2017年第13届中国北方数学奥林匹克试题及解析
- 格式:docx
- 大小:720.72 KB
- 文档页数:6
2017年数学竞赛预赛(非数学类)试题评分标准及参考答案一 1. 已知可导函数满足, 则()f x解: 在方程两边求导得'()c o s +()s i n f x x f x x =,'()+()tan sec f x f x x x =.从而tan tan ()sec xdx xdx f x e xe dx c -⎛⎫⎰⎰=+ ⎪⎝⎭⎰l n c o sl n c o s211==cos cos cos x x ee dx c x dx c x x --⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰ ()=c o s t a n =s i n c o sx x c x cx ++ 由于(0)1f =,故()sin cos f x x x =+。
2.求()n n n +∞→22sin lim π解 由于 ()=+n n 22sin π()ππn n n -+22sin=2sin 1⎛⎫→。
3. 设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c 为非零常数。
则21xx yy w w c-=_________。
解: 12+x w f f =,1112222xx w f f f =++,21()y w c f f =-,()()()22111122122111222=2yy w cf f c cf cf cf cf c f f f y∂=-=--+-+∂。
所以1221=4xx yy w w f c-。
4. 设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则24(s i n )l i m x f xx →=______解:21()(0)'(0)"()2f x f f x f x ξ=++,所以241(sin )"()sin 2f x f x ξ=。
这样244400(sin )"()sin lim=lim 32x x f x f xx x ξ→→=。
2017年数学竞赛预赛(非数学类)试题评分标准及参考答案一 1. 已知可导函数满足, 则()f x解: 在方程两边求导得'()c o s +()s i n f x x f x x =,'()+()tan sec f x f x x x =.从而tan tan ()sec xdx xdx f x e xe dx c -⎛⎫⎰⎰=+ ⎪⎝⎭⎰l n c o sl n c o s211==cos cos cos x x ee dx c x dx c x x --⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰ ()=c o s t a n =s i n c o sx x c x cx ++ 由于(0)1f =,故()sin cos f x x x =+。
2.求()n n n +∞→22sin lim π解 由于 ()=+n n 22sin π()ππn n n -+22sin=2sin 1⎛⎫→。
3. 设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c 为非零常数。
则21xx yy w w c-=_________。
解: 12+x w f f =,1112222xx w f f f =++,21()y w c f f =-,()()()22111122122111222=2yy w cf f c cf cf cf cf c f f f y∂=-=--+-+∂。
所以1221=4xx yy w w f c-。
4. 设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则24(s i n )l i m x f xx →=______解:21()(0)'(0)"()2f x f f x f x ξ=++,所以241(sin )"()sin 2f x f x ξ=。
这样244400(sin )"()sin lim=lim 32x x f x f xx x ξ→→=。
2017年全国高中数学联合竞赛一试和加试(A 卷)试题及答案考点分析2017年全国高中数学联合竞赛一试卷〉参考答案及评分标准说明孑1.评阅试卷时*请依据本评分标淮.填空趣只设S 分和o 分两档1其他备题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.N 如果考生的解??方法和本解答不同+只要思路合理"步骤1E 确,在评卷时训 参苇本评分标准适为划分档次评仆.解芥题中第9小题*分対--个栉次.第10. 11小题5分为一个档次,不得增加其他中间档次*一、填空题;本大题共*小题,每小題*分,共64分.设八龙)屣走文任H 上的噌数,对任意实^xfTf(x+3)f(x-4) = -l.又 当0冬“V7时・/(x)=log 3(9-x)・则/X-100)的値为 ____________________________ ・答案;■齐比庄平面現角坐标系xQy 中.fffiEfC 的方程为芝■ +匚=1, F 为C 的上煉点,A 的右顶点.戶是(?上位丁第象限内的別点*则四边Jg OAPF 的面积 的燧大值为 ”解:易知#(3,0), F(O,D.设尸的酸掠圧(3ws 罠JTB 抽叭,w九秤=孔加 V S s^r- = | ■ 3 ■sin 0 + | ■ I ■ 3 cos!〔中 y : — arctan —.当(9 — arctanVTo 时.四边形OAPF iff | 积的fit 大備为卫■土*解:由篆件知,/U + 14) = ---------------- = f (x} t 所以./<x + 7)2.若实数工j 满足”F 4- 2 cosy = 1 .则x — cos y 的収值范围足i _______ 答案:H1,広+ 1].解:由 +.Y 1- 1 -2cos yG[-l > 故GX 时F 可以収?Th 由于扌U+1)'—1的恤域筍-h J5 + 1],从而X-CGSJ 的耿值范围是[一匕J5 + 1]・si n ( 4 *} +4. 若一个三位数中任总两个相邻数码的差均不超过1,则称其为“平稳数”.平稳数的个数是____________ ・答案:75. _解:考虑平稳数赢.若6 = 0,则。
