基本不等式求最值的策略
- 格式:doc
- 大小:244.50 KB
- 文档页数:5
ʏ喻 芳利用不等式求最值的实质是a b ɤa +b2ɤa 2+b 22(a ,b >0),a b ɤa +b 22ɤa 2+b22(a ,b ɪR )的灵活应用㊂题型一:简单的和或积为定值求最值例1 (1)已知x ,y ,z 都是正实数,若x y z =1,则(x +y )(y +z )(z +x )的最小值为( )㊂A.2 B .4C .6D .8(2)已知0<x <1,则函数f (x )=x 3(1-x 3)的最大值为㊂(1)由x >0,y >0,z >0,可知x +y ȡ2x y >0(当且仅当x =y 时等号成立),y +z ȡ2y z >0(当且仅当y =z 时等号成立),x +z ȡ2x z >0(当且仅当x =z 时等号成立)㊂以上三个不等式两边同时相乘得(x +y )(y +z )(z +x )ȡ8x 2y 2z 2=8(当且仅当x =y =z =1时等号成立)㊂应选D ㊂(2)由基本不等式得f (x )=x 3(1-x 3)ɤx 3+1-x322=14,当且仅当x 3=1-x 3,即x =312时等号成立㊂故所求的最大值为14㊂感悟:基本不等式a 2+b 2ȡ2a b (a ,b ɪR ),a +b ȡ2a b (a ,b ɪR +),当一端为定值时,另一端就可取到最值,且要注意两个不等式适应的范围和取等号的条件㊂题型二:配凑法构造和或积为定值求最值例2 (1)已知x <54,求y =4x -2+14x -5的最大值㊂(2)若x ȡ72,则f (x )=x 2-6x +10x -3有( )㊂A .最大值52B .最小值52C .最大值2D .最小值2(1)由x <54,可得5-4x >0,所以y =4x -2+14x -5=4x -5+14x -5+3=-5-4x +15-4x+3ɤ-2(5-4x )ˑ15-4x+3=1,当且仅当5-4x =15-4x ,即x =1时等号成立,所以y 的最大值为1㊂(2)由x ȡ72,可得x -3>0,所以f (x )=x 2-6x +10x -3=(x -3)2+1x -3=(x -3)+1x -3ȡ2(x -3)ˑ1x -3=2,当且仅当x -3=1x -3,即x =4时等号成立,所以f (x )有最小值2㊂应选D ㊂感悟:形如y =a x 2+b x +ck x +m的分式函数求最值,可化为y =m g (x )+Ag (x)+B (A >0,B >0),这里g (x )恒正或恒负,然后运用基本不等式求最值㊂题型三:常数代换法求最值例3 已知p ,q 为正实数,且p +q =3,81 知识结构与拓展 高一数学 2023年9月Copyright ©博看网. All Rights Reserved.则1p +2+1q +1的最小值为( )㊂A.23B .53C .74D .95由p ,q 为正实数,p +q =3,可知p +2+q +1=6㊂所以1p +2+1q +1=1p +2+1q +1 ㊃p +26+q +16 =13+16p +2q +1+q +1p +2 ȡ13+16ˑ2p +2q +1㊃q +1p +2=23,当且仅当p +2=q +1,即p =1,q =2时 = 成立㊂应选A ㊂感悟:常数代换法适用于求解条件最值问题㊂题型四:消元法求最值例4 若正实数x ,y ,z 满足x 2+4y 2=z +3x y ,则当x yz 取最大值时,1x +12y -1z 的最大值为㊂正实数x ,y ,z 满足x 2+4y 2=z +3x y ,则z =x 2-3x y+4y 2,所以x y z =x yx 2-3x y +4y2=1x y +4y x -3ɤ12x y ㊃4y x -3=1,当且仅当x =2y 时等号成立,所以x yzm a x=1,此时x =2y ,所以z =x 2-3x y +4y 2=2y 2㊂所以1x +12y -1z =12y +12y -12y 2=-121y -12+12ɤ12,所以1x +12y -1z的最大值为12㊂感悟:解决多元最值的方法是消元后利用基本不等式求解,但要注意所保留变量的取值范围㊂题型五:换元法求最值例5 若正数a ,b 满足2a +b =1,则a 2-2a +b2-b的最小值是㊂设u =2-2a ,v =2-b ,则a =2-u2,b =2-v ,所以u +v =3(u >0,v >0)㊂所以a 2-2a +b 2-b =1-12uu +2-vv=1u +2v -32=13(u +v )1u +2v-32=13㊃3+v u +2u v-32ȡ133+2v u ㊃2uv-32=1+223-32=223-12,当且仅当v 2=2u 2,u +v =3,即v =6-32,u =32-3时等号成立,所以所求的最小值为223-12㊂感悟:换元法求最值的关键是整体换元,利用构造的新元求最值㊂题型六:构建不等式求最值例6 (1)已知正实数x ,y 满足x y =x +y +8,则x +y 的最小值为㊂(2)已知x ,y ɪR +,若x +y +x y =8,则x y 的最大值为㊂(1)由正实数x ,y ,可得(x +y )2=x 2+y 2+2x y ȡ4x y(当且仅当x =y 时等号成立),所以x y ɤ(x +y )24,所以x y =x +y +8ɤ(x +y )24,即(x +y )2-4(x +y )-32ȡ0,解得x +y ɤ-4(舍去)或x +y ȡ8(当且仅当x =y =4时等号成立),所以x +y 的最小值为8㊂(2)因为正数x ,y 满足x +y +x y =8,所以8-x y =x +y ȡ2x y ,即x y +2x y-8ɤ0,解得0<x y ɤ2,所以x y ɤ4,当且仅当x =y =2时取等号㊂所以x y 的最大值为4㊂感悟:利用题设条件,借助基本不等式进行放缩,得到关于 和 或 积 的不等式,解此不等式可得 和 或 积 的最值㊂作者单位:湖北省宜昌市长阳土家族自治县职业教育中心(责任编辑 郭正华)91知识结构与拓展高一数学 2023年9月Copyright ©博看网. All Rights Reserved.。
用基本不等式求最值六种方法基本不等式是求解数学问题中常用的工具,可以通过基本不等式来求解最值问题。
下面将介绍六种使用基本不等式求解最值问题的方法。
方法一:两边平方法若要求一个式子的最大值或最小值,在不改变问题的本质情况下,可以通过平方的方式将问题转化为一个更容易处理的形式。
例如,我们要求a+b 的最小值,可以通过平方的方式将其转化为一个更易处理的问题,即(a+b)^2=a^2+b^2+2ab,然后应用基本不等式,得到(a+b)^2≥ 2ab。
由此可见,通过两边平方后,可使用基本不等式求得 a+b 的最小值。
方法二:四平方法四平方法指的是对式子的四个项分别平方,将一些复杂的问题转化为四个简单展开的项的和,然后再应用基本不等式进行推导。
例如,我们要求 a^2 + b^2 的最小值,可以采用四平方法将其转化为 a^2/2 + a^2/2 + b^2/2 + b^2/2 的和,即 (a^2/2 + b^2/2) + (a^2/2 + b^2/2),然后应用基本不等式,得到(a^2/2 + b^2/2) + (a^2/2 + b^2/2) ≥2√[(a^2/2)(b^2/2)] = ab。
