高中数学总结归纳点拨 古典概型中的有序和无序问题
- 格式:doc
- 大小:48.00 KB
- 文档页数:2
【导语】以下是⽆忧考为⼤家推荐的有关⾼⼆数学必修3知识点整理:古典概型,如果觉得很不错,欢迎点评和分享~感谢你的阅读与⽀持! 古典概型的基本概念 1.基本事件:在⼀次试验中可能出现的每⼀个基本结果称为基本事件; 2.等可能基本事件:若在⼀次试验中,每个基本事件发⽣的可能性都相同,则称这些基本事件为等可能基本事件; 3.古典概型:满⾜以下两个条件的随机试验的概率模型称为古典概型①所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等; 4.古典概型的概率:如果⼀次试验的等可能基本事件共有n个,那么每⼀个等可能基本事件发⽣的概率都是 1,如果某个事件A包含了其中m个等可能基本事件,那么事件A发⽣的概率为nP(A)?m.n 知识点⼀:古典概型的基本概念 *例1:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?思路分析: 题意分析:本试题考查⼀次试验中⽤列举法列出所有基本事件的结果,⽽画树状图是列举法的基本⽅法. 解题思路:为了了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来.或者利⽤树状图将它们之间的关系列出来.解答过程:解法⼀:所求的基本事件共有6个: A?{a,b},B?{a,c},C?{a,d}D?{b,c},E?{b,d},F?{c,d} 解法⼆:树状图 解题后的思考:⽤树状图求解⼀次试验中的基本事件数⽐较直观、形象,可做到不重不漏.掌握列举法,学会⽤数形结合、分类讨论的思想解决概率的计算问题. **例2:(1)向⼀个圆⾯内随机地投射⼀个点,如该点落在圆内任意⼀点都是等可能的,你认为这是古典概型吗?为什么? (2)如图,某同学随机地向⼀靶⼼射击,这⼀试验的结果只有有限个:命中10环、命中9环??命中5环和不中环.你认为这是古典概型吗?为什么? 思路分析: 题意分析:本题考查古典概型的概念.应明确什么是古典概型及其应具备什么样的条件.解题思路:结合古典概型的两个基本特征可进⾏判定解决.解答过程: 答:(1)不是古典概型,因为试验的所有可能结果是圆⾯内所有的点,试验的所有可能结果数是⽆限的,虽然每⼀个试验结果出现的“可能性相同”,但这个试验不满⾜古典概型的第⼀个条件. (2)不是古典概型,因为试验的所有可能结果只有7个,⽽命中10环、命中9环??命中5环和不中环的出现不是等可能的,即不满⾜古典概型的第⼆个条件. 解题后的思考:判定是不是古典概型,主要看两个⽅⾯,⼀是实验结果是不是有限的;另⼀个就是每个事件是不是等可能的. ***例3:单选题是标准化考试中常⽤的题型,⼀般是从A,B,C,D四个选项中选择⼀个正确答案.如果考⽣掌握了考查的内容,他可以选择正确的答案.假设考⽣不会做,他随机的选择⼀个答案,问他答对的概率是多少?思路分析: 题意分析:本题考查古典概型概率的求解运算. 解题思路:解本题的关键,即讨论这个问题什么情况下可以看成古典概型.如果考⽣掌握了全部或部分考查内容,这都不满⾜古典概型的第2个条件——等可能性,因此,只有在假定考⽣不会做,随机地选择了⼀个答案的情况下,才可将此问题看作古典概型. 解答过程:这是⼀个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考⽣随机地选择⼀个答案是选择A,B,C,D的可能性是相等的.从⽽由古典概型的概率计算公式得: P(答对\答对所包含的基本事件的个数1==0.25 基本事件的总数4解题后的思考:运⽤古典概型的概率公式求概率时,⼀定要先判定该试题是不是古典概型,然后明确试验的总的基本事件数,和事件A发⽣的基本事件数,再借助于概率公式运算.⼩结:本知识点的例题主要考查对古典概型及其概率概念的基本理解.把握古典概型的两个特征是解决概率问题的第⼀个关键点;理解⼀次试验中的所有基本事件数,和事件A发⽣的基本事件数,是解决概率问题的第⼆个关键点. 知识点⼆:古典概型的运⽤ *例4:同时掷两个骰⼦,计算:(1)⼀共有多少种不同的结果? (2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少? (4)为什么要把两个骰⼦标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?思路分析: 题意分析:本题考查了古典概型的基本运算问题. 解题思路:先分析“同时掷两个骰⼦的所有事件数”,然后分析事件A:向上的点数之和为5的基本事件数,最后结合概率公式运算.同时可以运⽤举⼀反三的思想⾃⾏设问、解答. 解答过程: 解:(1)掷⼀个骰⼦的结果有6种,我们把两个骰⼦标上记号1,2以便区分,由于1号骰⼦的结果都可与2号骰⼦的任意⼀个结果配对,我们⽤⼀个“有序实数对”来表⽰组成同时掷两个骰⼦的⼀个结果(如表),其中第⼀个数表⽰掷1号骰⼦的结果,第⼆个数表⽰掷2号骰⼦的结果.(可由列表法得到)1号骰⼦2号骰⼦1(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2) (4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5) (5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)123456由表中可知同时掷两个骰⼦的结果共有36种.(2)在上⾯的结果中,向上的点数之和为5的结果有4种,分别为:(1,4),(2,3),(3,2),(4,1) (3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得 P(A)=A所包含的基本事件的个数41== 基本事件的总数369(4)如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别.