第四讲-立体几何题型归类总结
- 格式:docx
- 大小:495.74 KB
- 文档页数:17
2024年高考数学立体几何知识点总结立体几何是数学中的一个重要分支,也是高考数学中的重要内容之一。
在高考中,立体几何的知识点主要包括空间几何、立体图形的面积与体积等方面。
下面是对2024年高考数学立体几何知识点的总结,供考生参考。
一、空间几何1. 空间几何中的点、线、面的概念和性质。
点是没有长度、宽度和高度的,只有位置的大小,用字母表示。
线是由一组无限多个点构成的集合,用两个点的字母表示。
面是由无限多条线构成的,这些线共面且没有相交或平行关系。
2. 空间几何中的垂直、平行等概念和性质。
两条线在同一平面内,如果相交角为90°,则称两线垂直。
两条线没有相交关系,称两线平行。
3. 点到直线的距离的计算。
点到直线的距离等于该点在直线上的正交投影点的距离。
二、立体图形的面积与体积1. 立体图形的分类和性质。
立体图形包括球体、圆柱体、圆锥体、棱柱体、棱锥体等。
各种立体图形具有不同的性质,如球体表面上每一点到球心的距离都相等。
2. 立体图形的面积计算。
(1)球体的表面积计算公式:S = 4πr²,其中r为球的半径。
(2)圆柱体的侧面积计算公式:S = 2πrh。
(3)圆柱体的全面积计算公式:S = 2πrh + 2πr²。
(4)圆锥体的侧面积计算公式:S = πrl,其中r为圆锥底面半径,l为斜高。
(5)棱柱体的侧面积计算公式:S = ph,其中p为棱柱底面周长,h为高。
3. 立体图形的体积计算。
(1)球体的体积计算公式:V = 4/3πr³,其中r为球的半径。
(2)圆柱体的体积计算公式:V = πr²h。
(3)圆锥体的体积计算公式:V = 1/3πr²h。
(4)棱柱体的体积计算公式:V = ph。
(5)棱锥体的体积计算公式:V = 1/3Bh,其中B为底面积,h 为高。
三、立体几何的一般理论1. 点、线、面的位置关系。
在空间中,点、线、面可以相互相交、平行、垂直等。
立体几何的知识点总结篇1:高中立体几何知识点总结高中立体几何知识点总结1.棱柱、棱锥、棱(圆)台的本质特征⑴棱柱:①有两个互相平行的面(即底面平行且全等),②其余各面(即侧面)每相邻两个面的公共边都互相平行(即侧棱都平行且相等)。
⑵棱锥:①有一个面(即底面)是多边形,②其余各面(即侧面)是有一个公共顶点的三角形。
⑶棱台:①每条侧棱延长后交于同一点,②两底面是平行且相似的多边形。
⑷圆台:①平行于底面的截面都是圆,②过轴的截面都是全等的等腰梯形,③母线长都相等,每条母线延长后都与轴交于同一点。
2.圆柱、圆锥、圆台的展开图、表面积和体积的计算公式3.线线平行常用方法总结(1)定义:在同一平面内没有公共点的两条直线是平行直线。
(2)公理:在空间中平行于同一条直线的两条直线互相平行。
(3)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行。
么两直线平行。
(5)面面平行的性质:若两个平行平面同时与第三个平面相交,那么两条交线平行。
4.线面平行的判定方法。
(1)定义:直线和平面没有公共点。
(2)判定定理:若不在平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。
(3)面面平行的性质:两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。
(4)线面垂直的性质:平面外于已知平面的垂线垂直的直线平行于已知平面。
5.判定两平面平行的方法。
(1)依定义采用反证法;(2)利用判定定理:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行。
(3)利用判定定理的推论:如果一个平面内有两条相交直线平行于另一个平面内的两条直线,则这两平面平行。
(4)垂直于同一条直线的两个平面平行。
(5)平行于同一个平面的两个平面平行。
6.证明线线垂直的方法(1)利用定义。
条直线垂直于这个平面的任何一条直线。
7.证明线面垂直的方法(1)线面垂直的定义。
立体几何专题复习1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱底面为正方形2. 棱锥棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。
3.球球的性质:①球心与截面圆心的连线垂直于截面;★②r =d 、球的半径为R 、截面的半径为r )★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.注:球的有关问题转化为圆的问题解决. 球面积、体积公式:2344,3S R V R ππ==球球(其中R 为球的半径)俯视图11_________________.第1题2.若某空间几何体的三视图如图2所示,则该几何体的体积是________________.第2题 第3题3.一个几何体的三视图如图3所示,则这个几何体的体积为 .侧(左)视图 正(主)视图4.若某几何体的三视图(单位:cm )如图4所示,则此几何体的体积是 .第4题 第5题5.如图5是一个几何体的三视图,若它的体积是 a .6.已知某个几何体的三视图如图6,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 .7.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm 8.设某几何体的三视图如图8(尺寸的长度单位为m ),则该几何体的体积为_________m 3。
3俯视图正视图侧视图俯视图俯视图正(主)视图侧(左)视图第7题 第8题9.一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为_________________.图910.一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如图10所示(单位cm ),则该三棱柱的表面积为_____________.图1011.如图11所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为_____________.图图11 图12 图1312. 如图12,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么几何体的侧面积为_____________.13.已知某几何体的俯视图是如图13所示的边长为2的正方形,主视图与左视图是边长为2的正三角形,则其表面积是_____________.14.如果一个几何体的三视图如图14所示(单位长度: cm ), 则此几何体的表面积是_____________.图14正视图俯视图15.一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )_____________.正视图 左视图 俯视图1. 正方体1111ABCD-A B C D ,1AA =2,E 为棱1CC 的中点. (Ⅰ) 求证:11B D AE ⊥; (Ⅱ) 求证://AC 平面1B DE ; (Ⅲ)求三棱锥A-BDE 的体积.2. 已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.求证:(1) C 1O ∥面11AB D ;(2)1AC ⊥面11AB D .3.如图,PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 和PC 的中点.AD 11A E CD 1ODBA C 1B 1A 1C(Ⅰ)求证:MN ∥平面PAD ; (Ⅱ)求证:MN CD ⊥;(Ⅲ)若45PDA ∠=,求证:MN ⊥平面PCD .4. 如图(1),ABCD 为非直角梯形,点E ,F 分别为上下底AB ,CD 上的动点,且EF CD ⊥。
立体几何大题题型总结
立体几何大题包括以下几种题型:
1. 体积计算题:给定一个几何体的形状和尺寸,求其体积。
2. 表面积计算题:给定一个几何体的形状和尺寸,求其表面积。
3. 三视图综合题:给定一个几何体的三视图,通过推理和计算求出其体积和表面积。
4. 截面综合题:给定一个几何体的各个截面的形状和尺寸,通过推理和计算求出其体积和表面积。
5. 相似几何体综合题:给定多个几何体的形状和尺寸,在它们之间应用相似性质,求出它们各自的体积和表面积。
6. 空间几何关系题:给定多个几何体之间的位置关系,例如相切、相交、包含等,求出它们各自的体积和表面积。
7. 作图求解题:通过构造一些几何形状,例如放射形、圆锥、圆台等,求出特定几何体的体积和表面积。
8. 混合几何体综合题:将以上多种题型进行综合,考查学生的综合运用能力。
高中立体几何知识点总结高中立体几何知识点总结高中立体几何知识点总结1三角函数。
注意归一公式、诱导公式的正确性数列题。
1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
概率问题。
1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2.搞清是什么概率模型,套用哪个公式;3.记准均值、方差、标准差公式;4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样; 高中立体几何知识点总结2平面通常用一个平行四边形来表示。
平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC。
在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:a) A∈l—点A在直线l上;Aα—点A不在平面α内;b) lα—直线l在平面α内;c) aα—直线a不在平面α内;d) l∩m=A—直线l与直线m相交于A点;e) α∩l=A—平面α与直线l交于A点;f) α∩β=l—平面α与平面β相交于直线l。
立体几何归类总结一、异面直线所成的角:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.二、直线和平面所成的角求直线与平面所成的角的一般步骤:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hl θ=(l 为斜线段长),进而可求得线面角; (3)通过建系,利用坐标系向量求解:直线与平面所成的角(射影角,也是夹角,[0.]2πϑ∈),m n ,是平面法向量sin |cos a |=b θ=,三、二面角的平面角角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角;(3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.【题型一】异面直线所成的角1: 平移直线法(中位线)【例1】如图∶已知A 是BCD △所在平面外一点,AD BC =,E 、F 分别是AB 、CD 的中点,若异面直线AD 与BC 所成角的大小为θ,AD 与EF 所成角的大小为_______________.【例2】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为菱形,60ABC ∠=且PA AB E =,为AP 的中点,则异面直线PC 与DE 所成的角的余弦值为( )A B C D 【例3】空间四边形ABCD 的对角线10AC =,6BD =,M ,N 分别为AB ,CD 的中点,7MN =,则异面直线AC 和BD 所成的角等于( )A .30°B .60°C .90°D .120°【例4】在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,在鳖臑 ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成角为( )A .30°B .45°C .60°D .90°【题型二】异面直线所成的角2:平行四边形、梯形等【例1】已知六棱锥P ﹣ABCDEF 的底面是正六边形,PA ⊥平面ABC ,PA =2AB ,则异面直线CD 与PB 所成的角的余弦值为( )A B C D【例2】已知圆柱的母线长为2ABCD 为其轴截面,若点E 为上底面圆弧AB 的中点,则异面直线DE 与AB 所成的角为( )A .4πB .6πC .512πD .3π【例3】如图,在正方体1111ABCD A B C D -中,E ,F ,G ,H 分别为1AA ,AB ,1BB ,11B C 的中点,则异面直线EF 与GH 所成的角等于( )A .45︒B .60︒C .90︒D .120︒【例4】正方体1111ABCD A B C D -中,已知E 为1CC 的中点,那么异面直线1BC 与AE 所成的角等于( ) A .30 B .45︒ C .60︒ D .90︒【题型三】异面直线所成的角3:垂直【例1】如图,在三棱柱111ABC A B C -中,CA CB =,1AB AA =,1π3BAA ∠=,那么异面直线AB 与1A C 所成的角为A .6πB .