方法三:绝对值法绝对值法是将问题中的绝对值项用不等式进行替代,然后使用基本不等式进行求解。
例如,我们要求,x-2,的最小值,可以将其转化为不等式形式,即x-2≥0或x-2≤0。
然后根据这两个不等式分别求解x的取值范围,得到最小值。
方法四:极值法极值法是将要求最值的式子看作一个函数,通过求函数的极值点来确定最值。
例如,我们要求 f(x) = x^2 的最小值,可以求函数的极值点。
对于二次函数 f(x) = ax^2 + bx + c,其极值点的横坐标是 -b/2a,通过求解方程 -b/2a = 0,可以得到 x = 0。
因此,f(x) = x^2 的最小值是 f(0) = 0。
方法五:辅助不等式法辅助不等式法是引入一个辅助不等式,通过该不等式来推导求解最值问题。
ʏ尹丹青利用基本不等式求最值是高考的常考点,下面介绍基本不等式求最值的八种思维方法㊂方法一: 定和 与 拼凑定和 求积的最值例1 已知x >0,y >0,且x +y =7,则(1+x )(2+y )的最大值为㊂解:由x +y =7,可拼凑(x +1)+(y +2)=10,利用基本不等式求最值㊂易得(x +1)+(y +2)=10,所以(1+x )(2+y )ɤ(1+x )+(2+y )22=25,当且仅当1+x =2+y ,即x =4,y =3时等号成立㊂故(1+x )㊃(2+y )的最大值为25㊂解后反思:利用基本不等式求最值时,必须同时满足: 一正 二定 三相等㊂方法二: 定积 与 拼凑定积 求和的最值例2 若a >-3,则a 2+6a +13a +3的最小值为㊂解:对a 2+6a +13a +3变形拼凑积为定值,利用基本不等式求最值㊂因为a >-3,所以a +3>0,4a +3>0㊂由基本不等式得a 2+6a +13a +3=(a +3)2+4a +3=(a +3)+4a +3ȡ2(a +3)㊃4a +3=4,当且仅当a +3=4a +3即a =-1时等号成立㊂故a 2+6a +13a +3的最小值为4㊂解后反思:观察积与和哪个是定值,根据 和定积动,积定和动 来求解㊂方法三: 和积化归 构建不等式求最值例3 已知x >0,y >0,且x +y +x y =3,若不等式x +y ȡm 2-m 恒成立,则实数m 的取值范围为㊂解:由基本不等式得(x +y )m i n =2,构建m 2-m ɤ(x +y )m i n ,再解不等式即可㊂由3-(x +y )=x y ɤ(x +y )24,当且仅当x =y =1时等号成立,解得x +y ȡ2或x +y ɤ-6(舍去),则(x +y )m i n =2㊂因为不等式x +y ȡm 2-m 恒成立,所以m 2-m ɤ(x +y )m i n ,即m 2-m ɤ2,解得-1ɤm ɤ2㊂解后反思:根据和与积的关系式,结合基本不等式可以求出积或和的最值,这就是 和积化归法㊂方法四: 化1 与 拼凑化1 求最值例4 已知a ,b 均为正数,且1a +1+2b -2=12,则2a +b 的最小值为㊂解:确定b >2,由题设变换得2a +b =2[2(a +1)+(b -2)]1a +1+2b -2,展开凑积为定值,利用基本不等式求最值㊂当b ɪ(0,2)时,2b -2<-1,而1a +1<1,则1a +1+2b -2<0,不符合题意,故b >2㊂2a +b =2(a +1)+(b -2)=2[2(a +1)+(b -2)]1a +1+2b -2=8㊃a +1b -2+2㊃b -2a +1+8ȡ216㊃a +1b -2㊃b -2a +1+8=16,当且仅当8㊃a +1b -2=2㊃b -2a +1,即a =3,b =10时等号成立㊂故2a +b 的最小值为16㊂解后反思: 化1 或 拼凑化1 求最值的关键是基本不等式的灵活应用㊂方法五:不等式链21a +1bɤa b ɤa +b2ɤa 2+b 22(a ,b ɪR *)的合理应用例5 已知a >0,b >0,若a +b =4,51知识结构与拓展高一数学 2023年7 8月Copyright ©博看网. All Rights Reserved.则( )㊂A .a 2+b 2有最小值4B .a b 有最大值2C .1a +1b 有最大值1D .1a +b 有最小值24解:已知a >0,b >0,则21a +1b ɤa b ɤa +b 2ɤa 2+b22,当且仅当a =b 时取等号㊂a 2+b 2ȡ(a +b )22=8,A 错误㊂由4=a +b ȡ2a b ,可得a b ɤ4,B 错误㊂1a +1b ȡ4a +b =1,C 错误㊂1a +b ȡ12a +b 2=122=24,当且仅当a =b =2时取等号,D 正确㊂应选D ㊂解后反思:不等式链21a +1bɤa b ɤa +b 2ɤa 2+b 22(a ,b ɪR *)分别为调和平均数㊁几何平均数㊁代数平均数㊁平方平均数㊂方法六:复杂分式构造法凑定值例6 已知a >b ,不等式a x 2+2x +b ȡ0对于一切实数x 恒成立,且∃x 0ɪR ,使得a x 20+2x 0+b =0成立,则a 2+b2a -b的最小值为㊂解:由不等式恒成立和∃x 0ɪR 使得方程成立可得a b =1,将a 2+b2a -b化成a -b +2a -b 求最值㊂因为不等式a x 2+2x +b ȡ0对于一切实数x 恒成立,所以a >0,4-4a b ɤ0㊂因为∃x 0ɪR ,使得a x 20+2x 0+b =0成立,所以4-4a b ȡ0㊂据上可得,4-4a b =0,所以a >0,b >0,a b =1㊂故a 2+b 2a -b =(a -b )2+2a ba -b=a -b +2a -b ȡ22,当且仅当a -b =2a -b 时取等号㊂故所求的最小值为22㊂解后反思:复杂分式构造法凑定值,其目的是构造和式的积为定值,再利用基本不等式求最值㊂方法七:反解代入消元法凑积为定值例7 设b >0,a b +b =1,则a 2b 的最小值为㊂解:已知等式转化为b =1a +1,再通过常数分离得到a b 2=(a +1)+1a +1-2求最值㊂已知b >0,a b +b =1,所以b =1a +1,a +1>0,所以a 2b =a 2a +1=(a +1-1)2a +1=a +1+1a +1-2ȡ2(a +1)㊃1a +1-2=0,当且仅当a +1=1a +1,即a =0时等号成立㊂故a 2b 的最小值为0㊂解后反思:借助反解代入消元,重新构造积为定值,这是求解最值的通法㊂方法八:两次使用基本不等式求最值例8 已知x ,y 都为正实数,则4(x y +1)x +x 2y的最小值为㊂解:4(x y +1)x +x 2y=4y +4x +x 2y ㊂因为x ,y 都为正实数,所以4y +x 2yȡ24x 2=4x ,当且仅当4y 2=x 2,即2y =x 时等号成立㊂所以4y +4x +x 2yȡ4x +4x ȡ216=8,当且仅当4x =4x,即x =1时等号成立㊂综上所述,当x =1,y =12时,4(x y +1)x +x 2y取得最小值为8㊂解后反思:两次使用不等式求最值,既要注意多次取等号时成立的条件,也要注意两次使用不等式后能 约分凑出定值㊂作者单位:江苏省丹阳高级中学(责任编辑 郭正华)61 知识结构与拓展 高一数学 2023年7 8月Copyright ©博看网. All Rights Reserved.。
基本不等式求最值技巧解析技巧一:凑项例1:已知54x <,求函数14245y x x =-+-的最大值。