初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。
两个单项式x²,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
目录2005年北方数学奥林匹克 (2)2006年北方数学奥林匹克 (4)2007年北方数学奥林匹克 (6)2008年北方数学奥林匹克 (7)2009年北方数学奥林匹克 (10)2010年北方数学奥林匹克 (13)2011年北方数学奥林匹克 (15)2012年北方数学奥林匹克 (17)2005年北方数学奥林匹克1.AB是⊙O的一条弦,它的中点为M,过点M作一条非直径的弦CD,过点C和D作⊙O的两条切线,分别与直线AB相交于P、Q两点.求证:P A=QB.(裘宗沪供题)2.定义在R上的函数f(x)满足:(1)f(0)=0;(2)对任意xx∈(−∞,−1)∪(1,+∞),都有f�1x�+f�1y�=f(x+y1+xy);(3)当x∈(−1,0)时,都有f(x)>0.求证:f�119�+f�129�+⋯+ f�1n2+7n+11�>f(12),其中n∈N+. (刘贵谭祖春供题)3.在公差为d(d>0)的整数等差数列a1,a2,⋯,a3n(n≥2)中,任取n+2个数.证明:其中必存在两个数a i、a j(i≠j),满足不等式1<�a i−a j�nn<2. (刘康宁安振平供题)4.已知n位数的各位数字只能取集合{1,2,3,4,5}中的元素,设含有数字5且在5的前面不含3的n位数的个数为f(n).求f(n).(蒋西明供题)5.如果三个正实数x、y、z满足x2+xx+x2=254,x2+xy+y2=36,y2+yx+x2=1694.求xx+xy+yx的值. (张同君供题)6.设0≤α、β、γ≤π2,ccc2α+ccc2β+ccc2γ=1.求证:2≤(1+ccc2α)2cin4α+(1+ccc2β)2cin4β+(1+ccc2γ)2cin4γ≤(1+ccc2α)(1+ccc2β)(1+ccc2γ)(谭祖春供题)2006年北方数学奥林匹克1. 如图1,AB 为⊙O 的直径,非直径的弦CC ⊥AA ,E 是OC 的中点,连结AE 并延长交⊙O 于点P ,连结DP 交BC 于点F .求证:F 是BC 的中点.图12. 设p 是大于2的质数,数列{a n }满足na n+1=(n +1)a n −(p 2)4.求证:当a 1=5时,16|a 81. 3. 已知AD 是△ABC 的边BC 上的高,且AC +AC =AA +AC .求∠A 的取值范围.4. 设函数f (x )=x 2+ax +b (a 、b ∈R ).若存在实数m ,使得|f (m )|≤14,且|f (m +1)|≤14,求Δ=a 2−4b 的最大值和最小值.5. 已知正数a 、b 、c 满足a +b +c =3.求证:a 2+92a 2+(b+c )2+b 2+92b 2+(c+a )2+c 2+92c 2+(a+b )2≤5. 6. 组委会说明试题有误.7. 是否可以将正整数1,2,⋯,64分别填入8×8的64个方格 ,使得凡具备“”形的四个方格(方向课以任意转置)内的数之和都能被5整除?8. 已知数列{a n }满足a k+1=a k +12006a k 2,a 0=12,k ∈N .求证:A1−12008<a2006<1.1.在锐角△ABC中,BD、CE分别是AC、AB边上的高.以AB为直径作圆交CE于M,在BD上取点N是AN=AM.证明:AN⊥CN.2.设△ABC三边长分别为a、b、c,且a+b+c=3.求f(a,b,c)=a2+ b2+c2+43abc的最小值.3.在数列{a n}中,a n+1=a n2a n+1(n∈N).求证:当0≤n≤1004时,有[a n]=2007−n(其中[x]表示不超过x的最大整数).4.平面上每个点被染为n中颜色之一,同时满足:(1)每种颜色的点都有无穷多个,且不全在同一条直线上;(2)至少有一条直线上所有的点恰为两种颜色.求n的最小值,使得存在互不同色的4个点共圆.5.设α,β∈(0,π2),求A=(1−�tanα2tanβ2)2cctα+cctβ的最大值.6.已知f(x)=ll(x+1)−12lcl3x.(1)解方程f(x)=0;(2)求集合M={n|f(n2−214n−1998)≥0,n∈Z}.7.设n是正整数,a=�√n�(其中[x]表示不超过x的最大整数),求同时满足下列条件的n的最大值:(1)n不是完全平方数;(2)a3|n28.设△ABC的内切圆半径为1,三边长AC=a,CA=b,AA=c.若a、b、c都是整数,求证:△AAC为直角三角形.1. 如图1,⊙O 是梯形ABCD 的内切圆,切点分别为E 、F 、G 、H ,AB ∥CD .作BP ∥AD 交DC 的延长线于点P ,AO 的延长线交CP 于点Q .若AD =AD ,求证:∠CAQ =∠PAQ .图1 (张利民 供题)2. 已知∠A 、∠A 、∠C 是△AAC 的三个内角.证明:tan A 2+tan B 2+tan C 2√3≥�tan 2A 2+tan 2A 2+tan 2C 26 (张 雷 供题)3. 给定三角形数表如图2:1 2 3 4 ⋯ 97 98 99 100 3 5 7 ⋯ 195 197 199 8 12 ⋯ 392 396 20 ⋯ 788 ⋱ ⋯ ⋰ ⋱ ⋰ M图2其中,第一行各数依次是1,2,⋯,100,从第二行起,每个数分别等于它上面一行左、右两数的和.求M 的值.(焦和平 供题)4.证明:(1)存在无穷个正整数n,使n2+1的最大质因子小于n;(2)存在无穷个正整数n,使n2+1|n!. (张雷供题)5.