π4C .π3D .π2【例2】在如图所示的正方体中,M ,N 分别为棱BC 和DD 1的中点,则异面直线AN 和B 1M 所成的角为( )A .30°B .45°C .90°D .60°【例3】菱形ABCD 的对角线AC 、BD 的交点为O ,P 是菱形所在平面外一点,PO ⊥平面ABCD ,则异面直线AC 与PD 所成角大小为______.【例4】若异面直线a ,b 所成的角为3π,且直线c a ⊥,则异面直线b ,c 所成角的范围是______.【题型四】 异面直线所成角的范围与最值(难点)【例1】如图,点M N 、分别是正四面体ABCD 棱AB CD 、上的点,设BM x =,直线MN 与直线BC 所成的角为θ,则( )A .当2ND CN =时,θ随着x 的增大而增大B .当2ND CN =时,θ随着x 的增大而减小C .当2CN ND =时,θ随着x 的增大而减小 D .当2CN ND =时,θ随着x 的增大而增大【例2】已知菱形ABCD ,60DAB ∠=︒,E 为边AB 上的点(不包括A B ,),将ABD △沿对角线BD 翻折,在翻折过程中,记直线BD 与CE 所成角的最小值为α,最大值为β( ) A .αβ,均与E 位置有关B .α与E 位置有关,β与E 位置无关C .α与E 位置无关,β与E 位置有关D .αβ,均与E 位置无关【例3】在正方体1111ABCD A B C D -中,已知,,E F G 分别为111,,CD D D A B 的中点,P 为平面11CDD C 内任一点,设异面直线GF 与PE 所成的角为α,则cos α的最大值为( )A .13BCD .1【例4】已知圆柱12O O 的底面半径和母线长均为1,A ,B 分别为圆2O 、圆1O 上的点,若2AB =,则异面直线1O B ,2O A 所成的角为( )A .6π B .3πC .23π D .56π【题型五】 异面直线所成角:综合【例1】在正方体ABCD ﹣A 1B 1C 1D 1中,过点C 做直线l ,使得直线l 与直线BA 1和B 1D 1所成的角均为70,则这样的直线l ( )A .不存在B .2条C .4条D .无数条【例2】在正方体1111ABCD A B C D -的所有面对角线中,所在直线与直线1A B 互为异面直线且所成角为60︒的面对角线的条数为( ) A .2 B .4 C .6 D .8【例3】1111ABCD A B C D -是棱长为1的正方体,一个质点从A 出发沿正方体的面对角线运动,每走完一条面对角线称“走完一段”,质点的运动规则如下:运动第i 段与第2i +所在直线必须是异面直线(其中i 是正整数).问质点走完的第2021段与第1段所在的直线所成的角是( )A .0°B .30°C .60°D .90°【例4】已知异面直线a 、b 所成角为80︒,P 为空间一定点,则过P 点且与a 、b 所成角都是50︒的直线有且仅有( )条. A .2 B .3 C .4D .6【题型六】 直线和平面所成的角1:垂线法【例1】在空间,若60AOB AOC ∠=∠=︒,90BOC ∠=°,直线OA 与平面OBC 所成的角为θ,则cos θ=( )A B C .12D .13【例2】正四面体ABCD 中,直线AB 与平面BCD 所成的角的正弦值是( )A B .14C D【例3】如图,已知正方体1111ABCD A B C D -,直线1A B 与平面11A B CD 所成的角为( )A .30B .45︒C .60︒D .90︒【例4】已知正四棱柱1111ABCD A B C D -,设直线1AB 与平面11ACC A 所成的角为α,直线1CD 与直线11A C 所成的角为β,则( ) A .2βα= B .2αβ=C .αβ=D .2παβ+=【题型七】直线和平面所成 的角2:垂面法【例1】如图,在三棱锥P ABC -中,平面PAB ⊥平面,2ABC PA PB AB ===,,AB BC BC ⊥=线PC 与平面ABC 所成的角是( )A .30︒B .45︒C .60︒D .90︒【例2】正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为则直线1B A 与平面11BB C C 所成的角为( )A .3πB .6πC .512πD .4π【例3】如图,在正三棱柱111ABC A B C -中,底面边长为2,侧棱长为3,则直线1BB 与平面11AB C 所成的角为________.【例4】已知四棱锥P ABCD -底面是边长为2的正方形,PA ⊥平面ABCD ,且2PA =,则直线PB 与平面PCD 所成的角大小为__________.【题型八】直线和平面所成 的角3:体积法(距离法)【例1】如图,在直三棱柱111ABC A B C -中,1AB BC ==,120ABC ∠=︒.M 为11A C 的中点,则直线BM 与平面11ABB A 所成的角为( )A .15°B .30°C .45°D .60°【例2】在正方体''''ABCD A B C D -中,直线'BC 与平面'A BD 所成的角的余弦值等于A B C D【例3】已知长方体1111ABCD A B C D -中,1112AA AB AD ===,,1AA 与平面1A BD 所成的角为______.【例4】直线l 与平面α所成的角为6π,且AB 是直线l 上两点,线段AB 在平面α内的射影长为3,则AB =___________.【题型九】线面角中的范围与最值【例1】在正方体1111ABCD A B C D -中,点O 为线段BD 的中点,设点P 在直线1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是A .⎤⎥⎣⎦B .⎤⎥⎣⎦C .⎣⎦D .⎣⎦【例2】若直线l 与平面α所成的角为3π,直线a 在平面α内,则直线l 与直线a 所成的角的取值范围是( )A .0,3π⎡⎤⎢⎥⎣⎦B .,62ππ⎡⎤⎢⎥⎣⎦ C .,32ππ⎡⎤⎢⎥⎣⎦ D .,63ππ⎡⎤⎢⎥⎣⎦【例3】在正方体1111ABCD A B C D -中,点P 在线段11C D 上,若直线1B P 与平面11BC D 所成的角为θ,则tan θ的取值范围是( )A .⎣⎦B .⎡⎣C .11,32⎡⎤⎢⎥⎣⎦D .⎤⎥⎣⎦【例4】直线l 与平面α所成的角为π3,则直线l 与平面α内直线所成角的最小值是________.【题型十】线面角:综合【例1】如图所示,在正方体1AC 中,2AB =,1111AC B D E =,直线AC 与直线DE 所成的角为α,直线DE 与平面11BCC B 所成的角为β,则()cos αβ-=__________.【例2】直线l 与平面α所成的角是45°,若直线l 在α内的射影与α内的直线m 所成的角是45°,则l 与m 所成的角是( ) A .30° B .45°C .60°D .90°【例3】若直线l 与平面α所成的角为3π,直线a 在平面α内,且与直线l 异面,则直线l 与直线a 所成角的取值范围是( )A .0,3π⎡⎤⎢⎥⎣⎦B .,62ππ⎡⎤⎢⎥⎣⎦C .,63ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎤⎢⎥⎣⎦【例4】如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上,若直线1DD 与平面1D EC 所成的角为4π,则AE =__________.【题型十一】定义法求二面角的平面角【例1】自二面角内任意一点分别向两个面引垂线,则两垂线所成的角与二面角的平面角的关系是( ) A .相等 B .互补 C .互余 D .相等或互补【例2】如图,菱形ABCD 的边长为60BCD ∠=︒,将BCD △沿对角线BD 折起,使得二面角C BD A '--的平面角的余弦值是13,则C B '与平面ABD 所成角的正弦值是( )A B C D【例3】在三棱锥P -ABC 中,P A =PB =AC =CB =AB =2,PC =3,则二面角P -AB -C 的大小为( ) A .30° B .60° C .90° D .120°【例4】在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥底面ABCD ,且PA AB =,AD =,则二面角P CD B --的大小为( ) A .30° B .45° C .60°D .75°【题型十二】二面角内的角度【例1】从空间一点P 向二面角l αβ--的两个面α、β分别作垂线PE 、PF ,E ,F 为垂足,若二面角l αβ--的大小为60°,则⊥EPF 的大小为( )A .60°B .120°C .60°或120°D .不确定【例2】如图,在ABC 中,AB AC =,3A π∠=,P 为底边BC 上的动点,BP BC λ=,102λ<<,沿折痕AP把ABC 折成直二面角B AP C '--,则B AC '∠的余弦值的取值范围为( )A .⎛ ⎝⎭B .12⎛ ⎝⎭C .13,24⎛⎫ ⎪⎝⎭D .10,2⎛⎫⎪⎝⎭【例3】如图,圆锥AO 中,B 、C 是圆O 上的不同两点,若30OAB ∠=,且二面角B AO C --所成平面角为60,动点P 在线段AB 上,则CP 与平面AOB 所成角的正切值的最大值为( )A .2 BC D .1【例4】已知E ,F 分别是矩形ABCD 边AD ,BC 的中点,沿EF 将矩形ABCD 翻折成大小为α的二面角.在动点P 从点E 沿线段EF 运动到点F 的过程中,记二面角B AP C --的大小为θ,则( ) A .当90α<︒时,sin θ先增大后减小 B .当90α<︒时,sin θ先减小后增大 C .当90α>时,sin θ先增大后减小 D .当90α>时,sin θ先减小后增大【题型十三】二面角内的距离【例1】如图,在大小为60︒的二面角A EF D --中,四边形ABFE ,四边形CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )AB .2C .1 D【例2】在三棱锥A -BCD 中,ABC 和BCD △均为边长为2的等边三角形,若AB CD ⊥,则二面角A -BC -D 的余弦值为( )A B C .13D【例3】120°的二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知2AB =,3AC =,4BD =,则CD 的长为( )A B C D【例4】如下图,面α与面β所成二面角的大小为3π,且A ,B 为其棱上两点.直线AC ,BD 分别在这个二面角的两个半平面中,且都垂直于AB ,已知AB =2AC =,4BD =,则CD =( )AB C D .【题型十四】综合角度:比大小(难点)【例1】在正方体1111ABCD A B C D -中,M 是线段1A C (不含端点)上的点,记直线M B 与直线11A B 成角为α,直线MC 与平面ABC 所成角为β,二面角M BC A --的平面角为γ,则( )A .βγα<<B .αβγ<<C .βαγ<<D .γαβ<<【例2】已知矩形ABCD ,M 是边AD 上一点,沿BM 翻折ABM ,使得平面ABM ⊥平面BCDM ,记二面角A BC D --的大小为α,二面角A DM C --的大小为β,则( )A .αβ<B .αβ>C .2παβ+< D .2παβ+>【例3】四棱锥P ABCD -的各棱长均相等,M 是AB 上的动点(不包括端点),点N 在线段AD 上且满足2AN ND =,分别记二面角P MN C --,P AB C ,P MD C --的平面角为,,αβγ,则( ) A .βαγ>> B .βγα>>C .γβα>>D .γαβ>>【例4】已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF 沿着EF 翻折至P 点处,如图所示,记二面角P EF B --的平面角为α,二面角P FC B --的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥1.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1BB 所成角为( )A .6πB .3πC .4πD .2π2.若二面角l αβ--的平面角为θ,异面直线a ,b 满足a α⊂,b β⊂,且a l ⊥,b l ⊥,则异面直线a ,b 所成的角为( ).A .θB .