解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数例1. 当时,求(82)y x x =-的最大值。
解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。
当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。
评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。
变式:设230<<x ,求函数)23(4x x y -=的最大值。
解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫⎝⎛∈=23,043x 时等号成立。
技巧三: 分离例3. 求2710(1)1x x y x x ++=>-+的值域。
解析一:本题看似无法运用基本不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。
当,即时,421)591y x x ≥+⨯+=+((当且仅当x =1时取“=”号)。
技巧四:换元解析二:本题看似无法运用基本不等式,可先换元,令t =x +1,化简原式在分离求最值。
22(1)7(1+10544=5t t t t y t t t t-+-++==++)当,即t =时,4259y t t≥⨯+=(当t =2即x =1时取“=”号)。
ʏ吴春艳从近几年高考试题看,基本不等式主要应用在求最值及证明方面㊂下面将对基本不等式求最值的思维方法进行归纳提炼,期望大家通过练习㊁感悟,提升对基本不等式的应用能力㊂方法1: 拼凑法凑积或和为定值 用基本不等式求最值例1 (1)若实数x ,y 满足2x 2+x y -y 2=1,则5x 2-2x y +2y 2的最小值为㊂(2)已知0<x <1,则x (4-3x )取得最大值时x 的值为㊂解:(1)拼凑积为定值,运用a 2+b 2ȡ2a b(a ,b ɪR )求最值㊂由2x 2+x y -y 2=1,可得(2x -y )(x +y )=1,则5x 2-2x y +2y 2=4x 2-4x y +y 2+x 2+2x y +y 2=(2x -y )2+(x +y )2ȡ2(2x -y )(x +y )=2,当且仅当x =23,y =13时等号成立㊂故5x 2-2x y +2y 2的最小值为2㊂(2)拼凑和为定值,运用a +b ȡ2a b(a ,b ɪR +)求最值㊂x (4-3x )=13(3x )(4-3x )ɤ133x +4-3x 2()2=43,当且仅当3x =4-3x ,即x =23时取等号㊂故所求x 的值为23㊂感悟:基本不等式a 2+b 2ȡ2a b (a ,b ɪR ),a +b ȡ2a b (a ,b ɪR +),当一端为定值时,另一端就可取到最值,注意两个不等式适应的范围和取等号的条件㊂拼凑法的实质是代数式的灵活变形,拼系数㊁凑常数是求解的关键㊂方法2: 常数代换法凑积为定值 用基本不等式求最值例2 (1)已知x ,y 均为正数,若2x+6y=1,则当3x +y 取得最小值时,x +y 的值为( )㊂A.16 B .4C .24D .12(2)若a >b >0,a +b =4,则4a +4b+12a -b的最小值为( )㊂A.14B .34C .18D .38解:(1)由 1的整体代入展开凑积为定值,利用基本不等式求最值㊂因为2x +6y=1,所以3x +y =(3x +y )2x +6y()=6+18x y +2y x +6ȡ12+218x y ㊃2y x =24,当且仅当18x y =2y x ,即y =3x 时取等号㊂又因为2x +6y=1,所以x =4,y =12,这时x +y =16㊂应选A ㊂(2)由(a +4b )+(2a -b )=3(a +b )=12,整体代换展开凑定值,利用基本不等式求最值㊂因为a >b >0,a +b =4,所以(a +4b )+(2a -b )=3(a +b )=12,a +4b >0,2a -b >0,所以4a +4b +12a -b =112ˑ4a +4b +12a -b ()[(a +4b )+(2a -b )]=112ˑ4+4(2a -b )a +4b +a +4b 2a -b +1[]ȡ112(5+4)=34,当且仅当a =2b =83时取等号㊂故4a +4b +12a -b 的最小值为34㊂应选B ㊂81 知识结构与拓展 高一数学 2022年9月Copyright ©博看网. All Rights Reserved.感悟:灵活运用 1的整体代换是解答本题的关键㊂当条件等式和所求式子之间变量系数 不一致 时,可直观凑配或者分母换元化归 1 的整体代换,如本题(2)中依据目标4a +4b +12a -b 对条件变形为(a +4b )+(2a -b )=3(a +b )=12,利用整体代入展开凑积为定值,再求最小值㊂方法3: 反解代入消元法凑积为定值 用基本不等式求最值例3 (1)设正实数x ,y ,z 满足x 2-3x y +4y 2-z =0,则当z x y 取得最大值时,x +2y -z 的最大值为( )㊂A.0 B .98C .2D .94(2)已知正数a ,b 满足1a +1b=2,则3b +1-a 的最大值为㊂解:条件和结论之间无法沟通时,采用反解代入法凑积为定值,再求最大值㊂(1)因为z x y =x 2-3x y +4y 2x y =xy+4y x -3ɤ2x y ㊃4y x-3=1,当且仅当x =2y时取等号,所以z =4y 2-6y 2+4y 2=2y 2,所以x +2y -z =4y -2y 2=-2(y -1)2+2ɤ2㊂应选C ㊂(2)由1a +1b =2,可得b =a2a -1㊂由a >0,b >0,可得a >12㊂所以3b +1-a =3a2a -1+1-a =3(2a -1)3a -1-a =2-13a -1+3a -13()-13=53-13a -1+3a -13()㊂而13a -1+3a -13ȡ213a -1㊃3a -13=233,当且仅当13a -1=3a -13,即a =1+33时取等号,所以53-13a -1+3a -13()ɤ53-233=5-233,所以3b +1-a 的最大值为5-233㊂感悟:多元满足的条件等式和所求等式之间互化难以实现时,可以借助反解代入消元,再重新构造结构式凑积为定值,然后求最值,这是求解最值的通法㊂方法4: 利用不等式构建不等式 求最值例4 (1)已知正实数x ,y 满足(x +4)㊃(y +1)=9,则x y 的最大值等于()㊂A.0B .5C .1D .2(2)已知a +b +c =0,a 2+b 2+c 2=4,则a 的最大值为( )㊂A.1 B .223C .233D .263解:注意题设中两变量的和与积的形式,借助基本不等式构建不等式求最值㊂(1)正实数x ,y 满足(x +4)(y +1)=9,即x y +x +4y =5,所以5=x y +x +4y ȡx y +2x ㊃4y =x y +4x y ,所以x y +4x y ɤ5(当且仅当x =4y 时取等号),所以-5ɤx y ɤ1,即0ɤx y ɤ1㊂故x y 的最大值为1㊂应选C ㊂(2)由a +b +c =0,a 2+b 2+c 2=4,可得b +c =-a ,b 2+c 2=4-a 2㊂因为b 2+c 22ȡb +c 2()2,所以4-a 22ȡ-a 2()2,解得-263ɤa ɤ263,即a 的最大值为263㊂应选D ㊂感悟:灵活借助基本不等式a 2+b 2ȡ2a b(a ,b ɪR ),a +b ȡ2a b (a ,b ɪR +),a 2+b 22ȡa +b2()2(a ,b ɪR ),构造不等式求解,这是求解最值的一条简捷的途径㊂作者单位:河南省商丘市回民中学(责任编辑 郭正华)91知识结构与拓展高一数学 2022年9月Copyright ©博看网. All Rights Reserved.。
