芥子油苷与植物激素在生物合成中的相互作用
- 格式:doc
- 大小:43.50 KB
- 文档页数:7
西兰花再生体系的建立及遗传转化体系初探的研究: ::/.:●’’、璐:::: 目录目录英文摘要?Ⅲ●.弓瞎??...硼究的目的与意义?。
.捌捌毗.材举屿方珐.材料..?.?。
.?..实验者对料。
..试剂...分析工具?.方法?...西兰花再生体系的建立■?.植物表达载体的构建..西兰茌遗泳本撇系的初步探索?.结果与予.析.西兰花再生体系的建立?。
..基因型对不定芽分化的影响...苗龄又寸不定芽分化的影响.’灏滦》寸不定芽分化的影响.驴。
对不定芽分化的影响?。
..激素对外植体生根的影响?..全长基因的克隆.用亿删植物表达载体的构建:..植物表达载体转化根癌农杆菌?.西兰花遗传转化体系的初步探索..卡那霉素筛选压力的确定??...农杆菌侵染时间的确定?..羧苄青霉素的浓度的确定??.东北农业大学硕士学位论文.’时沦?..西兰花再生体系的建立..基因型对不定芽分化的影响..菌龄对不定芽分化的影响?。
..激素对不定芽分化的影响?...姗对不定芽分化的影响??。
..激素对夕哺靳蝴的影响?。
.西兰花遗传转化体系的初步探索..卡那霉素筛选压力对不定芽分化的影响?...菌液浓度及侵染时间对不定芽分化的影响?。
..抑菌剂对不定芽分化的影响..下?步工作展望。
坌言量皂。
....。
.。
..。
..。
.。
.。
..。
.。
.。
.。
.。
一攻滇硕士学位期间发表的学术论文~参吾售文赢.....................一。
聊Ⅲ.??.?.??.??.?.?.?...??.?。
??.?.?......。
..??.??..?..?..... ?..?..??.?.?.??...?.....?.??.?..筠..:: ?..??...?..?.。
....??..?..?.?.......咖....?.:?..??.??.??.??.??...巧删..?..??..?.?.?。
?。
..??..??. ..??..?..??..??.. ..?..??..?..?.....??...?.......?.?./ .??..??.?.??.??.??....??。
植物生理学试题(含答案)《植物生理学》试卷(A卷)一、名词解释20%1、种子后熟2、生理钟3、临界暗期4、渗透调节5、呼吸骤变二、填空题30%(每空格1分)1、光合作用中心至少包括一个_______,_______和_______,才能导致电荷分离,将光能转为电能。
2、为了解决以下各题,应选用哪些植物激素或生长调节剂⑴插枝生根______,⑵促使胡萝卜在当年开花______,⑶除去双子叶杂草_______。
3、矿质元素对光合作用有直接和间接的影响,因为N和Mg是______的组成成分;Cl和Mn是________所必需的,而电子传递体中的_______含有Fe,____含有Cu。
4、将GA施于正在萌发的去胚大麦粒上,会诱导______,如果此时加入环已酰亚胺,则会抑制_________。
5、根据外界因素如何作用于植物,生长运动可分为______和______,前者又可分为______,______,______和______等。
6、环境污染按污染物存在的场所可分为______,______和______,其中以______和______危害面积较广,同时也易于转变为________。
7、植物激素的三个基本特征是________,________,_________。
8、植物在环境保护的作用有_______和_______。
9、对海藻来说,平衡溶液是______。
三、选择题10%1、在维管植物的较幼嫩部分,哪一种无机盐亏缺时,缺乏症首先表现出来。
()A、缺NB、缺CaC、缺PD、缺K2、在维管植物中,哪一种物质的传导限于一个方向。
()A、筛管里的蔗糖B、生长组织里的IAAC、萌发幼苗中贮备的氨基酸D、生长组织里的GA3、根的最大吸收区域是在()A、根冠B、根尖分生组织C、根毛区D、伸长区4、光合作用中淀粉形成的部位()A、叶绿体中的间质B、叶绿体中的基粒片层C、叶绿体中的基质片层D、细胞质5、光呼吸被氧化的底物是()A、乙醇酸B、乙醛酸C、丙酮酸D、甘油酸四、是非题10%(是用“+”,非用“-”,答错倒扣1分,但不欠分)。
