-,则双曲线的实轴长是()。
答案:1.证明:如图设等轴双曲线方程为()2221-=,直线CD:y=m。
x y a代入(1):x=())C mD m.,取双曲线右顶点(),0B a。
那么:()()2222,,,BC x m a m BD x m a m =-+-=+-()22220,BC BD a a m m BC BD ⎡⎤⋅=-++=∴⊥⎣⎦。
即∠CBD=90°。
同理可证:∠CAD=90°。
、3.解:设等轴双曲线方程是22(0)-=≠x y k k ,将点(23,4)-代入 得22(23)(4),4--==-k k所求等轴双曲线方程是224-=yx , 变形为22144-=y x ,2,24==a a ,实轴长是4。
双曲线的概念及性质一,定义:平面内与两定点的距离的差的绝对值等于常数2a (小于|F1F2| )的轨迹 问题:(1)平面内与两定点的距离的差的绝对值等于常数(等于|F1F2| )的轨迹是什么? (2)平面内与两定点的距离的差的绝对值等于常数(大于|F1F2| )的轨迹是什么?(3)若a=0,动点M 的是轨迹什么?①当||MF1|-|MF2||= 2a<|F1F2|时,M 点轨迹是双曲线(其中当|MF1|-|MF2|= 2a 时,M 点轨迹是双曲线中靠近F2的一支; 当|MF2|-|MF1|= 2a 时,M 点轨迹是双曲线中靠近F1的一支);②当||MF1|-|MF2||= 2a=|F1F2|时,M 点轨迹是在直线F1F2上且以F1和F2为端点向外的两条射线。
③当||MF1|-|MF2||= 2a >|F1F2|时,M 点的轨迹不存在。
④当||MF1|-|MF2||= 2a=0时,M 点的轨迹是线段F1F2的垂直平分线 。
二,双曲线的标准方程 首先建立起适当的直角坐标系,以1,2F F 所在的直线为x 轴,1,F F 的垂直平分线为y 轴,根据定义可以得到:122a F F =≥ 化简此方程得()22222222()c a x a y a c a --=- ,令222c a b -=得:22221x y a b -=,其中1F (),0c -为左焦点,2F (),0c 为右焦点思考:若焦点落在Y 轴上的时候,其标准方程又是怎样的? 三,双曲线的性质以双曲线标准方程12222=-by a x ,)0(222>>+=a c b a c 为例进行说明.1.范围: 观察双曲线的草图,可以直观看出曲线在坐标系中的范围:双曲线在两条直线a x ±=的外侧.由标准方程可得22a x ≥,当a x ≥时,y 才有实数值;对于y 的任何值,x 都有实数值这说明从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线 2.对称性:双曲线不封闭,但仍具三个对称性,称其对称中心为双曲线的中心3.顶点:双曲线和对称轴的交点叫做双曲线的顶点,令0=y 得a x ±=,因此双曲线和x轴有两个交点)0,()0,(2a A a A -,它们是双曲线12222=-by a x 的顶点,对称轴上位于两顶点间的线段21A A 叫做双曲线12222=-by a x 的实轴长,它的长是2a ,a 叫半实轴长但y 轴上的两个特殊点()b B b B -,0),,0(21,在双曲线中也有非常重要的作用 把线段21B B 叫做双曲线的虚轴,它的长是2b ,b 叫做虚半轴长实轴:21A A 长为2a ,a 叫做半实轴长. 虚轴:21B B 长为2b ,b 叫做虚半轴长.4. 渐近线:经过2121B B A A 、、、作x 轴、y 轴的平行线b y a x ±=±=,,围成一个矩形,其对角线所在的直线方程为x aby ±=. (1) 定义:如果有一条直线使得当曲线上的一点M 限远离原点时,点M 条直线叫这一曲线的渐近线;(2) 直线x a by ±=与双曲线12222=-by a x 否相交?(3) 求法:在方程12222=-by ax 中,令右边为零,则0))((=+-b ya xb y a x 即x ab y ±=; 若方程为12222=-b x a y ,则渐近线方程为x ba y ±=5.离心率:ce a= ()0c a >>,所以1e > 2.问题拓展 (一)等轴双曲线1、定义:若a=b 即实轴和虚轴等长,这样的双曲线叫做等轴双曲线2、方程:222a y x =-或222a x y =-.3、等轴双曲线的性质:(1)渐近线方程为:x y ±= ;(2)渐近线互相垂直..3)等轴双曲线方程可以设为:)0(22≠=-λλy x ,当0>λ时交点在x 轴,当0<λ时焦点在y 轴上. (二)共轭双曲线1、定义:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.2、方程:(1)12222=-b y a x 的共轭双曲线为12222=-a x b y ;12222=-b x a y 的共轭双曲线为12222-=-bx a y ; (2)互为共轭的一对双曲线方程合起来写成为12222±=-b y a x 或12222±=-bx a y ;3、性质:有一对共同的渐近线;有相同的焦距,四焦点共圆;4、注意:(1)共渐近线的两双曲线不一定是共轭双曲线,如121822=-y x 和1922=-y x ; (2)12222=-b y a x 与12222=-bx a y (a ≠b )不共渐近线,有相同的焦距,四焦点共圆;(三)共渐近线的双曲线系方程问题 (1)191622=-y x 与221916y x -=;(2) 191622=-y x 与1183222=-y x 的区别? 问题: 共用同一对渐近线x aby ±=的双曲线的方程具有什么样的特征? 双曲线2222x y a b λ-=(0λ≠)与双曲线22221x y a b-=有共同的渐近线.当0>λ时交点在x 轴,当0<λ时焦点在y 轴上.例:求与双曲线191622=-y x 共渐近线且过)3,33(-A 的双曲线的方程. 三、课堂练习:1 .双曲线2214x y k-=的离心率e ∈(1, 2),则k 的取值范围是 A .(0, 6) B . (3, 12) C . (1, 3) D . (0, 12)2 .下列各对曲线中,即有相同的离心率又有相同渐近线的是(A)x 23-y 2=1和y 29-x 23=1 (B)x 23-y 2=1和y 2-x 23=1(C)y 2-x 23=1和x 2-y 23=1 (D)x 23-y 2=1和92x -32y =13 .方程11122=-++ky k x 表示双曲线,则k 的取值范围是( ) A .11<<-kB .0>kC .0≥kD .1>k 或1-<k4 .以x y 3±=为渐近线,一个焦点是F (0,2)的双曲线方程为 ( )(A )1322=-y x (B )1322=-y x (C )13222-=-y x (D )13222=-y x 5 .双曲线kx 2+4y 2=4k 的离心率小于2,则k 的取值范围是 ( )(A )(-∞,0) (B )(-3,0) (C )(-12,0) (D )(-12,1)6 .已知平面内有一固定线段AB,其长度为4,动点P 满足|PA|-|PB|=3,则|PA|的最小值为 (A)1.5 (B)3 (C)0.5 (D)3.57. 设C 1:2222b y a x -=1,C 2: 2222a x b y -=1,C 3: 2222ay b x -=1,a 2≠b 2,则 ( )(A)C 1和C 2有公共焦点 (B) C 1和C 3有公共焦点 (C)C 3和C 2有公共渐近线 (D) C 1和C 3有公共渐近线8. 双曲线17922=-y x 的右焦点到右准线的距离为____________ 9. 与椭圆1251622=+y x 有相同的焦点,且两准线间的距离为310的双曲线方程为___ 10. 直线1+=x y 与双曲线13222=-y x 相交于B A ,两点,则AB =___________ 11. 求满足下列条件的双曲线的标准方程 (1)、焦点分别为(0,-5)、(0,5),离心率是23; (2)以坐标轴为两条对称轴,实轴长是虚轴长的一半,且过点(3,2)。
【知识梳理】 1、双曲线的定义(1)平面内,到两定点1F 、2F 的距离之差的绝对值等于定长()1222,0a F F a a >>的点的轨迹称为双曲线,其中两定点1F 、2F 称为双曲线的焦点,定长2a 称为双曲线的实轴长,线段12F F 的长称为双曲线的焦距.此定义为双曲线的第一定义.【注】12122PF PF a F F -==,此时P 点轨迹为两条射线.(2)平面内,到定点的距离与到定直线的距离比为定值()1e e >的点的轨迹称为双曲线,其中定点称为双曲线的焦点,定直线称为双曲线的准线,定值e 称为双曲线的离心率.此定义为双曲线的第二定义. 2、双曲线的简单性质3、渐近线双曲线()22221,0x y a b a b -=>的渐近线为22220x y a b -=,即0x y a b ±=,或by x a=±.【注】①与双曲线22221x y a b -=具有相同渐近线的双曲线方程可以设为()22220x y a b λλ-=≠;②渐近线为by x a=±的双曲线方程可以设为()22220x y a b λλ-=≠;③共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.共轭双曲线具有相同的渐近线.④等轴双曲线:实轴与虚轴相等的双曲线称为等轴双曲线. 4、焦半径双曲线上任意一点P 到双曲线焦点F 的距离称为焦半径.若00(,)P x y 为双曲线()22221,0x y a b a b -=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左、右焦点,则10||PF ex a =+,20||PF ex a =-,其中ce a=. 