乙苯生产工艺
- 格式:pptx
- 大小:526.88 KB
- 文档页数:30
乙苯装置工艺流程及生产原理第一节催化干气预处理部分生产原理:乙苯烃化催化剂最怕碱性物质,会造成催化剂失活。
而催化干气多采用乙醇胺等碱性物质脱硫技术脱除硫化氢,因此为了防止碱性物质进入烃化反应系统,催化干气首先要经过水洗。
干气中的丙烯会与苯生成丙苯,同时会增加甲苯的生成量,造成苯耗上升增加产品成本,所以需要通过吸收的办法尽可能降低干气中丙烯的含量。
工艺流程叙述:催化干气进装置后进入催化干气水洗罐(D-101)。
该罐具有两个作用,其一是将催化干气进装置时携带的液体除去,另一作用是用水将携带的MEA 除去。
罐内设填料一段,罐底设水洗循环泵(P-101A/B),水洗用水循环使用。
从催化干气水洗罐(D-101)顶部出来的气体依次进入催化干气换热器(E-101)、催化干气过冷器(E-102)与丙烯吸收塔(C-101)塔顶出来的低温催化干气、冷冻水换热,温度降至15℃,从底部进入丙烯吸收塔(C-101)。
吸收剂从丙烯吸收塔顶部进入与催化干气逆向接触,将催化干气中的丙烯绝大部分除去,从丙烯吸收塔顶部出来的催化干气进入催化干气换热器(E-101)与进塔的催化干气换热回收部分冷量后去反应部分。
吸收了丙烯的吸收剂从塔底出来进入贫液-富液换热器(E-103)与贫液换热后进入解吸塔(C-102)。
解吸塔进料进入解吸塔后,塔顶汽相进入解吸塔顶蒸汽发生器(E-106)冷凝冷却,然后进入解吸塔回流罐(D-102),冷凝下来的液体用解吸塔回流泵(P-103A/B)送至解吸塔顶部,未冷凝的气体从解吸塔回流罐顶部出来后依次进入解吸塔顶冷却器(E-107)解吸塔顶气过冷器(E-108)进一步冷凝冷却,然后进入解吸塔顶分液罐(D-103)进行气液分离,冷凝下来的液体用解吸塔顶凝液泵(P-104A/B)送入解吸塔回流罐(D-102),未冷凝的气体出装置。
解吸塔塔底物料用吸收剂循环泵(P-102A/B/C)加压后依次通过贫液-富液换热器(E-103)、贫液过冷器(E-104)冷却,返回丙烯吸收塔塔顶循环使用。
年产15万吨乙苯工艺设计With an Annual Output of 150 Thousand Tons of Ethyl-benzene Technology Design目录摘要 (I)Abstract (II)引言 (1)第一章文献综述 (2)1.1乙苯的性质 (2)1.2产品用途 (2)1.3 乙苯在国民经济中的重要性及市场需求 (2)第二章生产工艺流程设计 (3)2.1 由C8芳烃分离乙苯 (3)2.2 苯的烷基化生产乙苯 (3)2.2.1气液相烷基化法 (3)2.2.2气固相烷基化法 (3)2.2.3莫比尔——巴杰尔法(Mobil—Badger) (4)2.3工艺参数的确定 (4)第三章工艺计算 (5)3.1物料衡算 (5)3.1.1原料乙烯进料量计算 (5)3.1.2原料新鲜苯的计算 (6)3.1.3循环苯的计算 (6)3.1.4络合物计算 (6)3.1.5 尾气量的计算 (7)3.1.6 烷基化液量的计算 (8)3.1.7排出的废络合物 (8)3.1.8 机械损失量 (8)3.2.热量衡算 (11)3.2.1烃化塔带入热量的计算 (11)3.2.2 物料带出热的计算 (11)3.2.4烷基化反应器冷凝器负荷及冷却水量的计算 (14)3.2.5 烷基化液冷却器及冷却水 (15)3.3乙苯精馏塔衡算 (15)第四章苯精馏塔的设计表 (17)4.1塔体温度的确定 (17)4.1.1塔顶温度 (17)4.1.2塔底温度确定 (18)4.1.3烷基化液进料温度 (18)4.2回流比及实际板数的确定 (19)4.2.1回流比的确定 (19)4.2.2最小理论板数的确定 (19)4.2.3总板效率 (19)4.2.4实际板数确定 (20)4.3进料板位置的确定 (20)4.4气液相负荷及塔径计算 (20)4.5溢流装置的设计 (23)4.5.1溢流堰长 (23)4.5.2溢流堰高 (23)4.6降液管的设计 (23)4.6.1弓形降液管的宽度和横截面积 (23)4.6.3降液管底隙高度 (24)4.7塔板的布置 (24)4.7.1边缘区宽度确定 (24)4.7.2开孔区面积计算 (24)4.7.3浮阀数计算及其排列 (24)第五章塔板流体力学验算 (26)5.1压降计算 (26)5.2塔板负荷性校核 (27)5.2.1极限雾沫夹带线 (27)5.2.2液泛线 (27)5.2.3降液管负荷上限线 (27)5.2.4液相下限线 (28)5.2.5气液负荷下限线 (28)第六章塔高及塔附件的计算及选型 (29)6.1 塔总体高度 (29)6.2塔体壁厚设计 (29)6.3封头设计及人孔选取 (29)6.3.1封头设计 (29)6.3.2人孔及群座的选取 (29)6.4接管计算 (29)6.4.1进料管 (30)6.4.2塔顶蒸汽管 (30)6.4.3回流管径 (30)6.4.4釜底出料管径 (31)6.4.5再沸气管径 (31)结论 (32)致谢 ............................................................................ 错误!未定义书签。
乙苯制苯乙烯工艺技术流程乙苯制苯乙烯是一种重要的工业化学反应过程,该过程是通过乙苯经过一系列的化学反应,最终生成苯乙烯。
下面将详细介绍乙苯制苯乙烯的工艺技术流程。
1. 原料准备:乙苯是制取苯乙烯的主要原料,其纯度必须高于99%。
乙苯进入工厂之前首先要经过净化处理,去除其中的杂质,以确保反应的高效进行。
2. 加热塔:将净化后的乙苯进入加热塔,加热塔内部有一系列的加热器,将乙苯加热至适宜的反应温度,通常在500-600°C之间。
3. 顶部冷凝器:从加热塔的顶部冷凝器中出来的气体,经过冷凝作用,变为液体,其中含有苯乙烯和乙苯,通过分离装置分离苯乙烯和乙苯。
4. 初级分离器:初级分离器用来分离顶部冷凝器中的液体混合物,主要分离苯乙烯和乙苯。
苯乙烯较轻,因此会被分离出来,进入下一步反应,而乙苯则会在底部得到收集。
5. 深度分离:由于初级分离器无法完全分离出苯乙烯和乙苯的混合物,还需要经过一系列的深度分离过程。
深度分离过程中,会使用一些特殊的分离剂,通过溶剂萃取、蒸馏或分馏来分离苯乙烯和乙苯。
6. 催化剂反应:将得到的苯乙烯和适量的空气一起进入催化剂反应器中,反应过程中,苯乙烯会发生氧化反应,生成苯乙酮。
7. 活性炭吸附:通过活性炭吸附器,将催化剂反应产生的废气中的有害物质吸附,净化废气,保护环境。
8. 蒸馏和分离:通过蒸馏和分离操作,将催化剂反应产生的混合物中的苯乙酮和乙苯分离开来。
蒸馏可以根据两者的沸点差异,将两种物质分离开来。
9. 后处理和净化:得到的苯乙酮需要经过后处理和净化,去除其中的杂质和有害物质,以提高产品的纯度。
10. 产品收集和储存:经过后处理和净化后,得到的苯乙酮可以直接进行储存或者进行下一步的加工。
以上所述为乙苯制苯乙烯的工艺技术流程。
乙苯制苯乙烯是一个复杂的过程,需要通过多个步骤来完成。
每个步骤都需要严格控制条件,以确保反应的高效和产品的纯度。
同时,化工生产中也需要注重安全和环保,控制废气和废液的排放,以保护环境。
年产8万吨苯烷基化生产乙苯工艺设计范本一、工艺流程苯烷基化生产乙苯的工艺流程如下:苯烷+ 乙烯→ 乙苯+ H2二、原料与药剂1.原料苯烷:纯度≥99.9%,水分≤0.05%,杂质≤0.01%乙烯:纯度≥99.9%,水分≤0.05%,杂质≤0.01%2.药剂催化剂:使用固定床催化剂,催化剂为铝硅比为5的分子筛。
催化剂的活性为每克催化剂处理的苯烷量为0.5mol。
还原剂:使用氢气作为还原剂,氢气纯度为99.9%。
三、反应器1.反应器类型使用固定床反应器进行反应。
2.反应器材料反应器的材料为不锈钢,具有良好的耐腐蚀性和耐高温性能。
3.反应器规格反应器的规格为直径2.5米,高度6米。
4.反应器操作条件反应器的操作条件为:温度为200℃,压力为2.5MPa,反应时间为4小时。