2x + 3 - 2x ⎫ ∈ 0, ⎪ 时等号成立.例谈用基本不等式求最值的四大策略摘要基本不等式 a + b 2≥ ab ( a > 0, b > 0 当且仅当 a = b 时等号成立)是高中必修五《不等式》一章的重要内容之一,也是高考常考的重要知识点。
从本质上 看,基本不等式反映了两个正数和与积之间的不等关系,所以在求取积的最值、 和的最值当中,基本不等式将会焕发出强大的生命力,它将会是解决最值问题 的强有力工具。
本文将结合几个实例谈谈运用基本不等式求最值的三大策略。
关键字:基本不等式 求和与积的最值 策略一、基本不等式的基础知识[1]基本不等式:如果 a > 0, b > 0 ,则 a + b 2≥ ab ,当且仅当 a = b 时等号成立。
在基本不等式的应用中,我们需要注意以下三点:“一正”: a 、b 是正数,这是利用基本不等式求最值的前提条件。
“二定”:当两正数的和 a + b 是定值时,积 ab 有最大值;当两正数的积 ab 是 定值时,和 a + b 有最小值。
“三相等”: a = b 是 a + b 2= ab 的充要条件,所以多次使用基本不等式时,要注意等号成立的条件是否一致。
二、利用基本不等式求最值的四大策略策略一 利用配凑法,构造可用基本不等式求最值的结构通过简单的配凑(凑系数或凑项)后,使原本与基本不等式结构不一致的 式子,变为结构一致,再利用均值不等式求解最值。
题型一 配凑系数例 1 设 0 < x < 3 2 ,求函数 y = 4x (3 - 2x ) 的最大值。
分析:因为 4x + (3 - 2x ) = 3 + 2x 不是个定值,所以本题无法直接运用基本不等式求解。
但凑系数将 4 x 拆为 2 ⋅ 2x 后可得到和 2x + (3 - 2x ) = 3 为定值,从而可 利用基本不等式求其最大值。
解:因为 0 < x < 3 2,所以 3 - 2x > 0故 y = 4x (3 - 2x ) = 2 ⋅ 2x (3 - 2x ) ≤ 2⎛ ⎝2 ⎭ 2⎪ =9 2当且仅当 2x = 3 - 2x , 即 x =3 4⎝ 2 ⎭所以原式的最大值为9.2= - 5 - 4x + ⎪ + 3 ≤ -2 + 3 = 1a 2+ +b (a 2 - ab ) ⋅ 2 - a 2 + + a 2- ab + ab + +题型二 配凑项1 配凑常数项例 2 已知 x < 5 4 ,求函数 y = 4x - 2 + 1 4x - 5 的最大值。
基本不等式最值解题技巧
1、分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
2、
基本不等式解题技巧得深入拓展——拼凑定和,拼凑定积,拼凑常数降幂,拼凑常数升幂,约分配凑,引入参数拼凑,引入对偶式拼凑,确立主元拼凑。
基本不等式是主要应用于求某些函数的最值及证明的不等式。
其表述为:两个正实数
的算术平均数大于或等于它们的几何平均数。
在采用基本不等式时,必须牢记“一正”“二定”“三成正比”的七字真言。
“一正”就是指两个式子都为正数,“二定”就是指应用领域基本不等式谋最值时,和或四维定值,“三成正比”就是指因且仅当两个式子成正比时,就可以挑等号。
两大技巧
“1”的妙用。
题目中如果发生了两个式子之和为常数,建议这两个式子的倒数之和
的最小值,通常用所求这个式子除以1,然后把1用前面的常数则表示出,并将两个式子
进行即可排序。
如果题目未知两个式子倒数之和为常数,谋两个式子之和的最小值,方法
同上。
调整系数。
有时候求解两个式子之积的最大值时,需要这两个式子之和为常数,但是
很多时候并不是常数,这时候需要对其中某些系数进行调整,以便使其和为常数。
基本不等式应用一:直接应用求最值例1:求下列函数的值域(1)y =3x 2+(2)y =x +解:(1)y =3x 2+≥2)=∴值域为[,+∞)(2)当x >0时,y =x +≥2)=2;当x <0时,y =x +=-(-x -)≤-2)=-2∴值域为(-∞,-2]∪[2,+∞) 二:凑项例2:已知54x <,求函数14245y x x =-+-的最大值。
解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
变式12,33y x x x =+>- 三:凑系数例3.当时,求(82)y x x =-的最大值。
解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。
当,即x =2时取等号当x =2时,(82)y x x =-的最大值为8。
评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。
变式1:设230<<x ,求函数)23(4x x y -=的最大值。
解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫ ⎝⎛∈=3,03x 时等号成立。
变式2:已知x ,y 为正实数,且x 2+=1,求x 的最大值.分析:因条件和结论分别是二次和一次,故采用公式ab ≤。
例谈基本不等式求最值的十种策略作者:张刚来源:《理科考试研究·高中》2017年第12期摘要:利用基本不等式求最值时,要坚持“一正二定三等”这三个原则,这里蕴含着不等式的最值定理:“积定和最小,和定积最大”利用这个定理时,往往由于所给的式子不一定直接具备基本不等式的结构条件,这就需要我们对所给的式子进行恒等变形构造,使之达到基本不等式的条件下面本文介绍十种常用的构造方法,以期达到抛砖引玉的作用.关键词:不等式;最值;策略一、整体化处理例1若a,b满足1a+2b=ab,则ab的最小值等于().A2B2 C22D4解由基本不等式得ab=1a+2b≥22ab,当且仅当b=2a时取等号,整理得ab≥22.故选C.评注遇到求a+b,ab的最值,一般可以对题设条件直接使用基本不等式,获得关于a+b,ab的不等式,进而化简变形,即可顺利求解.二、凑配系数例2求函数y=sin2x·cos2x+1sin2x·cos2x的最小值.解引入待定正实数λ,μ,且λ+μ=4,则y=sin22x4+4sin22x=sin22x4+λsin22x+μsin22x≥2sin22x4·λsin22x+μsin22x≥λ+μ,当且仅当sin22x4=λsin22x且sin22x=1,即λ=14,μ=154时等号同时成立,所以y有最小值174.评注一般来说,见到和就想积,凑积为定值,则和有最小值;见到积就想到和,凑和为定值,则积有最大值若问题满足了运用基本不等式的条件“正”“定”,而取等条件无法直接确定时,我们应引入参数,利用待系数法探索恰当的取等条件,从而确定适当的系数.