如图3,已知□ABCD,过A、B、C三点的⊙O1分别交AD、BD 于点E、F,过C、D、F三点的⊙O2交AD于点G,设⊙O1、⊙O2R222.的半径分别为R1、R2.求证:AG图3(吕建恒刘康宁供题)6.设a、b、c为直角三角形的三边长,其中,c为斜边长.求使得a3+b3+c3abc≥k成立的k的最大值.(李铁汉供题)7.设n是正整数,整数a是方程x4+3ax2+2ax−2×3n=0的根.求所有满足条件的数对(n,a).(李铁汉供题)8.给定由n(n+1)2个点组成的正三角形点阵(如图4),记以点阵中三个点为顶点的所有正三角形的个数为f(n),求f(n)的表达式.图4(张利民供题)2009年北方数学奥林匹克1. 设数列{x n }满足x 1=1,x n =�x n−12+x n−1+x n−1(n ≥2).求数列{x n }的通项公式. (张 雷 供题)2. 如图1,在锐角△ABC 中,已知AA >AC ,cccA +cccC =1,E 、F 分别是AB 、AC 延长线上的点,且满足∠AAF =∠ACD =90°.(1) 求证:AD +CF =DF ;(2) 设∠DAC 的平分线与EF 交于点P ,求证:CP 平分∠ACF .图1(刘康宁 吕建恒 徐庆金 供题)3. 已知有26个互不相等的正整数,其中任意六个数中都至少有两个数,一个数整除另一个数.证明:一定存在六个数,其中一个数能被另外五个数整除.(张同君 供题)4. 船长和三位水手共得到2009枚面值相同的金币.四人商定按照如下规则对金币进行分配:水手1、水手2、水手3每人写下一个正整E数分别为b 1、b 2、b 3,满足b 1≥b 2≥b 3,且b 1+b 2+b 3=2009;船长在不知道水手写的数的情况下,将2009枚金币分成3堆,各堆数量分别为a 1、a 2、a 3,且a 1≥a 2≥a 3.对于水手k (k =1,2,3),当b k <a k 时,可以从第k 堆拿走b k 枚金币,否则不能拿.最后所有余下的金币归船长所有.若无论三位水手怎样写数,船长总可以确保自己拿到n 枚金币.试确定n 的最大值,并证明你的结论. (张 利 供题)5. 如图2,在给定的扇形AOB 中,圆心角为锐角.在弧AB 上取异于A 、B 的一点C ,在线段OC 上取一点P ,连结AP ,过点B 作直线BQ ∥AP 交射线OC 于点Q .证明:封闭图形OAQPBO 的面积与点C 、P 的选取无关.图2 (徐庆金 供题)6. 设x 、y 、z >0,且x 2+x 2+y 2=3,求证:∑x 2009−2008(x−1)y+z ≥12(x +x +y ). (杨海滨 贾应红 供题)7. 记[m ]为不超过实数m 的最大整数.设x 、y 均为正实数,且对所有的正整数n ,都有[x [nx ]]=n −1成立.证明xy =1,且y 是大于1的无O理数.(刘康宁供题)8.求能被209整除且各位数字之和等于209的最小正整数.(张雷供题)2010年北方数学奥林匹克1.已知数列{a n}满足a1=2,a n=22n a n−1+2n2n(n=2,3,⋯).求通项a n(n=1,2,⋯). (吴树勋供题)2.已知PA、PB是⊙O的切线,切点分别是A、B,PCD是⊙O的一条割线,过点C作PA的平行线,分别交弦AB、AD于点E、F.求证:CD=DF.(李新焕供题)3.求所有的正整数(x,x,y),使得1+2x×3y=5z成立.(张雷供题)4.在7×7的方格表的64个网格线交点(称为“结点”)处放棋子,每点至多放1枚,一共放了k枚棋子.若无论怎样放,总存在4枚棋子,它们所在的结点构成一个矩形(矩形的边平行于棋盘网格线)的四个顶点.试求k的最小值.(张利民供题)5.设正实数a、b、c满足(a+2b)(b+2c)=9.求证:�a2+b22+2�b3+c323≥3.(张雷供题)6.已知⊙O是△ABC的内切圆,D、E、N是切点,连结NO并延长交DE于点K,连结AK并延长交BC于点M.求证:M是BD的中点.(康春波供题)7.求[x,x,y]=(x,x)+(x,y)+(y,x)满足x≤x≤y,(x,x,y)=1的所以正整数解,其中,[m,n]和(m,n)分别表示正整数m、n的最小公倍数和最大公约数.(王全供题)8.设x、x、y∈[0,1],且|x−x|≤12,|x−y|≤12,|y−x|≤12.试求W=x+x+y−xx−xy−yx的最小值和最大值.(刘康宁安振平供题)2011年北方数学奥林匹克1.已知数列{a n}的通项a n=(√3+√2)2n(n∈N+),设b n=a n+1a n. (1)试求b n+2、b n+1、b n之间的递推关系;(2)求a2011整数部分的个位数字.(刘洪柱供题)2.如图1,△ABC的内切圆分别切BC、CA、AB、于点D、E、F,P 为内切圆内一点,线段PA、PB、PC分别于内切圆交于点X、Y、Z.证明:XD、YE、ZF三线共点.图1(徐庆金供题)3.求不定方程1+2x×7y=y2的全部正整数解(x,x,y). (翁世有供题)4.设n个集合A1,A2,⋯,A n是集合A={1,2,⋯,29}的一个分划,且A i(i=1,2,⋯,n)中任意个元素之和都不等于30.求n的最小可能值. 【注】若集合A的非空子集A1,A2,⋯,A n(n∈N+,n≥2)满足A i∩A j=∅(i≠j),A1∪A2∪⋯∪A n=A,则称A1,A2,⋯,A n是集合A的一个分划.(张雷供题)5. 若正整数a 、b 、c 满足a 2+b 2=c 2,则称(a ,b ,c )为勾股数组.求含有30的所有勾股数组. (杨春宏 供题)6. 如图2,过点P 引的切线P A 和割线PBC ,AC ⊥PP ,垂足为D .证明:AC 是△ABD 外接圆的切线.图2(吕建恒 供题) 7. 在△ABC 中,证明:11+ccs 2A+ccs 2A +11+ccs 2A+ccs 2C +11+ccs 2C+ccs 2A ≤2.(安振平 供题) 8. 已知n 是正整数,实数x 满足�1−|2−⋯|(n −1)−|n −x ||⋯|�=x .求x 的值. (张利民供题)P2012年北方数学奥林匹克1.如图1,在△ABC中,∠C=90°,I是内心.