生态系统的信息传递一、选择题(每小题5分,共60分)1.有关生态系统信息传递的叙述中,错误的是( )A.信息传递把生态系统各组分联系起来成为一个整体B.生态系统的反馈调节必须依赖于生态系统的信息传递C.生态系统中用于传递的信息都是由生物产生的D.生物之间的捕食关系可通过信息传递实现【解析】信息传递把生态系统各组分联系起来成为一个整体,A正确;生态系统的反馈调节必须依赖于生态系统的信息传递,B正确;生态系统中用于传递的信息有物理信息、化学信息和生物信息,C错误;生物之间的捕食关系可通过信息传递实现,D正确。
【答案】 C2.为了控制甘蔗害虫,有人将蔗蟾带入澳大利亚。
由于蔗蟾的皮肤会产生毒素,起初袋鼬等蔗蟾的捕食者出现大量死亡的现象,但现在,袋鼬学会了只吃蔗蟾的幼仔而不吃毒性更强的成体。
蔗蟾和袋鼬之间肯定不存在( )A.物质循环 B.能量流动C.信息传递 D.共同进化【解析】从题干中可以看出蔗蟾与袋鼬之间为捕食关系,都是消费者,消费者和消费者之间不可能实现物质循环,故A错误;袋鼬捕食蔗蟾的过程中,蔗蟾同化的能量中有一部分流向了袋鼬,故B正确;袋鼬捕食蔗蟾的过程中一定会发生信息传递,并且信息传递是双向的,故C正确;具有捕食关系的两种生物共同进化,以适应环境,故D正确。
【答案】 A3.下列有关生态系统信息传递的说法,不正确的是( )A.任何生命形式,如果没接收信息、处理信息和利用信息的能力,就无法适应环境B.信息传递在农业生产中,不仅可以提高农产品的产量,也可对有害动物进行杀灭C.延长短日照植物黄麻的光照时间可提高麻皮产量,这属于物理信息的合理使用D.在任何生态系统中,能量、物质和信息三者之间的关系都是密不可分的【解析】任何生命形式,如果没接收信息、处理信息和利用信息的能力,就无法适应环境,A正确;信息传递在农业生产中,不仅可以提高农产品的产量,也可对有害动物进行控制而不是杀灭,B错误;延长短日照植物黄麻的光照时间可提高麻皮产量,这属于物理信息的合理使用,C正确;在任何生态系统中,能量、物质和信息三者之间的关系都是密不可分的,D正确。
COI1参与茉莉酸调控拟南芥吲哚族芥子油苷生物合成过程石璐;李梦莎;王丽华;于萍;李楠;国静;阎秀峰【摘要】芥子油苷是一类具有防御作用的植物次生代谢产物,外源激素茉莉酸对吲哚族芥子油苷的合成具有强烈的诱导作用,但茉莉酸调控吲哚族芥子油苷生物合成的分子机制并不清楚.以模式植物拟南芥(Arabidopsis thaliana)的野生型和coi1-22、coi123两种突变体为研究材料,通过茉莉酸甲酯(MeJA)处理,比较了拟南芥野生型和coi1突变体植株吲哚族芥子油苷含量、吲哚族芥子油苷合成前体色氨酸的生物合成基因(ASA1、TSA1和TSB1)、吲哚族芥子油苷生物合成基因(CYP79 B2、CYP79B3和CYP83B1)及调控基因(MYB34和MYB51)的表达对MeJA的响应差异,由此确定茉莉酸信号通过COI1蛋白调控吲哚族芥子油苷生物合成,即茉莉酸信号通过信号开关COI1蛋白作用于转录因子MYB34和MYB51,进而调控吲哚族芥子油苷合成基因C YP79 B2、C YP79 B3、CYP83B1和前体色氨酸的合成基因ASA1、TSA1、TSB1.并且推断,COI1功能缺失后,茉莉酸信号可能通过其他未知调控因子或调控途径激活MYB34转录因子从而调控下游基因表达.【期刊名称】《生态学报》【年(卷),期】2012(032)017【总页数】7页(P5438-5444)【关键词】茉莉酸;COI1;吲哚族芥子油苷;拟南芥【作者】石璐;李梦莎;王丽华;于萍;李楠;国静;阎秀峰【作者单位】温州大学生命与环境科学学院,温州325035;温州大学生命与环境科学学院,温州325035;温州大学生命与环境科学学院,温州325035;温州大学生命与环境科学学院,温州325035;温州大学生命与环境科学学院,温州325035;温州大学生命与环境科学学院,温州325035;温州大学生命与环境科学学院,温州325035【正文语种】中文芥子油苷(glucosinolate)是一类含氮、含硫的植物次生代谢产物,主要分布于十字花科植物。
植物细胞色素P450的研究进展作者:汪思远蒋世翠王康宇王义张美萍来源:《吉林蔬菜》 2014年第4期汪思远蒋世翠王康宇王义张美萍(吉林农业大学吉林·长春 130118)摘要:细胞色素P450(CYP450)是动植物及微生物体内一类超基因家族编码的单加氧酶,参与多种催化反应,在生物防御方面具有重要作用。
近年来,利用现代生物技术和新一代测序手段及生物信息学分析方法,对参与相关生物代谢合成途径中的CYP450进行了分离、筛选及功能鉴定,进一步阐明了CYP450在植物体内相关代谢途径中的催化机制。