这时,所有可能的结果将是: (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5) (5,6)(6,6)共有21种,和是5的结果有2个,它们是(1,4)(2,3),则所求的概率为 P(A)=A所包含的基本事件的个数2= 基本事件的总数21这就需要我们考察两种解法是否满⾜古典概型的要求了.可以通过展⽰两个不同的骰⼦所抛掷出来的点,感受第⼆种⽅法构造的基本事件不是等可能事件. 解题后的思考:考查同学们运⽤古典概型的概率计算公式时应注意验证所构造的基本事件是否满⾜古典概型的第⼆个条件. 对于同时抛掷的问题,我们要将骰⼦编号,因为这样就能反映出所有的情况,不⾄于把(1,2)和(2,1)看作相同的情况,保证基本事件的等可能性.我们也可将此试验通过先后抛掷来解决,这样就有顺序了,则基本事件的出现也是等可能的. **例5:从含有两件正品a1,a2和⼀件次品b1的三件产品中,每次任取⼀件,每次取出后不放回,连续取两次,求取出的两件产品中恰有⼀件次品的概率.思路分析: 题意分析:本题考查的是不放回抽样的古典概型概率的运⽤ 解题思路:⾸先注意到该题中取出的过程是有顺序的.同时明⽩⼀次试验指的是“不放回的,连续的取两次”. 先列举出试验中的所有基本事件数,然后求事件A的基本事件数,利⽤概率公式求解.解答过程: 解法1:每次取出⼀个,取后不放回地连续取两次,其⼀切可能的结果组成的基本事件有6个,即(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2).其中⼩括号内左边的字母表⽰第1次取出的产品,右边的字母表⽰第2次取出的产品. ⽤A表⽰“取出的两件中,恰好有⼀件次品”这⼀事件,则A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]事件A由4个基本事件组成,因⽽P(A)= 42=63解法2:可以看作不放回3次⽆顺序抽样,先按抽取顺序(x,y)记录结果,则x有3种可能,y有2种可能,但(x,y),(y,x)是相同的,所以试验的所有结果有3×2÷2=3种,按同样的⽅法,事件B包含的基本事件个数为2×1÷1=2,因此P(B)= 23解题后的思考:关于不放回抽样,计算基本事件的个数时,既可以看作是有顺序的,也可以看作是⽆顺序的,其结果是⼀样的,但⽆论选择哪⼀种⽅式,观察的⾓度必须⼀致,否则会导致错误. ***例6:从含有两件正品a1,a2和⼀件次品b1的三件产品中,每次任取⼀件,每次取出后放回,连续取两次,求取出的两件产品中恰有⼀件次品的概率.思路分析: 题意分析:本题考查放回抽样的概率问题. 解题思路:⾸先注意到该题中取出的过程是有顺序的.同时明⽩⼀次试验指的是“有放回的,连续的取两次”. 解答过程:每次取出⼀个后放回,连续取两次,其⼀切可能的结果组成的基本事件有9个,即 (a1,a1),(a1,a2)和(a1,b1)(a2,a1),(a2,b1)和(a2,a2)(b1,a1),(b1,a2)和(b1,b1) 其中⼩括号内左边的字母表⽰第1次取出的产品,右边的字母表⽰第2次取出的产品.⽤A表⽰“取出的两件中,恰好有⼀件次品”这⼀事件,则A=[(b1,a1),(b1,a2),(a2,b1),(a1,b1)]事件A由4个基本事件组成,因此P(A)= 4.9解题后的思考:对于有放回抽样的概率问题我们要理解每次取的时候,总数是不变的,且同⼀个体可被重复抽取,同时,在求基本事件数时,要做到不重不漏.⼩结: (1)古典概型概率的计算公式是⾮常重要的⼀个公式,要深刻体会古典概型的概念及其概率公式的运⽤,为我们学好概率奠定基础. (2)体会求解不放回和有放回概率的题型. 知识点三:随机数产⽣的⽅法及随机模拟试验的步骤 **例7:某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?思路分析: 题意分析:本题考查的是近似计算⾮古典概型的概率. 解题思路:其投篮的可能结果有有限个,但是每个结果的出现不是等可能的,所以不能⽤古典概型的概率公式计算,我们⽤计算机或计算器做模拟试验可以模拟投篮命中的概率为40%.解答过程: 我们通过设计模拟试验的⽅法来解决问题,利⽤计算机或计算器可以⽣产0到9之间的取整数值的随机数. 我们⽤1,2,3,4表⽰投中,⽤5,6,7,8,9,0表⽰未投中,这样可以体现投中的概率是40%.因为是投篮三次,所以每三个随机数作为⼀组. 例如:产⽣20组随机数: 812,932,569,683,271,989,730,537,925,488907,113,966,191,431,257,393,027,556,458 这就相当于做了20次试验,在这组数中,如果恰有两个数在1,2,3,4中,则表⽰恰有两次投中,它们分别是812,932,271,191,393,即共有5个数,我们得到了三次投篮中恰有两次投中的概率近似为解题后的思考: (1)利⽤计算机或计算器做随机模拟试验,可以解决⾮古典概型的概率的求解问题.(2)对于上述试验,如果亲⼿做⼤量重复试验的话,花费的时间太多,因此利⽤计算机或计算器做随机模拟试验可以⼤⼤节省时间. (3)随机函数(RANDBETWEEN)(a,b)产⽣从整数a到整数b的取整数值的随机数. ⼩结:能够简单的体会模拟试验求解⾮古典概型概率的⽅法和步骤.⾼考对这部分内容不作更多的要求,了解即可.5=25%.20 【同步练习题】 1.(2014•惠州调研)⼀个袋中装有2个红球和2个⽩球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同⾊的概率为()A.12;B.13;C.14;D.25 答案:A[把红球标记为红1、红2,⽩球标记为⽩1、⽩2,本试验的基本事件共有16个,其中2个球同⾊的事件有8个:红1,红1,红1、红2,红2、红1,红2、红2,⽩1、⽩1,⽩1、⽩2,⽩2、⽩1,⽩2、⽩2,故所求概率为P=816=12.] 