直线BI交AC于D,作DE平行于AI交BC于E,直线EI交AB于F.证明:DF垂直于AI.图12.正整数x1,x2,⋯,x n(n∈ℕ+),满足x12+x22+⋯+x n2=111,求S=x1+x2+⋯+x n n的最大可能值.3.设S={x|x=a2+ab+b2,a,b∈ℤ}.求证:(1)若m∈S,3|m,则3m∈S;(2)若m,n∈S,则m⋅n∈S.4.平面上有n(n≥4)条直线,对于直线a,b,在余下的n-2条直线中,如果至少存在两条直线与直线a,b都相交,则称直线a,b是相合的直线对,否则称其是相离的直线对.若n条直线中相合直线对的个数比相离直线对的个数多2012.求n的最小可能值(直线对中的两条直线不计顺序).5.已知数列{a n}:a0=0,a n=1a n−1−2,n∈ℕ+,在数列{a n}中任意取定一项a k,构造数列{b n}:b0=a k,b n=2b n−1+1b n−1,n∈ℕ+.试判断数列{b n}是有限数列还是无穷数列?并给出证明.6.设n是正整数,证明�1+13��1+132�⋯�1+13n�<2.7.如图2在五边形ABCDE中,BC=DE,CD平行于BE,AB>AE,AA AA,求证:AC平分线段BE.若∠AAC=∠CAD,且图28.设p是奇素数,如果存在正整数a使p!|a p+1,证明:(1)�a+1,a p+1a+1�=p.(2)a p+1a+1没有小于p的素因子.p!|a+1.。
2017年全国初中数学联合竞赛试题参考答案和评分标准(1)2017年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.已知实数,,abc满足213390abc,3972abc,则32bcab??=()A.2.B.1.C.0.D.1?.【答】B.已知等式可变形为2(2)3(3)90abbc,3(2)(3)72abbc,解得218ab??,318bc??,所以32bcab1.2.已知△ABC的三边长分别是,,abc,有以下三个结论:(1)以,,abc为边长的三角形一定存在;(2)以222,,abc为边长的三角形一定存在;(3)以||1,||1,||1abbcca为边长的三角形一定存在.其中正确结论的个数为()A.0.B.1.C.2.D.3.【答】C.不妨设abc??,则有bca??.(1)因为bca??,所以2bcbca,即22()bca??(),即bca??,故以,,abc为边长的三角形一定存在;(2)以2,3,4abc为边长可以构成三角形,但以2224,9,16abc为边长的三角形不存在;(3)因为abc??,所以||11,||11,||11ababbcbccaac,故三条边中||1ca??大于或等于其余两边,而||1||111abbcabbc()()()()111||1acacca=,故以||1ab??,||1bc??,||1ca??为边长的三角形一定存在.3.若正整数,,abc满足abc??且2()abcabc,则称(,,)abc为好数组.那么,好数组的个数为()A.1.B.2.C.3.D.4.【答】C.若(,,)abc为好数组,则2()6abcabcc,所以6ab?.显然,a只能为1或2.若a=2,由6ab?可得2b?或3,2b?时可得4c?,3b?时可得52c?(不是整数);若a=1,则2(1)bcbc,于是可得(2)(2)6bc,可求得(,,)abc =(1,3,8)或(1,4,2017年全国初中数学联合竞赛试题参考答案及评分标准第1页(共7页)5).综合可知:共有3个好数组,分别为(2,2,4),(1,3,8)和(1,4,5).4.设O是四边形ABCD的对角线AC、BD的交点,若180BADACB,且3BC?,4AD?,5AC?,6AB?,则DOOB=()A.109.B.87.C.65.D.43.【答】A.过B作//BEAD,交AC的延长线于点E,则180ABEBAD ACB??,所以△ABC∽△AEB,所以ACBCABEB?,所以631855ABBCEBAC.再由//BEAD,得4101895DOADOBBE.5.设A是以BC为直径的圆上的一点,ADBC?于点D,点E在线段DC上,点F在CB的延长线上,满足BAFCAE.已知15BC?,6BF?,3BD?,则AE=()A.43.B.213.C.214.D.215.【答】B.如图,因为BAFCAE,所以BAFBAECAEBAE,即90FAEBAC.又因为ADBC?,故2ADDEDFDBDC.而639DFBFBD,15312DCBCBD,所以29312ADDE,所以6AD?,4DE?.从而222264213AEADDE.6.对于正整数n,设na是最接近n的整数,则1232001111aaaa()A.1917.B.1927.C.1937.D.1947.【答】A.对于任意自然数k,2211()24kkk不是整数,所以,对于正整数n,12n?一定不是整数.设m是最接近n的整数,则1||2mn??,1m?.易知:当1m?时,1||2mn2211()()mnm??221144mmnmm.于是可知:对确定的正整数m,当正整数n满足221mmnmm时,m是最接近n的整数,即nam?.所以,使得na=m的正整数n的个数为2m.注意到2213131822001414210,因此,12200,,,aaa?中,有:2个1,4个2,6个3,2017年全国初中数学联合竞赛试题参考答案及评分标准第2页(共7页)EOCBADCBFDE8个4,……,26个13,18个14.所以123200111111111191246261812313147aaaa.二、填空题:(本题满分28分,每小题7分)1.使得等式311aa成立的实数a的值为_______.【答】8.由所给等式可得32(11)aa.令1xa??,则0x?,且21ax??,于是有322(1)(1)xx,整理后因式分解得2(3)(1)0xxx,解得10x?,23x?,31x??(舍去),所以1a??或8a?.验证可知:1a??是原方程的增根,8a?是原方程的根.所以,8a?.2.如图,平行四边形ABCD中,72ABC,AFBC?于点F,AF交BD于点E,若2DEAB?,则AED?