三、加减配常数项例3已知x解由5-4x>0,得fx=-[5-4x+15-4x]+3≤-2+3=1,当且仅当x=1时等号成立,故函数fx的最大值为5.评注求解本题需要关注两点:一是对已知条件的适当变形构造,由x0;二是对目标函数解析式的适当变形构造,以便活用结论“若x四、连续使用基本不等式例4若a>b>0,求a2+16ba-b的最小值为.解a2+16ba-b≥a2+16b+a-b2=a2+64a2≥16(当且仅当b=a-b且a=8a,即a=2b=22时等号成立),故a2+16ba-b的最小值为16.评注此处第一次运用基本不等式,实质也是化二元为一元的消元过程连续多次使用基本不等式求最值时,要注意等号成立的条件是否一致,否则就会出错.五、分离(分子)常数例5若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是.解因为x>0,所以x+1x≥2,所以xx2+3x+1=1x+1x+3≤12+3=15(当且仅当x=1时取等号),所以xx2+3x+1的最大值为15,所以由已知不等式恒成立得a≥15,故a的取值范围是15,+∞.评注对xx2+3x+1的分子、分母同除以x可得到1x+1x+3,其优点是将变量x全部集中在分母位置,为灵活运用基本不等式创造有利的条件.六、变用公式例6函数y=2x-1+5-2x(12解y2=2x-1+5-2x2=4+22x-15-2x≤4+2x-1+5-2x=8.又y>0,所以0评注基本不等式a+b2≥ab有几个常用变形结论:a2+b22≥ab,a+b22≥ab,a2+b22≥a+b2,a2+b22≥a+b22前两个变形结论很直接,后两个变形结论不易想到,应重视.七、对数变换例7已知a>0,b>0,ab=8,则当a的值为时log2a·log22b取到最大值.解因为当log2a·log22b取最大值时,log2a·log22b必定同号,所以log2a·log22b≤lo g2a+log22b22=log22ab22=4,当且仅当a=4,b=2时取等号故当a的值为4时,log2a·log22b取到最大值.评注本题重点考查ab≤a+b22与对数运算法则logaM+logaN=logaMN的交汇.八、三角变换例8已知0解考虑到已知条件为正切关系式,则应将目标式取正切化简变形.因为00且0≤x-y所以tanx-y=tanx-tany1+tanxtany=23tany+1tan y≤33.当且仅当tany=33,即x=π3,y=π6时等号成立,因正切函数在0,π2上单调递增,所以x-y≤π6故t=x-y的最大值为π6.评注解题思路:需要借助正切函数的单调性,间接获得x-y的最大值.九、常数代换例9若直线xa+yb=1a>0,b>0过点1,2,则a+b的最小值等于.解由已知得1a+2y=1,与目标式结合构造积为定值的倒数结构.a+b=a+b1a+2b=3+2ab+ba≥3+22,当且仅当b=2a=2+2时取到最小值3+22.评注常数代换是将目标函数式中的常数用已知式进行等量代换,或者将目标函数式与已知代数式相乘,然后通过化简变形,求得目标函数的最值,其中常用“1”的代换.十、y=1a+ab型变换例10设a+b=2,b>0,则当a=时,12a+ab取得最小值.解12a+ab=a+b4a+ab=a4a+b4a+ab≥-14+2b4a·ab=34,当且仅当b4a=ab且a评注本题难点在于:关注常数代换及拆分、放缩变形,注意a4a≥-14.总之,基本不等式在高考数学试题中,是重点考查的知识点,也是与其他数学知识容易交汇命题考查的难点之一,因此所给题目的条件特点,深化理解、强化应用,灵活选择上面这十种常用的变换策略,相信在有关基本不等式求最值的问题中就会轻松破解.。
高中基本不等式求最值解题技巧高中基本不等式求最值解题技巧一、基本不等式的概念和特点高中数学中,不等式是一个重要的概念,它与等式一样,是数学中的一种关系。
而基本不等式是不等式中的一种基础类型,它具有许多特点和求解技巧。
基本不等式一般为形如a/x + b/y ≥ c的形式,其中a、b、c为常数,x、y为变量,且x、y均大于0。
在基本不等式中,我们常常需要求解其最值,即找到使得不等式成立的最大或最小值。
这就需要掌握一些技巧和方法来解决这类问题,从而提高我们的数学解题能力。
二、基本不等式求最值的一般步骤1. 分析问题:我们需要对题目给出的基本不等式进行分析,明确要求的最值是最大值还是最小值。
要注意不等式中的常数和变量的具体取值范围。
2. 辅助变量法:辅助变量法是解决基本不等式求最值问题的常用方法。
通过引入一个新的变量,可以将原不等式转化为关于辅助变量的方程组,从而更容易地确定最值的取值范围。
3. 推广性分析:分析不等式中各项参数的推广性,确定不等式成立的条件,从而辅助我们找到最值的解法。
4. 求导分析:对于涉及函数的基本不等式问题,可以利用导数的性质进行求解。
通过求导分析函数的单调性和极值情况,可以确定不等式的最值区间。
5. 综合利用不等式性质:利用不等式的性质,结合数学推理和逻辑推导,可以更灵活地解决不等式求最值的问题。
三、高中基本不等式求最值的解题技巧与举例分析以基本不等式a/x + b/y ≥ c为例,我们可以通过具体的数学题目来演示基本不等式求最值的解题技巧。
给定不等式2/x + 3/y ≥ 5,求x和y的最小值。
我们可以引入辅助变量法,令t=1/x,s=1/y,那么不等式可以转化为2t + 3s ≥ 5。
通过求解辅助不等式2t + 3s = 5的解集,确定最值的取值范围。
进一步分析可知,不等式成立的条件为t>0,s>0,因此我们可以确定最值的解。
我们可以利用推广性分析的方法,分析a、b、c的取值范围,从而求解最值问题。
秒杀高考数学题型之利用基本不等式求最值【秒杀题型二】:利用基本不等式求最值。
『秒杀策略』:条件:一正、二定、三相等。
①和定,积有最大值,当且仅当两正数取等号时最大。
②积定,和有最小值,当且仅当两正数取等号时最小。
在求最值时要学会三种方法:以母题为例说明三种方法。
【高考母题】:如果0,0,2,x y x y xy >>++=则x y +的最小值为 ( )A.32B.1+2 D.2 【解析】:方法一:基本不等式法:思路:求y x +的最值要把xy 通过22⎪⎭⎫ ⎝⎛+≤y x xy 放缩到y x +,22)(2⎪⎭⎫ ⎝⎛+≤=+-y x xy y x ,得232-≤+y x ,选C 。
方法二:万能方法:思路:把所求的式子设为t ,与已知条件代入消元(含两个变量)转化为一元二次不等式,如含一个变量直接转化为一元二次不等式,令0≥∆得到t 的范围。
设t y x =+,代入得022=-+-t tx x ,0842≥-+=∆t t ,得322--≤t (舍去),232-≥t 。
方法三:秒杀方法:思路:当已知条件与所求式子中变量.............(.双变量...).系数一致时.....(.或能配成一致时,只考虑一............次和或平方和前的系数,乘积不用考虑,因为乘积可以配任意需要的系数..................................这种方法叫地位等价法求最值,..............当取等号时取到最值。
..........已知条件与所求式子中x 的系数均为1,y 的系数均为1,则当y x =时取到最值,即31+-==y x 时取到最值232-。