2.(2013•江西⾼考)集合A={2,3},B={1,2,3},从A,B中各任意取⼀个数,则这两数之和等于4的概率是 ()A.23B.12C.13D.16 答案:C[从A,B中各任取⼀个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中两个数之和为4的有(2,2),(3,1),故所求概率为26=13.故选C.] 3.(2014•宿州质检)⼀颗质地均匀的正⽅体骰⼦,其六个⾯上的点数分别为1、2、3、4、5、6,将这⼀颗骰⼦连续抛掷三次,观察向上的点数,则三次点数依次构成等差数列的概率为()A.112B.118C.136D.7108 答案:A[基本事件总数为6×6×6,事件“三次点数依次成等差数列”包含的基本事件有(1,1,1),(1,2,3),(3,2,1),(2,2,2),(1,3,5),(5,3,1),(2,3,4),(4,3,2),(3,3,3),(2,4,6),(6,4,2),(3,4,5),(5,4,3),(4,4,4),(4,5,6),(6,5,4),(5,5,5),(6,6,6)共18个,所求事件的概率P=186×6×6=112.] 4.(2013•安徽⾼考)若某公司从五位⼤学毕业⽣甲、⼄、丙、丁、戊中录⽤三⼈,这五⼈被录⽤的机会均等,则甲或⼄被录⽤的概率为 ()A.23B.25C.35D.910 答案:D[五⼈录⽤三⼈共有10种不同⽅式,分别为:{丙,丁,戊},{⼄,丁,戊},{⼄,丙,戊},{⼄,丙,丁},{甲,丁,戊},{甲,丙,戊},{甲,丙,丁},{甲,⼄,戊},{甲,⼄,丁},{甲,⼄,丙}. 其中含甲或⼄的情况有9种,故选D.] 5.(理)(2014•安徽⽰范⾼中联考)在棱长分别为1,2,3的长⽅体上随机选取两个相异顶点,若每个顶点被选取的概率相同,则选到两个顶点的距离⼤于3的概率为()A.47B.37C.27D.314 答案:B[从8个顶点中任取两点有C28=28种取法,其线段长分别为1,2,3,5,10,13,14.①其中12条棱长度都⼩于等于3;②其中4条,棱长为1,2的⾯对⾓线长度为5<3;故长度⼤于3的有28-12-4=12,故两点距离⼤于3的概率为12C28=37,故选B.]。
高中数学必修三古典概型的几种解题技巧古典概型是高中数学必修三中非常重要的一个知识点,同时也是考试中经常出现的题型。
古典概型是指在某个事件中,样本空间中的每个元素都有相同的概率出现。
在古典概型题中,常见的几种问题包括排列、组合、分配等,不同类型的问题需要使用不同的解题技巧。
下面我们将介绍一些古典概型问题的解题技巧。
一、排列问题的解题技巧排列是指n个不同元素按照一定顺序取出r个,这个过程叫做排列。
对于排列问题,我们可以使用以下几种解题技巧:1. 直接计算法:当n和r较小的时候,我们可以直接利用排列的定义来进行计算。
有5张纸牌,要从中取出3张纸牌进行排列,共有5*4*3=60种排列方法。
2. 公式法:当n和r较大的时候,直接计算可能会比较麻烦,可以使用排列的公式进行计算。
排列的计算公式为Anr=n!/(n-r)!,其中n!表示n的阶乘。
3. 分类讨论法:有些排列问题并不是直接套用公式就能解决的,这时我们可以采用分类讨论的方法。
从A、B、C、D四个字母中取出3个字母进行排列,可以分为以A开头的排列、以B开头的排列、以C开头的排列和以D开头的排列四种情况来进行讨论计算。
3. 排列与组合的关系:有时候我们需要求解组合问题,但是可以先通过排列问题进行计算,再通过排列与组合的关系进行转化。
从A、B、C、D四个字母中取出3个字母进行组合,可以先求出排列的个数,再通过排列与组合的关系计算出组合的个数。
1. 划分法:当分配的元素数目是不受限制的时候,我们可以使用划分法进行计算。
划分法是指将n个不同的元素分成r份,每份可以有0个或者多个元素,然后按照不同的划分方法进行计算。
2. 公式法:有些分配问题可以通过公式进行计算,例如将n件商品分给r个人,每个人可以得到不同数目的商品,可以使用分配的公式进行计算。
3. 排列组合法:有些分配问题可以通过排列组合的方法进行计算,例如将n个人分配到r个小组中,可以先通过排列计算出所有可能的分配情况,再通过组合计算出符合条件的分配情况。
高二数学第三章古典概型知识点
高二数学古典概型知识点
1.基本事件:
试验结果中不能再分的最简单的随机事件称为基本事件.
基本事件的特点:
1每个基本事件的发生都是等可能的.
2因为试验结果是有限个,所以基本事件也只有有限个.
3任意两个基本事件都是互斥的,一次试验只能出现一个结果,即产生一个基本事件.
4基本事件是试验中不能再分的最简单的随机事件,其他事件都可以用基本事件的和的形式来表示.
2.古典概型的定义:
1有限性:试验中所有可能出现的基本事件只有有限个;
2等可能性:每个基本事件出现的可能性相等.
我们把具有上述两个特点的概率模型称为古典概率模型,简称古典概型.
3.计算古典概型的概率的基本步骤为:
1计算所求事件A所包含的基本事件个数m;
2计算基本事件的总数n;
3应用公式PA?m计算概率. n
4.古典概型的概率公式:
PA?A包含的基本事件的个数
基本事件的总数.应用公式的关键在于准确计算事件A所包含的基本事件的个数和基本事件的总数.
要点诠释:
古典概型的判断:如果一个概率模型是古典概型,则其必须满足以上两个条件,有一条不满足则必不是古典概型.如“掷均匀的骰子和硬币”问题满足以上两个条件,所以是
古典概型问题;若骰子或硬币不均匀,则每个基本事件出现的可能性不同,从而不是古典概型问题;“在线段AB上任取一点C,求AC>BC的概率”问题,因为基本事件为无限个,所以也不是古典概型问题.