=_______.【答】66?.取DE的中点M,在Rt△ADE中,有12AMEMDEAB.设AED,则1802AME,18ABM.又ABMAMB,所以180218,解得66.3.设,mn是正整数,且mn?.若9m与9n的末两位数字相同,则mn?的最小值为.【答】10.由题意知,999(91)mnnmn是100的倍数,所以91mn??是100的倍数,所以9mn?的末两位数字是01,显然,mn?是偶数,设2mnt??(t是正整数),则29981mntt.计算可知:281的末两位数字是61,381的末两位数字是41,481的末两位数字是21,581的末两位数字是01.所以t的最小值为5,从而可得mn?的最小值为10.4.若实数,xy满足3331xyxy,则22xy?的最小值为.【答】12.因为333322031()(1)333xyxyxyxyxyxy22(1)[()()(1)(1)]3(1)xyxyxyxyxy2017年全国初中数学联合竞赛试题参考答案及评分标准第3页(共7页)MEFCBDA22(1)(1)xyxyxyxy2221(1)[()(1)(1)]2xyxyxy,所以1xy或1xy??.若1xy,则22xy?=2.若1xy??,则22222111[()()][1()]222xyxyxyxy,当且仅当12xy??时等号成立.所以,22xy?的最小值为12.第一试(B)一、选择题:(本题满分42分,每小题7分)1.已知二次函数2(0)yaxbxcc的图象与x轴有唯一交点,则二次函数3233yaxbxc的图象与x轴的交点个数为()A.0.B.1.C.2.D.不确定.【答】C.因为二次函数2yaxbxc的图象与x轴有唯一交点,所以2140bac,所以240bac??.故二次函数3233yaxbxc的判别式323363623211()4(4)()1616bacbacbb61516b?0?,所以,二次函数3233yaxbxc的图象与x轴有两个交点.2.题目和解答与(A)卷第1题相同.3.题目和解答与(A)卷第3题相同.4.已知正整数,,abc满足26390abc,260abc,则222abc??=()A.424.B.430.C.441.D.460.【答】C.由已知等式消去c整理得22(9)3(1)75ab,所以23(1)75b??,又b为正整数,所以16b??.若b=1,则2(9)75a??,无正整数解;若b=2,则2(9)72a??,无正整数解;若b=3,则2(9)63a??,无正整数解;若b=4,则2(9)48a??,无正整数解;若b=5,则2(9)27a??,无正整数解;若b=6,则2(9)0a??,解得9a?,此时18c?.2017年全国初中数学联合竞赛试题参考答案及评分标准第4页(共7页)因此,9a?,b=6,18c?,故222abc=441.5.设O是四边形ABCD的对角线AC、BD的交点,若180BADACB,且3BC?,4AD?,5AC?,6AB?,则DOOB=()A.43.B.65.C.87.D.109.【答】D.解答过程与(A)卷第4题相同.6.题目和解答与(A)卷第5题相同.二、填空题:(本题满分28分,每小题7分)1.题目和解答与(A)卷第1题相同.2.设O是锐角三角形ABC的外心,,DE分别为线段,BCOA的中点,7ACBOED,5ABCOED,则OED?=_________.【答】10?.如图,设OEDx??,则5ABCx??,7ACBx??,DOC??18012BACx,10AOCx??,所以1802AODx,180(1802)ODExxx,所以1122ODOEOAOC,所以60DOC,从而可得10x??.3.题目和解答与(A)卷第3题相同.4.题目和解答与(A)卷第4题相同.第二试(A)一、(本题满分20分)已知实数,xy满足3xy??,221112xyxy,求55xy?的值.解由221112xyxy可得2233222()xyxyxyxyxy.设xyt?,则222()292xyxyxyt,332()[()3]3(93)xyxyxyxyt,代入上式可得22(392)3(93)tttt,解得1t?或3t?.……………………10分当3t?时,3xy?,又3xy??,故,xy是一元二次方程2330mm的两实数根,但易知此方程没有实数根,不合题意.……………………15分当1t?时,1xy?,又3xy??,故,xy是一元二次方程2310mm的两实数根,符合题意.此时552233222()()()(92)[3(93)]3123xyxyxyxyxyttt.……………………20分2017年全国初中数学联合竞赛试题参考答案及评分标准第5页(共7页)DEOBAC二、(本题满分25分)如图,△ABC中,ABAC?,45BAC,E 是BAC?的外角平分线与△ABC的外接圆的交点,点F在AB上且EFAB?.已知1AF?,5BF?,求△ABC的面积.解在FB上取点D,使FD=AF,连接ED并延长,交△ABC的外接圆于点G.由EF⊥AD,AF=FD知△AED是等腰三角形,所以∠AED=1802??∠EAD=∠BAC,……………………10分所以??AGBC?,所以??ACBG?,所以AC=BG (15)分又∠BGE=∠BAE=∠ADE=∠BDG,所以BG=BD,所以AC=BD =5-1=4,……………………20分△ABC的AB边上的高sin4522hAC.所以,△ABC的面积116226222SABh (25)分三、(本题满分25分)求所有的正整数数对(,)ab,使得34938ba.解显然,4938b??为奇数,所以a为奇数.又因为33493849385ba,所以5a?.……………………5分由34938ba可得38493ba,即22(2)(24)73baaa.……………………10分设2(2,24)aaad,则d为奇数.注意到224(2)(4)12aaaa,所以|12d,所以d=1或3.……………………15分若d=1,则有22 27, 243,b aaa或22 23, 247, ba aa均无正整数解.……………………20分若d=3,则有221237,243,baaa?或12223,2437,baaa解得11a?,3b?.