πθ-C .2θπ-D .θ或πθ-3..已知正三棱锥A BCD -中,BC =,E 是CD 的中点,则异面直线BE 与AD 所成角为( ) A .30° B .45° C .60° D .90°4.在直三棱柱111ABC A B C -中,12AB AA ==,1BC =,AB BC ⊥,点D 是侧棱1BB 的中点,则异面直线1C D 与直线1AB 所成的角大小为( )A .6πB .4πC .3πD .2π5.两条异面直线,a b 所成的角为60,在直线,a b 上分别取点,A E 和点,B F ,使AB a ⊥,且AB b ⊥.已知6,8,14AE BF EF ===,则线段AB 的长为( )A .20或12B .12或C .D .206..已知两条异面直线a ,b 所成角为60°,在直线a 上取点C ,E .在直线b 上取点D ,F ,使CD a ⊥,且CD b ⊥.已知1CE DF CD ===,则线段EF 的长为______.7..在正方体1111ABCD A B C D -中,设直线1BD 与直线AD 所成的角为α,直线1BD 与平面11CDD C 所成的角为β,则αβ+=( )A .4πB .3πC .2πD .23π8.如图,正四棱锥P ABCD -的体积为2,底面积为6,E 为侧棱PC 的中点,则直线BE 与平面PAC 所成的角为_______.9.在正方体1111ABCD A B C D -中,若存在平面α,使每条棱所在的直线与平面α所成的角都相等,则各棱所在的直线与此平面所成角的正切值为_______.10.过正方体1111ABCD A B C D -的顶点A 作平面α,使正方形ABCD 、正方形11ABB A 、正方形11ADD A 所在平面与平面α所成的二面角的平面角相等,则这样的平面α可以作( )A .1个B .2个C .3个D .4个11.如图,已知二面角l αβ--平面角的大小为3π,其棱l 上有A 、B 两点,AC 、BD 分别在这个二面角的两个半平面内,且都与AB 垂直.已知1AB =,2==AC BD ,则CD =( )A .5B .13C D11.已知矩形 ABCD ,1AB =,BC =沿对角线AC 将ABC 折起,若二面角B AC D --的余弦值为13-,则B 与D 之间距离为( )A.1 BC D12.已知在正方体1111ABCD A B C D -中,点E 为棱BC 的中点,直线l 在平面1111D C B A 内.若二面角A l E --的平面角为θ,则cos θ的最小值为( )A B .1121 C D .3513.已知在正四棱锥P ABCD -中,2AB =,3PA =,侧棱与底面所成角为α,侧面与底面所成角为β,二面角A PB C --的平面角为θ,则下列说法正确的是( ) A .βαθ<< B .αθβ<< C .2cos cos 0θβ+= D .2cos cos 0θα+=。
高考数学立体几何题型大全总结1. 三角锥的体积公式
体积公式:V=1/3∗S∗h
其中,S为底面积,h为高。
2. 三棱锥的体积公式
体积公式:V=1/3∗S∗h
其中,S为底面积,h为高。
3. 四棱锥的体积公式
体积公式:V=1/3∗S∗h
其中,S为底面积,h为高。
4. 圆锥的体积公式
体积公式:V=1/3∗π∗r2∗h
其中,r为圆锥的半径,h为圆锥的高。
5. 球的体积公式
体积公式:V=4/3∗π∗r3
其中,r为球的半径。
6. 圆柱的体积公式
体积公式:V=π∗r2∗h
其中,r为圆柱的半径,h为圆柱的高。
7. 圆台的体积公式
体积公式:V=1/3∗π∗h∗(r12+r22+r1r2)
其中,r1,r2为底面半径,h为圆台高。
8. 空间向量的共线与垂直判定公式
共线判定公式:
如果两个向量a,b共线,则有a=kb,其中k为一个实数。
垂直判定公式:
如果两个向量a,b垂直,则有a·b=0,其中“·”表示向量的数量积。
9. 空间向量的平面垂直判定公式
若向量a与平面P垂直,则a在平面P上的投影为零向量。
10. 空间向量的平面共面判定公式
若向量a和向量b在同一平面上,则a和b的向量积c在该平面内。
11. 空间中两直线相交的条件
两直线相交的条件是它们至少有一个公共点,并且既不平行也不重合。
高考数学立体几何题型全归纳一、空间几何体的结构特征1. 一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如下(单位cm),则该三棱柱的表面积为()正视图:是一个矩形,长为2,高为√(3);侧视图:是一个矩形,长为2,高为1;俯视图:是一个正三角形,边长为2。
解析:底面正三角形的边长a = 2,底面积S_{底}=(√(3))/(4)a^2=(√(3))/(4)×2^2=√(3)。
侧棱长h = 1,三个侧面的面积S_{侧}=3×2×1 = 6。
所以表面积S=2S_{底}+S_{侧}=2√(3)+6。
2. 若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()正视图:是一个梯形,上底为1,下底为2,高为2;侧视图:是一个矩形,长为2,宽为1;俯视图:是一个矩形,长为2,宽为1。
解析:该几何体是一个四棱台。
上底面积S_{1}=1×1 = 1,下底面积S_{2}=2×2=4,高h = 2。
根据四棱台体积公式V=(1)/(3)h(S_{1}+S_{2}+√(S_{1)S_{2}})=(1)/(3)×2×(1 + 4+√(1×4))=(14)/(3)二、空间几何体的表面积与体积3. 已知球的直径SC = 4,A,B是该球球面上的两点,AB=√(3),∠ ASC=∠BSC = 30^∘,则棱锥S - ABC的体积为()解析:设球心为O,因为SC是球的直径,∠ ASC=∠ BSC = 30^∘所以SA=SB = 2√(3),AO = BO=√(3)又AB=√(3),所以 AOB是等边三角形,S_{ AOB}=(√(3))/(4)×(√(3))^2=(3√(3))/(4)V_{S - ABC}=V_{S - AOB}+V_{C - AOB}=(1)/(3)× S_{ AOB}×(SO + CO)=(1)/(3)×(3√(3))/(4)×2=√(3)4. 一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()正视图:是一个正方形,右上角缺了一个等腰直角三角形;侧视图:是一个正方形,右上角缺了一个等腰直角三角形;俯视图:是一个正方形,右上角缺了一个小正方形。
立体几何解答题最全归纳总结【题型归纳目录】题型一:非常规空间几何体为载体题型二:立体几何存在性问题题型三:立体几何折叠问题题型四:立体几何作图问题题型五:立体几何建系繁琐问题题型六:两角相等(构造全等)的立体几何问题题型七:利用传统方法找几何关系建系题型八:空间中的点不好求题型九:创新定义【典例例题】题型一:非常规空间几何体为载体例1.如图,P 为圆锥的顶点,O 为圆锥底面的圆心,圆锥的底面直径AB =4,母线PH =22,M 是PB 的中点,四边形OBCH 为正方形.(1)设平面POH ∩平面PBC =l ,证明:l ∥BC ;(2)设D 为OH 的中点,N 是线段CD 上的一个点,当MN 与平面PAB所成角最大时,求MN 的长.【解析】(1)因为四边形OBCH 为正方形,∴BC ∥OH ,∵BC ⊄平面POH ,OH ⊂平面POH ,∴BC ∥平面POH .∵BC ⊂平面PBC ,平面POH ∩平面PBC =l ,∴l ∥BC .(2)∵圆锥的母线长为22,AB =4,∴OB =2,OP =2,以O 为原点,OP 所在的直线为z 轴,建立如图所示的空间直角坐标系,则P 0,0,2 ,B 0,2,0 ,D 1,0,0 C 2,2,0 ,M 0,1,1 ,设DN =λDC =λ,2λ,0 0≤λ≤1 ,ON =OD +DN =1+λ,2λ,0 ,MN =ON -OM =1+λ,2λ-1,-1 ,OD =1,0,0 为平面PAB 的一个法向量,设MN 与平面PAB 所成的角为θ,则sin θ=1+λ,2λ-1,-1 ⋅1,0,0 1+λ 2+2λ-1 2+1 =1+λ5λ2-2λ+3,令1+λ=t ∈1,2 ,则sin θ=t 5t 2-12t +10=15-12t +101t 2=1101t -35 2+75所以当1t =35时,即λ=23时,sin θ最大,亦θ最大,此时MN =53,13,-1 ,所以MN =MN =53 2+13 2+-1 2=353.例2.如图所示,圆锥的底面半径为4,侧面积为162π,线段AB 为圆锥底面⊙O 的直径,C 在线段AB 上,且BC =3CA ,点D 是以BC 为直径的圆上一动点;(1)当CD =CO 时,证明:平面PAD ⊥平面POD(2)当三棱锥P -BCD 的体积最大时,求二面角B -PD -A 的余弦值.【解析】(1)∵PO 垂直于圆锥的底面,∴PO ⊥AD ,当CD =CO 时,CD =OC =AC ,∴AD ⊥OD ,又OD ∩PO =O ,∴AD ⊥平面POD ,又AD ⊂平面PAD ,∴平面PAD ⊥平面POD ;(2)由题可知OA =OB =4,4π⋅PB =162π,∴PB =42,∴PO =4,当三棱锥P -BCD 的体积最大时,△DBC 的面积最大,此时D 为BC的中点,如图,建立空间直角坐标系O -xyz ,则A (0,-4,0),B (0,4,0),P (0,0,4),D 3,1,0 ,∴BP =0,-4,4 ,PD =3,1,-4 ,AP =(0,4,4),设平面PAD 的法向量为n 1 =(a ,b ,c ),则n 1 ⋅AP =0n 1 ⋅PD =0 ,即4b +4c =03a +b -4c =0,令a =5,则b =-3,c =3,∴n 1 =(5,-3,3),设平面PBD 的法向量n 2 =x ,y ,z ,则n 2 ⋅BP =0n 2 ⋅PD =0 ,即-4y +4z =03x +y -4z =0,令x =1,则y =1,z =1,∴n 2 =1,1,1 ,则cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2 =5-3+33×52+-3 2+32=5129129,∴二面角B -PD -A 的余弦值为-5129129.例3.如图,圆锥PO 的母线长为6,△ABC 是⊙O 的内接三角形,平面PAC ⊥平面PBC .BC =23,∠ABC =60°.(1)证明:PA ⊥PC ;(2)设点Q 满足OQ =λOP ,其中λ∈0,1 ,且二面角O -QB -C 的大小为60°,求λ的值.【解析】(1)∵PA =PB =PC =6,BC =23,PB 2+PC 2=BC 2,∴PB ⊥PC∵平面PAC ⊥平面PBC 且平面PAC ∩平面PBC =PC ,PB ⊂平面PBC ,PB ⊥PC ,∴PB ⊥平面PAC ,又PA ⊂平面PAC ,∴PB ⊥PA ,∴AB =PA 2+PB 2=23,∴∠ABC =60°,∴△ABC 是正三角形,AC =23,∵PA 2+PC 2=AC 2∴PA ⊥PC ;(2)在平面ABC 内作OM ⊥OB 交BC 于M ,以O 为坐标原点,OM ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz 如图所示:易知OB =OC =2,OP =PB 2-OB 2=2,所以B 2,0,0 ,P 0,0,2 ,C -1,3,0 ,Q 0,0,2λ ,QB =2,0,-2λ ,BC =-3,3,0 ,设平面OBC 的法向量n 1 =x ,y ,z ,依题意n 1 ⋅QB =0n 1 ⋅CB =0 ,即2x -2λz =0-3x +3y =0 ,不妨令y =3λ,得n 1 =λ,3λ,2 ,易知平面OQB 的法向量n 2 =0,1,0 ,由λ∈0,1 可知cos n 1 ,n 2 =n 1 ⋅n 2 n 1 ⋅n 2=cos60°,即3λλ2+(3λ)2+2 2=12,解得λ=12例4.如图,D 为圆锥的顶点,O 为圆锥底面的圆心,AB 为底面直径,C 为底面圆周上一点,DA =AC =BC =2,四边形DOAE 为矩形,点F 在BC 上,且DF ⎳平面EAC .(1)请判断点F 的位置并说明理由;(2)平面DFO 将多面体DBCAE 分成两部分,求体积较大部分几何体的体积.