感谢您的阅读,祝您生活愉快。
高二年级数学必修3第三章知识点:古典概型知识点总结
数学是研究现实世界空间形式和数量关系的一门科学。
小编准备了高二年级数学必修3第三章知识点,希望你喜欢。
一种概率模型。
在这个模型下,随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的。
例如:掷一次硬币的实验(质地均匀的硬币),只可能出现正面或反面,由于硬币的对称性,总认为出现正面或反面的可能性是相同的;如掷一个质地均匀骰子的实验,可能出现的六个点数每个都是等可能的;又如对有限件外形相同的产品进行抽样检验,也属于这个模型。
是概率论中最直观和最简单的模型;概率的许多运算规则,也首先是在这种模型下得到的。
一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征有限性和等可能性,只有同时具备这两个特点的概型才是古典概型。
求古典概型的概率的基本步骤:
(1)算出所有基本事件的个数n;
(2)求出事件A包含的所有基本事件数m;
(3)代入公式P(A)=m/n,求出P(A)。
高二年级数学必修3第三章知识点就为大家介绍到这里,希望对你有所帮助。
古典概型一、基础知识:1、基本事件:一次试验中可能出现的每一个不可再分的结果称为一个基本事件。
例如:在扔骰子的试验中,向上的点数1点,2点,……,6点分别构成一个基本事件2、基本事件空间:一次试验,将所有基本事件组成一个集合,称这个集合为该试验的基本事件空间,用Ω表示。
3、基本事件特点:设一次试验中的基本事件为12,,,n A A A(1)基本事件两两互斥(2)此项试验所产生的事件必由基本事件构成,例如在扔骰子的试验中,设i A 为“出现i 点”,事件A 为“点数大于3”,则事件456A A A A =(3)所有基本事件的并事件为必然事件 由加法公式可得:()()()()()1212n n P P A A A P A P A P A Ω==+++因为()1P Ω=,所以()()()121n P A P A P A +++=4、等可能事件:如果一项试验由n 个基本事件组成,而且每个基本事件出现的可能性都是相等的,那么每一个基本事件互为等可能事件。
5、等可能事件的概率:如果一项试验由n 个基本事件组成,且基本事件为等可证明:设基本事件为12,,,n A A A ,可知()()()12n P A P A P A ===()()()121n P A P A P A +++= 6、古典概型的适用条件:(1)试验的所有可能出现的基本事件只有有限多个 (2)每个基本事件出现的可能性相等当满足这两个条件时,事件A 发生的概率就可以用事件A 所包含的基本事件个7、运用古典概型解题的步骤:① 确定基本事件,一般要选择试验中不可再分的结果作为基本事件,一般来说,试验中的具体结果可作为基本事件,例如扔骰子,就以每个具体点数作为基本事件;在排队时就以每种排队情况作为基本事件等,以保证基本事件为等可能事件 ② ()(),n A n Ω可通过计数原理(排列,组合)进行计算③ 要保证A 中所含的基本事件,均在Ω之中,即A 事件应在Ω所包含的基本事件中选择符合条件的 二、典型例题:例1:从16-这6个自然数中随机取三个数,则其中一个数是另外两个数的和的概率为________思路:事件Ω为“6个自然数中取三个”,所以()3620n C Ω==,事件A 为“一个数是另外两个数的和”,不妨设a b c =+,则可根据a 的取值进行分类讨论,列举出可能的情况:{}{}{}{}{}{}3,2,1,4,3,1,5,4,1,5,3,2,6,5,1,6,4,2,所以()6n A =。
高二数学第三章古典概型知识点
高二数学古典概型知识点
1.基本事件:
试验结果中无法再分的最简单的随机事件称作基本事件.
基本事件的特点:
1每个基本事件的出现都就是等可能将的.
2因为试验结果是有限个,所以基本事件也只有有限个.
3任一两个基本事件都就是不相容的,一次试验就可以发生一个结果,即为产生一个基本事件.
4基本事件是试验中不能再分的最简单的随机事件,其他事件都可以用基本事件的和的形式来表示.
2.古典概型的定义:
1有限性:试验中所有可能出现的基本事件只有有限个;
2等可能性:每个基本事件发生的可能性成正比.
我们把具有上述两个特点的概率模型称为古典概率模型,简称古典概型.
3.排序古典概型的概率的基本步骤为:
1计算所求事件a所包含的基本事件个数m;
2排序基本事件的总数n;
3应用公式pa?m计算概率.n
4.古典概型的概率公式:
pa?a包含的基本事件的个数
基本事件的总数.应用领域公式的关键在于精确排序事件a所涵盖的基本事件的个数和
基本事件的总数.
要点演绎:
古典概型的判断:如果一个概率模型是古典概型,则其必须满足以上两个条件,有一条不满足则必不是古典概型.如“掷均匀的骰子和硬币”问题满足以上两个条件,所以是古典概型问题;若骰子或硬币不均匀,则每个基本事件出现的可能性不同,从而不是古典概型问题;“在线段ab上任取一点c,求ac>bc的概率”问题,因为基本事件为无限个,所以也不是古典概型问题.。
高中数学必修三古典概型的几种解题技巧高中数学必修三中的古典概型是概率论中的重要内容之一,也是考试中的常见题型,解题技巧的掌握对于我们正确解题非常重要。
下面将介绍几种解题技巧。
一、排列与组合排列与组合是古典概型中常见的几个基本概念,掌握好它们对于解题非常有帮助。
1. 排列:将若干个不同的元素按照一定的顺序排列成一列,这个过程称为排列。
例如:从字母A、B、C中任取三个字母,按顺序排列,共有3的阶乘种。
2. 组合:从n个不同元素中任取m个,不考虑顺序,这个过程称为组合。
例如:从字母A、B、C中任取两个字母,不考虑顺序,共有3个组合。
二、古典概型的解题步骤古典概型的解题步骤可以分为以下几个步骤:1. 明确问题与假设条件:首先要明确问题的描述和假设条件,理解题意非常重要。
例如:某班有男生10名,女生8名,从中随机选出两名学生,求出两名学生都是男生的概率。
2. 确定事件:根据问题的描述和假设条件,确定所求事件。
例如:确定所求事件为“从10个男生中选出两个男生”,记为A事件。
3. 确定样本空间:确定样本空间,即实验的所有可能结果的集合。
例如:由于是从10个男生中选出两个男生,所以样本空间为所有可能的组合数,记为S={C(10,2)}。
4. 确定事件A发生的可能数:确定事件A发生的可能数,即满足所求事件的有利组合数。
例如:由于是从10个男生中选出两个男生,所以有利组合数为C(10,2)。
5. 求解所求事件的概率:根据概率的定义,求解所求事件的概率。
例如:所求事件的概率为P(A)=有利组合数/样本空间。
1. 从n个人中随机选出m个人的概率。
解题思路:根据排列与组合的知识,所求事件的概率为C(n,m)/C(n,m)。
3. 从一扑克牌中随机取出一张牌,结果是红桃的概率。
解题思路:所求事件的概率为红桃的数量/总的牌的数量。
四、注意事项在解题过程中,要注意以下几个问题:1. 明确问题的假设条件,理解题意非常重要。
2. 注意样本空间的确定,样本空间是实验中所有可能结果的集合。
高中数学必修三古典概型的几种解题技巧古典概型是概率论中的基础概念之一,常用于求解事件的概率。