所以,满足条件的正整数对只有一个,为(11,3).……………………25分第二试(B)一、(本题满分20分)已知实数,,abc满足abc??,16abc,22211284abcabc,求c的值.解设abx??,aby?,依题意有2212(16)(16)1284xyxyx,整理得21(8)(8)8xyx,所以8x?或8(8)yx??.……………………10分2017年全国初中数学联合竞赛试题参考答案及评分标准第6页(共7页)FEABCD(1)若8x?,则8ab??,此时c=8.(2)若8(8)yx??,即8(8)abab,则(8)(8)0ab,所以8a?或8b?.当8a?时,结合abc??可得24abc,与16abc矛盾.当8b?时,结合abc??及16abc可得0a?,8c?.综合可知:8c?.……………………20分二、(本题满分25分)求所有的正整数m,使得21221mm 是完全平方数.解当m=1时,212211mm是完全平方数.……………………5分当1m?时,设212221mmn(n为正整数).注意到2112112122212(2)221(21)(2)mmmmmm,故可得12122(21)(2)mmn,……………………10分所以22212112(21)(21)(21)mmmmnnn.……………………15分设121mxn,121myn,则xy?,222mxy??,所以,xy均为2的方幂.……………………20分又22myx被4除余数为2,所以,只可能2x?,2my?,故22222mm,解得3m?.综上可知:满足条件的正整数m有两个,分别为1和3.……………………25分三、(本题满分25分)如图,O为四边形ABCD内一点,OADOCB,OAOD?,OBOC?.求证:2222ABCDADBC.证明由题设条件可知90AODBOC,又OADOCB,所以△AOD∽△COB,……………………5分所以ODAOOBCO?,从而OCAOOBOD?.……………………10分又AOCAOBBOCAOBAODDOB,所以△AOC∽△DOB,所以OACODB.……………………15分设AC和BD交于点P,则90APDAOD,所以ACDB?,……………………20分所以222222222222()()()()ABCDAPPBPDPCAPPDPBPCADBC .……………………25分2017年全国初中数学联合竞赛试题参考答案及评分标准第7页(共7页)PDAO CB。
2020年第12期49《中等数学》2020年总目次I M O快讯(10.封底)数学活动课程讲座.初中.初中数学竞赛中的组合最值问题解法举例(钟志强6-2)完全平方数的性质及其应用(李昌勇刘应成6-7)•高中•一些关于无穷多个素因子的问题(吴宇培丨*2) “线性化”在多元不等式证明与最值求解中的应用(唐智逸茹双林2-2)数学竞赛中两种不等式基本思想的应用(缠祥瑞3*2)数学竞赛中的复数问题(唐立华 4.27-2)数学竞赛中组合几何问题的常见解法(程振峰李宝毅5-2)递归计数的六种方式(冯跃峰8-2)圆锥曲线几个结论的证明与应用(金荣生9-2)数学竞赛中数列不等式的常见解法举例(王逸凡王彬瑶10-2)数论中的升幂引理及其应用(王永喜丨卜2)对应思想在组合问题中的应用(缠祥瑞12-2)命题与解题数学命题中的“抱残守缺”(陶平生I*7)例谈不等式题的命制方法(张端阳卜1丨)两道赛题的创作思路、答题情况及启示(林天齐何忆捷熊斌2-8)开世定理的推广与应用(李庆圣2,12)老题新芽别样趣味(肖恩利陈博文3-6) 2019年全国高中数学联赛加试第三题的改进(晏兵川赵凌燕3*13)一道罗马尼亚竞赛题的分析与推广(朱华伟邱际春4‘7)一道高中数学竞赛题的探讨(邱慎海沈家书4’11)一道集训队选拔考试题的推广(李伟健4*14)一道不等式赛题的演变与推广(邱际春朱华伟郑焕5-9)利用抽屉原理证明三道竞赛题(隋婷婷5*11)一道数学竞赛题的推广(林根 5 •13)一道中国北方数学奥林匹克试题的引申(赵凌燕隋世友6‘11)判别式在不定方程中的应用(雷勇7-9)三道国外竞赛题的简解(姚先伟于娟7 •12)两道数学竞赛题的分析与推广(邱际春朱华伟8‘12)与三角形的内切圆有关的一个性质及相关性质和命题(李庆圣一道印度赛题的解题思考(李明谈谈数学竞赛中的数学期望(吴宇培关于一道数论题的思考(李彬解题小品—投石问路(陶平生利用复数证明竞赛题(刘东华华洁一道东南赛题与2020年高中联赛数论题的渊源(陶平生一道高中联赛题的推广与变形(王若飞9.9)9.16)10.11)10-13)11.7)11-11)12.7)12.9)赛题另解(1-154-155-157-1310-15)2020年全年高中数学联赛加试题另解(李庆圣杨续亮刘晓理等12-13)专题写作一类麦比乌斯反演问题及其应用(刘志乐2•15)多项式根的倒数和问题求解(梅述恩 3 •17)一个与多项式相关的不等式(刘亮赵斌5*18)高斯整数在数学竞赛中的应用(古德麟 7_15)一道北方希望之星数学夏令营试题的拓展第29届南美洲数学奥林匹克(8.36) (贾秀平段敏敏11-14)2020年全国高中数学联赛浙江赛区预赛(9-20)学生习作2020年全国高中数学联赛重庆赛区预赛(9-25)2018中国香港代表队选拔考试(9-28)论局部调整法的妙用(阮书镐4-17)2018中美洲及加勒比地区数学奥林匹克(9-32)构造表格探究一类数的分布(徐博润6-18)第61届I M O试题(10-16)一种证明三元齐次不等式的方法(王一鹏8.16)2020年全国高中数学联合竞赛(10-17)两道罗马尼亚大师杯赛题的另解(严彬玮9-18)第17届中国东南地区数学奥林匹克(10-25)竞赛之窗第61届I M O试题解答(11-18)第16届中国东南地区数学奥林匹克2019中国数学奥林匹克希望联盟夏令营(1.29 