5、通径过双曲线()22221,0x y a b a b -=>焦点F 作垂直于虚轴的直线,交双曲线于A 、B 两点,称线段AB 为双曲线的通径,且22b AB a=.6、焦点三角形P 为双曲线()22221,0x y a b a b-=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左右焦点,称12PF F ∆为双曲线的焦点三角形.若12F PF θ∠=,则焦点三角形的面积为:122cot 2F PF S b θ∆=.7、双曲线的焦点到渐近线的距离为b (虚半轴长).8、双曲线()22221,0x y a b a b-=>的焦点三角形的内心的轨迹为()0x a y =±≠9、直线与双曲线的位置关系直线:0l Ax By C ++=,双曲线Γ:()22221,0x y a b a b-=>,则l 与Γ相交22222a A b B C ⇔->;l 与Γ相切22222a A b B C ⇔-=;l 与Γ相离22222a A b B C ⇔-<.10、平行于(不重合)渐近线的直线与双曲线只有一个交点.【注】过平面内一定点作直线与双曲线只有一个交点,这样的直线可以为4条、3条、2条,或者0条. 11、焦点三角形角平分线的性质点(,)P x y 是双曲线()22221,0x y a b a b-=>上的动点,12,F F 是双曲线的焦点,M 是12F PF ∠的角平分线上一点,且20F M MP ⋅=,则OM a =,即动点M 的点的轨迹为()222x y a x a +=≠±.【推广2】设直线()110l y k x m m =+≠:交双曲线()22221,0x y a b a b -=>于C D 、两点,交直线22l y k x =:于点E .若E为CD 的中点,则2122b k k a=.13、中点弦的斜率直线l 过()()000,0M x y y ≠与双曲线()22221,0x y a b a b -=>交于,A B 两点,且AM BM =,则直线l 的斜率2020AB b x k a y =.14、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作实轴的平行线,交渐近线于,M N 两点,则PM PN =定值2a .15、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作渐近线的平行线,交渐近线于,M N 两点,则OMPNS=定值2ab.【典型例题】例1、双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_________.【变式1】若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是_________.【变式2】双曲线22148x y -=的两条渐近线的夹角为_________.【变式3】已知椭圆2222135x y m n +=和双曲线2222123x y m n-=有公共的焦点,那么双曲线的渐近线方程为_________.【变式4】若椭圆221(0)x y m n m n +=>>和双曲线221(0,0)x y a b a b-=>>有相同焦点1F 、2F ,P 为两曲线的一个交点,则12PF PF ⋅=_________.【变式5】如果函数2y x =-的图像与曲线22:4C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围是( )A .[1,1)-B . {}1,0-C . (,1][0,1)-∞-D . [1,0](1,)-+∞【变式6】直线2=x 与双曲线14:22=-y x C 的渐近线交于B A ,两点,设P 为双曲线C 上的任意一点,若OB b OA a OP +=(O R b a ,,∈为坐标原点),则下列不等式恒成立的是( )A .222a b +≥B .2122≥+b a C .222a b +≤ D .2212a b +≤【变式7】设连接双曲线22221x y a b -=与22221y x b a-=的四个顶点为四边形面积为1S ,连接其四个焦点的四边形面积为2S ,则12S S 的最大值为_________.例2、设12F F 、分别是双曲线2219y x -=的左右焦点,若点P 在双曲线上,且12=0PF PF ,则12PF PF +=_________.【变式1】过双曲线221109x y -=的左焦点1F 的弦6AB =,则2ABF ∆(2F 为右焦点)的周长为_________.【变式2】双曲线2211620x y -=的左、右焦点1F 、2F ,P 是双曲线上的动点,且19PF =,则2PF =_________.例3、设12F F 、是双曲线2214x y -=的两个焦点,点P 是双曲线的任意一点,且123F PF π∠=,求12PF F ∆的面积.例4、已知直线1y kx =+与双曲线2231x y -=有A B 、两个不同的交点,如果以AB 为直径的圆恰好过原点O ,试求k 的值.例5、已知直线1y kx =+与双曲线2231x y -=相交于A B 、两点,那么是否存在实数k 使得A B 、两点关于直线20x y -=对称?若存在,求出k 的值;若不存在,说明理由.例6、已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,求此直线的斜率的取值范围为_________.【变式1】已知曲线C :21(4)x y y x -=≤; (1)画出曲线C 的图像;(2)若直线l :1y kx =-与曲线C 有两个公共点,求k 的取值范围; (3)若()0P p ,()0p >,Q 为曲线C 上的点,求PQ 的最小值.【变式2】直线l :10ax y --=与曲线C :2221x y -=. (1)若直线l 与曲线C 有且仅有一个交点,求实数a 的取值范围;(2)若直线l 被曲线C 截得的弦长PQ =,求实数a 的取值范围;(3)是否存在实数a ,使得以PQ 为直径的圆经过原点,若存在,求出a 的值;若不存在,请说明理由.例7、已知F 是双曲线221412x y -=的左焦点,(14)A ,,P 是双曲线右支上的动点,求PF PA +的最小值.【变式】P 是双曲线221916x y -=的右支上一点,,M N 分别是圆()2254x y ++=和()2251x y -+=上的点,则PM PN -的最大值等于_________.例8、已知动圆P 与两个定圆()2251x y -+=和()22549x y ++=都外切,求动圆圆心P 的轨迹方程.【变式1】ABC ∆的顶点为()50A -,,()5,0B ,ABC ∆的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是_________.【变式2】已知双曲线的中心在原点,且一个焦点为)F,直线1y x =-与其相交于M N 、两点,线段MN的中点的横坐标为23-,求此双曲线的方程.例9、已知双曲线221916x y -=,若点M 为双曲线上任一点,则它到两渐近线距离的乘积为_________.例10、焦点在x 轴上的双曲线C 的两条渐近线经过原点,且两条渐近线均与以点P 为圆心,以1为半径的圆相切,又知双曲线C 的一个焦点与P 关于直线y x =对称(1)求双曲线的方程;(2)设直线1y mx =+与双曲线C 的左支交于,A B 两点,另一直线l 经过点(2,0)M -及AB 的中点,求直线l 在轴上的截距n 的取值范围.【变式】设直线l 的方程为1y kx =-,等轴双曲线C :222x y a -=右焦点为).(1)求双曲线的方程;(2)设直线l 与双曲线的右支交于不同的两点A B 、,记AB 中点为M ,求实数k 的取值范围,并用k 表示点M 的坐标;(3)设点()1,0Q -,求直线QM 在y 轴上的截距的取值范围.例11、已知双曲线C 方程为:2212y x -=. (1)已知直线0x y m -+=与双曲线C 交于不同的两点A B 、,且线段AB 的中点在圆225x y +=上,求m 的值;(2)设直线l 是圆O :222x y +=上动点00(,)P x y (000x y ≠)处的切线,l 与双曲线C 交于不同的两点A B 、,证明AOB ∠的大小为定值.例12、已知中心在原点,顶点12A A 、在x 轴上,其渐近线方程是y x =,双曲线过点()6,6P .(1)求双曲线的方程;(2)动直线l 经过12A PA ∆的重心G ,与双曲线交于不同的两点M N 、,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.例13、已知点1F 、2F 为双曲线C :()01222>=-b by x 的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且︒=∠3021F MF .圆O 的方程是222b y x =+. (1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求21PP PP ⋅的值;(3)过圆O 上任意一点()00y ,x Q 作圆O 的切线l 交双曲线C 于A 、B 两点,AB 中点为M ,例14、已知双曲线C :()222210,0x y a b a b-=>>的一个焦点是()22,0F ,且a b 3=.(1)求双曲线C 的方程;(2)设经过焦点2F 的直线的一个法向量为)1,(m ,当直线l 与双曲线C 的右支相交于B A ,不同的两点时,求实数m 的取值范围;并证明AB 中点M 在曲线3)1(322=--y x 上.(3)设(2)中直线l 与双曲线C 的右支相交于B A ,两点,问是否存在实数m ,使得AOB ∠为锐角?若存在,请求出m 的范围;若不存在,请说明理由.。