以下是高中数学必修三古典概型的几种解题技巧。
一、树状图法树状图法是古典概型中常用的解题方法,它可以清晰地表示出各种可能的情况。
以硬币为例,假设有一枚硬币,抛掷两次,求出现正面向上的概率。
树状图法的步骤如下:1. 以一条直线表示硬币的抛掷过程,从左到右按顺序表示每次抛掷;2. 在直线上的每个箭头上标注相应的可能结果,如正面向上(记作“正”)和反面向上(记作“反”);3. 沿着直线不断扩展出所有可能结果,直到达到所需的抛掷次数。
通过树状图得出的所有可能结果是等可能事件,即每个事件的概率都是相等的。
我们可以通过树状图上的路径来计算事件发生的概率。
在本例中,正面向上的概率就是出现正正的路径所占的比例。
二、排列组合法排列组合法是古典概型中常用的解题方法,特别适用于解决有序排列的问题。
在排列组合中,我们经常使用的有序排列方法有全排列、排列和组合。
全排列是将一组元素全部排列出来的情况,根据全排列的特性,可以使用阶乘来表示。
从1到10的数字中取出4个数字进行全排列,可以得到4的阶乘,即4!=4x3x2x1=24种排列方式。
排列是从一组元素中取出一部分元素进行排列的情况,排列的计算公式为:P(n,m) = n! / (n-m)!,其中n表示元素的总数,m表示取出的元素个数。
三、样本空间法样本空间法是古典概型中常用的解题方法,通过列出所有可能的结果,构建样本空间,再根据事件发生的情况求解事件的概率。
以抛掷两颗骰子为例,求两颗骰子点数和为9的概率。
我们需要列出骰子所有可能的结果,即从1到6的数字,每个数字都有可能出现。
然后,我们可以根据这些可能结果来构建样本空间,得到所有可能的点数和。
在这个问题中,样本空间是一个有序对组成的集合,它包含了所有可能的点数和。
我们通过统计样本空间中点数和为9的有序对的数量,计算出该事件发生的概率。
10.1.3古典概型导学案【学习目标】1.理解古典概型及其概率计算公式2.会用列举法计算一些随机事件所含的样本点个数及事件发生的概率3.掌握利用概率的性质求古典概型的概率的方法【自主学习】知识点1 古典概型的特点①有限性:试验的样本空间的样本点只有有限个;②等可能性:每个样本点发生的可能性相等.知识点2 古典概型的概率公式对任何事件A,P(A)=事件A包含的样本点个数样本空间Ω包含的样本点个数【合作探究】探究一古典概型的判断【例1】判断下列试验是不是古典概型:(1)口袋中有2个红球、2个白球,每次从中任取1球,观察颜色后放回,直到取出红球;(2)从甲、乙、丙、丁、戊5名同学中任意抽取1名担任学生代表;(3)射击运动员向一靶子射击5次,脱靶的次数.[分析]运用古典概型的两个特征逐个判断即可.[解](1)每次摸出1个球后,仍放回袋中,再摸1个球.显然,这是有放回抽样,依次摸出的球可以重复,且摸球可无限地进行下去,即所有可能结果有无限个,因此该试验不是古典概型.(2)从5名同学中任意抽取1名,有5种等可能发生的结果:抽到学生甲,抽到学生乙,抽到学生丙,抽到学生丁,抽到学生戊.因此该试验是古典概型.(3)射击的结果:脱靶0次,脱靶1次,脱靶2次,…,脱靶5次.这都是样本点,但不是等可能事件.因此该试验不是古典概型.归纳总结:1.古典概型的判断方法:一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征,即有限性和等可能性,因而并不是所有的试验都是古典概型.2.下列三类试验都不是古典概型:(1)样本点个数有限,但不等可能;(2)样本点个数无限,但等可能;(3)样本点个数无限,也不等可能.【练习1】下列试验中是古典概型的是()A.在适宜的条件下,种下一粒种子,观察它是否发芽B.口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,从中任取一球C .向一个圆面内随机地投一个点,观察该点落在圆内的位置D .射击运动员向一靶心进行射击,试验结果为命中10环,命中9环,…,命中0环 【答案】B解析:由古典概型的两个特征易知B 正确. 探究二 简单的古典概型的问题【例2】有编号为A 1,A 2,…,A 10的10个零件,测量其直径(单位:cm),得到下面数据:(1)从上述10个零件中,随机抽取1个,求这个零件为一等品的概率; (2)从这些一等品中,随机抽取2个零件, ①用零件的编号列出样本空间; ②求这2个零件直径相等的概率.[分析] 首先,阅读题目,收集题目中的各种信息;其次,判断事件是否为等可能事件,并用字母A 表示所求事件;再次,求出事件的样本空间Ω包含的样本点个数n 及事件A 包含的样本点个数m ;最后,利用公式P (A )=A 包含的样本点个数样本空间Ω包含的样本点个数=m n ,求出事件A 的概率.[解] (1)由题表知一等品共有6个,设“从10个零件中,随机抽取1个为一等品”为事件A ,则P (A )=610=35.(2)①一等品的编号为A 1,A 2,A 3,A 4,A 5,A 6,从这6个一等品中随机抽取2个,样本空间Ω={(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 1,A 5),(A 1,A 6),(A 2,A 3),(A 2,A 4),(A 2,A 5),(A 2,A 6),(A 3,A 4),(A 3,A 5),(A 3,A 6),(A 4,A 5),(A 4,A 6),(A 5,A 6)},共15个样本点.①将“从一等品中,随机抽取的2个零件直径相等”记为事件B ,则B 包含的样本点有(A 1,A 4),(A 1,A 6),(A 4,A 6),(A 2,A 3),(A 2,A 5),(A 3,A 5),共6个,①P (B )=615=25.归纳总结:根据古典概型概率公式P (A )=A 包含的样本点个数样本空间Ω包含的样本点个数=mn 进行解题.【练习2】将一枚质地均匀的正方体骰子先后抛掷两次观察出现点数的情况. (1)一共有多少个不同的样本点? (2)点数之和为5的样本点有多少个? (3)点数之和为5的概率是多少? 【答案】(1)36(个) (2)4 (3)19解:(1)将一枚质地均匀的正方体骰子抛掷一次,得到的点数有1,2,3,4,5,6,共6个样本点,故先后将这枚骰子抛掷两次,一共有6×6=36(个)不同的样本点. (2)点数之和为5的样本点有(1,4),(2,3),(3,2),(4,1),共4个.(3)正方体骰子是质地均匀的,将它先后抛掷两次所得的36个样本点是等可能出现的,其中点数之和为5(记为事件A )的样本点有4个,因此所求概率P (A )=436=19.探究三 较复杂的古典概型问题【例3】在一次口试中,考生要从5道题中随机抽取3道进行回答,答对其中2道题为优秀,答对其中1道题为及格,某考生能答对5道题中的2道题,试求: (1)他获得优秀的概率为多少;(2)他获得及格及及格以上的概率为多少.[分析] 这是一道古典概率问题,须用列举法列出样本点个数.[解] 设这5道题的题号分别为1,2,3,4,5,其中,该考生能答对的题的题号为4,5,则从这5道题中任取3道回答,该试验的样本空间Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)},共10个样本点.