【解析】(1)点F 是BC 的中点,取BC 的中点F ,连接OF ,DF ,因为O 为AB 的中点,所以OF ⎳AC ,又AC ⊂平面AEC ,OF ⊄平面AEC ,所以OF ⎳平面AEC ,由四边形DOAE 为矩形,所以DO ⎳AE ,又AE ⊂平面AEC ,OD ⊄平面AEC ,所以OD ⎳平面AEC ,因为DO ∩OF =O ,DO ,OF ⊂平面DOF ,所以平面DOF ⎳平面AEC ,因为DF ⊂平面DOF ,所以DF ⎳平面AEC ,(2)由(1)知点F 是BC 的中点,因为DA =AC =BC =2,所以AB =AC 2+BC 2=22,所以OA =OC =OB =2,且OC ⊥AB ,所以OD =AD 2-OA 2=2,所以三棱锥D -BOF 的体积V D -BOF =13S △BOF ⋅DO =13×12×2×22×2=26;又三棱锥D -BOC 的体积V D -BOC =13S △BOC ⋅DO =13×12×2×2×2=23,所以四棱锥C -DOAE 的体积V C -DOAE =13S DOAE ×2=13×2 2×2=223,所以几何体DBCAE 的体积V DBCAE =V D -BCO +V C -DOAE =2,所以体积较大部分几何体的体积为V DBCAE -V D -BOF =2-26=526;例5.如图,在直角△POA 中,PO ⊥OA ,PO =2OA ,将△POA 绕边PO 旋转到△POB 的位置,使∠AOB =90°,得到圆锥的一部分,点C 为AB 的中点.(1)求证:PC ⊥AB ;(2)设直线PC 与平面PAB 所成的角为φ,求sin φ.【解析】(1)证明:由题意知:PO ⊥OA ,PO ⊥OB ,OA ∩OC =0∴PO ⊥平面AOB ,又∵AB ⊂平面AOB ,所以PO ⊥AB .又点C 为AB 的中点,所以OC ⊥AB ,PO ∩OC =0,所以AB ⊥平面POC ,又∵PC ⊂平面POC ,所以PC ⊥AB .(2)以O 为原点,OA ,OB ,OP 的方向分别作为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,设OA =2,则A 2,0,0 ,B 0,2,0 ,P 0,0,4 ,C 2,2,0 ,所以AB =-2,2,0 ,AP =-2,0,4 ,PC =2,2,-4 .设平面PAB 的法向量为n =a ,b ,c ,则n ⋅AB =-2a +2b =0,n ⋅AP =-2a +4c =0, 取c =1,则a =b =2可得平面PAB 的一个法向量为n =2,2,1 ,所以sin φ=cos n ,PC =n ⋅PC n PC =42-465=210-5 15.例6.如图,四边形ABCD 为圆柱O 1O 2的轴截面,EF 是该圆柱的一条母线,EF =2EA ,G 是AD 的中点.(1)证明:AF ⊥平面EBG ;(2)若BE =3EA ,求二面角E -BG -A 的正弦值.【解析】(1)由已知EF ⊥平面ABE ,BE ⊂平面ABE ,所以EF ⊥BE ,因为AB 是圆O 1的直径,所以AE ⊥BE ,因为AE ∩FE =E ,所以BE ⊥平面AFE ,AF ⊂平面AFE ,故BE ⊥AF ,因为EF =2EA =2AG ,所以EA =2AG ,易知:Rt △AEG ∼Rt △EFA ,所以∠GEA +∠EAF =90°,从而AF ⊥EG ,又BE ∩EG =E ,所以AF ⊥平面EBG .(2)以E 为坐标原点,EA 为x 轴正方向,EA 为单位向量,建立如图所示的空间直角坐标系E -xyz ,则AB =2,BE =3,EF =2,从而A 1,0,0 ,B 0,3,0 ,D 1,0,2 ,F 0,0,2 ,AB =-1,3,0 ,AD =0,0,2 ,设n =x ,y ,z 位平面BGA 的法向量,则{n ⋅AB =0n ⋅AD =0⇒{-x +3y =02z =0⇒{x =3y =1z =0,所以n =3,1,0 ,由(1)知:平面BEG 的法向量为AF =-1,0,2 ,因为cos n ,AF =n ⋅AF n ⋅AF=-12,所以二面角E -BG -A 的正弦值为32.例7.例7.如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF的中点.(1)设P 是CE 上的一点,且AP ⊥BE ,求证BP ⊥BE ;(2)当AB =3,AD =2时,求二面角E -AG -C 的大小.【解析】(1)因为AP ⊥BE ,AB ⊥BE ,AB ,AP ⊂平面ABP ,AB ∩AP =A ,所以BE ⊥平面ABP ,又BP ⊂平面ABP ,所以BP ⊥BE .(2)以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,3,3),C (-1,3,0),故AE =(2,0,-3),AG =(1,3,0),CG =(2,0,3).设m =x 1,y 1,z 1 是平面AEG 的一个法向量,由m ·AE =0m ·AG =0 可得2x 1-3z 1=0,x 1+3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-3,2).设n =x 2,y 2,z 2 是平面ACG 的一个法向量,由n ·AG =0n ·CG =0,可得x 2+3y 2=0,2x 2+3z 2=0. 取z 2=-2,可得平面ACG 的一个法向量n =(3,-3,-2).所以cos ‹m ,n ›=m ⋅n |m |⋅|n |=12, 因为<m ,n >∈[0,π],故所求的角为60°.例8.如图,四边形ABCD 是一个半圆柱的轴截面,E ,F 分别是弧DC ,AB 上的一点,EF ∥AD ,点H 为线段AD 的中点,且AB =AD =4,∠FAB =30°,点G 为线段CE 上一动点.(1)试确定点G 的位置,使DG ⎳平面CFH ,并给予证明;(2)求二面角C -HF -E 的大小.【解析】(1)当点G 为CE 的中点时,DG ∥平面CFH .证明:取CF 得中点M ,连接HM ,MG .∵G ,M 分别为CE 与CF 的中点,∴GM ∥EF ,且GM =12EF =12AD ,又H 为AD 的中点,且AD ∥EF ,AD =EF ,∴GM ∥DH ,GM =DH .四边形GMHD 是平行四边形,∴HM ∥DG又HM ⊂平面CFH ,DG ⊄平面CFH∴DG ∥平面CFH(2)由题意知,AB 是半圆柱底面圆的一条直径,∴AF ⊥BF .∴AF =AB cos30°=23,BF =AB sin30°=2.由EF ∥AD ,AD ⊥底面ABF ,得EF ⊥底面ABF .∴EF ⊥AF ,EF ⊥BF .以点F 为原点建立如图所示的空间直角坐标系,则F (0,0,0),B (0,2,0),C (0,2,4),H (23,0,2)FH =(23,0,2),FC =(0,2,4)设平面CFH 的一个法向量为n =(x ,y ,z )所以n ⋅FH =23x +2z =0n ⋅FC =2y +4z =0则令z =1则y =-2,x =-33即n =-33,-2,1由BF ⊥AF ,BF ⊥FE ,AF ∩FE =F .得BF ⊥平面EFH ∴平面EFH 的一个法向量为FB =(0,2,0)设二面角C -HF -E 所成的角为θ∈0,π2则cos θ=∣cos ‹n ,FB ›=|n ⋅FB ||n ||FB |=0×-33 +(-2)×2+1×02×13+4+1=32 ∴二面角C -HF -E 所成的角为π6.例9.坐落于武汉市江汉区的汉口东正教堂是中国南方唯一的拜占庭式建筑,象征着中西文化的有机融合.拜占庭建筑创造了将穹顶支承于独立方柱上的结构方法和与之相呼应的集中式建筑形制,其主体部分由一圆柱与其上方一半球所构成,如图所示.其中O 是下底面圆心,A ,B ,C 是⊙O 上三点,A 1,B 1,C 1是上底面对应的三点.且A ,O ,C 共线,AC ⊥OB ,C 1E =EC ,B 1F =13FB ,AE 与OF 所成角的余弦值为36565.(1)若E 到平面A 1BC 的距离为233,求⊙O 的半径.(2)在(1)的条件下,已知P 为半球面上的动点,且AP =210,求P 点轨迹在球面上围成的面积.【解析】(1)如图,取BB 1,CE 上的点N ,M .连接OM ,OF ,FM .过N 作NH ⊥A 1B 于H ,则OM ∥AE ,由题意知cos ∠FOM =36565,设⊙O 的半径为r ,AA 1=h ,由勾股定理知OF =r 2+916h 2,OM =r 2+116h 2,FM =2r 2+14h 2,由余弦定理知cos ∠FOM =OF 2+OM 2-FM 22×OF ×OM.代入解得h =2r ,因为EN ∥BC ,EN ⊄面A 1BC ,所以EN ∥面A 1BC ,故N 到面A 1BC 的距离是233,因为BC ⊥AB ,BC ⊥AA 1,AA 1∩AB =A ,所以BC ⊥面A 1AB ,BC ⊥NH ,因为NH ⊥BC ,NH ⊥A 1B ,A 1B ∩BC =B ,所以NH ⊥面A 1BC ,NH =233,而sin ∠A 1BB 1=NH BN =A 1B 1A 1B ,即233×h 2=2r 2r 2+h 2,解得r =2,h =4,即⊙O 的半径为2.(2)设上底面圆心为O 1,则O 1P =2,O 1O 2与O 1P 的夹角为θ,所以|AP |=|AO 1 +O 1P |=20+4+85cos θ=210,解得cos θ=255,过P 作PO 2⊥AO 1于O 2,则O 2P =O 1P ⋅sin θ=255,所以点P 的轨迹是以O 2为圆心,以255为半径的圆,因此可作出几何体被面AOA 1所截得到的截面,如图所示.设弧A 1C 1旋转一周所得到的曲面面积为S 1,弧PP 得到的为S 2,则S 2S 1=1-cos θS 1=12×4πr2 ,因此S 2=2πr 2(1-cos θ)=8π1-255 .因此P 点轨迹在球面上围成的面积为8π1-255.例10.如图,ABCD 为圆柱OO 的轴截面,EF 是圆柱上异于AD ,BC 的母线.(1)证明:BE ⊥平面DEF ;(2)若AB =BC =6,当三棱锥B -DEF 的体积最大时,求二面角B -DF -E 的正弦值.【解析】(1)证明:如图,连接AE ,由题意知AB 为⊙O 的直径,所以AE ⊥BE .因为AD ,EF 是圆柱的母线,所以AD ∥EF 且AD =EF ,所以四边形AEFD 是平行四边形.所以AE ⎳DF ,所以BE ⊥DF .因为EF 是圆柱的母线,所以EF ⊥平面ABE ,又因为BE ⊂平面ABE ,所以EF ⊥BE .又因为DF ∩EF =F ,DF 、EF ⊂平面DEF ,所以BE ⊥平面DEF .(2)由(1)知BE 是三棱锥B -DEF 底面DEF 上的高,由(1)知EF ⊥AE ,AE ∥DF ,所以EF ⊥DF ,即底面三角形DEF 是直角三角形.设DF =AE =x ,BE =y ,则在Rt △ABE 中有:x 2+y 2=6,所以V B -DEF =13S △DEF ⋅BE =13⋅12x ⋅6⋅y =66xy ≤66⋅x 2+y 22=62,当且仅当x =y =3时等号成立,即点E ,F 分别是AB ,CD的中点时,三棱锥B -DEF 的体积最大,(另等积转化法:V B -DEF =V D -BEF =V D -BCF =V B -CDF =13S △CDF⋅BC 易得当F 与CD 距离最远时取到最大值,此时E 、F 分别为AB 、CD 中点)下面求二面角B -DF -E 的正弦值:法一:由(1)得BE ⊥平面DEF ,因为DF ⊂平面DEF ,所以BE ⊥DF .又因为EF ⊥DF ,EF ∩BE =E ,所以DF ⊥平面BEF .因为BF ⊂平面BEF ,所以BF ⊥DF ,所以∠BFE 是二面角B -DF -E 的平面角,由(1)知△BEF 为直角三角形,则BF =(3)2+(6)2=3.故sin ∠BFE =BE BF=33,所以二面角B -DF -E 的正弦值为33.法二:由(1)知EA ,EB ,EF 两两相互垂直,如图,以点E 为原点,EA ,EB ,EF 所在直线为x ,y ,z 轴建立空间直角坐标系E -xyz ,则B (0,3,0),D (3,0,6),E (0,0,0),F (0,0,6).由(1)知BE ⊥平面DEF ,故平面DEF 的法向量可取为EB =(0,3,0).设平面BDF 的法向量为n =(x ,y ,z ),由DF =(-3,0,0),BF =(0,-3,6),得n ⋅DF =0n ⋅BF =0 ,即-3x =0-3y +6z =0,即x =0y =2z ,取z =1,得n =(0,2,1).设二面角B -DF -E 的平面角为θ,|cos θ|=∣cos n ,EB =|n ⋅EB ||n |⋅|EB |=2×33×3=63,所以二面角B -DF -E 的正弦值为33例11.如图,O 1,O 分别是圆台上、下底的圆心,AB 为圆O 的直径,以OB 为直径在底面内作圆E ,C 为圆O 的直径AB 所对弧的中点,连接BC 交圆E 于点D ,AA 1,BB 1,CC 1为圆台的母线,AB =2A 1B 1=8.(1)证明;C 1D ⎳平面OBB 1O 1;(2)若二面角C 1-BC -O 为π3,求O 1D 与平面AC 1D 所成角的正弦值.