圆与双曲线的一组相关性质作者:田富德来源:《数学教学通讯(教师阅读)》2008年第10期摘要:本文将《圆与椭圆的一组相关性质》一文中介绍的一些性质进行类比,得到了关于圆x2+y2=a2与双曲线-=1的一组相关性质.关键词:圆;双曲线定理1 如图1所示,点A,B分别为双曲线-=1(a>0,b>0)的左顶点和右顶点,点F1,F2分别为双曲线-=1的左焦点和右焦点,过双曲线-=1上异于点A,B的任一点P,引双曲线-=1的切线,交圆x2+y2=a2于点M,N(两交点中偏左的一点记为M,偏右的一点记为N),直线AM,BN的交点记为Q,则(1)MF1∥NF2;(2)kAM·kBN为定值;(3)PQ与x轴垂直.[F1][F2][B][O][M][A][N][Q][P][x][y]图1证明设P(asecθ,btanθ),M(x1,y1),N(x2,y2),其中x1由点P易得切线MN:x-y=1,又由⇒(a2sin2θ+b2)x2-2ab2xcosθ+a2b2cos2θ-a4sin2θ=0(因b2=c2-a2)⇒(c2-a2cos2θ)x2-2a(c2-a2)xcosθ+a2(c2cos2θ-a2)=0⇒[(c-acosθ)x-(accosθ-a2)][(c+acosθ)x-(accosθ+a2)]=0(2)由点A,M得kAM=,由点B,N得kBN=.故kAM·kBN=×==.(3)由(2)得直线MA:y=(x+a),直线NB:y=(x-a),⇒PQ与x轴垂直.综上,定理1得证.定理2 如图2所示,点A,B分别为双曲线-=1(a>0,b>0)的左顶点和右顶点,点F,F 分别为双曲线-=1的左焦点和右焦点,过圆x2+y2=a2上异于点A,B的任一点P引双曲线-=1的两切线PM,PN,切点分别为M,N(两切点中偏左的一点记为M,偏右的一点记为N),直线AM,BN的交点记为Q,则(1)F1M∥OP∥F2N;(2)kAM·kBN为定值;(3)PQ与x轴垂直.[F1][F2][B][A][M][O][P][Q][y][x][N]证明设P(acosθ,asinθ),M(x1,y1), N(x2,y2),其中x1由点P易得切线方程为x-y=1,又由⇒(a2sin2θ-b2cos2θ)x2+2ab2cosθx-a2b2-a4sin2θ=0(因b2=c2-a2)⇒(a2-c2cos2θ)x2+2a(c2-a2)cosθx+a2(a2cos2θ-c2)=0⇒[(a-ccosθ)x-(a2cosθ-ac)][(a+ccosθ)x-(a2cosθ+ac)]=0⇒x1=,x2=(易得x1⇒y1=,y2=(1)由点F1,F2,M,N,O,P易得⇒=(0,csinθ)⇒PQ与x轴垂直.综上,定理2得证.定理3 如图3所示,点A,B分别为双曲线-=1(a>0,b>0)的左顶点和右顶点,点F1,F2分别为双曲线-=1的左焦点和右焦点,过点F1作直线MN交圆x2+y2=a2于点M,N(直线MN不与x轴重合),以点M,N为切点分别作圆x2+y2=a2的切线,记两切线的交点为T,直线AM,BN的交点为P,直线AN,BM的交点为Q,则点T,P,Q均在双曲线-=1的左准线x=-上.(将点F1替换为点F2时有类似结论,详细过程从略)[F1][F2][O][B][Q][A][M][N][T][P][x][y]证明设直线MN:x=my-c,M(x1,y1),N(x2,y2).由x=my-c,故易得以点M(x1,y1)为切点的圆x2+y2=a2的切线方程为x1x+y1y=a2,以点N(x2,y2)为切点的圆x2+y2=a2的切线方程为x2x+y2y=a2.由x1x+y1y=a2,x2x+y2y=a2⇒(x1y2-x2y1)x=a2(y2-y1)(因x1=my1-c,x2=my2-c)⇒[(my1-c)y2-(my2-c)y1]x=a2(y2-y1)⇒c(y1-y2)x=a2(y2-y1)⇒x=-⇒点T的横坐标为-⇒点T在直线x=-上.由点A,M得直线AM:y=(x+a),由点B,N得直线BN:y=(x-a).所以点P的横坐标为-,即P在直线x=-上.同理,可证点Q也在直线x=-上 .综上可知,点T,P,Q均在双曲线-=1的左准线x=-上,从而定理3得证.。
双曲线的简单几何性质【知识点1】双曲线22a x -22b y =1的简单几何性质(1)范围:|x |≥a,y∈R.(2)对称性:双曲线的对称性与椭圆完全相同,关于x 轴、y 轴及原点中心对称.(3)顶点:两个顶点:A 1(-a,0),A 2(a,0),两顶点间的线段为实轴长为2a ,虚轴长为2b ,且(4)=1中的1(5)(6)e =2(7)注意:且λ(2)与椭圆2a +2b =1(a >b >0)共焦点的曲线系方程可表示为λ-2a -λ-2b =1(λ<a 2,其中b 2-λ>0时为椭圆,b 2<λ<a 2时为双曲线)(3)双曲线的第二定义:平面内到定点F(c,0)的距离和到定直线l :x =c a 2的距离之比等于常数e =a c(c >a >0)的点的轨迹是双曲线,定点是双曲线的焦点,定直线是双曲线的准线,焦准距(焦参数)p =c b 2,与椭圆相同.1、写出双曲线方程1254922-=-y x 的实轴长、虚轴的长,顶点坐标,离心率和渐近线方程2、已知双曲线的渐近线方程为x y 43±=,求双曲线的离心率3、求以032=±y x 为渐近线,且过点p (1,2)的双曲线标准方程4、已知双曲线的中心在原点,焦点在y 轴上,焦距为16,离心率为43,求双曲线的标准方程。
5、求与双曲线221169x y -=共渐近线,且经过()23,3A -点的双曲线的标准方及离心率.【知识点2】弦长与中点弦问题(1).直线和圆锥曲线相交时的一般弦长问题:一般地,若斜率为k 的直线被圆锥曲线所截得的弦为AB ,A 、B 两点分别为A(x 1,y 1)、B(x 2,y 2),则弦长]4))[(1(1212212122x x x x k x x k AB -++=-⋅+=]4)[()11(11212212122y y y y ky y k -+⋅+=-⋅+=,这里体现了解析几何“设而不求”的(2)设A(x 1;对于y 2【变1变4】7、过双曲线2212y x -=的右焦点F 作直线l 交双曲线于A,B 两点,若|AB|=4,这样的直线有几条?【题型2】双曲线离心率的求法一、根据离心率的范围,估算e :即利用圆锥的离心率的范围来解题,有时可用椭圆的离心率e ∈()01,,双曲线的离心率e >1,抛物线的离心率e =1来解决。
高中数学教程双曲线的几何性质(1)目标:1.能用对比的方法分析双曲线的范围、对称性、顶点等几何性质,并熟记之;2.掌握双曲线的渐近线的概念和证明; 3.明确双曲线方程中,,a b c 的几何意义;4.能根据双曲线的几何性质,确定双曲线的方程并解决简单问题。
重、难点:双曲线的范围、对称性、顶点和渐近线。
(一)复习:1.双曲线的定义和标准方程; 2.椭圆的性质;(二)新课讲解:以双曲线标准方程12222=-by a x 为例进行说明。
1.范围:观察双曲线的草图,可以直观看出曲线在坐标系中的范围:双曲线在两条直线a x ±= 的外侧。
注意:从双曲线的方程如何验证?从标准方程12222=-b y a x 可知22221b y a x ≥-,由此双曲线上点的坐标都适合不等式122≥ax即22a x ≥,a x ≥即双曲线在两条直线a x ±=的外侧。
2.对称性:双曲线12222=-by a x 关于每个坐标轴和原点都是对称的,这时,坐标轴是双曲线的对称轴,原点是双曲线12222=-by a x 的对称中心,双曲线的对称中心叫做双曲线的中心。
3.顶点:双曲线和对称轴的交点叫做双曲线的顶点。
在双曲线12222=-by a x 的方程里,对称轴是,x y 轴,所以令0=y 得a x ±=,因此双曲线和x 轴有两个交点)0,()0,(2a A a A -,他们是双曲线12222=-by a x 的顶点。
令0=x ,没有实根,因此双曲线和y 轴没有交点。
1)注意:双曲线的顶点只有两个,这是与椭圆不同的(椭圆有四个顶点), 双曲线的顶点分别是实轴的两个端点。
2)实轴:线段2A A 叫做双曲线的实轴,它的长等于2,a a 叫做双曲线的实半轴长。
虚轴:线段2B B 叫做双曲线的虚轴,它的长等于2,b b 叫做双曲线的虚半轴长。
在作图时,我们常常把虚轴的两个端点画上(为要确定渐进线),但要注意他们并非是双曲线的顶点。
双曲线与方程【知识梳理】 1、双曲线的定义(1)平面内,到两定点1F 、2F 的距离之差的绝对值等于定长()1222,0a F F a a >>的点的轨迹称为双曲线,其中两定点1F 、2F 称为双曲线的焦点,定长2a 称为双曲线的实轴长,线段12F F 的长称为双曲线的焦距.此定义为双曲线的第一定义.【注】12122PF PF a F F -==,此时P 点轨迹为两条射线.(2)平面内,到定点的距离与到定直线的距离比为定值()1e e >的点的轨迹称为双曲线,其中定点称为双曲线的焦点,定直线称为双曲线的准线,定值e 称为双曲线的离心率.此定义为双曲线的第二定义.3、渐近线双曲线()22221,0x y a b a b -=>的渐近线为22220x y a b -=,即0x y a b ±=,或by x a=±.【注】①与双曲线22221x y a b -=具有相同渐近线的双曲线方程可以设为()22220x y a bλλ-=≠;②渐近线为by x a=±的双曲线方程可以设为()22220x y a b λλ-=≠;③共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.共轭双曲线具有相同的渐近线.④等轴双曲线:实轴与虚轴相等的双曲线称为等轴双曲线. 4、焦半径双曲线上任意一点P 到双曲线焦点F 的距离称为焦半径.若00(,)P x y 为双曲线()22221,0x y a b a b -=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左、右焦点,则10||PF ex a =+,20||PF ex a =-,其中ce a=. 