1.(2007年新课标全国卷7)已知0x >,0y >,y b a x ,,,成等差数列,y d c x ,,,成等比数列,则2()a b cd +的最小值为 ( )A.0B.1C.2D.4【解析】:基本不等式xy y x 2≥+,由等差与等比数列的性质得:22()()44a b x y xy cd xy xy++=≥=,选D 。
高中数学解题方法系列:用基本不等式求最值的4种策略基本不等式ab b a ≥+2(0,0>>b a 当且仅当b a =时等号成立)是高中必修五《不等式》一章的重要内容之一,也是高考常考的重要知识点。
从本质上看,基本不等式反映了两个正数和与积之间的不等关系,所以在求取积的最值、和的最值当中,基本不等式将会焕发出强大的生命力,它将会是解决最值问题的强有力工具。
本文将结合几个实例谈谈运用基本不等式求最值的三大策略。
一、基本不等式的基础知识[1]基本不等式:如果0,0>>b a ,则ab b a ≥+2,当且仅当b a =时等号成立。
在基本不等式的应用中,我们需要注意以下三点:“一正”:a 、b 是正数,这是利用基本不等式求最值的前提条件。
“二定”:当两正数的和b +a 是定值时,积ab 有最大值;当两正数的积ab 是定值时,和b +a 有最小值。
“三相等”:b a =是ab b a =+2的充要条件,所以多次使用基本不等式时,要注意等号成立的条件是否一致。
二、利用基本不等式求最值的四大策略策略一利用配凑法,构造可用基本不等式求最值的结构通过简单的配凑(凑系数或凑项)后,使原本与基本不等式结构不一致的式子,变为结构一致,再利用均值不等式求解最值。
题型一配凑系数例1 设230<<x ,求函数)23(4x x y -=的最大值。
分析:因为x x x 23)23(4+=-+不是个定值,所以本题无法直接运用基本不等式求解。
但凑系数将4x 拆为x 22⋅后可得到和3)23(2=-+x x 为定值,从而可利用基本不等式求其最大值。
解:因为230<<x ,所以023>-x 故2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫ ⎝⎛∈=23,043x 时等号成立. 所以原式的最大值为29. 题型二配凑项1 配凑常数项例2 已知54x <,求函数54124-+-=x x y 的最大值。
3.4 基本不等式一、教学目标:1.通过探究“数学家大会的会标”及感受会标的变形,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景培养学生观察问题、分析问题和解决问题的能力;培养学生形成数形结合的思想意识;2.进一步让学生探究不等式的代数证明,加深对基本不等式的理解和认识,提高学生逻辑推理的能力和严谨的思维方式。
3.通过例题让学生学会用基本不等式求最大值和最小值。
二、教学重点:(1)用数形结合的思想理解并探索基本不等式的证明;(2)运用基本不等式解决实际问题。
教学难点:基本不等式的运用。
重、难点解决的方法策略:本课在设计上采用了由特殊到一般、从具体图形到抽象代数的教学策略.利用数形结合思想,层层深入,通过学生自主活动探究,分析、整理出推导公式的不同思路,同时,借助多媒体的直观演示,帮助学生理解,并通过范例后的变式训练和教师的点拨引导,师生互动、讲练结合,从而突出重点、突破教学难点。
三、学情及导入分析:对于高一的学生,不等式并不陌生,前面学习了不等式及不等式的性质,能够进行简单的数与式的比较,本节所学内容就用到了不等式的性质,所以学生可以在巩固不等式性质的前提下学习基本不等式,接受上是容易的,争取让学生真正意义上理解基本不等式。
教具准备多媒体课件、投影胶片、投影仪等。
四、教学过程:合作探究探究一:观察上面的会标。
会标是根据中国古代数学家赵爽的弦图设计的,该图给出了迄今为止对勾股定理最早、最简洁的证明,体现了以形证数、数形结合的思想。
将代数与几何紧密的结合在了一起。
师:从图形上你能观察到了什么? 生:边、角、三角形、正方形 师:我们根据弦图可知勾股定理,那么我们对三角形、正方形可以研究哪些数量关系呢?生:正方形和三角形的面积、周长,根据给的边可以求。
师:那么面积之间又有怎样的关系呢? 生:大正方形面积22a b +,四个直角三角形面积2ab ,并且22a b +>2ab 。
师:仅此而已吗?你还能发现怎样的关系?生:还会相等。
求基本不等式最值的方法基本不等式最值的求解方法是数学中的重要内容,它在解决实际问题和数学推导中具有广泛的应用。
下面将介绍几种常见的方法来求解基本不等式的最值。
1. 利用二次函数性质:对于一元二次函数 f(x) = ax^2 + bx + c,其中 a、b、c 分别是实数,当 a>0 时,函数开口向上,最小值为 f(-b/2a);当 a<0 时,函数开口向下,最大值为 f(-b/2a)。
2. 利用数轴和符号的方法:以不等式的变量为基准,将不等式化简为一维数轴上的问题。
首先找到不等式的解集,并根据不等式中的符号(大于号或小于号)确定最值的类型(最大值或最小值)。
然后,根据最值的要求,找到数轴上对应的点,即最值点。
3. 利用 AM-GM 不等式:AM-GM 平均值不等式是一种用于估计数值大小的方法。
对于非负实数 a1, a2, ..., an,其几何平均值 GM = (a1 * a2 * ... * an)^(1/n),算术平均值 AM = (a1 + a2 + ... + an)/n,不等式表达式为GM ≤ AM。
通过利用 AM-GM不等式,将给定的不等式进行转换和化简,可以求解不等式的最值。
4. 利用导数和极值:对于连续函数 f(x) 在某个区间内,如果 f'(x) 存在且连续,可以通过求解 f'(x) = 0 的根来找到函数 f(x) 的极值点。
然后根据极值的类型(极大值或极小值)来确定最值。
以上是一些常见的方法来求解基本不等式的最值。
根据具体的不等式形式和要求的最值类型,我们可以选择合适的方法进行求解。
在实践中,掌握这些方法并灵活运用它们,将能够有效地解决各种不等式最值的问题。
基本不等式应用利用基本不等式求最值的技巧————————————————————————————————作者: ————————————————————————————————日期:ﻩ基本不等式应用利用基本不等式求最值的技巧 应用一:求最值例1:求下列函数的值域(1)y =3x 2+\f(1,2x 2) (2)y =x +错误!解:(1)y=3x 2+错误!≥2错误!=错误! ∴值域为[错误!,+∞)(2)当x >0时,y=x +错误!≥2错误!=2;当x<0时, y =x +1x = -(- x -1x)≤-2错误!=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。
解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。
当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。
评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。
变式:设230<<x ,求函数)23(4x x y -=的最大值。