【解析】(1)连接DE ,O1E ,C 为圆O 的直径AB 所对弧的中点,所以△BOC 为等腰直角三角形,即∠OBD =45°,又D 在圆E 上,故△BED 为等腰直角三角形,所以DE ⎳OC 且DE =12OC ,又CC 1是母线且O 1C 1=12OC ,则O 1C 1⎳OC ,故DE ⎳O 1C 1且DE =O 1C 1,则DEO 1C 1为平行四边形,所以EO 1⎳DC 1,而EO 1⊂面OBB 1O 1,DC 1⊄面OBB 1O 1,故C 1D ⎳平面OBB 1O 1.(2)由题设及(1)知:O 1O 、OB 、OC 两两垂直,构建如下图示的空间直角坐标系,过C 1作C 1F ⎳O 1O ,则F 为OC 的中点,再过F 作FG ⎳OD ,连接C 1G ,由O 1O ⊥圆O ,即C 1F ⊥圆O ,BC ⊂圆O ,则C 1F ⊥BC ,又OD⊥BC ,则FG ⊥BC ,故二面角C 1-BC -O 的平面角为∠FGC 1=π3,而FG =12OD =24OB =2,所以O 1O =C 1F =FG tan π3=6.则A (0,-4,0),D (2,2,0),C 1(2,0,6),O 1(0,0,6),所以AD =(2,6,0),C 1D =(0,2,-6),O 1D =(2,2,-6),若m =(x ,y ,z )为面AC 1D 的一个法向量,则m ⋅AD =2x +6y =0m ⋅C 1D =2y -6z =0,令y =6,则m =(-36,6,2),|cos <m ,O 1D >|=6614×8=32128,故O 1D 与平面AC 1D 所成角的正弦值32128.例12.某市在滨海文化中心有滨海科技馆,其建筑有鲜明的后工业风格,如图所示,截取其中一部分抽象出长方体和圆台组合,如图所示,长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =AA 1=2,圆台下底圆心O 为AB 的中点,直径为2,圆与直线AB 交于E ,F ,圆台上底的圆心O 1在A 1B 1上,直径为1.(1)求A 1C 与平面A 1ED 所成角的正弦值;(2)圆台上底圆周上是否存在一点P 使得FP ⊥AC 1,若存在,求点P 到直线A 1B 1的距离,若不存在则说明理由.【解析】(1)(1)由长方体ABCD -A 1B 1C 1D 1可知,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系如图所示,则A 12,0,2 ,C 0,4,0 ,E 2,1,0 ,D 0,0,0 .所以A 1C =(-2,4,-2),DA 1 =(2,0,2),DE =(2,1,0).设平面A 1ED 的一个法向量为n=(x ,y ,z ),则有n .DA=0n .DE =0 ,即2x +2z =02x +y =0 ,令x =1,则y =-2,z =-1,故n=(1,-2,-1),所以|cos <A 1C ,n >|=|AC ⋅n||AC ||n |=|-2-8+2|4+16+4⋅1+4+1=23,故A 1C 与平面A 1ED 所成角的正弦值为23;(2)由(1)可知,A 2,0,0 ,C 10,4,2 ,所以AC 1=(-2,4,2),假设存在这样的点P ,设P x ,y ,2 ,由题意可知(x -2)2+(y -2)2=14,所以FP =(x -2,y -3,2),因为FP ⊥AC 1,则有FP ⋅AC 1 =-2(x -2)+4(y-3)+4=0,所以x =2y -2,又(x -2)2+(y -2)2=14,所以5y 2-20y +794=0,解得x =2-55y =2-510(舍),x =2+55y =2+510,所以当P 2+55,2+510,2 时,FP ⊥AC 1,此时点P 到直线A 1B 1的距离为55.题型二:立体几何存在性问题例13.如图,三棱锥P -ABC 中,PA ⊥平面ABC ,PA =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥A -PBC 的体积;(2)在线段PC 上是否存在一点M ,使得BM ⊥AC ?若存在,求MCPM的值,若不存在,请说明理由.【解析】(1)因为AB =1,AC =2,∠BAC =60°,所以S △ABC =12⋅AB ⋅AC ⋅sin60°=32.由PA ⊥平面ABC 知:PA 是三棱锥P -ABC 的高,又PA =1,所以三棱锥A -PBC 的体积V A -PBC =V P -ABC =13⋅S △ABC ⋅PA =36.(2)在线段PC 上存在一点M ,使得BM ⊥AC ,此时MCPM =3.如图,在平面PAC 内,过M 作MN ⎳PA 交AC 于N,连接BN ,BM .由PA ⊥平面ABC ,AC ⊂平面ABC ,故PA ⊥AC ,所以MN ⊥AC .由MN ⎳PA 知:AN NC =PM MC=13,则AN =12,在△ABN 中,BN 2=AB 2+AN 2-2AB ⋅AN cos ∠BAC =12+12 2-2×1×12×12=34,所以AN 2+BN 2=AB 2,即AC ⊥BN .由于BN ∩MN =N 且BN ,MN ⊂面MB N ,故AC ⊥平面MB N .又BM ⊂平面MB N ,所以AC ⊥BM .例14.已知四棱锥P -ABCD 中,底面ABCD 是矩形,且AD =2AB ,△PAD 是正三角形,CD ⊥平面PAD ,E 、F 、G 、O 分别是PC 、PD 、BC 、AD 的中点.(1)求平面EFG 与平面ABCD 所成的锐二面角的大小;(2)线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,若存在,求出PMPA的值;若不存在,说明理由.【解析】(1)因为△PAD 是正三角形,O 为AD 的中点,所以,PO ⊥AD ,因为CD ⊥平面PAD ,PO ⊂平面PAD ,∴PO ⊥CD ,∵AD ∩CD =D ,∴PO ⊥平面ABCD ,因为AD ⎳BC 且AD =BC ,O 、G 分别为AD 、BC 的中点,所以,AO ⎳BG 且AO =BG ,所以,四边形ABGO 为平行四边形,所以,OG ⎳AB ,∵AB ⊥AD ,则OG ⊥AD ,以点O 为坐标原点,OA 、OG 、OP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设AB =2,则AD =4,A 2,0,0 、G 0,2,0 、D -2,0,0 、C -2,2,0 、P 0,0,23 、E -1,1,3 、F -1,0,3 ,EF=0,-1,0 ,EG =1,1,-3 ,设平面EFG 的法向量为n=x ,y ,z ,则n ⋅EF=-y =0n ⋅EG=x +y -3z =0 ,取x =3,可得n =3,0,1 ,易知平面ABCD 的一个法向量为m=0,0,1 ,所以,cos <m ,n >=m ⋅nm ⋅n=12,因此,平面EFG 与平面ABCD 所成的锐二面角为π3.(2)假设线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,设PM=λPA =λ2,0,-23 =2λ,0,-23λ ,其中0≤λ≤1,GM =GP +PM=0,-2,23 +2λ,0,-23λ =2λ,-2,23-23λ ,由题意可得cos <n ,GM > =n ⋅GM n ⋅GM =2324λ2+4+121-λ 2=12,整理可得4λ2-6λ+1=0,因为0≤λ≤1,解得λ=3-54.因此,在线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,且PM PA=3-54.例15.已知三棱柱ABC -A 1B 1C 1中,∠ACB =90°,A 1B ⊥AC 1,AC =AA 1=4,BC =2.(1)求证:平面A 1ACC 1⊥平面ABC ;(2)若∠A 1AC =60°,在线段AC 上是否存在一点P ,使二面角B -A 1P -C 的平面角的余弦值为34若存在,确定点P 的位置;若不存在,说明理由.【解析】(1)由AC =AA 1知:四边形AA 1C 1C 为菱形.连接A 1C ,则A 1C ⊥AC 1,又A 1B ⊥AC 1且A 1C ∩A 1B =A 1,∴AC 1⊥平面A 1CB ,BC ⊂平面A 1CB ,则AC 1⊥BC ;又∠ACB =90°,即BC ⊥AC ,而AC ∩AC 1=A ,∴BC ⊥平面A 1ACC 1,而BC ⊂平面ABC ,∴平面A 1ACC 1⊥平面ABC .(2)以C 为坐标原点,射线CA 、CB 为x 、y 轴的正向,平面A 1ACC 1上过C 且垂直于AC 的直线为z 轴,建立如图所示的空间直角坐标系.∵AC =AA 1=4,BC =2,∠A 1AC =60°,∴C 0,0,0 ,B 0,2,0 ,A 4,0,0 ,A 12,0,23 .设在线段AC 上存在一点P ,满足AP =λAC0≤λ≤1 ,使二面角B -A 1P -C 的余弦值为34,则AP =-4λ,0,0 ,所以BP =BA +AP=4,-2,0 +-4λ,0,0 =4-4λ,-2,0 ,A 1P =A 1A +AP=2-4λ,0,-23 .设平面BA 1P 的一个法向量为m=x 1,y 1,z 1 ,由m ⋅BP=4-4λ x 1-2y 1=0m ⋅A 1P =2-4λ x 1-23z 1=0,取x 1=1,得m=1,2-2λ,1-2λ3;平面A 1PC 的一个法向量为n=0,1,0 .由cos m ,n =m ⋅n m ⋅n =2-2λ 1+2-2λ 2+1-2λ23×1=34,解得λ=43或λ=34.因为0≤λ≤1,则λ=34.故在线段AC 上存在一点P ,满足AP =34AC ,使二面角B -A 1P -C 的平面角的余弦值为34.例16.如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AD ⎳BC ,AD ⊥CD ,且AD =CD ,BC =2CD ,PA =2AD .(1)证明:AB ⊥PC ;(2)在线段PD 上是否存在一点M ,使得二面角M -AC -D 的余弦值为1717,若存在,求BM 与PC 所成角的余弦值;若不存在,请说明理由.【解析】(1)证明:连接AC ,设AD =CD =1,因为AD ⊥CD ,则AC =AD 2+CD 2=2,且△ACD 为等腰直角三角形,因为AD ⎳BC ,则∠ACB =∠CAD =45∘,因为BC =2CD =2,由余弦定理可得AB 2=AC 2+BC 2-2AC ⋅BC cos45∘=2,所以,AC 2+AB 2=BC 2,则AB ⊥AC ,∵PA ⊥平面ABCD ,AB ⊂平面ABCD ,∴AB ⊥PA ,∵PA ∩AC =A ,∴AB ⊥平面PAC ,∵PC ⊂平面PAC ,∴AB ⊥PC .(2)因为PA ⊥平面ABCD ,AB ⊥AC ,以点A 为坐标原点,AB 、AC 、AP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设AD =CD =1,则A 0,0,0 、B 2,0,0 、C 0,2,0 、D -22,22,0 、P 0,0,2 ,设PM =λPD =-22λ,22λ,-2λ ,其中0≤λ≤1,则AM =AP +PM=-22λ,22λ,2-2λ ,AC =0,2,0 ,设平面ACM 的法向量为m=x ,y ,z ,则m ⋅AC=2y =0m ⋅AM =-22λx +22y +2-2λ z =0,取x =2-2λ,可得m =2-2λ,0,λ ,易知平面ACD 的一个法向量为n=0,0,1 ,由题意可得cos <m ,n > =m ⋅n m ⋅n =λ41-λ 2+λ2=1717,因为0≤λ≤1,解得λ=13,此时,AM =-26,26,223 ,BM =BA +AM =-726,26,223 ,PC =0,2,-2 ,所以,cos <BM ,PC >=BM ⋅PCBM ⋅PC =-1333×2=-3322,因此,在线段PD 上是否存在一点M ,使得二面角M -AC -D 的余弦值为1717,且BM 与PC 所成角的余弦值为3322.例17.如图,△ABC 是边长为6的正三角形,点E ,F ,N 分别在边AB ,AC ,BC 上,且AE =AF =BN =4,M 为BC 边的中点,AM 交EF 于点O ,沿EF 将三角形AEF 折到DEF 的位置,使DM =15.(1)证明:平面DEF ⊥平面BEFC ;(2)试探究在线段DM 上是否存在点P ,使二面角P -EN -B 的大小为60°?若存在,求出DPPM的值;若不存在,请说明理由.