5、通径过双曲线()22221,0x y a b a b-=>焦点F 作垂直于虚轴的直线,交双曲线于A 、B 两点,称线段AB 为双曲线的通径,且22b AB a=.6、焦点三角形P 为双曲线()22221,0x y a b a b-=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左右焦点,称12PF F ∆为双曲线的焦点三角形.若12F PF θ∠=,则焦点三角形的面积为:122cot 2F PF S b θ∆=.7、双曲线的焦点到渐近线的距离为b (虚半轴长).8、双曲线()22221,0x y a b a b-=>的焦点三角形的内心的轨迹为()0x a y =±≠9、直线与双曲线的位置关系直线:0l Ax By C ++=,双曲线Γ:()22221,0x y a b a b-=>,则l 与Γ相交22222a A b B C ⇔->; l 与Γ相切22222a A b B C ⇔-=; l 与Γ相离22222a A b B C ⇔-<.10、平行于(不重合)渐近线的直线与双曲线只有一个交点.【注】过平面内一定点作直线与双曲线只有一个交点,这样的直线可以为4条、3条、2条,或者0条. 11、焦点三角形角平分线的性质点(,)P x y 是双曲线()22221,0x y a b a b-=>上的动点,12,F F 是双曲线的焦点,M 是12F PF ∠的角平分线上一点,且20F M MP ⋅=,则OM a =,即动点M 的点的轨迹为()222x y a x a +=≠±.【推广2】设直线()110l y k x m m =+≠:交双曲线()22221,0x y a b a b -=>于C D 、两点,交直线22l y k x =:于点E .若E为CD 的中点,则2122b k k a=.13、中点弦的斜率直线l 过()()000,0M x y y ≠与双曲线()22221,0x y a b a b -=>交于,A B 两点,且AM BM =,则直线l 的斜率2020AB b x k a y =.14、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作实轴的平行线,交渐近线于,M N 两点,则PM PN =定值2a .15、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作渐近线的平行线,交渐近线于,M N 两点,则OMPNS =定值2ab .【典型例题】例1、双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_________.【变式1】若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是_________.【变式2】双曲线22148x y -=的两条渐近线的夹角为_________.【变式3】已知椭圆2222135x y m n +=和双曲线2222123x y m n-=有公共的焦点,那么双曲线的渐近线方程为_________.【变式4】若椭圆221(0)x y m n m n +=>>和双曲线221(0,0)x y a b a b-=>>有相同焦点1F 、2F ,P 为两曲线的一个交点,则12PF PF ⋅=_________.【变式5】如果函数2y x =-的图像与曲线22:4C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围是( )A .[1,1)-B . {}1,0-C . (,1][0,1)-∞-D . [1,0](1,)-+∞【变式6】直线2=x 与双曲线14:22=-y x C 的渐近线交于B A ,两点,设P 为双曲线C 上的任意一点,若b a +=(O R b a ,,∈为坐标原点),则下列不等式恒成立的是( )A .222a b +≥B .2122≥+b a C .222a b +≤ D .2212a b +≤【变式7】设连接双曲线22221x y a b -=与22221y x b a-=的四个顶点为四边形面积为1S ,连接其四个焦点的四边形面积为2S ,则12S S 的最大值为_________.例2、设12F F 、分别是双曲线2219y x -=的左右焦点,若点P 在双曲线上,且12=0PF PF ,则12PF PF +=_________.【变式1】过双曲线221109x y -=的左焦点1F 的弦6AB =,则2ABF ∆(2F 为右焦点)的周长为_________.【变式2】双曲线2211620x y -=的左、右焦点1F 、2F ,P 是双曲线上的动点,且19PF =,则2PF =_________.例3、设12F F 、是双曲线2214x y -=的两个焦点,点P 是双曲线的任意一点,且123F PF π∠=,求12PF F ∆的面积.例4、已知直线1y kx =+与双曲线2231x y -=有A B 、两个不同的交点,如果以AB 为直径的圆恰好过原点O ,试求k 的值.例5、已知直线1y kx =+与双曲线2231x y -=相交于A B 、两点,那么是否存在实数k 使得A B 、两点关于直线20x y -=对称?若存在,求出k 的值;若不存在,说明理由.例6、已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,求此直线的斜率的取值范围为_________.【变式1】已知曲线C :21(4)x y y x -=≤; (1)画出曲线C 的图像;(2)若直线l :1y kx =-与曲线C 有两个公共点,求k 的取值范围; (3)若()0P p ,()0p >,Q 为曲线C 上的点,求PQ 的最小值.【变式2】直线l :10ax y --=与曲线C :2221x y -=. (1)若直线l 与曲线C 有且仅有一个交点,求实数a 的取值范围;(2)若直线l 被曲线C 截得的弦长PQ =,求实数a 的取值范围;(3)是否存在实数a ,使得以PQ 为直径的圆经过原点,若存在,求出a 的值;若不存在,请说明理由.例7、已知F 是双曲线221412x y -=的左焦点,(14)A ,,P 是双曲线右支上的动点,求PF PA +的最小值.【变式】P 是双曲线221916x y -=的右支上一点,,M N 分别是圆()2254x y ++=和()2251x y -+=上的点,则PM PN -的最大值等于_________.例8、已知动圆P 与两个定圆()2251x y -+=和()22549x y ++=都外切,求动圆圆心P 的轨迹方程.【变式1】ABC ∆的顶点为()50A -,,()5,0B ,ABC ∆的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是_________.【变式2】已知双曲线的中心在原点,且一个焦点为)F,直线1y x =-与其相交于M N 、两点,线段MN的中点的横坐标为23-,求此双曲线的方程.例9、已知双曲线221916x y -=,若点M 为双曲线上任一点,则它到两渐近线距离的乘积为_________.例10、焦点在x 轴上的双曲线C 的两条渐近线经过原点,且两条渐近线均与以点P 为圆心,以1为半径的圆相切,又知双曲线C 的一个焦点与P 关于直线y x =对称 (1)求双曲线的方程;(2)设直线1y mx =+与双曲线C 的左支交于,A B 两点,另一直线l 经过点(2,0)M -及AB 的中点,求直线l 在轴上的截距n 的取值范围.【变式】设直线l 的方程为1y kx =-,等轴双曲线C :222x y a -=右焦点为).(1)求双曲线的方程;(2)设直线l 与双曲线的右支交于不同的两点A B 、,记AB 中点为M ,求实数k 的取值范围,并用k 表示点M 的坐标;(3)设点()1,0Q -,求直线QM 在y 轴上的截距的取值范围.例11、已知双曲线C 方程为:2212y x -=. (1)已知直线0x y m -+=与双曲线C 交于不同的两点A B 、,且线段AB 的中点在圆225x y +=上,求m 的值; (2)设直线l 是圆O :222x y +=上动点00(,)P x y (000x y ≠)处的切线,l 与双曲线C 交于不同的两点A B 、,证明AOB ∠的大小为定值.例12、已知中心在原点,顶点12A A 、在x 轴上,其渐近线方程是3y x =±,双曲线过点()6,6P . (1)求双曲线的方程;(2)动直线l 经过12A PA ∆的重心G ,与双曲线交于不同的两点M N 、,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.例13、已知点1F 、2F 为双曲线C :()01222>=-b by x 的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且︒=∠3021F MF .圆O 的方程是222b y x =+. (1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求21PP PP ⋅的值; (3)过圆O 上任意一点()00y ,x Q 作圆O 的切线l 交双曲线C 于A 、B 两点,AB 中点为M ,例14、已知双曲线C :()222210,0x y a b a b-=>>的一个焦点是()22,0F ,且a b 3=.(1)求双曲线C 的方程;(2)设经过焦点2F 的直线的一个法向量为)1,(m ,当直线l 与双曲线C 的右支相交于B A ,不同的两点时,求实数m 的取值范围;并证明AB 中点M 在曲线3)1(322=--y x 上.(3)设(2)中直线l 与双曲线C 的右支相交于B A ,两点,问是否存在实数m ,使得AOB ∠为锐角?若存在,请求出m 的范围;若不存在,请说明理由.仰望天空时,什么都比你高,你会自卑; 俯视大地时,什么都比你低,你会自负; 只有放宽视野,把天空和大地尽收眼底, 才能在苍穹泛土之间找准你真正的位置。