(1)记“获得优秀”为事件A ,则随机事件A 中包含的样本点个数为3,故P (A )=310. (2)记“获得及格及及格以上”为事件B ,则随机事件B 中包含的样本点个数为9,故P (B )=910.归纳总结:解决有序和无序问题应注意两点(1)关于不放回抽样,计算样本点个数时,既可以看作是有顺序的,也可以看作是无顺序的,其最后结果是一致的.但不论选择哪一种方式,观察的角度必须一致,否则会产生错误.(2)关于有放回抽样,应注意在连续取出两次的过程中,因为先后顺序不同,所以(a1,b),(b,a1)不是同一个样本点.【练习3】甲、乙两个均匀的正方体玩具,各个面上分别刻有1,2,3,4,5,6六个数字,将这两个玩具同时掷一次.(1)若甲上的数字为十位数,乙上的数字为个位数,问可以组成多少个不同的数,其中个位数字与十位数字均相同的数字的概率是多少?(2)两个玩具的数字之和共有多少种不同结果?其中数字之和为12的有多少种情况?数字之和为6的共有多少种情况?分别计算这两种情况的概率.解:(1)甲有6种不同的结果,乙也有6种不同的结果,故样本点总数为6×6=36(个).其中十位数字共有6种不同的结果,若十位数字与个位数字相同,十位数字确定后,个位数字也即确定.故共有6×1=6(种)不同的结果,即概率为636=1 6.(2)两个玩具的数字之和共有2,3,4,5,6,7,8,9,10,11,12共11种不同结果.出现数字之和为12的只有一种情况,故其概率为136.出现数字之和为6的共有(1,5),(2,4),(3,3),(4,2),(5,1)五种情况,所以其概率为5 36.课后作业A 组 基础题一、选择题1.一部三册的小说,任意排放在书架的同一层上,则第一册和第二册相邻的概率为( )A . 13B .12C .23D .34【答案】C [试验的样本空间Ω= {(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)},共6个样本点,事件“第一册和第二册相邻”包含4个样本点,故第一册和第二册相邻的概率为P =46=23.]2.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( )A .45B .35C .25D .15【答案】D [设所取的数中b >a 为事件A ,如果把选出的数a ,b 写成一数对(a ,b )的形式,则试验的样本空间Ω={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3)},共15个,事件A 包含的样本点有(1,2),(1,3),(2,3),共3个,因此所求的概率P (A )=315=15.] 3.从甲、乙、丙、丁、戊五个人中选取三人参加演讲比赛,则甲、乙都当选的概率为( )A .25B .210C .310D .35【答案】C [从五个人中选取三人,则试验的样本空间Ω={ (甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊)},而甲、乙都当选的结果有3种,故所求的概率为310.]4.《易经》是中国传统文化中的精髓,如图是易经八卦图(含乾、坤、巽、震、坎、離、艮、兑八卦),每一卦由三根线组成(-表示一根阳线,--表示一根阴线),从八卦中任取一卦,这一卦的三根线中恰有2根阳线和1根阴线的概率为( )A .18B .14C .38D .12【答案】C [从八卦中任取一卦,基本事件总数n =8,这一卦的三根线中恰有2根阳线和1根阴线包含的基本事件个数m =3, ①所求概率为P =38.故选C .]5.投掷一枚质地均匀的骰子两次,若第一次向上的点数小于第二次向上的点数,则我们称其为正试验;若第二次向上的点数小于第一次向上的点数,则我们称其为负试验;若两次向上的点数相等,则我们称其为无效试验.则一个人投掷该骰子两次出现无效试验的概率是( )A .136B .112C .16D .12【答案】C [连续抛一枚骰子两次向上的点数记为(x ,y ),则有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6), (3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6), (5,1),(5,2),(5,3),(5,4),(5,5),(5,6), (6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个基本事件,设“出现无效试验”为事件A ,则事件A 包含(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),共6个基本事件,则P (A )=636=16.]6.一个袋中装有2个红球和2个白球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同色的概率为( )A.12B.13C.14D.25【答案】A解析:把红球标记为红1、红2,白球标记为白1、白2,本试验的样本点共有16个,其中2个球同色的样本点有8个:(红1,红1),(红1,红2),(红2,红1),(红2,红2),(白1,白1),(白1,白2),(白2,白1),(白2,白2),故所求概率为P =816=12.7.甲、乙两人有三个不同的学习小组A ,B ,C 可以参加,若每人必须参加并且仅能参加一个学习小组(两人参加各小组的可能性相同),则两人参加同一个学习小组的概率为( )A.13B.14C.15D.16【答案】A解析:甲、乙两人参加学习小组,若以(A ,B )表示甲参加学习小组A ,乙参加学习小组B ,则一共有(A ,A ),(A ,B ),(A ,C ),(B ,A ),(B ,B ),(B ,C ),(C ,A ),(C ,B ),(C ,C ),共9种情形,其中两人参加同一个学习小组共有3种情形,根据古典概型概率公式,得P =13. 8.先后抛掷两颗骰子,所得点数之和为7的概率为( )A.13B.112C.16D.536【答案】C解析:抛掷两颗骰子,一共有36种结果,其中点数之和为7的共有6种结果,根据古典概型的概率公式,得P =16.二、填空题9.有五根细木棒,长度分别为1,3,5,7,9,从中任取三根,能搭成三角形的概率是________.【答案】310 [设取出的三根木棒能搭成三角形为事件A ,试验的样本空间Ω={(1,3,5), (1,3,7),(1,3,9),(1,5,7), (1,5,9), (1,7,9), (3,5,7),(3,5,9),(3,7,9),(5,7,9)},样本空间的总数为10,由于三角形两边之和大于第三边,构成三角形的样本点只有(3,5,7), (3,7,9), (5,7,9)三种情况,故所求概率为P (A )=310.]10.从含有3件正品和1件次品的4件产品中不放回地任取2件,则取出的2件中恰有1件是次品的概率为________.【答案】12 [设3件正品为A ,B ,C,1件次品为D ,从中不放回地任取2件,试验的样本空间Ω={AB ,AC ,AD ,BC ,BD ,CD },共6个.