解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫⎝⎛∈=23,043x 时等号成立。
利用基本不等式求最值的技巧在运用基本不等式ab b a 222≥+与2b a ab +≤或其变式解题时,要注意如下技巧 1:配系数【例1】已知230<<x ,求)23(x x y -=的最大值. 【分析】按照“和定积最大”的思路,由于)23(x x -+不是定值,所以应把x 配出系数2成为x 2,使得3)23(2=-+x x 为定值. 【解】由于230<<x ,所以023>-x ,从而 89)2232(21)]23(2[21)23(2=-+⨯≤-=-=x x x x x x y ,当且仅当)23(2x x -=即43=x 时,89max =y . 说明:这里运用了2)2(b a ab +≤. 2:添加项【例2】已知23>x ,求322-+=x x y 的最小值. 【分析】按照“积定和最小”的思路,由于322-⨯x x 不是定值,所以应把x 变凑成23)32(21+-x ,使得1322)32(21=-⨯-x x 为定值. 【解】由于23>x ,所以032>-x ,于是 2723322)32(21223322)32(21322=+-⨯-≥+-+-=-+=x x x x x x y , 当且仅当322)32(21-=-x x 即25=x 时,27min =y . 3:分拆项【例3】已知2>x ,求2632-+-=x x x y 的最小值. 【分析】按照“积定和最小”的思路,必须把2632-+-=x x x y 分拆成两项,再配凑适当的系数,使得其积为定值.【解】由于2>x ,所以,3124)2(2124)2(2)2(3)22(26322=+-⨯-≥+-+-=---+-=-+-=x x x x x x x x x x y 当且仅当242-=-x x 即4=x 时,3min =y . 4:巧用”1”代换【例4】已知正数y x ,满足12=+y x ,求yx 21+的最小值. 【解】注意到844244)21()2(21=+⨯≥++=+⨯+=+xy y x x y y x y x y x y x ,当且仅当x y y x =4即21,41==y x 时,8)21(min =+y x . 一般地有,2)())((bd ac yd x c by ax +≥++,其中d c b a y x ,,,,,都是正数.这里巧妙地利用”1”作出了整体换元,从而使问题获得巧解.【例5】已知正数z y x ,,满足1=++z y x ,求zy x 941++的最小值. 【解】注意到y z z y x z z x x y y x z y x z y x z y x 499414)941()(941++++++=++⨯++=++ 36492924214=⨯+⨯+⨯+≥yz z y x z z x x y y x ,当且仅当x y y x =4,x z z x =9,y z z y 49=即21,31,61===z y x 时,36)941(min =++z y x . 5:换元【例6】已知c b a >>,求cb c a b a c a w --+--=的最小值. 【解】设c b y b a x -=-=,,则c a y x -=+,y x ,都是正数,所以42≥++=+++=x y y x y y x x y x w ,当且仅当x y y x =即b c a 2=+时,c b c a b a c a w --+--=取到最小值是4.说明:换元的目的是为了简单化与熟悉化,如果利用整体思想也可以不换元.【例7】已知1->x ,求8512+++=x x x y 的最大值. 【解】设t x =+1,则0>t ,7134213418)1(5)1(2=+≤++=+-+-=t t t t t y ,当且仅当tt 4=即1,2==x t 时,71max =y . 说明:这里如果不换元,则运算不是很方便.6:利用对称性【例8】已知正数z y x ,,满足1=++z y x ,求121212+++++z y x 的最大值.【分析】由于条件式1=++z y x 与结论式121212+++++z y x 都是关于正数z y x ,,轮换对称的,故最大值必然是当31===z y x 时取到,这时35121212=+=+=+z y x ,从而得到下面证明思路与方向 【解】利用基本不等式b a ab +≤2得351235)12(2++≤⨯+x x , 351235)12(2++≤⨯+y y ,351235)12(2++≤⨯+z z ,以上三式同向相加得1053)(235)121212(2=++++≤+++++z y x z y x ,所以化简得15121212≤+++++z y x ,所以当且仅当31===z y x 时121212+++++z y x 取到最大值15.一般地,如果条件式与结论式都是关于各个元素轮换对称的,则最值必定是在各个元素相等时取到.利用这一思想往往可给解题者提供解题的方向与思路.7:直接运用化为其它【例9】已知正数b a ,满足3++=b a ab ,求ab 的取值范围.【分析】由于条件式3++=b a ab 含有b a ab +,,它们都在2b a ab +≤式中出现,故可直接运用基本不等式转化为待求式的关系式后再求.【解】利用基本不等式b a ab +≤2得323+≥++=ab b a ab ,令ab t =,则得0322≥--t t ,所以0)1)(3(≥+-t t ,由于0>t ,所以3≥t 即9≥ab ,故ab 的取值范围是),9[+∞.。
基本不等式求最值的6种常用方法知识梳理:一、基本不等式常用的结论1、如果a ,b ∈R ,那么a 2+b 2≥2ab (当且仅当a b =时取等号“=”)推论:ab ≤a 2+b 22(a ,b ∈R ) 2、如果a >0,b >0,则a +b ≥2ab ,(当且仅当a =b 时取等号“=”).推论:ab ≤⎝ ⎛⎭⎪⎫a +b 22(a >0,b >0);a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 223、a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0)二、利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 三、利用基本不等式求最值的方法1、直接法:条件和问题间存在基本不等式的关系2、配凑法:凑出“和为定值”或“积为定值”,直接使用基本不等式。
3、代换法:代换法适用于条件最值中,出现分式的情况类型1:分母为单项式,利用“1”的代换运算,也称乘“1”法; 类型2:分母为多项式时方法1:观察法 适合与简单型,可以让两个分母相加看是否与给的分子型成倍数关系; 方法2:待定系数法,适用于所有的形式,如分母为3a +4b 与a +3b ,分子为a +2b ,设a +2b =λ(3a +4b )+μ(a +3b )=(3λ+μ)a +(4λ+3μ)b∴ ⎩⎪⎨⎪⎧3λ+μ=1,4λ+3μ=2.解得:⎩⎨⎧λ=15,μ=25.4、消元法:当题目中的变元比较多的时候,可以考虑削减变元,转化为双变量或者单变量问题。
5、构造不等式法:寻找条件和问题之间的关系,通过重新分配,使用基本不等式得到含有问题代数式的不等式,通过解不等式得出范围,从而求得最值。