再谈等轴双曲线的典型性质浙江省海盐元济高级中学(314300)崔宝法 《中学数学研究》2006年第7期发表江西师范大学《中学数学研究》月刊2000年第5期曾刊登了本人的拙作《等轴双曲线的几个典型性质及其证明》,文中给出并证明了具有高度对称美的等轴双曲线所独有的五个典型性质。
经过本人的进一步研究,发现等轴双曲线还有另外几个典型性质。
下面一一列出,并加以证明。
性质一 等轴双曲线上关于实轴对称的两点分别与此双曲线两个顶点的连线互相垂直。
证明:如图1,设等轴双曲线方程为222x y a -=两顶点为(,0)A a 、(,0)A a '-,双曲线上关于实轴对称的两点为11(,)P x y 、11(,)P x y '-,则22211x y a -=,且AP 、A P ''、AP '、A P '诸直线的斜率分别为:11AP y k x a =-,11A P y k x a ''-=+, 11AP y k x a '-=-,11A P y k x a'=+。
∴2211222111AP A P y y k k x a y ''--⋅===--,2211222111AP A P y y k k x a y ''--⋅===--, 即AP A P ''⊥,AP A P ''⊥。
性质二 等轴双曲线上一点张直角之弦平行于过此点的法线。
证明:设等轴双曲线的参数方程为x ctc y t =⎧⎪⎨=⎪⎩,点P 的坐标为(,)c P ct t ,在点P 张直角之弦的两端点1Q 、2Q 的坐标分别为11(,)cct t 、22(,)c ct t , 则12Q Q 的斜率为12121212111()Q Q c t t k c t t t t ⎛⎫- ⎪⎝⎭==--。
同理,1PQ 、2PQ 的斜率分别为111PQ k tt =-,221PQ k tt =-。
双曲线的性质知识点题型梳理【要点梳理】要点一、双曲线的简单几何性质双曲线22221x y a b-=(a >0,b >0)的简单几何性质范围22221x x aa x a x a即或≥≥∴≥≤- 双曲线上所有的点都在两条平行直线x=-a 和x=a 的两侧,是无限延伸的。
因此双曲线上点的横坐标满足x≤-a 或x≥a. 对称性对于双曲线标准方程22221x y a b -=(a >0,b >0),把x 换成-x ,或把y 换成-y ,或把x 、y 同时换成-x 、-y ,方程都不变,所以双曲线22221x y a b-=(a >0,b >0)是以x 轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。
顶点①双曲线与它的对称轴的交点称为双曲线的顶点。
②双曲线22221x y a b-=(a >0,b >0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A 1(-a ,0),A 2(a ,0),顶点是双曲线两支上的点中距离最近的点。
③两个顶点间的线段A 1A 2叫作双曲线的实轴;设B 1(0,-b ),B 2(0,b )为y 轴上的两个点,则线段B 1B 2叫做双曲线的虚轴。
实轴和虚轴的长度分别为|A 1A 2|=2a ,|B 1B 2|=2b 。
a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长。
①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。
②双曲线的焦点总在实轴上。
③实轴和虚轴等长的双曲线称为等轴双曲线。
离心率①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e 表示,记作22c c e a a==。
②因为c >a >0,所以双曲线的离心率1ce a=>。
由c 2=a 2+b 2,可得22222()11b c a c e a a a-==-=-,所以b a 决定双曲线的开口大小,b a 越大,e 也越大,双曲线开口就越开阔。
双曲线与方程【知识梳理】 1、双曲线的定义(1)平面内,到两定点1F 、2F 的距离之差的绝对值等于定长()1222,0a F F a a >>的点的轨迹称为双曲线,其中两定点1F 、2F 称为双曲线的焦点,定长2a 称为双曲线的实轴长,线段12F F 的长称为双曲线的焦距.此定义为双曲线的第一定义.【注】12122PF PF a F F -==,此时P 点轨迹为两条射线.(2)平面内,到定点的距离与到定直线的距离比为定值()1e e >的点的轨迹称为双曲线,其中定点称为双曲线的焦点,定直线称为双曲线的准线,定值e 称为双曲线的离心率.此定义为双曲线的第二定义.3、渐近线双曲线()22221,0x y a b a b -=>的渐近线为22220x y a b -=,即0x y a b ±=,或by x a=±.【注】①与双曲线22221x y a b -=具有相同渐近线的双曲线方程可以设为()22220x y a bλλ-=≠;②渐近线为by x a=±的双曲线方程可以设为()22220x y a b λλ-=≠;③共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.共轭双曲线具有相同的渐近线.④等轴双曲线:实轴与虚轴相等的双曲线称为等轴双曲线. 4、焦半径双曲线上任意一点P 到双曲线焦点F 的距离称为焦半径.若00(,)P x y 为双曲线()22221,0x y a b a b -=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左、右焦点,则10||PF ex a =+,20||PF ex a =-,其中c e a=. 5、通径过双曲线()22221,0x y a b a b -=>焦点F 作垂直于虚轴的直线,交双曲线于A 、B 两点,称线段AB 为双曲线的通径,且22b AB a=.6、焦点三角形P 为双曲线()22221,0x y a b a b-=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左右焦点,称12PF F ∆为双曲线的焦点三角形.若12F PF θ∠=,则焦点三角形的面积为:122cot 2F PF S b θ∆=.7、双曲线的焦点到渐近线的距离为b (虚半轴长).8、双曲线()22221,0x y a b a b-=>的焦点三角形的内心的轨迹为()0x a y =±≠9、直线与双曲线的位置关系直线:0l Ax By C ++=,双曲线Γ:()22221,0x y a b a b-=>,则l 与Γ相交22222a A b B C ⇔->; l 与Γ相切22222a A b B C ⇔-=; l 与Γ相离22222a A b B C ⇔-<.10、平行于(不重合)渐近线的直线与双曲线只有一个交点.【注】过平面内一定点作直线与双曲线只有一个交点,这样的直线可以为4条、3条、2条,或者0条. 11、焦点三角形角平分线的性质点(,)P x y 是双曲线()22221,0x y a b a b-=>上的动点,12,F F 是双曲线的焦点,M 是12F PF ∠的角平分线上一点,且20F M MP ⋅=,则OM a =,即动点M 的点的轨迹为()222x y a x a +=≠±.【推广2】设直线()110l y k x m m =+≠:交双曲线()22221,0x y a b a b -=>于C D 、两点,交直线22l y k x =:于点E .若E为CD 的中点,则2122b k k a=.13、中点弦的斜率直线l 过()()000,0M x y y ≠与双曲线()22221,0x y a b a b -=>交于,A B 两点,且AM BM =,则直线l 的斜率2020AB b x k a y =.14、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作实轴的平行线,交渐近线于,M N 两点,则PM PN =定值2a .15、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作渐近线的平行线,交渐近线于,M N 两点,则OMPNS =定值2ab .【典型例题】例1、双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_________.【变式1】若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是_________.【变式2】双曲线22148x y -=的两条渐近线的夹角为_________.【变式3】已知椭圆2222135x y m n +=和双曲线2222123x y m n-=有公共的焦点,那么双曲线的渐近线方程为_________.【变式4】若椭圆221(0)x y m n m n +=>>和双曲线221(0,0)x y a b a b-=>>有相同焦点1F 、2F ,P 为两曲线的一个交点,则12PF PF ⋅=_________.【变式5】如果函数2y x =-的图像与曲线22:4C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围是( )A .[1,1)-B . {}1,0-C . (,1][0,1)-∞-D . [1,0](1,)-+∞【变式6】直线2=x 与双曲线14:22=-y x C 的渐近线交于B A ,两点,设P 为双曲线C 上的任意一点,若OB b OA a OP +=(O R b a ,,∈为坐标原点),则下列不等式恒成立的是( )A .222a b +≥B .2122≥+b a C .222a b +≤ D .2212a b +≤【变式7】设连接双曲线22221x y a b -=与22221y x b a-=的四个顶点为四边形面积为1S ,连接其四个焦点的四边形面积为2S ,则12S S 的最大值为_________.