2.30第30届亚太地区数学奥林匹克第35届中国数学奥林匹克2019年全国高中数学联赛四川赛区预赛第三届中国北方希望之星数学夏令营2019青少年数学国际城市邀请赛2019年全国高中数学联赛江苏赛区预赛2019美国数学竞赛(八年级)2019年北京市中学生数学竞赛复赛(高一)2019年全国高中数学联赛吉林赛区预赛第六届伊朗几何奥林匹克2019年全国高中数学联赛甘肃赛区预赛第12届罗马尼亚大师杯数学邀请赛2020美国数学竞赛(十、十二年级)2018爱沙尼亚国家队选拔考试(初中)2018荷兰数学奥林匹克(初中)2019马其顿数学奥林匹克(初中)2019巴尔干地区数学奥林匹克(初中)2〇19希腊数学奥林匹克(初中)2019希腊国家队选拔考试(初中)2019年全国高中数学联赛贵州赛区预赛2019年全国高中数学联赛重庆赛区预赛第83届莫斯科数学奥林匹克(7,29 2020欧洲女子数学奥林匹克2019年全国高中数学联赛广西赛区预赛2019美国国家队选拔考试第60届I M O预选题(11-2212-20) 0-17)2019亚太地区数学奥林匹克(11-32) 3-33)第19届中国女子数学奥林匹克(11-36)首届百年老校数学竞赛(12-30) (1*35)(2.18)2019瑞士数学奥林匹克(初赛)(12-37) (2.25)再品佳题(2-36)(3.20)第二届国际大都市竞赛(数学)(1-38) (3-27)第32届北欧数学竞赛(2-39) (4.21)2018瑞士数学奥林匹克(预赛)(3-39)(4.26)课外训练(4-29)(4.34).初中.(5.20)(186罗家亮 6.34187 李铁汉汪波 6 •(5.27)39 188 谢文晓9.34189 陈迁赵手志(5-32)王祥10.38)(6.20).高中■(6.23)(247 巢中俊 1.41 248王永中2•41 249 (6.28)于现峰 3.41250王永喜4■41251 刘(6-30)小杰宛昭勋5‘42252杨运新6•42 253 (6.31)李潜7 41254徐节槟龙崎钢8-40(6.33)255何忆捷9.39256李培臣谭祖春郝(7.20)泽来10.42 257 胡满11.42258褚小光(7-26)田开斌12.39)8.29)(7.36)(8.20)(8.24)数学奥林匹克问题(1-48 2-47 3.474-475-48 6.477.488.469-4610-48 11-48 12-46)。
2017 年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设 7 分和 0 分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分 42 分,每小题 7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则3b+c=()a +2bA. 2.B. 1.C. 0.D.-1.【答】B.已知等式可变形为 2( a+ 2b) + 3(3b+c ) = 90 , 3( a+ 2b) + (3b+c ) = 72 ,解得a+2b=18,3b+c=18 ,所以3b+c=1.a +2b2.已知△ABC的三边长分别是a,b,c,有以下三个结论:(1)以a,b,c为边长的三角形一定存在;(2)以 a 2, b 2, c2为边长的三角形一定存在;(3)以 | a-b | +1,| b-c | +1,| c-a | +1 为边长的三角形一定存在.其中正确结论的个数为()A.0.B.1.C.2.D.3.【答】C.不妨设 a ≥ b ≥ c ,则有 b + c > a .(1)因为 b + c > a ,所以 b + c +222b +c > a ,故以a,b,c为bc > a ,即( b + c ) >( a),即边长的三角形一定存在;(2)以 a =2, b =3, c =4为边长可以构成三角形,但以 a 2= 4, b2= 9, c2=16 为边长的三角形不存在;(3)因为 a ≥ b ≥ c ,所以| a - b |+1= a - b +1,| b - c |+1= b - c +1,| c - a |+1= a - c +1,故三条边中| c - a |+1大于或等于其余两边,而(| a-b | +1)+(| b-c | +1)=(a-b+ 1)+(b-c+1)=a-c+ 1 + 1 >a -c+ 1 =| c-a | +1 ,故以 | a-b | +1 , | b-c | +1 , | c-a | +1 为边长的三角形一定存在.3.若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么,好数组的个数为()A. 1.B.2.C.3.D.4.【答】C.若( a, b, c) 为好数组,则abc= 2( a+b+c ) ≤ 6c,所以ab≤6.显然,a只能为1或2.若a =2,由ab≤6可得b=2或3,b=2时可得c=4,b=3时可得c=52(不是整数);若a =1,则bc=2(1+b+c),于是可得(b-2)(c-2)=6,可求得(a,b,c)=(1,3,8)或(1,4,5).综合可知:共有 3 个好数组,分别为(2,2,4),(1,3,8)和(1,4,5).4.设 O 是四边形 ABCD 的对角线 AC 、BD 的交点,若 ∠BAD + ∠ACB = 180︒,且 BC = 3,AD = 4 ,AC = 5 , AB = 6 ,则 DO = ( )OB10 8 64A..B..C..D..D9 7 5 3E【答】A.C过 B 作 BE // AD ,交 AC 的延长线于点 E ,则 ∠ABE = 180︒ - ∠BAD= ∠ACB ,所以△ ABC ∽△ AEB ,所以AC = BC ,所以4O3AB EBAB ⋅ BC6 ⨯318BEB = = = .A6AC 5 5再由 BE // AD ,得 DO = AD = 4 = 10 .BEOB 18 955.设 A 是以 BC 为直径的圆上的一点,AD ⊥ BC 于点 D ,点 E 在线段 DC 上,点 F 在 CB 的延长线上,满足 ∠BAF = ∠CAE .已知 BC =15 , BF = 6 , BD = 3 ,则 AE = ( )AA. 4 3 .B. 2 13 .C. 2 14 .D. 2 15 .