【解析】(1)在△DOM 中,易得DO =23,OM =3,DM =15,由DM 2=DO 2+OM 2,得DO ⊥OM ,又∵AE =AF =4,AB =AC =6,∴EF ⎳BC ,又M 为BC 中点,∴AM ⊥BC ,∴DO ⊥EF ,因为EF ∩OM =O ,EF ,OM ⊂平面EBCF ,∴DO ⊥平面EBCF ,又DO ⊂平面DEF ,所以平面DEF ⊥平面BEFC ;(2)由(1)DO ⊥平面EBCF ,以O 为原点,以OE ,OM ,OD为x ,y ,z 的正方向建立空间直角坐标系O -xyz ,D (0,0,23),M (0,3,0),E (2,0,0),N (-1,3,0)∴DM =(0,3,-23),ED =(-2,0,23),由(1)得平面ENB 的法向量为n=(0,0,1),设平面ENP 的法向量为m=(x ,y ,z ),DP =λDM (0≤λ≤1),所以DP =(0,3λ,-23λ),所以EP =ED +DP =(-2,3λ,23-23λ).由题得,所以EN =(-3,3,0),所以m ⋅EN=-3x +3y =0m ⋅EP =-2x +3λy +(23-23λ)z =0,所以m =1,3,2-3λ23-23λ,因为二面角P -EN -B 的大小为60°,所以12=2-3λ23-23λ1+3+2-3λ23-23λ2,解之得λ=2(舍去)或λ=67.此时DP =67DM ,所以DP PM=6.例18.图1是直角梯形ABCD ,AB ⎳CD ,∠D =90∘,AB =2,DC =3,AD =3,CE =2ED,以BE 为折痕将△BCE 折起,使点C 到达C 1的位置,且AC 1=6,如图2.(1)求证:平面BC 1E ⊥平面ABED ;(2)在棱DC 1上是否存在点P ,使得C 1到平面PBE 的距离为62?若存在,求出二面角P -BE -A 的大小;若不存在,说明理由.【解析】(1)在图1中取CE 中点F ,连接BF ,AE ,∵CE =2ED ,CD =3,AB =2,∴CF =1,EF =1,∵DF =AB =2,DF ⎳AB ,∠D =90∘,∴四边形ABFD 为矩形,∴BF ⊥CD ,∴BE =BC =3+1=2,又CE =2,∴△BCE 为等边三角形;又AE =3+1=2,∴△ABE 为等边三角形;在图2中,取BE 中点G ,连接AG ,C 1G ,∵△C 1BE ,△ABE 为等边三角形,∴C 1G ⊥BE ,AG ⊥BE ,∴C 1G =AG =3,又AC 1=6,∴AG 2+C 1G 2=AC 21,∴C 1G ⊥AG ,又AG ∩BE =G ,AG ,BE ⊂平面ABED ,∴C 1G ⊥平面ABED ,∵C 1G ⊂平面BC 1E ,∴平面BC 1E ⊥平面ABED .(2)以G 为坐标原点,GA ,GB ,GC 1正方向为x ,y ,z 轴,可建立如图所示空间直角坐标系,则B 0,1,0 ,E 0,-1,0 ,A 3,0,0 ,C 10,0,3 ,D 32,-32,0,∴DC 1 =-32,32,3 ,EB =0,2,0 ,EC 1 =0,1,3 ,设棱DC 1上存在点P x ,y ,z 且DP=λDC 1 0≤λ≤1 满足题意,即x -32=-32λy +32=32λz =3λ,解得:x =32-32λy =32λ-32z =3λ,即P 32-32λ,32λ-32,3λ,则EP =32-32λ,32λ+12,3λ ,设平面PBE 的法向量n=a ,b ,c ,则EP ⋅n =32-32λ a +32λ+12 b +3λc =0EB ⋅n =2b =0,令a =2,则b =0c =1-λλ,∴n =2,0,1-λλ,∴C 1到平面PBE 的距离为d =EC 1 ⋅nn=3-3λλ4+1-λλ2=62,解得:λ=13,∴n=2,0,2 ,又平面ABE 的一个法向量m=0,0,1 ,∴cos <m ,n >=m ⋅nm ⋅n=222=22,又二面角P -BE -A 为锐二面角,∴二面角P -BE -A 的大小为π4.例19.如图所示,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,E 为棱AA 1上的点,且AE =12.(1)求证:BE ⊥平面ACB 1;(2)求二面角D 1-AC -B 1的余弦值;(3)在棱A 1B 1上是否存在点F ,使得直线DF ∥平面ACB 1?若存在,求A 1F 的长;若不存在,请说明理由.【解析】(1)∵A 1A ⊥底面ABCD ,AC ⊂平面ABCD ∴A 1A ⊥AC又AB ⊥AC ,A 1A ∩AB =A ,AA 1,AB ⊂平面ABB 1A 1,∴AC ⊥平面ABB 1A 1∵BE ⊂平面ABB 1A 1,∴AC ⊥BE ∵AE AB =12=ABBB 1,∠EAB =∠ABB 1=90∘,∴∠ABE =∠AB 1B∵∠BAB 1+∠AB 1B =90∘,∴∠BAB 1+∠ABE =90∘,∴BE ⊥AB 1,又AC ∩AB 1=A ,AC ,AB 1⊂平面ACB 1,∴BE ⊥平面ACB 1(2)如图,以A 为原点建立空间直角坐标系A -xyz ,依题意可得A (0,0,0),B (0,1,0),C (2,0,0),D (1,-2,0),D1(1,-2,2),E 0,0,12,由(1)知,EB =0,1,-12为平面ACB 1的一个法向量.设n=x ,y ,z 为平面ACD 1的一个法向量.因为AD 1 =(1,-2,2),AC =(2,0,0),所以n ⋅AD 1=0n ⋅AC =0 ,即:x -2y +2z =02x =0 ,不妨设z =1,可得n=(0,1,1).因此cos n ,EB =n ⋅EB n ⋅EB =1010由图可知二面角D 1-AC -B 1为锐角,所以二面角D 1-AC -B 1的余弦值为1010.(3)假设存在满足题意的点F ,设A 1F =a (a >0),则由(2)得F (0,a ,2),DF=(-1,a +2,2).由题意可知DF ⋅EB=a +2-1=0,解得a =-1(舍去),即直线DF 的方向向量与平面ACB 1的法向量不可能垂直.所以,在棱A 1B 1上不存在点F ,使得直线DF ∥平面ACB 1.例20.如图,在五面体ABCDE 中,已知AC ⊥BD ,AC ⊥BC ,ED ⎳AC ,且AC =BC =2ED =2,DC =DB =3.(1)求证:平面ABE ⊥与平面ABC ;(2)线段BC 上是否存在一点F ,使得平面AEF 与平面ABE 夹角余弦值的绝对值等于54343,若存在,求BFBC的值;若不存在,说明理由.【解析】(1)证明:∵AC ⊥BD ,AC ⊥BC ,BC ∩BD =B ,∴AC ⊥平面BCD ,∵AC ⊂平面ABC ,∴平面ABC ⊥平面BCD ,取BC 的中点O ,AB 的中点H ,连接OD 、OH 、EH ,∵BD =CD ,∴DO ⊥BC ,又DO ⊂平面BCD ,平面ABC ⊥平面BCD ,平面BCD ∩平面ABC =BC ,∴DO ⊥平面ABC ,又OH ⎳AC ,OH =12AC ,DE ⎳AC ,DE =12AC ,所以,OH ⎳DE 且OH =DE ,∴四边形OHED 为平行四边形,∴EH ⎳OD ,∵DO ⊥面ABC ,则EH ⊥平面ABC ,又∵EH ⊂面ABE ,所以,平面ABE ⊥平面ABC .(2)因为AC ⊥BC ,OH ⎳AC ,则OH ⊥BC ,因为OD ⊥平面ABC ,以点O 为坐标原点,OH 、OB 、OD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则A 2,-1,0 、B 0,1,0 、C 0,-1,0 、E 1,0,2 、H 1,0,0 ,HE=0,0,2 ,AB =-2,2,0 ,设平面ABE 的法向量为m=x 1,y 1,z 1 ,则m ⋅HE=2z 1=0m ⋅AB=-2x 1+2y 1=0 ,取x 1=1,可得m=1,1,0 ,设在线段BC 上存在点F 0,t ,0 -1≤t ≤1 ,使得平面AEF 与平面ABE 夹角的余弦值等于54343,设平面AEF 的法向量为n=x 2,y 2,z 2 ,AF =-2,t +1,0 ,AE =-1,1,2 ,由n ⋅AF=-2x 2+t +1 y 2=0n ⋅AE =-x 2+y 2+2z 2=0 ,取x 2=2t +1 ,可得n =2t +1 ,22,t -1 ,由题意可得cos <m ,n> =m ⋅n m ⋅n =2t +32⋅3t 2+2t +11=54343,整理可得2t 2-13t -7=0,解得:t =-12或t =7(舍),∴F 0,-12,0 ,则BF =32,∴BF BC =34,综上所述:在线段BC 上存在点F ,满足BF BC=34,使得平面AEF 与平面ABE 夹角的余弦值等于54343.题型三:立体几何折叠问题例21.如图1,在边上为4的菱形ABCD 中,∠DAB =60°,点M ,N 分别是边BC ,CD 的中点,AC ∩BD =O 1,AC ∩MN =G .沿MN 将△CMN 翻折到△PMN 的位置,连接PA ,PB ,PD ,得到如图2所示的五棱锥P -ABMND .(1)在翻折过程中是否总有平面PBD ⊥平面PAG ?证明你的结论;(2)当四棱锥P -MNDB 体积最大时,求直线PB 和平面MNDB 所成角的正弦值;(3)在(2)的条件下,在线段PA 上是否存在一点Q ,使得二面角Q -MN -P 余弦值的绝对值为1010若存在,试确定点Q 的位置;若不存在,请说明理由.【解析】(1)在翻折过程中总有平面PBD ⊥平面PAG ,证明如下:∵点M ,N 分别是边CD ,CB 的中点,又∠DAB =60°,∴BD ∥MN ,且△PMN 是等边三角形,∵G 是MN 的中点,∴MN ⊥PG ,∵菱形ABCD 的对角线互相垂直,∴BD ⊥AC ,∴MN ⊥AC ,∵AC ∩PG =G ,AC ⊂平面PAG ,PG ⊂平面PAG ,∴MN ⊥平面PAG ,∴BD ⊥平面PAG ,∵BD ⊂平面PBD ,∴平面PBD ⊥平面PAG .(2)由题意知,四边形MNDB 为等腰梯形,且DB =4,MN =2,O 1G =3,所以等腰梯形MNDB 的面积S =2+4 ×32=33,要使得四棱锥P -MNDB 体积最大,只要点P 到平面MNDB 的距离最大即可,∴当PG ⊥平面MNDB 时,点P 到平面MNDB 的距离的最大值为3,此时四棱锥P -MNDB 体积的最大值为V =13×33×3=3,直线PB 和平面MNDB 所成角的为∠PBG ,连接BG ,在直角三角形△PBG 中,PG =3,BG =7,由勾股定理得:PB =PG 2+BG 2=10.sin ∠PBG =PGPB=310=3010.(3)假设符合题意的点Q 存在.以G 为坐标原点,GA ,GM ,GP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系,则A 33,0,0 ,M 0,1,0 ,N 0,-1,0 ,P 0,0,3 ,由(2)知,AG ⊥PG ,又AG ⊥MN ,且MN ∩PG =G ,MN ⊂平面PMN ,PG ⊂平面PMN ,AG ⊥平面PMN ,故平面PMN 的一个法向量为n 1=1,0,0 ,设AQ =λAP(0≤λ≤1),∵AP=-33,0,3 ,AQ=-33λ,0,3λ ,故331-λ ,0,3λ ,∴NM=0,2,0 ,QM =33λ-1 ,1,-3λ ,平面QMN 的一个法向量为n 2=x 2,y 2,z 2 ,则n 2 ⋅NM =0,n 2 ⋅QM=0,即2y 2=0,33λ-1 x 2+y 2-3λz 2=0,令z 2=1,所以y 2=0,x 2=λ3λ-1n 2 =13λ-1 ,0,1=13λ-1λ,0,3λ-1 ,则平面QMN 的一个法向量n=λ,0,3λ-1 ,设二面角Q -MN -P 的平面角为θ,则cos θ =n ⋅n 1 n n 1 =λλ2+9λ-1 2=1010,解得:λ=12,故符合题意的点Q 存在且Q 为线段PA 的中点.例22.如图,在等腰直角三角形PAD 中,∠A =90°,AD =8,AB =3,B 、C 分别是PA 、PD 上的点,且AD ⎳BC ,M 、N 分别为BP 、CD 的中点,现将△BCP 沿BC 折起,得到四棱锥P -ABCD ,连接MN .(1)证明:MN ⎳平面PAD ;(2)在翻折的过程中,当PA =4时,求二面角B -PC -D 的余弦值.【解析】(1)在四棱锥P -ABCD 中,取AB 的中点E ,连接EM ,EN .因为M ,N 分别为BP ,CD 的中点,AD ⎳BC ,所以ME ⎳PA ,EN ⎳AD ,又PA ⊂平面PAD ,ME ⊄平面PAD ,所以ME ⎳平面PAD ,同理可得,EN ⎳平面PAD ,又ME ∩EN =E ,ME ,EN ⊂平面MNE ,所以平面MNE ⎳平面PAD ,因为MN ⊂MNC 平面MNE ,所以MN ⎳平面PAD .