例谈用基本不等式求最值的四大策略
摘要 基本不等式ab b a ≥+2
(0,0>>b a 当且仅当b a =时等号成立)是高中必修五《不等式》一章的重要内容之一,也是高考常考的重要知识点。
从本质上看,基本不等式反映了两个正数和与积之间的不等关系,所以在求取积的最值、和的最值当中,基本不等式将会焕发出强大的生命力,它将会是解决最值问题的强有力工具。
本文将结合几个实例谈谈运用基本不等式求最值的三大策略。
关键字:基本不等式 求和与积的最值 策略
一、基本不等式的基础知识[1]
基本不等式:
如果0,0>>b a ,则
ab b a ≥+2
,当且仅当b a =时等号成立。
在基本不等式的应用中,我们需要注意以下三点:
“一正”:a 、b 是正数,这是利用基本不等式求最值的前提条件。
“二定”:当两正数的和b +a 是定值时,积ab 有最大值;当两正数的积ab 是定值时,和b +a 有最小值。
“三相等”: b a =是ab b a =+2
的充要条件,所以多次使用基本不等式时,要注意等号成立的条件是否一致。
二、利用基本不等式求最值的四大策略
策略一 利用配凑法,构造可用基本不等式求最值的结构
通过简单的配凑(凑系数或凑项)后,使原本与基本不等式结构不一致的式子,变为结构一致,再利用均值不等式求解最值。
题型一 配凑系数
例1 设230<<x ,求函数)23(4x x y -=的最大值。
分析:因为x x x 23)23(4+=-+不是个定值,所以本题无法直接运用基本不等式求解。
但凑系数将4x 拆为x 22⋅后可得到和3)23(2=-+x x 为定值,从而可利用基本不等式求其最大值。
解:因为2
30<<x ,所以 023>-x
故2922322)23(22)23(42
=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫ ⎝⎛∈=
23,043x 时等号成立. 所以原式的最大值为
29. 题型二 配凑项
1 配凑常数项
例2 已知54
x <,求函数54124-+-=x x y 的最大值。
[2] 分析:因450x -<,所以首先要“调整”符号。
另外,541)
24(--=x x y 又不是常数,所以对42x -要进行拆、凑项。
解:因为4
5<x ,所以045>-x 所以2451)45(≥-+-x x 所以13234514554124=+-≤+⎪⎭⎫ ⎝⎛-+--=-+
-=x x x x y 当且仅当15454x x
-=-,即1x =时,上式等号成立,故当1x =时,y 取最大值1.
2 配凑一般项
例3 (2010年高考四川文科卷第11题)设0a b >>,则()
211a ab a a b ++-的最小值是( )
(A )1 (B )2 (C )3 (D )4
分析:如果要利用基本不等式来求和的最小值,就必须出现积的定值。
考虑到11=⋅ab ab ,1)(1)(=-⋅-b a a b a a 即11)(22=-⋅-ab
a a
b a ,所以配凑ab ab -、这两项。
解:因为0>>b a ,所以0>ab ,01>ab ,故2121=⋅≥+ab
ab ab ab 而0)(>-b a a ,0)
(1>-b a a ,
所以2)
(1)(2)(1)(=-⋅-≥-+-b a a b a a b a a b a a 故()211a ab a a b ++-w =211()
a a
b ab ab a a b -+++- =11()()
ab a a b ab a a b ++-+-≥2+2=4 当且仅当ab =1,a (a -b )=1时等号成立,如取a 2,b =
22,式子取得最小值4.
故选择答案D
策略二 遇到分式,可尝试分离后再用基本不等式
题型一:配凑分子,分离分式
对于分子次数比分母高的分式不等式,可尝试先对分子进行配凑,使之出现与分母相同的项,然后分离得到可用基本不等式求解的结构。
例4 求)1(1
22y 2>-+-=x x x x 的最小值。
[2] 分析:可先将分子配凑出含有1x-的项,再将其分离。
解:因为1>x ,所以01>-x
所以21
1111)1(12222≥-+-=-+-=-+-x x x x x x x 当且仅当.21
11时取等号时,也就是=-=-x x x 所以y 的最小值为2.
题型二:同除分子,分离分母
对于分母次数比分子高的分式不等式,可尝试上下同除以分子,使分母出现互倒的结构,再用基本不等式求最值。
例5 求9
y 2+=x x 的值域. 分析:题目没有交代x 的取值范围,此题需要分类讨论。
解:当0≠x 时,分子分母同除以x ,则
x x x x 919y 2+=+= (1) 当69290=⋅≥+>x
x x x x 时,有,
所以6
19
1
y ≤+=x x , 当且仅当时,等号成立3=x (2) 当()6969)(290-≤+=-⋅-≥-+
-<x x x x x x x ,所以时,有, 故6191-≥+=x
x y ,当且仅当时,等号成立3-=x 当时0=x ,9
y 2+=x x =0 综上可知,y 的取值范围是⎥⎦
⎤⎢⎣⎡-6161, 策略三 遇到根式,可尝试平方后再用基本不等式
例6 求函数)2
521(2512y <<-+-=x x x 的最大值. 分析:观察式子的结构,可以看到是个定值4)25()12(=-+-x x ,所以将式子平方后,便可构造出可用基本不等式的结构。
解:将两x x 2512y -+-=边平方,得
8)25()12(4)25)(12(24)2512(y 22=-+-+≤--+=-+-=x x x x x x 又因为y>0,所以220<<y
当且仅当2x x 251-=-,即.2
3时,取等号=x 所以y 的最大值是2.
策略四 利用1的性质,合理代换后再用基本不等式
“1”是一个特殊的数,任何式子乘以1,式子仍不变。
所以如果题目条件给出某个式子的值为1,则可在要求最值的式子上乘以这个式子,从而构造出可用基本不等式的形式。
例7 设0>xy ,且111=+y
x ,求y x +的最小值. 分析:由于
111=+y x ,所以y x +=()y x x y y x y x ++=+⎪⎪⎭
⎫ ⎝⎛+211,故可用基本不等式求最值.
解:由于111=+y x ,所以y x +=()y x x y y x y x ++=+⎪⎪⎭
⎫ ⎝⎛+211 又由于00y 0>>>x y y x x xy 和同号,故
和,所以,故22y =⋅≥+y x x y y x x 所以y x +=4222=+≥++y
x x y , 当且仅当.11时,取等号或,即-===y x x
y y x 所以,原式的最小值为2.
总结
以上四种策略,是用基本不等式解决最值问题的常用方法。
无论是配凑系数与项、分离分子与分母、平方去根号,还是利用“1”整体代换,其目的只有一个,那就是构造出和为定值或者是积为定值的两项,然后才可用基本不等式。
构造可用基本不等式的结构,是解决此类最值问题的根本所在。
参考文献
[1]人民教育出版社 普通高中课程标准实验教科书 数学必修5A 版 2004.5第一版 第五章
[2] 童其林;毛金才;[J];新高考(语文数学英语);2010年02期
[3]段军长;均值不等式的应用[J];数理化解题研究;2012年第5期。