例2、设12F F 、分别是双曲线2219y x -=的左右焦点,若点P 在双曲线上,且12=0PF PF ,则12PF PF +=_________.【变式1】过双曲线221109x y -=的左焦点1F 的弦6AB =,则2ABF ∆(2F 为右焦点)的周长为_________.【变式2】双曲线2211620x y -=的左、右焦点1F 、2F ,P 是双曲线上的动点,且19PF =,则2PF =_________.例3、设12F F 、是双曲线2214x y -=的两个焦点,点P 是双曲线的任意一点,且123F PF π∠=,求12PF F ∆的面积.例4、已知直线1y kx =+与双曲线2231x y -=有A B 、两个不同的交点,如果以AB 为直径的圆恰好过原点O ,试求k 的值.例5、已知直线1y kx =+与双曲线2231x y -=相交于A B 、两点,那么是否存在实数k 使得A B 、两点关于直线20x y -=对称?若存在,求出k 的值;若不存在,说明理由.例6、已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,求此直线的斜率的取值范围为_________.【变式1】已知曲线C :21(4)x y y x -=≤; (1)画出曲线C 的图像;(2)若直线l :1y kx =-与曲线C 有两个公共点,求k 的取值范围; (3)若()0P p ,()0p >,Q 为曲线C 上的点,求PQ 的最小值.【变式2】直线l :10ax y --=与曲线C :2221x y -=. (1)若直线l 与曲线C 有且仅有一个交点,求实数a 的取值范围;(2)若直线l 被曲线C 截得的弦长PQ =,求实数a 的取值范围;(3)是否存在实数a ,使得以PQ 为直径的圆经过原点,若存在,求出a 的值;若不存在,请说明理由.例7、已知F 是双曲线221412x y -=的左焦点,(14)A ,,P 是双曲线右支上的动点,求PF PA +的最小值.【变式】P 是双曲线221916x y -=的右支上一点,,M N 分别是圆()2254x y ++=和()2251x y -+=上的点,则PM PN -的最大值等于_________.例8、已知动圆P 与两个定圆()2251x y -+=和()22549x y ++=都外切,求动圆圆心P 的轨迹方程.【变式1】ABC ∆的顶点为()50A -,,()5,0B ,ABC ∆的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是_________.【变式2】已知双曲线的中心在原点,且一个焦点为)F,直线1y x =-与其相交于M N 、两点,线段MN的中点的横坐标为23-,求此双曲线的方程.例9、已知双曲线221916x y -=,若点M 为双曲线上任一点,则它到两渐近线距离的乘积为_________.例10、焦点在x 轴上的双曲线C 的两条渐近线经过原点,且两条渐近线均与以点P 为圆心,以1为半径的圆相切,又知双曲线C 的一个焦点与P 关于直线y x =对称 (1)求双曲线的方程;(2)设直线1y mx =+与双曲线C 的左支交于,A B 两点,另一直线l 经过点(2,0)M -及AB 的中点,求直线l 在轴上的截距n 的取值范围.【变式】设直线l 的方程为1y kx =-,等轴双曲线C :222x y a -=右焦点为).(1)求双曲线的方程;(2)设直线l 与双曲线的右支交于不同的两点A B 、,记AB 中点为M ,求实数k 的取值范围,并用k 表示点M 的坐标;(3)设点()1,0Q -,求直线QM 在y 轴上的截距的取值范围.例11、已知双曲线C 方程为:2212y x -=. (1)已知直线0x y m -+=与双曲线C 交于不同的两点A B 、,且线段AB 的中点在圆225x y +=上,求m 的值;(2)设直线l 是圆O :222x y +=上动点00(,)P x y (000x y ≠)处的切线,l 与双曲线C 交于不同的两点A B 、,证明AOB ∠的大小为定值.例12、已知中心在原点,顶点12A A 、在x轴上,其渐近线方程是3y x =±,双曲线过点()6,6P . (1)求双曲线的方程;(2)动直线l 经过12A PA ∆的重心G ,与双曲线交于不同的两点M N 、,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.例13、已知点1F 、2F 为双曲线C :()01222>=-b by x 的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且︒=∠3021F MF .圆O 的方程是222b y x =+. (1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求21PP PP ⋅的值; (3)过圆O 上任意一点()00y ,x Q 作圆O 的切线l 交双曲线C 于A 、B 两点,AB 中点为M ,例14、已知双曲线C :()222210,0x y a b a b-=>>的一个焦点是()22,0F ,且a b 3=.(1)求双曲线C 的方程;(2)设经过焦点2F 的直线的一个法向量为)1,(m ,当直线l 与双曲线C 的右支相交于B A ,不同的两点时,求实数m 的取值范围;并证明AB 中点M 在曲线3)1(322=--y x 上.(3)设(2)中直线l 与双曲线C 的右支相交于B A ,两点,问是否存在实数m ,使得AOB ∠为锐角?若存在,请求出m 的范围;若不存在,请说明理由.l。
双曲线及其一个同心圆的性质双曲线是几何学中一类重要的曲线,它们是一种奇特弯曲的曲线,能够实现许多几何问题的解决,本文将讨论双曲线及其一个同心圆的性质。
首先,关于双曲线的定义,它是一种位于双曲线两个射线或轴之间的曲线,它的曲线坐标表示为$x^2/a^2-y^2/b^2=1$($a>b>0$),其中$a$和$b$称为“双曲线的离心率”,双曲线是一种对称的、非线性的几何曲线,它有两条焦线,长轴$2a$和短轴$2b$,分别经过焦点$F_1$和$F_2$,它们构成双曲线的轴系统,双曲线也有一个有另一种表示形式,即椭圆公式:$(x/a)^2 +(y/b)^2=1$,从中可以看出,椭圆和双曲线是同样的曲线,只是以不同的方式进行描述,因此也叫双曲椭圆。
其次,双曲线具有一些重要的基本性质。
首先,它是完全开的,即它的边缘不会相交,也就是说,它一定不会把它的边缘拉在一起。
其次,它有两个焦点,称为“双曲线的焦点”,这能够帮助用户计算它的外边缘和其他属性。
另外,双曲线是一种对称的曲线,也就是说,它在任何给定方向上都对称,这对于实现曲线的直接绘制是非常有效的。
此外,另一个研究双曲线的重要概念是一个同心圆。
它是指一组由双曲线轴系统所分割出来的半径相同的圆,如图1.1所示,它们由轴系统中的一个焦点$F_1$和一个双曲线外的点$A$连线构成,直线两端分别与双曲线的长短轴的端点连接,并形成三个圆,被称为“双曲线同心圆”,它们具有不同的含义:内圆:它是由两个焦点和一个双曲线外的点构成;中圆:它是以直线$AF_1$为直径,同时也是双曲线的大圆;外圆:它是以直线$AF_2$为直径,同时也是双曲线的小圆。
最后,介绍双曲线的一些其他的性质。
首先,由双曲线的焦点,可以计算出其切线角度,这是双曲线的一个重要性质,它能够帮助我们找到双曲线的某个特殊的点,比如双曲线的最高点。
其次,它还具有一些其他的特性,比如它的面积,这是将它和椭圆作比较所需要考虑的性质之一。
等轴双曲线和圆相交时的几个优美性质浙江省海盐元济高级中学(314300)崔宝法圆与等轴双曲线都是具有高度对称美的曲线,经过研究笔者发现,当它们相交时具有一些比较优美的性质.下面列出其中几条,并给出证明.性质一 若等轴双曲线与任意一个定半径的圆交于四点,则其中心到这四点的距离的平方和为定值.证明:设等轴双曲线 k xy =①与圆)()()(22020为定值r r y y x x =-+-…②交于四点),(11y x P 、),(22y x Q 、),(33y x R 、),(44y x S .由①②消去y ,得x 的四次方程02)(220222020304=+--++-k x ky x r y x x x x ,由韦达定理得:043212x x x x x =+++,22020424131433221r y x x x x x x x x x x x x x -+=+++++,)(2)(4241314332212432124232221x x x x x x x x x x x x x x x x x x x x +++++-+++=+++∴220202202020222)(24r y x r y x x +-=-+-=. 同理,2202024232221222r x y y y y y +-=+++.=+++∴2222SO RO QO PO 24232221x x x x +++2242322214r y y y y =++++(定值). 性质二 若等轴双曲线与一个圆交于四点,则(1)双曲线必过其中任意三点所构三角形的垂心;(2)第四点与垂心的连线必过双曲线的中心.证明: (1)如图1,不妨设等轴双曲线2c xy =与圆相交的其中三点为),(AA t cct A 、),(B B t c ct B 、),(CC t cct C ,过点A 、B 的直线方程为:1()A A A Bc y x ct t t t -=--,AB 边上的高所在直线的为:()A B C C c y t t x ct t -=-,即()A B C A B A B Cc y ct t t t t x t t t +=+…①. 同理,BC 边上的高所在直线为:()A B C B C A B Ccy ct t t t t x t t t +=+…②. 