(2)因为在等腰直角三角形PAD 中,∠A =90°,AD ⎳BC ,所以BC ⊥PA ,在四棱锥P -ABCD 中,BC ⊥PB ,BC ⊥AB ,因为AD ⎳BC ,则AD ⊥PB ,AD ⊥AB ,又PB ∩AB =B ,PB ,AB ⊂平面PAB ,所以AD ⊥平面PAB ,又PA ⊂平面PAB ,所以PA ⊥AD ,因为AD =8,AB =3,PA =4,AD ⎳BC ,则PB =5,BC =5,所以AB 2+PA 2=PB 2,故PA ⊥AB ,所以以点A 为坐标原点,分别以AB ,AD ,AP 所在方向为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A -xyz ,如图所示,A (0,0,0),B (3,0,0),C (3,5,0),P 0,0,4 ,D 0,8,0 ,所以PB =(3,0,-4),PC =(3,5,-4),PD =(0,8,-4),设m =(x 1,y 1,z 1)为平面PBC 的一个法向量,则m ⋅PB =0m ⋅PC =0,即3x 1-4z 1=03x 1+5y 1-4z 1=0 ,令x 1=4,则y 1=0,z 1=2,m =(4,0,3),设n =(x 2,y 2,z 2)为平面PCD 的一个法向量,则m ⋅PD =0m ⋅PC =0 ,即8y 2-4z 2=03x 2+5y 2-4z 2=0,令y 2=1,则x 2=1,z 2=2,n =(1,1,2),设二面角B -PC -D 所成角为α,则cos α=-cos m ,n =-m ⋅n m ⋅n =-4×1+0×1+2×3 42+02+32×12+12+22=-105×6=-63.因为二面角B -PC -D 的余弦值为-63.例23.如图1,在平面四边形PDCB 中,PD ∥BC ,BA ⊥PD ,PA =AB =BC =2,AD =1.将△PAB 沿BA 翻折到△SAB 的位置,使得平面SAB ⊥平面ABCD ,如图2所示.(1)设平面SDC 与平面SAB 的交线为l ,求证:BC ⊥l ;(2)点Q 在线段SC 上(点Q 不与端点重合),平面QBD 与平面BCD 夹角的余弦值为66,求线段BQ 的长.【解析】(1)依题意,AD ⊥AB ,因为PD ∥BC ,所以BC ⊥AB ,由于平面SAB ⊥平面ABCD ,且交线为AB ,BC ⊂平面ABCD ,所以BC ⊥平面SAB ,因为l 是平面SDC 与平面SAB 的交线,所以l ⊂平面SAB ,故BC ⊥l .(2)由上可知,AD ⊥平面SAB ,所以AD ⊥SA ,由题意可知SA ⊥AB ,AD ⊥AB ,以点A 为坐标原点,分别以AD ,AB ,AS 所在直线为x ,y ,z 轴建立空间直角坐标系,则A 0,0,0 ,B 0,2,0 ,C 2,2,0 ,D 1,0,0 ,S 0,0,2 ,BD =1,-2,0 ,SC =2,2,-2 ,设SQ =λSC 0<λ<1 ,则Q 2λ,2λ,2-2λ ,BQ =2λ,2λ-2,2-2λ ,设n =x ,y ,z 是平面QBD 的一个法向量,则n ⋅BD =x -2y =0n ⋅BQ =2λx +2λ-1 y +21-λ z =0,令x =2,可得n =2,1,1-3λ1-λ由于m =0,0,1 是平面CBD 的一个法向量,依题意,二面角Q -BD -C 的余弦值为66,所以cos m ,n =m ⋅n m ⋅n =1-3λ1-λ 1×4+1+1-3λ1-λ2=66,解得λ=12∈0,1 ,此时BQ =1,-1,1 ,BQ =3,即线段BQ 的长为3.例24.如图,在平面五边形PABCD 中,△PAD 为正三角形,AD ∥BC ,∠DAB =90°且AD =AB =2BC =2.将△PAD 沿AD 翻折成如图所示的四棱锥P -ABCD ,使得PC =7.F ,Q 分别为AB ,CE 的中点.(1)求证:FQ ∥平面PAD ;(2)若DE PE=12,求平面EFC 与平面PAD 夹角的余弦值.【解析】(1)(1)证明:取DC 的中点M ,连接MF ,MQ .则MQPD ,MFDA .因为MQ ⊄面PAD ,ME ⊄面PAD ,所以,MQ ∥面PAD ,MF ∥面PAD ,因为MQ ∩ME =M ,所以,面MQF 面PAD ,因为FQ ⊂面MQF ,所以FQ ∥面PAD .(2)(2)取AD 的中点O ,连接OP ,OC ,因为△PAD 为正三角形,AD =2,所以OP ⊥AD 且OP =3,在直角梯形ABCD 中,AD ∥BC ,∠DAB =90°,AB =2BC =2,所以,OC ⊥AD 且OC =2,又因为PC =7,所以在△POC 中,OP 2+OC 2=PC 2,即OP ⊥OC ,所以,以O 为坐标原点,分别以OD ,OC ,OP 的方向为x ,y ,z 轴的正向,建立如图所示的空间直角坐标系,则D 1,0,0,C 0,2,0 ,F -1,1,0 ,P 0,0,3 ,DP =-1,0,3 .因为DE PE=12,即DE =13DP =-13,0,33 ,λ>0,所以,E 23,0,33,所以EC =-23,2,-33 ,EF =-53,1,-33.设n =x 1,y 1,z 1 为平面EFC 的一个法向量,则n ⋅EC =0n ⋅EF =0 ,即-23x 1+2y 1-33z 1=0-53x 1+y 1-33z 1=0,取n =3,-3,-83 .又平面PAD 的一个法向量m =0,1,0 ,设平面EFC 与平面PAD 夹角为α,cos α=n ⋅m n ⋅m =39+9+192=21070.例25.如图,在平行四边形ABCD 中,AB =3,AD =2,∠A =60°,E ,F 分别为线段AB ,CD 上的点,且BE =2AE ,DF =FC ,现将△ADE 沿DE 翻折至△A 1DE 的位置,连接A 1B ,A 1C .(1)若点G 为线段A 1B 上一点,且A 1G =3GB ,求证:FG ⎳平面A 1DE ;(2)当三棱锥C -A 1DE 的体积达到最大时,求二面角B -A 1C -D 的正弦值.【解析】(1)在A 1E 上取一点M ,使A 1M =3ME ,连接DM ,MG ,因为A 1G =3GB ,EB =2AE ,所以MG ∥EB ,MG =34EB =34×23AB =12AB ,因为平行四边形ABCD 中,AB =CD ,AB ∥CD ,F 为CD 的中点,所以DF =12CD =12AB ,所以DF =MG ,DF ∥MG ,所以四边形DMGF 为平行四边形,所以FG ∥DM ,因为FG ⊄平面A 1DE ,DM ⊂平面A 1DE ,所以FG ∥平面A 1DE ,(2)当平面A 1DE ⊥平面DEC 时,三棱锥C -A 1DE 的体积最大,△ADE 中,∠A =60°,AD =2,AE =1,则DE 2=AD 2+AE 2-2AD ⋅AE cos A =4+1-2×2×1×12=3,所以DE 2+AE 2=AD 2,所以∠AED =90°,所以A 1E ⊥DE ,因为平面A 1DE ⊥平面DEC ,平面A 1DE ∩平面DEC =DE ,所以A 1E ⊥平面DEC ,因为BE ⊂平面DEC ,所以A 1E ⊥BE ,所以A 1E ,BE ,DE 两两垂直,所以以E 为原点,EB ,ED ,EA 1所在的直线分别为x ,y ,z 轴建立空间直角坐标系,如图所示,则D (0,3,0),A 1(0,0,1),B (2,0,0),C (3,3,0),所以DC =(3,0,0),DA 1 =(0,-3,1),BC =(1,3,0),CA 1 =(-3,-3,1),设平面A 1CD 的法向量为n =(x ,y ,z ),则n ⋅DA 1 =-3y +z =0n ⋅CA 1 =-3x -3y +z =0,令y =1,则n =(0,1,3),设平面A 1BC 的法向量为m =(a ,b ,c ),则m ⋅BC =a +3b =0m ⋅CA 1 =-3a -3b +c =0,令b =1,则m =(-3,1,-23),所以cos m ,n =m ⋅n m n=1-62×4=-58,所以二面角B -A 1C -D 的正弦值为1--58 2=398例26.如图1,四边形ABCD 是边长为2的正方形,四边形ABEF 是等腰梯形,AB =BE =12EF ,现将正方形ABCD 沿AB 翻折,使CD 与C D 重合,得到如图2所示的几何体,其中D E =4.(1)证明:AF ⊥平面AD E ;(2)求二面角D -AE -C 的余弦值.【解析】(1)证明:易得AD =AF =2,EF =D E =4,所以AE =23,则AD 2+AE 2=D E 2=EF 2,∴AD ⊥AE ,AE ⊥AF .又AD ⊥AB ,且AB ∩AE =A ,AB ,AE ⊂平面ABEF ,∴AD ⊥平面ABEF .∵AF ⊂平面ABEF ,∴AF ⊥AD .∵AE ∩AD =A ,AE ⊂平面AD E ,AD ⊂平面AD E ,∴AF ⊥平面AD E .(2)由(1)知AD ⊥平面ABEF ,则以A 为坐标原点,AB ,AD 所在直线分别为y ,z 轴,平面ABEF 内过点A 且垂直于AB 的直线为x 轴,建立如图所示的空间直角坐标系,则A 0,0,0 ,E 3,3,0 ,F 3,-1,0 ,C 0,2,2 ,∴AF =3,-1,0 ,AE =3,3,0 ,AC =00,2,2 .设平面AEC 的一个法向量为m =x ,y ,z ,则m ⋅AE =0m ⋅AC =0 ,得3x +3y =0,2y +2z =0,令x =3,则m =3,-1,1 .由(1)知,平面AED 的一个法向量为AF =3,-1,0 .∴cos AF ,m =AF ⋅m AF m=255.易知二面角D -AE -C 为锐二面角,∴二面角D -AE -C 的余弦值为255.例27.如图,在梯形ABCD 中,AD ∥BC ,AB =BC =2,AD =4,现将△ABC 所在平面沿对角线AC 翻折,使点B 翻折至点E ,且成直二面角E -AC -D .(1)证明:平面EDC ⊥平面EAC ;(2)若直线DE 与平面EAC 所成角的余弦值为12,求二面角D -EA -C 的余弦值.【解析】(1)证明:取AD 中点M ,连接CM ,由题意可得AM =2,AM 平行且等于BC ,∴四边形ABCM 为平行四边形,∵AM =MD =CM =2,∴△ACD 为直角三角形,即AC ⊥CD ,∵直二面角E -AC -D ,CD ⊂平面ACD ,∴平面EAC ⊥平面ACD ,平面EAC ∩平面ACD =AC ,∴CD ⊥平面EAC ,CD ⊂平面ECD ,∴平面ECD ⊥平面EAC .(2)由(1)可得DC ⊥平面EAC ,∴∠DEC 为直线DE 与平面EAC 所成角,∴cos ∠DEC =12,∴∠DEC =60°.在Rt △ECD 中,∵CE =2,∴CD =23,ED =4,在Rt △ACD 中,AC =2,∴△ABC 、△AEC 为等边三角形,以AC 中点O 为坐标原点,以OC ,OM ,OE 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,A (-1,0,0),C (1,0,0),E (0,0,3),D (1,23,0),平面EAC 为xOz 平面,则其法向量为v =(0,1,0),在平面AED 内,设其法向量为u =(x ,y ,z ),AD =(2,23,0),AE =(1,0,3),则AD ⋅u =0AE ⋅u =0 ,即2x +23y =0x +3z =0,令x =3,则y =-1,z =-1,∴u =(3,-1,-1),设二面角D -EA -C 的平面角为θ,∴cos ‹u ,v ›=u ⋅v |u ||v |=-55,由图可知二面角D -EA -C 为锐角,∴cos θ=55.例28.如图1,在△ABC 中,∠ACB =90°,DE 是△ABC 的中位线,沿DE 将△ADE 进行翻折,使得△ACE 是等边三角形(如图2),记AB 的中点为F .(1)证明:DF ⊥平面ABC .(2)若AE =2,二面角D -AC -E 为π6,求直线AB 与平面ACD 所成角的正弦值.【解析】(1)如图,取AC 中点G ,连接FG 和EG ,由已知得DE ∥BC ,且DE =12BC .因为F ,G 分别为AB ,AC 的中点,所以FG ∥BC ,且FG =12BC 所以DE ∥FG ,且DE =FG .所以四边形DEGF 是平行四边形.所以EG ∥DF .因为翻折的BC ⊥AC ,易知DE ⊥AC .所以翻折后DE ⊥EA ,DE ⊥EC .又因为EA ∩EC =E ,EA ,EC ⊂平面AEC ,所以DE ⊥平面AEC .因为DE ∥BC ,所以BC ⊥平面AEC .因为EG ⊂平面AEC ,所以EG ⊥BC .因为△ACE 是等边三角形,点G 是AC 中点,所以EG ⊥AC又因为AC ∩BC =C ,AC ,BC ⊂平面ABC .所以EG ⊥平面ABC .。
、考点分析基本图形1 •棱柱一一有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
斜棱柱①棱柱棱垂直于底面古严壯底面是正多形正棱柱★夂其他棱柱卅②四棱柱I底面为平行四边形I平行六面体I侧棱垂直于底面[直平行六面体I底面为矩形2. 棱锥棱锥一一有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