本文对植物细胞色素P450(CYP450)基因的分离,在皂苷生物合成、苯丙烷类物质代谢和芥子油苷及IAA生物合成中的功能和表达,以及在人工合成物质的解毒功能及应用等方面的研究做了简要综述。
关键词:细胞色素P450 植物次生代谢表达调控Research Process of Cytochrome P450 in PlantWANG Si-yuan,JIANG Shi-cui,WANG Kang-yu,WANG Yi,ZHANG Mei-ping(Jilin Agricultural University,Changchun 130118,China)Abstract:Cytochrome P450s are a diverse array of mixed-function oxidas in animal,plant and bacteria which consist of a gene superfamily.Theyplay an important role in preventing the plants from injury bycatalyzing many kinds of reactions.Several candidate CYP450s that might be involved in ginsenoside biosynthesis have been discovered,screening and functional identification by the modern biotechnology and next generation sequencing technology and bioinformatic analysis in previous studies,further elucidate in the relevant CYP450 catalytic mechanism of metanolic pathways in plants.This article summarized gene isolation,function and expression of ginsenoside biosynthesis pathway briefly,phenylpropanoid metabolic pathway and glucosinolates and IAA biosynthesis pathway,and research in the detoxification function and application of synthetic substances.Key words:Cytochrome P450,Plant secondary metabolism,Expressionregulation细胞色素P450(cytochrome P450,简称P450)是一类以血红素为辅基的B族细胞色素超家族蛋白酶,是血红素蛋白大家族中极其重要的一员,通常与内质网、线粒体、质体、高尔基体等细胞器膜结合,分布在生命进化过程中的所有分支。
芥子油苷与植物激素在生物合成中的相互作用摘要:芥子油苷是一类重要的次生代谢物质,植物激素在植物的生长发育中也起着关键性作用,植物激素与芥子油苷之间存在复杂的相互作用。
生长素与吲哚类芥子油苷在生物合成上存在着相互作用。
植物防卫信号分子与芥子油苷之间也存在相互作用,茉莉酸强烈诱导吲哚类芥子油苷生物合成相关基因CYP79B2 和CYP79B3 的表达,水杨酸和乙烯则能轻度诱导4-甲氧吲哚-3-甲基芥子油苷的生成。
植物防卫信号转导途径相互作用以调节不同种类吲哚类芥子油苷的生成。
关键词:芥子油苷,生长素,茉莉酸,水杨酸,相互作用Abstract: Glucosinolate is a group of important secondary metabolite,and phytohormones play essential role in plant development, the complex interactions exist between phytohormones and glucosinolates at the level of biosynthesis. Aunxin and indole glucosinolates interact at the level of biosynthesis and metabolism. Plant defense signaling molecules can induce the biosynthesis