从①②可以解得垂心H 的坐标为(,)A B C A B Ccct t t t t t --, 它满足等轴双曲线方程2xy c =,故等轴双曲线经过这个三角形的垂心.(2)连HO (O 为坐标原点),设直线HO 交双曲线于点D ,则因为H 在双曲线上,且双曲线2c xy =关于O 点对称,所以D 与H 关于原点对称,故D 点坐标为),(C B A C B A t t ct t t t c .,1B A AB t t k -= ,1CB BC t t k -=,C B AD t t k -=,A B DC t t k -=,1)(1tan 2CB AC A B BC AB BC AB t t t t t t k k k k ABC +-=⋅+-=∠∴CB A AC B t t t t t t ADC 21)(tan +-=∠,ADC ABC ∠=∠∴, 或π=∠+∠ADC ABCA ∴、B 、C 、D 四点共圆,故D 即为第四个交点;因为D 在直线HO 上,所以第四点与垂心的连线过双曲线的中心O .性质三 若等轴双曲线与一个圆交于四点,且其中两点的连线是此圆的直径,则另两点的连线必过双曲线的中心,且双曲线在这两点处的切线都与此直径垂直.证明:如图2,设等轴双曲线方程是)(为参数t t c y ct x ⎪⎩⎪⎨⎧==①,圆方程为0220022=+--+f y y x x y x ②,联立①②,消去yx ,,整理得022*******=+-+-c t cy ft t cx t c .设两曲线的四个交点的坐标为)4,3,2,1(),(=i t cct A ii i ,则由韦达定理有 1224321==cc t t t t .不妨设21A A 是圆的直径,则3231A A A A ⊥.31A A k ,1)()11(311313t t t t c t t c -=--=同理,32132t t k A A -=1123213231-==⋅∴t t t k k A A A A , 将14321=t t t t 代入得43t t -=. 又43A A 的方程为)(13433ct x t t t c y --=-,即)(4343t t c y t t x +=+.434343,0,0A A y t t x t t ∴=+∴=+ 过双曲线的中心)0,0(O .又易知双曲线在点),(333t c ct A 处的切线方程为3232ct y t x =+,其斜率为231t k -=,而21A A 的斜率为11,12321212121-==⋅∴-=∴t t t k k t t k A A A A ,故过点3A 的切线与21A A 垂直;同理可证:过点4A 的切线也与21A A 垂直.性质四 以等轴双曲线平行于实轴的弦为直径的圆必过双曲线的两个顶点. 证明:如图3,设等轴双曲线方程为222a y x =-,DC 为平行于实轴的弦,点C 坐标为),(11y x ,则D 点坐标为),(11y x -.双曲线顶点为)0,(),0,(a B a A -,直线CA 的斜率为ax y k +=111,直线DA 的斜率为a x y k +-=112,2122121x a y k k -=⋅. 点C 在双曲线上, ∴22121a y x =-,即21212y x a -=-,故122121-=-=⋅y y k k ,DA CA ⊥∴,所以点A 在以DC 为直径的圆上.同理, 点B 也在以DC 为直径的圆上.性质五 若等轴双曲线与一个圆交于四点,则这四点的平均中心(其坐标为各点坐标的算术平均数)平分双曲线中心与圆心的连线.证明: 设等轴双曲线 )(为参数t t c y ct x ⎪⎩⎪⎨⎧==①与圆 022=++++F Ey Dx y x ②交于四点)4,3,2,1(),(=i t cct P ii i ,①代入②, 得022342=++++c cEt Ft cDt t c . 由韦达定理得:c D t t t t -=+++4321,14321=t t t t ,421143432321t t t t t t t t t t t t +++cE -=. 4)(444321Dc D c ct ct ct ct -=-⋅=+++∴,)(4)1111(4421143432321432143214321t t t t t t t t t t t t ct t t t t t t t c t ct c t c t c +++⋅=⋅+++⋅=+++4)(4E c E c -=-⋅=,所以平均中心的坐标为)4,4(ED --.而双曲线中心与圆心的坐标分别为)0,0(和)2,2(E D --,所以其连线中点坐标也是)4,4(ED --,故平均中心平分双曲线中心与圆心的连线.性质六 若以等轴双曲线过中心的一弦为半径,以此弦的一个端点为圆心的圆与双曲线交于四点,则另三个交点恰好是一个等边三角形的三个顶点.证明:如图4,设等轴双曲线方程为 k xy =①,过双曲线中心的弦的两个端点为),(00y x P 、),(00y x P --',则以P 为圆心,P P '为半径的圆方程为 20202020)2()2()()(y x y y x x +=-+-②,且k y x =00③.联立①②,消去y 得02)(322022020304=+-+--k x ky x y x x x x ,与③联立,消去0y ,得02)(32202022240330420=+-+--x k x x k x k x x x x x ,即0)33)((2022303200=+--+k x x k x x x x x x .设另三个交点为),(11y x P 、),(22y x Q 、),(33y x R ,则1x 、2x 、3x 是方程033202230320=+--k x x k x x x x 的三个实根,由韦达定理得:03213x x x x =++,03213x x x x =++∴,同理可得:03213y y y y =++,即PQR ∆的重心与其外心),(00y x P 重合,故P 、Q 、R 恰好是等边三角形的三个顶点.。
高中数学 圆的一个优美性质在椭圆和双曲线中的推广知识点分析 新人教A 版选修2摘要:介绍了圆锥曲线作切线的简单方法、易操作,在作图中有很高的使用价值,应进行推广. 并按照这个方法完成了《圆锥曲线的切线及其作图原理》几何画板课件.正文笔者最近借助几何画板研究一个数学问题时,无意中发现了圆的一个优美性质,并将其推广到椭圆和双曲线,这一性质为我们提供了过椭圆(双曲线)上任意一点作椭圆(双曲线)切线的非常简便的尺规方法. 定理1:已知AB 是圆C :222x y r +=的直径,直线l 与x 轴垂直,过圆C 上任意一点P (不同于,A B )作直线PA 与PB 分别交直线l 于,M N 两点,记线段MN 的中点为Q ,则直线PQ 与圆相切.证明:设点00(,)P x y ,直线l 为x m =,直线,PA PB 的斜率分别为12,k k ,则 000001222000022y y x y x k k x r x r x r y +=+==-+-- 直线010:()PA y y k x x -=-,令x m =,则100()y k m x y =-+∴100(,())M m k m x y -+,同理可得200(,())N m k m x y -+∴MN 的中点0000(,())x Q m m x y y --+,∴直线PQ 的斜率为00x k y =- ∴直线0000:()x PQ y y x x y -=--,即为200x x y y r +=,易知直线PQ 与圆相切. 定理2:已知,A B 是椭圆C :)0(12222>>=+b a by a x 的左右顶点,直线l 与x 轴垂直,过椭圆C 上任意一点 P (不同于,A B )作直线PA 与PB 分别交直线l 于,M N 两点,记线段MN 的中点为Q ,则直线PQ 与椭圆相切.证明:设点00(,)P x y ,直线l 为x m =,直线,PA PB 的斜率分别为12,k k ,则20000012222000022y y x y b x k k x a x a x a a y +=+==-+-- 直线010:()PA y y k x x -=-,令x m =,则100()y k m x y =-+∴100(,())M m k m x y -+,同理可得200(,())N m k m x y -+∴MN 的中点200020(,())b x Q m m x y a y --+,∴直线PQ 的斜率为2020b x k a y =-∴直线200020:()b x PQ y y x x a y -=--,即为00221x x y y a b +=,易知直线PQ 与椭圆相切. 注:根据定理2我们可以过椭圆上任意一点作椭圆的切线,操作流程略去.定理3:已知,A B 是双曲线C :22221(0,0)x y a b a b-=>>的左右顶点,直线l 与x 轴垂直,过双曲线C 上任 意一点P (不同于,A B )作直线PA 与PB 分别交直线l 于,M N 两点,记线段MN 的中点为Q ,则直线PQ 与双曲线相切.证明:方法与定理1的证明相似,此处略去不表!注:根据定理3我们可以过双曲线上任意一点作双曲线的切线,操作流程略去.定理4:已知A 是抛物线C :22(0)y px p =>的顶点,直线l 与x 轴垂直,过双曲线C 上任意一点P (不同于A )作直线PA 交直线l 于,M 作PN l ⊥垂足为N ,记线段MN 的中点为Q ,则直线PQ 与抛物线相切. 证明:请读者自行完成,此处略去不表!注:根据定理4我们可以过抛物线上任意一点作抛物线的切线,操作流程略去.。
等轴双曲线的美妙性质
梁天祥
【期刊名称】《中等数学》
【年(卷),期】2022()10
【摘要】等轴双曲线也叫正双曲线,标准方程是x^(2)-y^(2)=a.作为一种特殊的二次曲线,它有许多美妙的几何性质(见文[1]),本文整理出了一部分性质并给出证明.等轴双曲线可以通过坐标系的变换,方程转化为y=1/x,为了方便,本文的证明均在此方程下进行.