四、分离和纯化反应后得到的产物经过分离和纯化后得到纯乙苯。
1.分离将反应器中的产物进行分离,分离出乙苯和未反应的苯烷。
2.纯化将分离后得到的乙苯进行纯化,纯化过程采用蒸馏法进行,纯度达到99.9%。
五、工艺控制1.反应器温度控制反应器温度采用自动控制系统进行控制,保持温度稳定在200℃。
2.反应器压力控制反应器压力采用自动控制系统进行控制,保持压力稳定在2.5MPa。
3.催化剂活性监测每隔一定时间对催化剂进行检测,确保催化剂的活性保持在标准范围内。
4.产物纯度监测对产物进行定期检测,确保纯度符合标准要求。
六、安全措施1.反应器压力过高时,自动泄压阀会自动开启,确保反应器的安全。
2.反应器温度过高时,自动温度控制系统会自动降低温度,确保反应器的安全。
3.在氢气进入反应器时,必须保证氢气纯度符合要求,以防止发生爆炸事故。
4.在反应过程中,必须保证操作人员的安全,采取必要的防护措施。
乙苯生产工艺流程
《乙苯生产工艺流程》
乙苯是一种重要的有机化合物,广泛用于橡胶、塑料、化妆品等行业。
其生产工艺流程主要分为苯和乙烯的加氢反应,以下是乙苯的生产工艺流程:
1. 原料准备:首先准备苯和乙烯作为生产乙苯的原料,这两种原料通常通过石油提炼或裂解石油得到。
2. 加氢反应:将苯和乙烯送入加氢反应器中,在催化剂的作用下进行加氢反应,生成乙苯。
这个反应需要在一定的温度和压力下进行,控制好反应条件可以提高乙苯的产率。
3. 分离精馏:由于反应生成的产物中可能还含有杂质或未反应的原料,需要进行分离精馏处理。
通过恰当的精馏方法,将乙苯从未反应的原料和其它杂质中分离出来,得到纯净的乙苯产物。
4. 产品脱水:乙苯作为有机溶剂广泛用于化工生产,但其水含量严重影响着产品的质量。
因此,通常需要对乙苯进行脱水处理,降低产品中的水含量。
5. 储存包装:最后将经过处理的乙苯产品进行储存和包装,以便运输到使用场所。
这就是乙苯的生产工艺流程,通过严格控制生产过程和加工工
艺可以得到高纯度的乙苯产品,为相关行业的生产提供了稳定的原料支持。
苯烷基化合成乙苯的生产工艺目前在工业生产中, 除极少数乙苯来源于重整轻油C 8芳烃馏份抽提外, 其余90%以上是在适当催化剂存在下由苯与乙烯烷基化反应来制取。
其生产工艺有以下几种。
一、 AlCl 3 法传统的AlC13液相法使用AlC13-HCl 催化剂, AlC13溶解于苯、乙苯和多乙苯的混合物中, 生成络和物。
该络和物在烷基化反应器中与液态苯形成两相反应体系, 同时通入乙烯气体,常压下发生烷基化反应,生成乙苯和多乙苯, 同时多乙苯和乙苯发生烷基转移反应,反应中苯的烷基化反应和多乙苯的烷基转移反应在一台反应器中完成。
均相AlCl 3法通过控制乙烯的投料, 使Alcl 3催化剂的用量减少到处于溶解度范围内, 使反应可以在均一的液相中进行,烷基化和烷基转移反应在两个反应器中进行,乙苯收率高,副产焦油少,Alcl 3用量少(仅为传统法的1/3)。
二、 Alkar 法由UOP 公司于1958年开发,1960年工业化,采用负载在Al 2O 3上的BF 3作为催化剂,可用浓度低达8%~10%(wt)的乙烯为原料进行烷基化反应,烷基转移反应在另外的反应器中进行。
其工艺流程如图2。
三、Mobil-Badger气相法1976年由Mobi1和Badger公司合作开发了以高硅ZSM-5沸石为催化剂制乙苯的气相法,其工艺流程见图3。
四、Unocal/Lummus/UOP液相法20世纪80年代以来, 美国Unocal/Lummus/UOP公司联合开发了固体酸催化剂上苯与乙烯液相法制乙苯的新技术,以USY沸石为催化剂,Al203为粘合剂。
烷基化反应器分两段床层,苯与乙烯以液相进行烷基化反应,各床层处于绝热状态。
五、ABB Lummmus Global(催化蒸馏)乙苯生产工艺采用Y型沸石催化剂, 利用专利乙苯混合床和催化蒸馏技术使苯和乙烯发生烷基化反应制得高纯度工业用乙苯。
现代催化干气制乙苯技术工艺进展摘要乙苯作为重要的化工原料之一,主要用途是生产苯乙烯。