of specific glucosinolates. Jasmonic acid highly induces the expression of indole glucosinolates biosynthetic genes CYP79B2 and CYP79B3, and thus leads to an increase in total indole glucosinolate contents,whereas 4-methoxyindole-3-ylmethyl glucosinolate was slightly induced by salicylic acid and ethylene. The cross talks exist between different plant defense signal transduction pathways to regulate the biosynthesis of indole glucosinolates.Key words: glucosinolates,IAA,JA,SA,interaction芥子油苷(glucosinolate,GS)是一种含氮和硫的植物次生代谢物质,根据侧链的氨基酸来源可以将芥子油苷分为脂肪族芥子油苷(侧链来源于甲硫氨酸、丙氨酸、缬氨酸、亮氨酸和异亮氨酸)、芳香族芥子油苷(侧链来源于苯丙氨酸和酪氨酸)和吲哚族芥子油苷(侧链来源于色氨酸)3个类群,主要存在于十字花科植物中[1]。
芥子油苷及其降解产物有着广泛而深入的生物学效应,特别是在参与植物的防卫反应和抗癌作用等方面近年来引起了极为广泛的关注。
植物激素对植物的生长发育有重要的调节作用,随着植物激素与芥子油苷的生理功能与作用机制研究的不断深入,人们发现植物激素与芥子油苷存在不同层次的相互作用,以共同调节植物的生长发育、对逆境的适应以及植物的防卫反应等。
植物激素与次生代谢物质芥子油苷的相互作用研究近年来引起人们广泛的关注,植物中这两类重要的生物活性物质在生物合成上的相互作用研究已取得较大进展,本文综述这方面的研究进展,并对这一领域的前景进行展望。
1 吲哚族芥子油苷代谢与生长素的合成途径吲哚族芥子油苷来源于色氨酸[2]。
色氨酸由细胞色素P450酶CYP79B2或CYP79B3催化转变为相应的吲哚-3-乙醛肟(indole-3-acetaldoxime)。
吲哚-3-乙醛肟形成之后,再经一系列反应形成吲哚族芥子油苷核心结构[3]。
核心结构再经羟基化、甲基化等各种次级修饰形成不同的吲哚族芥子油苷[2,3]。
同时,吲哚族芥子油苷在黑芥子酶(myrosinase)的作用下,依据反应环境可生成吲哚-3-乙腈(indole-3-acetonitrile)等不同的降解产物。
另一方面,生长素的合成途径则比较复杂。
根据前体是否为色氨酸,植物体内生长素的合成途径可分为依赖色氨酸途径(Trp-dependentpathway)和非依赖色氨酸途径(Trp-independentpathway)[4];在色氨酸途径中,根据吲哚-3-乙醛肟的合成过程是否有色胺参与,又可分为色胺途径(tryptaminepathway)和吲哚-3-乙腈途径(indole-3-acetonitrilepathway)[5]。
吲哚族芥子油苷的侧链部分源自色氨酸,同时生长素在依赖色氨酸途径的合成过程中也以色氨酸作为前体,因而认为吲哚族芥子油苷代谢与生长素的代谢途径存在着关联,主要体现在色胺途径和吲哚-3-乙腈途径的相互关系。
在拟南芥中,IAA合成的色氨酸途径会产生一系列重要的次生代谢物质,其中就包括吲哚类芥子油苷[6]。
色氨酸是由分支酸(chorismate)合成的,催化这一过程的酶及其编码的基因在原核生物与真核生物之间有着惊人的保守性[5]。
色氨酸合成后,可以分别通过在细胞色素P450家族的CYP79B2/CYP79B3和YUCCA两条不同途径生成吲哚乙醛肟(indole-3-acetaldoxime,IAOx)[7]。
其中CYP79B2/CYP79B3途径可以直接以色氨酸为底物生成IAOx,而YUCCA途径需先生成色胺,然后YUCCA以色胺为底物生成IAOx[8]。
从色氨酸到IAOx这一转变是IAA和吲哚类芥子油苷合成过程共有的第一步,IAOx又是两物质合成路径的分支点[9]。
与IAOx合成有多种途径类似,IAOx的代谢也有多种途径,一方面IAOx在CYP83B1的催化下朝着吲哚类芥子油苷生成的方向发展[10]。