【总页数】3页(P17-19)
【作者】梁天祥
【作者单位】南京一诚理科工作室
【正文语种】中文
【中图分类】O123
【相关文献】
1.等轴双曲线一个性质的推广及其它
2.双曲线x2/a2-y2/3a2=1(a>0)的一个美妙性质及应用
3.巧用等轴双曲线性质解竞赛题
4.等轴双曲线和圆相交时的几个优美性质
5.三谈等轴双曲线的典型性质
因版权原因,仅展示原文概要,查看原文内容请购买。
等轴双曲线和圆相交时的几个优美性质
浙江省海盐元济高级中学(314300)崔宝法
圆与等轴双曲线都是具有高度对称美的曲线,经过研究笔者发现,当它们相交时具有一些比较优美的性质.下面列出其中几条,并给出证明.
性质一 若等轴双曲线与任意一个定半径的圆交于四点,则其中心到这四点的距离的平方和为定值.
证明:设等轴双曲线 k xy =①与圆)()()(22020为定值r r y y x x =-+-…②交于四点
),(11y x P 、),(22y x Q 、),(33y x R 、),(44y x S .由①②消去y ,得x 的四次方程
02)(220222
02
0304=+--++-k x ky x r y x x x x ,由韦达定理得:
043212x x x x x =+++,22
020
424131433221r y x x x x x x x x x x x x x -+=+++++,)(2)(424131433221243212
4232221x x x x x x x x x x x x x x x x x x x x +++++-+++=+++∴220202202020222)(24r y x r y x x +-=-+-=. 同理,2202024232221222r x y y y y y +-=+++.
=+++∴2222SO RO QO PO 2
42322
21x x x x +++2242322214r y y y y =++++(定值). 性质二 若等轴双曲线与一个圆交于四点,则(1)双曲线必过其中任意三点所构三
角形的垂心;(2)第四点与垂心的连线必过双曲线的中心.
证明: (1)如图1,不妨设等轴双曲线2
c xy =与圆相交的其中三点为),
(A
A t c
ct A 、),
(B B t c ct B 、),(C
C t c
ct C ,过点A 、B 的直线方程为:1()A A A B
c y x ct t t t -
=--,
AB 边上的高所在直线的为:()A B C C c y t t x ct t -
=-,即()A B C A B A B C
c y ct t t t t x t t t +=+…①. 同理,BC 边上的高所在直线为:
()A B C B C A B C
c
y ct t t t t x t t t +=+
…②. 从①②可以解得垂心H 的坐标为(
,)A B C A B C
c
ct t t t t t --, 它满足等轴双曲线方程2
xy c =,故等轴双曲线经过这个三角形的垂心.
(2)连HO (O 为坐标原点),设直线HO 交双曲线于点D ,则因为H 在双曲线上,且双曲线2
c xy =关于O 点对称,所以D 与H 关于原点对称,故D 点坐标为
),(
C B A C B A t t ct t t t c .,1B A AB t t k -= ,1
C
B B
C t t k -=,C B A
D t t k -=,A B DC t t k -=
,
1)
(1tan 2C
B A
C A B BC AB BC AB t t t t t t k k k k ABC +-=⋅+-=
∠∴C
B A A
C B t t t t t t ADC 2
1)
(tan +-=
∠,
ADC ABC ∠=∠∴, 或π=∠+∠ADC ABC
A ∴、
B 、
C 、
D 四点共圆,故D 即为第四个交点;因为D 在直线HO 上,所以第四点与垂心的连线过双曲线的中心O .
性质三 若等轴双曲线与一个圆交于四点,且其中两点的连线是此圆的直径,则另两点的连线必过双曲线的中心,且双曲线在这两点处的切线都与此直径垂直.
证明:如图2,设等轴双曲线方程是
)(为参数t t c y ct x ⎪⎩
⎪
⎨⎧==①,圆方程为
0220022=+--+f y y x x y x ②,
联
立
①
②
,
消
去
y
x ,,整理得
022*******=+-+-c t cy ft t cx t c .
设两曲线的四个交点的坐标为)4,3,2,1(),
(=i t c
ct A i
i i
,
则由韦达定理有 122
4321==c
c t t t t .不妨设21A A 是圆的直径,则3231A A A A ⊥.
3
1A A k ,1
)()11(
311313t t t t c t t c -=--=同理,32132t t k A A -=1123
213231-==⋅∴t t t k k A A A A , 将14321=t t t t 代入得43t t -=. 又43A A 的方程为)(1
34
33ct x t t t c y --=-
,即)(4343t t c y t t x +=+.434343,0,0A A y t t x t t ∴=+∴=+ 过双曲线的中心)0,0(O .
又易知双曲线在点),
(333t c ct A 处的切线方程为32
32ct y t x =+,其斜率为23
1t k -=,而21A A 的斜率为11,123
21212121-==⋅∴-
=∴t t t k k t t k A A A A ,故过点3A 的切线与21A A 垂直;同理可证:过点4A 的切线也与21A A 垂直.
性质四 以等轴双曲线平行于实轴的弦为直径的圆必过双曲线的两个顶点. 证明:如图3,设等轴双曲线方程为2
2
2
a y x =-,DC 为平行于实轴的弦,点C 坐标为),(11y x ,则D 点坐标为),(11y x -.双曲线顶点为
)0,(),0,(a B a A -,直线CA 的斜率为a
x y k +=
11
1,直线DA 的斜率为a x y k +-=112,2
122
121x a y k k -=⋅.
点C 在双曲线上, ∴22
12
1a y x =-,
即2
12
12
y x a -=-,故12
2
121-=-=⋅y
y k k , DA CA ⊥∴,所以点A 在以DC 为直径的圆上.同理, 点B 也在以DC 为直径的圆上.
性质五 若等轴双曲线与一个圆交于四点,则这四点的平均中心(其坐标为各点坐标的算术平均数)平分双曲线中心与圆心的连线.
证明: 设等轴双曲线 )(为参数t t c y ct x ⎪⎩
⎪⎨⎧==①与圆 02
2=++++F Ey Dx y x ②
交于四点)4,3,2,1(),
(=i t c
ct P i
i i ,①代入②, 得022342=++++c cEt Ft cDt t c . 由韦达定理得:c D t t t t -
=+++4321,14321=t t t t ,421143432321t t t t t t t t t t t t +++c
E -=. 4
)(444321D
c D c ct ct ct ct -=-⋅=+++∴
,
)(4)1111(4421143432321432143214321t t t t t t t t t t t t c
t t t t t t t t c t c
t c t c t c +++⋅=⋅+++⋅=+
++
4)(4E c E c -=-⋅=
,所以平均中心的坐标为)4
,4(E
D --.而双曲线中心与圆心的坐标分别为)0,0(和)2,2(
E D --,所以其连线中点坐标也是)4,4(E
D --,故平均中心平分双曲线中
心与圆心的连线.
性质六 若以等轴双曲线过中心的一弦为半径,以此弦的一个端点为圆心的圆与双曲线交于四点,则另三个交点恰好是一个等边三角形的三个顶点.
证明:如图4,设等轴双曲线方程为 k xy =①,过双曲线中心的弦的两个端点为
),(00y x P 、),(00y x P --',则以P 为圆心,P P '为半径的
圆方程为 2
0202020)2()2()()(y x y y x x +=-+-②,且
k y x =00③.联立①②,消去y 得
02)(322022
020304=+-+--k x ky x y x x x x ,与③联立,消
去0y
,
得02)(322
02022240330420=+-+--x k x x k x k x x x x x , 即0)33)((2
022303200=+--+k x x k x x x x x x .设另三个交点为
),(11y x P 、),(22y x Q 、),(33y x R ,则1x 、2x 、3x 是方程033202230320
=+--k x x k x x x x 的三个实根,由韦达定理得:03213x x x x =++,03
213
x x x x =++∴
,同理可
得:
03
213
y y y y =++,即PQR ∆的重心与其外心),(00y x P 重合,故P 、Q 、R 恰好是等
边三角形的三个顶点.。