全球绝大部分乙苯都是用苯和乙烯通过烃化反应而得,且几乎都是采用纯乙烯作为原料,进而导致了乙烯成本过高。
伴随我国原油消费量逐年增加,年产含有大量乙烯的催化干气却主要作为燃料使用,不仅造成了资源浪费,也对环境造成破坏。
因此,利用催化干气作为原料,使其中的乙烯与苯反应制成乙苯的生产工艺成为迫切需要。
关键词催化干气;稀乙烯;技术工艺;发展前景引言第三代催化干气制乙苯是我国具有自主知识产权的新型工艺,已得到广泛运用。
它是以催化干气中的稀乙烯作为原料,采用气相烷基化和液相烷基转移反应,实现了催化干气中稀乙烯的最大化利用,同时還配套生产国内紧缺的用于合成聚苯乙烯、丁苯橡胶等的苯乙烯产品。
不仅开拓了催化干气利用的新路子,还大大增加了公司的效益,提升公司竞争力[1]。
1 催化干气制乙苯技术工艺过程及发展分析1.1 烃化和反烃化反应原理(1)生成乙苯:C2H4+C6H6=C6H5C2H5在沸石催化剂上存在Lewis酸中心,吸附干气中乙烯分子,再与苯反应生成乙苯。
(2)生成多乙苯:如:C6H5C2H5+ C2H4=C6H4(C2H5)2乙苯进一步烷基化生成二乙苯、三乙苯等。
(3)多乙苯反烃化:C6H4(C2H5)2+ C6H6=2 C6H5C2H5反烃化反应器中,沸石催化剂上存在Lewis酸中心,吸附多乙苯分子,与苯发生烷基转移反应生成乙苯。
(4)生成丙苯和丁苯:C2H6+ C6H6= C6H5C3H7 C4H8+ C6H6=C6H5C4H9干气中含有少量的丙烯和丁烯,在烃化催化剂上与苯发生烷基化反应,生成丙苯和丁苯。
(5)生成甲苯、二甲苯:非芳烃、乙苯和二甲苯生成甲苯;在Lewis酸中心作用下,乙苯能够异构化生成二甲苯。
1.2 工艺发展分析(1)传统A1C13液相法A1C13液相法将A1C13催化剂与苯均成液相反应状态,在反应器中进行烷基化反应,同时二乙苯与苯发生烷基转移反应。
第1篇一、实验目的1. 了解乙苯的制备原理和工艺流程;2. 掌握乙苯的实验室制备方法;3. 熟悉实验操作技能,提高化学实验实践能力。
二、实验原理乙苯(C8H10)是一种重要的有机化工原料,广泛用于合成苯乙烯、苯酚、苯胺等。
乙苯的制备方法主要有两种:一是由苯与乙烯在催化剂作用下进行烷基化反应;二是将乙苯氧化生成苯甲酸,再还原生成乙苯。
本实验采用苯与乙烯在催化剂作用下进行烷基化反应制备乙苯。
反应方程式如下:C6H6 + C2H4 → C8H10三、实验材料与试剂1. 原料:苯、乙烯;2. 催化剂:钴钼催化剂;3. 仪器:反应釜、温度计、压力计、流量计、冷凝器、接收瓶等;4. 试剂:无水乙醇、浓硫酸、氢氧化钠溶液、蒸馏水等。
四、实验步骤1. 准备工作:将反应釜清洗干净,检查各连接部位是否密封良好,温度计、压力计、流量计等仪器调试正常。
2. 催化剂制备:将钴钼催化剂按照一定比例混合均匀,装入反应釜中。
3. 原料准备:将苯和乙烯分别通过流量计进入反应釜,控制进料速度。
4. 反应:将反应釜加热至一定温度,使反应进行。
在此过程中,需密切关注温度、压力、流量等参数,确保反应在适宜条件下进行。
5. 收集乙苯:反应结束后,关闭乙烯进料阀门,继续加热一段时间,使未反应的乙烯蒸发掉。
随后,将反应混合物导入接收瓶中,收集乙苯。
6. 乙苯纯化:将收集到的乙苯进行蒸馏,去除其中的杂质,得到纯净的乙苯。
五、实验数据记录与处理1. 记录反应温度、压力、流量等参数;2. 记录乙苯的收集量;3. 记录乙苯的纯度。
六、实验结果与分析1. 乙苯的收集量:根据实验数据,乙苯的收集量为XX克;2. 乙苯的纯度:根据实验数据,乙苯的纯度为XX%;3. 分析:通过对比实验数据,分析影响乙苯产率和纯度的因素,如温度、压力、催化剂等。
七、讨论与心得1. 实验过程中,温度、压力、流量等参数对乙苯的产率和纯度有较大影响。
通过调整这些参数,可以提高乙苯的产率和纯度;2. 催化剂对乙苯的制备具有重要作用,应选择合适的催化剂,以提高反应效率;3. 实验过程中,注意安全操作,避免发生意外事故。