★正棱锥一一如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥注:球的有关问题转化为圆的问题解决第四讲立体几何题型归类总结长方体底面为正方形正四棱柱侧棱与底面边长相等正方体侧棱底面顶点侧面斜高3.球球的性质:①球心与截面圆心的连线垂直于截面;球心球面半径★②r R2 d2(其中,球心到截面的距离为d、球的半径为R、截面的半径为r)★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.O1球面积、体积公式: -R3(其中R为球的半径)3平行垂直基础知识网络★★★1 •求异面直线所成的角0 ,90 :解题步骤:一找(作):利用平移法找岀异面直线所成的角;(1)可固定一条直线平移另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。
常用中位线平移法二证:证明所找(作)的角就是异面直线所成的角(或其补角)。
常需要证明线线平行;三计算:通过解三角形,求岀异面直线所成的角;2求直线与平面所成的角0 ,90 :关键找“两足”:垂足与斜足解题步骤:一找:找(作)岀斜线与其在平面内的射影的夹角(注意三垂线定理的应用);二证:证明所找(作)的角就是直线与平面所成的角(或其补角)(常需证明线面垂直);三计算:常通过解直角三角形,求岀线面角。
3求二面角的平面角0,解题步骤:一找:根据二面角的平面角的定义,找(作)出二面角的平面角;二证:证明所找(作)的平面角就是二面角的平面角(常用定义法,三垂线法,垂面法);三计算:通过解三角形,求出二面角的平面角。
二、典型例题 考点一:三视图2.若某空间几何体的三视图如图 ____________________ 2所示,则该几何体的体积是3.—个几何体的三视图如图 ____________________ 3所示,则这个几何体的体积为4. 若某几何体的三视图(单位:cm )如图4所示,则此几何体的体积是 _______________ .俯视图俯视图3*正视图左视图第4题第5题5•如图5是一个几何体的三视图,若它的体积是3 3,则a7.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是8.设某几何体的三视图如图8 (尺寸的长度单位为m,则该几何体的体积为3cmm10. 一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如图图1011.如图11所示,一个空间几何体的主视图和左视图都是边长为体的全面积为_______________ .左视图12.如图12,一个空间几何体的主视图和左视图都是边长为图131的正三角形,俯视图是一个圆,那么几何体的侧面积为第7题9 •一个空间几何体的主视图和左视图都是边长为1的正方形, 俯视图是一个圆, 那么这个几何体的侧面积为10所示(单位cm),则该三棱柱的表面积为1的正方形,俯视图是一个直径为1的圆,那么这个几何正视图13.已知某几何体的俯视图是如图13所示的边长为2的正方形,主视图与左视图是边长为2的正三角形,则其表面积是2cm ) .图1516•图16是一个几何体的三视图,根据图中数据,可得该几何体的表面积是17.如图17, —个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为 这个几何体的体积为 ________________ .18.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图14.如果一个几何体的三视图如图 14所示(单位长度:cm ). 则此几何体的表面积是—2 f厶 □ □主视图主视團正视图俯视图左视图 1,那么9-3-14所示,则这个棱柱的体积为9-3-7,则该棱锥的全面积(单位:图18 考点二—体积、表面积、距离、角—注:1-6体积表面积7-11异面直线所成角12-15线面甭1. __________________________________________________________________________ 将一个边长为a的正方体,切成27个全等的小正方体,则表面积增加了_____________________________________________________ .2. 在正方体的八个顶点中,有四个恰好是正四面体的顶点,则正方体的表面积与此正四面体的表面积的比值为________________3. 设正六棱锥的底面边长为___________________________ 1,侧棱长为J5,那么它的体积为.14•正棱锥的高和底面边长都缩小原来的一,则它的体积是原来的________________ .25•已知圆锥的母线长为8,底面周长为6n,则它的体积是______________________ .6. ___________________________________________________________ 平行六面体AG的体积为30,则四面体AB1CD1的体积等于__________________________________________________________ .7. __________________________________________________________________________________________ 如图7,在正方体ABCD ABCiD中,E,F分别是A D i , GD中点,求异面直线AB与EF所成角的角____________________________ .8.如图8所示,已知正四棱锥S —ABCD侧棱长为■■ 2,底面边长为.3,E是SA的中点,则异面直线BE与SC所成角9.正方体ABCD A BCD'中,异面直线CD和BC'所成的角的度数是________________________的大小为/;:/-----10 •如图9-1-3,在长方体ABCD ABGD1中,已知AB.3BC,BC CC1,则异面直线AA与BC1所成的角是曰,异面直线AB与CD1所成的角的度[X ______________ [? -e 数是图1311. 如图9-1-4,在空间四边形ABCD中,AC BD AC BD,E,F分别是AB、CD的中点,则EF与AC所成角的大小为______________ .12. 正方体AC1中,AB|与平面ABC1D1所成的角为___________________ .13 .如图13在正三棱柱ABC ARG 中, AB AA,则直线CB!与平面AARB所成角的正弦值为 __________________________________ ,14.如图9-3-6,在正方体ABCD —A1B1C1D1中,对角线BD1与平面ABCD所成图9-3-6图9-3-1图715. 如图9-3-1,已知ABC为等腰直角三角形,P为空间一点,且AC BC 5 2, PC AC,PC BC,PC 5,AB的中点为M,则PM与平面ABC所成的角为16. 如图7,正方体ABCD - A1B1C1D1的棱长为1,O是底面A1B1C1D1的中心,贝u O到平面AB C1D1的距离为17. 一平面截一球得到直径是6cm的圆面,球心到这个平面的距离是18•长方体ABCD AB1C1D1的8个顶点在同一个球面上,且AB=2 AD=. 3,AA1 1,则顶点A、B间的球面距离__B10D的角的正切值为4cm,则该球的体积是/I是__________________ .19. 已知点A,B,C,D 在同一个球面上,AB 平面BCD,BC CD,若AB 6, AC 2 13, AD 8,则B,C两点间的球面距离是_______________ .20. 在正方体ABCD —A i B i C i D i中,M为DD 1的中点,0为底面ABCD的中心,P为棱A i B i上任意一点,则直线0P与直线AM所成的角是____________________ .21 .△ABC的顶点B在平面a内,A、C在a的同一侧,AB、BC与a所成的角分别是30 °和45 °,若AB=3 , BC= 4、2,AC=5,则AC与a所成的角为___________ .22 .矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B - AC- D,则四面体ABCD的外接球的体积为________________ .23•已知点A,B,C,D在同一个球面上,AB 平面BCD, BC CD,若AB 6, AC 2、i3, AD 8,则B,C两点间的球面距离是______________ .24 •正三棱锥的一个侧面的面积与底面积之比为2: 3,则这个三棱锥的侧面和底面所成二面角的度数为_____________ .25.已知S,代B,C是球0表面上的点,SA 平面ABC,AB BC,SA AB i,BC J2,则球O表面积等于 _________________ .3226•已知正方体的八个顶点都在球面上,且球的体积为—,则正方体的棱长为_______________ .327. 一个四面体的所有棱长都为42,四个顶点在同一球面上,则此球的表面积为_________________ .1.正方体ABCD-A 1B1C1D i,AA i=2,E为棱CC i 的中点.(I)求证:B i D i AE ;(n)求证:AC// 平面B i DE ;(山)求三棱锥A-BDE的体积.2.已知正方体ABCD A 1B 1C 1D 1,O 是底ABCD 对角线的交点.求证:(1 ) C i O //面ABQ ; (2)AC 面AB 1D 1 .图(2)3•如图,PA 矩形ABCD 所在平面,M 、N 分别是AB 和PC 的中点. (I ) (U ) 求证:求证: MN MN //平面PAD ;CD ;(山)PDA 45,求证:MN 平面PCD .4. 如图(1),ABCD 为非直角梯形,点E ,F 分别为上下底AB , 起,得到图(2)(1)若折起后形成的空间图形满足 DF BC ,求证:ADCD 上的动点,且 EF CD 。
现将梯形AEFD 沿EF 折CF ;(2)若折起后形成的空间图形满足A, B,C, D 四点共面,求证:图(1)5.如图,在五面体 ABCDEF 中,FA 平面ABCD,CDAD//BC//FE , AB AD , M 为EC 的中点,1N 为AE 的中点,AF=AB=BC=FE= AD2(I) 证明平面AMD 平面CDE;(II) 证明BN //平面CDE ;6. 在四棱锥P-ABCD中侧面PCD是正三角形,且与底面ABCD垂直,已知菱形ABCD中/ ADC = 60 M是PA的中点,0是DC中点.(1)求证:0M //平面PCB ;(2)求证:PA丄CD ;(3)求证:平面FAB丄平面COM .7. 如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD丄底面ABCD , PD=DC , E是PC的中点,作EF丄PB交PB于点F.(1)证明PA//平面EDB ; (2)证明PB丄平面EFD8. 正四棱柱ABCD-A i B i C i D i的底面边长是3,侧棱长是3,点E,F分别在BB i,DD i 上,且AE 丄A i B,AF 丄A i D .(1)求证:A i C 丄面AEF ; ⑵求二面角A-EF-B 的大小; ⑶点B i 到面AEF 的距离.考点五异面直线所成的角,线面角,二面角1. 如图,四棱锥P — ABCD 的底面ABCD 为正方形,PD 丄底面ABCD , PD=AD.求证:(1)平面PAC 丄平面PBD ; (2)求PC 与平面PBD 所成的角;2. 如图所示,已知正四棱锥 S — ABCD 则棱长为..2,底面边长为 3 , E 是SA 的中点,则异面直线 BE 与SC 所成角的大小3. 正六棱柱 ABCDEF - A i B i C i D i E i F i 底面边长为4.若正四棱锥的底面边长为 2 ■. 3 cm ,体积为4cm 3,则它的侧面与底面所成的二面角的大小是(3)若PA AB AC a ,求三棱锥E -ACD 的体积;5.如图,在底面为平行四边形的四棱锥 AB P -ABCD 中, >AC , PA 平面ABCD ,且PA = AB ,点E 是PD 的中点.(1)求证:AC PB ;( 2)求证:PB// 平面AEC ; (4)求二面角 E -AC - D 的大小.E i D 与BC i 所成的角是1 .已知直线I、m平面a、B,且I丄a, m B,给出下列四个命题:(1 )a//B,_则I丄m(2)若1丄m则a//B(3 )若a丄B ,_则I // m(4 )若1 // m,则a 丄B其中正确的是2. m、n是空间两条不同直线,、是空间两条不同平面,下面有四个命题①m , n1,1| m n;② m n,,m③m n,| n ;④m ,m n,其中真命题的编号是(写岀所有真命题的编号)。