其中恰有1件是次品的样本点有:AD ,BD ,CD ,共3个,故P =36=12.]11.在国庆阅兵中,某兵种A ,B ,C 三个方阵按一定次序通过主席台,若先后次序是随机排定的,则B 先于A ,C 通过的概率为________.【答案】13 [用(A ,B ,C )表示A ,B ,C 通过主席台的次序,则试验的样本空间Ω= {(A ,B ,C ),(A ,C ,B ),(B ,A ,C ),(B ,C ,A ),(C ,A ,B ),(C ,B ,A )},共6个样本点,其中事件B 先于A ,C 通过的有(B ,C ,A )和(B ,A ,C ),共2个样本点,故所求概率P =26=13.]12.从三男三女共6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率为15.【答案】15解析:用A ,B ,C 表示三名男同学,用a ,b ,c 表示三名女同学,则从6名同学中选出2人的所有选法为(A ,B ),(A ,C ),(A ,a ),(A ,b ),(A ,c ),(B ,C ),(B ,a ),(B ,b ),(B ,c ),(C ,a ),(C ,b ),(C ,c ),(a ,b ),(a ,c ),(b ,c ),共15种,2名都是女同学的选法为(a ,b ),(a ,c ),(b ,c ),共3种,故所求的概率为315=15.三、解答题13.甲、乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(i ,j )分别表示甲、乙抽到的牌的数字,写出试验的样本空间;(2)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.【答案】 (1) 方片4用4′表示,试验的样本空间为Ω= {(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4)},则样本点的总数为12.(2)不公平.甲抽到牌的牌面数字比乙大有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种,甲胜的概率为P 1=512,乙胜的概率为P 2=712,因为512<712,所以此游戏不公平.14.某学校有初级教师21人,中级教师14人,高级教师7人,现采用分层随机抽样的方法从这些教师中抽取6人对绩效工资情况进行调查.(1)求应从初级教师、中级教师、高级教师中分别抽取的人数;(2)若从分层随机抽样抽取的6名教师中随机抽取2名教师做进一步数据分析,求抽取的2名教师均为初级教师的概率.【答案】 (1)由分层随机抽样知识得应从初级教师、中级教师、高级教师中抽取的人数分别为3,2,1.(2)在分层随机抽样抽取的6名教师中,3名初级教师分别记为A 1,A 2,A 3,2名中级教师分别记为A 4,A 5,高级教师记为A 6,则从中抽取2名教师的样本空间为Ω= {(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 1,A 5),(A 1,A 6),(A 2,A 3),(A 2,A 4),(A 2,A 5),(A 2,A 6),(A 3,A 4),(A 3,A 5),(A 3,A 6),(A 4,A 5),(A 4,A 6),(A 5,A 6)},即样本点的总数为15.抽取的2名教师均为初级教师(记为事件B )的样本点为(A 1,A 2),(A 1,A 3),(A 2,A 3),共3种.所以P (B )=315=15.15.海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层随机抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.【答案】(1)A,B,C三个地区的商品被抽取的件数分别为1,3,2 (2)415解析:(1)因为样本量与总体中的个体数的比是650+150+100=150,所以样本中包含三个地区的个体数量分别是50×150=1,150×150=3,100×150=2,所以A,B,C三个地区的商品被抽取的件数分别为1,3,2.(2)设6件来自A,B,C三个地区的样品分别为A1;B1,B2,B3;C1,C2,则抽取的这2件商品构成的所有样本空间Ω={(A1,B1),(A1,B2),(A1,B3),(A1,C1),(A1,C2),(B1,B2),(B1,B3),(B1,C1),(B1,C2),(B2,B3),(B2,C1),(B2,C2),(B3,C1),(B3,C2),(C1,C2)},共15个样本点.每个样品被抽到的机会均等,因此这些样本点出现的机会是等可能的.记事件D=“抽取的这2件商品来自相同地区”,则D={(B1,B2),(B1,B3),(B2,B3),(C1,C2)},共4个样本点.所以P(D)=415,即这2件商品来自相同地区的概率为415.B 组 能力提升一、选择题1.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( )A .16B .14C .13D .12【答案】D [设两位男同学分别为A ,B ,两位女同学分别为a ,b ,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为1224=12.故选D .] 2.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A .23B .35C .25D .15【答案】B [设5只兔子中测量过某项指标的3只为a 1,a 2,a 3,未测量过这项指标的2只为b 1,b 2,则从5只兔子中随机取出3只的所有可能情况为(a 1,a 2,a 3),(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 1,b 1,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),(a 2,b 1,b 2),(a 3,b 1,b 2),共10种可能.其中恰有2只测量过该指标的情况为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),共6种可能.故恰有2只测量过该指标的概率为610=35.故选B .] 二、填空题3.袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是12. (1)n =________;(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a ,第二次取出的小球标号为b .记事件A 表示“a +b =2”,则事件A 的概率为________.【答案】(1)2 (2)13 [(1)由题意可知:n 1+1+n =12,解得n =2. (2)不放回地随机抽取2个小球的样本空间Ω= {(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21)},共12个,事件A 包含的样本点为:(0,21),(0,22),(21,0),(22,0),共4个.