在拟南芥中,编码CYP83B1的sur2基因过量表达,植物体内吲哚类芥子油苷的含量就增加,其形态表现和IAA 缺乏时一致;sur2发生突变后其形态表现却和IAA过量时一致,表现为极性增强、不定根数量增加[9]。
这表明CYP83B1在IAA和吲哚类芥子油苷的生物合成过程中有重要作用——催化IAOx生成吲哚类芥子油苷。
另外,在IAOx向吲哚类芥子油苷转变的过程中,C-S裂解酶也起了关键的催化作用。
拟南芥sur1突变体表现为IAA水平较高,而几乎检测不到吲哚类芥子油苷,原因就在于缺失了sur1编码的C-S裂解酶,从而导致了该酶底物IAOx的积累,使IAA 的合成被促进[11]。
另一方面,IAOx也可以向生成IAA的方向发展,首先生成吲哚-3-乙腈,然后在腈水解酶(nitrilase)的作用下生成IAA。
IAA和吲哚类芥子油苷的生物合成中的CYP79B2/CYP79B3和YUCCA途径也存在相互作用,YUCCA途径中的中间产物色胺对CYP83B1有抑制作用。
YUCCA活性是该途径生成IAA过程中的限速步骤,当其活性受到抑制,就会使色胺的水平升高,从而抑制CYP83B1的活性,并最终使来源于CYP79B2/CYP79B3途径生成的IAA增多[12]。
2 茉莉酸、水杨酸和乙烯对芥子油苷生物合成的调节茉莉酸(JA)、水杨酸(SA)等植物激素是植物防卫反应过程中重要的信号物质。
许多研究表明,芥子油苷的生物合成受到JA和SA的调节。
在欧白芥(Sinapisalba)中,茉莉酸甲酯(methyljasmonate,MeJA)处理使酪氨酸合成羟苯芥子油苷的能力大大增强[13]。
在欧白芥和油菜中,MeJA处理能使吲哚-3-甲基芥子油苷(indole-3-ylmethylglucosinolate,i-3ylm)的含量增加[14]。
在拟南芥和油菜中,MeJA处理使i-3ylm与N-甲氧吲哚-3-甲基芥子油苷(N-methoxyindole-3-ylmethylglucosinolate,Nmi-3ym)的含量均升高[15]。
此外,SA处理能使油菜叶片中芥子油苷总体水平提高,其中以苯乙基芥子油苷含量增加最显著[16]。
植物激素中的JA、SA和乙烯与植物的防卫反应关系密切,它们通过使植物产生病程相关蛋白(pathogenesis-relatedprotein,PR蛋白)或植物防御素(plantdefensin,PDF)等方式诱导植物产生系统获得性抗性(systemicacquairedresistance,SAR)和系统诱导性抗性(inducedsystemicresistance,ISR),抵御病源微生物的侵害。
这些激素在植物的防卫反应中存在相互协同或拮抗的作用,依照一定的顺序在防卫反应中发挥功能。
已经发现,芥子油苷及其降解产物在植物对昆虫和病原微生物的抗性中发挥作用[17]。
近年来的研究表明,在植物的防卫反应中,植物激素和芥子油苷之间有着密切的关系,植物激素可以通过诱导某些特殊种类的芥子油苷的生成来抵御病原微生物的入侵。
在拟南芥中,细菌性病原菌胡萝卜软腐欧文氏菌制备的激发子能诱导与色氨酸生物合成和氧化相关的基因的协同表达。
在激发子诱导过程中,吲哚类芥子油苷i-3ylm的含量特异性地增加,而吲哚衍生的植物抗毒素camalexin则几乎检测不到。
由于在茉莉酸不敏感突变体coi1-1中不能诱导吲哚类芥子油苷的产生,因此,这一反应是由JA介导的;与此相一致,Me-JA能引起吲哚类芥子油苷的积累[15]。
这与Me-JA 能引起吲哚类芥子油苷积累的其他报道是一致的[14]。
相反,乙烯和SA在该效应中的作用微乎其微[15]。
它们不能引起吲哚类芥子油苷水平的改变,而Me-JA或激发子则能诱导乙烯不敏感突变体ein2-1中吲哚类芥子油苷的积累,且效应与野生型一致。
另外,吲哚类芥子油苷的降解产物能抑制胡萝卜软腐欧文氏菌的生长,这也说明吲哚类芥子油苷在植物防御细菌病原物中起着重要作用[15]。
Mikkelsen等[18]对植物激素JA、SA和乙烯在拟南芥防卫反应中的相互作用,特别是它们对芥子油苷生物合成中的关键酶的表达以及芥子油苷种类的调节中的相互作用进行了系统的研究,同时也研究了这些激素在调节病程相关蛋白(PR1)和植物防御素(PDF1.2)中的相互作用[18]。
从3种植物激素对芥子油苷生物合成酶的影响来看,只有JA能增强芥子油苷生物合成酶CYP79家族的表达,尤其是JA能大大增强与吲哚类芥子油苷生物合成相关的CYP79B2和CYP79B3基因的表达,Me-JA处理能使吲哚类芥子油苷的总含量增加3~4倍,特别是使吲哚类芥子油苷i-3ym和Nmi-3ym的含量明显升高。