①P (A )=412=13.] 三、解答题4.已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层随机抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.①试用所给字母列举出所有可能的抽取结果;②设M 为事件“抽取的2名同学来自同一年级” ,求事件M 发生的概率.【答案】[解] (1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3①2①2,由于采用分层随机抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)①从抽出的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,G },{C ,D },{C ,E },{C ,F },{C ,G },{D ,E },{D ,F },{D ,G },{E ,F },{E ,G },{F ,G },共21种.①由(1)知,不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种.所以事件M 发生的概率P (M )=521. 5.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天100颗种子浸泡后的发芽数,得到如下资料:(1)(2)求这5天的平均发芽率;(3)从3月1日至3月5日中任选2天,记前面一天发芽的种子数为m ,后面一天发芽的种子数为n ,用(m ,n )的形式列出所有基本事件,并求满足“⎩⎪⎨⎪⎧25≤m ≤30,25≤n ≤30”的概率. 【答案】 (1)由题意知,发芽数按从小到大的顺序排列为16,23,25,26,30,所以这5天发芽数的中位数是25.(2)这5天的平均发芽率为23+25+30+26+16100+100+100+100+100×100%=24%. (3)用(x ,y )表示所求基本事件,则有(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16),共10个基本事件.记“⎩⎪⎨⎪⎧25≤m ≤30,25≤n ≤30,”为事件A ,则事件A 包含的基本事件为(25,30),(25,26),(30,26),共有3个基本事件.所以P (A )=310,即事件“⎩⎪⎨⎪⎧25≤m ≤30,25≤n ≤30”的概率为310.。
高二数学上册古典概型知识点总结知识点总结
在中国古代把数学叫算术,又称算学,最后才改为数学。
数学分为两部分,一部分是几何,另一部分是代数。
以下是为大家整理的高二数学上册古典概型知识点,希望可以解决您所遇到的相关问题,加油,一直陪伴您。
1、古典概型
(1)定义:如果试验中所有可能出现的基本事件只有有限个,并且每个基本事件出现的可能性相等,则称此概率为古典概型。
(2)特点:①试验结果的有限性②所有结果的等可能性
(3)古典概型的解题步骤;
①求出试验的总的基本事件数 ;
②求出事件A所包含的基本事件数 ;
2、基本事件是事件的最小单位,所有事件都是由基本事件组成的,基本事件有下列两个特点:①任何两个基本事件都是互斥的;②任何事件都可以表示成基本事件的和(不可能事件除外)。
常见考法
本节在段考中,一般以选择题、填空题和解答题的形式考查古典概型的特征、古典概型的概率计算公式等知识点,属于中档题。
在高考中多融合在离散型随机变量的分布列中考查古典概型的概率计算公式,属于中档题,先求出各个基本量再代入即可解答。
误区提醒
在求试验的基本事件时,有时容易计算出错。
基本事件是事件的最小单位,所有事件都是由基本事件组成的,基本事件有下列两个特点:①任何两个基本事件都是互斥的;②任何事件都可以表示成基本事件的和(不可能事件除外)。
最后,希望小编整理的高二数学上册古典概型知识点对您有所帮助,祝同学们学习进步。
古典概型中的有序和无序问题
求古典概型中某事件的概率的关键是列举基本事件,在列举基本事件的时候,同学们会发现,有些事件和顺序有关,有些事件和顺序无关,那么到底哪些事件应该考虑顺序,哪些事件应该不考虑顺序呢?
例1 一个袋子中有白球2个,红黄球各1个,规定:
现依次从袋子中抓3个球,求得分不大于1分的概率.
解:因为抓出球的数目大于2,所以用树形图表示会比较清晰。
用1,2表示白球,用a 表示红球,b 表示黄球.所有基本事件用树形图列举如下:
基本事件总数为:46=24⨯
其中得分不大于1分的基本事件共有18个。
183(3244
P ∴=
=抓个球得分不大于1分) 如果我们不考虑抽取顺序,所有基本事件可以表示为:
从上面的树形图可以看出,基本事件总数为4,其中得分不大于1分的基本事件有3个。
3(34
P ∴=抓个球得分不大于1分) 考虑顺序和不考虑顺序的结果是一样的,为什么会这样呢?细心的同学会发现下面六个基本事件(1,2,a), (1,a,2), (2,1,a), (2,a,1), (a,1,2), (a,2,1),如果不考虑抽取顺序,其实表示的是同一个结果:抽到2个白球,1个红球。
原来当不考虑顺序时的每一个基本事件都有6个考
虑顺序的基本事件和它对应,每个事件都扩大6倍,这样,在用公式
()A
P A=所包含的基本事件数
基本事件总数
计算概率时,分子分母同时扩大6倍,所以结果相同。
而我们列举基本事件时,指列举“一次试验中可能出现的每一个基本结果”而既然在上面所求的问题中,考虑顺序的六个事件表示的是同一个结果,所以对于此类问题,我们在解答时不考虑顺序.那么,是不是所有的基本事件都可以看作无序的呢?
例2.一个盒子里有点数分别为1,2,3,4的4张牌,有放回的连续抽取两次,求“两张牌点数之和不小于6的概率”。
解:考虑顺序时,所有的基本事件可以表示为:
(1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4)
(3,1) (3,2) (3,3) (3,4) (4,1) (4,2) (4,3) (4,4) 基本事件共有4416
⨯=个,其中符合题意的如划线所示,共有6个。
所以P(两张牌点数之和不小于6的概率)
63 168 ==。
不考虑顺序时,所有的基本事件可以表示为:
(1,1) (1,2) (1,3) (1,4) (2,2) (2,3) (2,4) (3,3) (3,4) (4,4) 基本事件共有10个,其中符合题意的如划线所示,共有4个。
所以P(两张牌点数之和不小于6的概率)
42 105 ==。
两次的概率不相等,为什么会这样呢?仔细观察两组基本事件就会发现,第二组中的(1,2)在第一组中有(1,2),(2,1)两个基本事件和它对应,但第二组中的(1,1)在第一组中只有(1,1)一个基本事件和它对应。
这样并不是每一个基本事件都扩大了两倍,所以计算结果不同。
因此当因为有放回的抽取而出现(1,1)这样重复的事件时,基本事件必须看作和顺序有关。
思考:从1,2,3,4,5五个数字中,任意有放回地抽取三个数字,求三个数字完全不同的概率.这个问题我们应该考虑顺序吗?你能算出答案吗?。