【答】B.FBDEC如图,因为 ∠BAF = ∠CAE ,所以 ∠BAF + ∠BAE = ∠CAE + ∠BAE ,即 6 3∠FAE = ∠BAC = 90︒ .又因为 AD ⊥ BC ,故 AD 2 = DE ⋅ DF = DB ⋅ DC .而 DF = BF + BD = 6 + 3 = 9 ,DC = BC - BD = 15 - 3 =12 ,所以 AD 2 = DE ⋅ 9 = 3 ⋅ 12 ,所以 AD = 6 ,DE= 4 . 从而 AE = AD 2 + DE 2 = 62 + 42 = 213 .6.对于正整数 n ,设 a 是最接近的整数,则 1 + 1 + 1 + +1 = ( n)na 1 a 2 a 3a200A. 191 .B. 192 .C. 193 .D. 194 .777 7 【答】A.对于任意自然数 k , ( k +1 )2 = k 2 + k + 1不是整数,所以,对于正整数 n ,- 1 一定不是整数.n24 2的整数,则| m - |< 1 , m ≥1.设 m 是最接近 nn2易知:当 m ≥1时,| m - |< 1 ⇔ ( m - 1 ) 2 < n < ( m + 1 )2⇔ m 2 - m + 1 < n < m 2 + m + 1 .n 2 2 24 4 于是可知:对确定的正整数 m ,当正整数 n 满足 m 2 - m + 1 ≤ n ≤ m 2+ m 时,m 是最接近的整数,n 即 a n = m .所以,使得 a n = m 的正整数 n 的个数为 2m .注意到132 + 13 = 182 < 200 < 14 2 + 14 = 210 ,因此, a , a , ,8 个 4,……,26 个 13,18 个 14.所以1+1+1+ +1= 2 ⨯1+ 4 ⨯1+ 6 ⨯1+ + 26 ⨯1+ 18⨯1=191.a a a a12313147 123200二、填空题:(本题满分 28 分,每小题 7 分)1.使得等式 1 + 1+a=3a 成立的实数 a 的值为_______.【答】 8 .由所给等式可得 (1 + 1 +a )3=a2.令 x =1+a,则 x ≥0,且a=x2-1,于是有(1+ x )3=( x2-1)2,整理后因式分解得x ( x -3)( x +1)2=0,解得 x= 0 ,x= 3 ,x= -1 (舍去),所以a= -1或a=8.123验证可知: a = -1是原方程的增根, a =8是原方程的根.所以, a =8.2.如图,平行四边形ABCD中,∠ABC=72︒,AF⊥BC于点F, AFM交 BD 于点 E ,若 DE =2AB ,则∠AED =_______.【答】 66︒.BE 取 DE 的中点 M ,在Rt△ ADE中,有 AM = EM =1DE = AB .2设∠AED =α,则∠AME =180︒ -2α,∠ABM =α-18︒.又∠ABM = ∠AMB ,所以180︒ -2α=α-18︒,解得α=66︒.3.设m,n是正整数,且m>n.若9m与9n的末两位数字相同,则m-n的最小值为.【答】10.由题意知,9m- 9n= 9n⋅ (9m-n-1) 是100的倍数,所以9m-n-1是100的倍数,所以9m-n的末两位数字是 01,显然,m-n是偶数,设m-n=2t(t是正整数),则9m-n=92t=81t .计算可知: 812的末两位数字是61, 813的末两位数字是41, 814的末两位数字是21, 815的末两位数字是 01.所以 t 的最小值为5,从而可得 m - n 的最小值为10.4.若实数 x, y 满足 x 3+ y 3+3 xy =1,则 x 2+ y2的最小值为.1【答】2 .因为0= x 3+ y 3+3 xy -1=( x + y )3+(-1)3-3 x 2 y -3 xy 2+3xy=( x+y- 1)( x2+y2-xy+x+y+1) =12(x+y-1)[(x-y)2+(x+1)2+(y+1)2],所以 x = y = -1或x+y=1.若x = y = -1,则 x 2+ y2=2.若x + y =1,则x2+y2=12[(x+y)2+(x-y)2]=12[1+(x-y)2]≥12,当且仅当x=y=12时等号成立.所以, x 2+ y2的最小值为12.第一试(B)一、选择题:(本题满分 42 分,每小题 7 分)1.已知二次函数y=ax2+bx+c(c≠0)的图象与x轴有唯一交点,则二次函数y=a3x2+b3x+c3的图象与 x 轴的交点个数为()A.0.B.1.C.2.D.不确定.【答】C.因为二次函数 y = ax 2+ bx + c 的图象与 x 轴有唯一交点,所以∆1=b2-4ac=0,所以b2=4ac≠0.故二次函数 y = a 3 x 2+ b3 x + c3的判别式∆2=(b3)2-4a3c3=b6-161(4ac)3=b6-161(b2)3=1615b6>0 ,所以,二次函数y=a3x2+b3x+c3的图象与x轴有两个交点.2.题目和解答与(A)卷第 1 题相同.3.题目和解答与(A)卷第 3 题相同.4.已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2=()A. 424.B. 430.C. 441.D. 460.【答】C.由已知等式消去 c 整理得( a -9)2+3(b -1)2=75,所以3(b -1)2≤75,又b为正整数,所以1≤b≤6.若b =1,则( a -9)2=75,无正整数解;若b =2,则( a -9)2=72,无正整数解;若b =3,则( a -9)2=63,无正整数解;若b =4,则( a -9)2=48,无正整数解;若b =5,则( a -9)2=27,无正整数解;若b =6,则( a -9)2=0,解得a=9,此时c=18.因此, a =9,b=6, c =18,故a2+b2+c2==441.5.设O是四边形ABCD的对角线AC、BD的交点,若∠BAD+ ∠ACB=180︒,且BC=3,AD=4,AC =5, AB =6,则DO=()OBA.4.B.6.C.8.D.10.3579【答】D.解答过程与(A)卷第 4 题相同.6.题目和解答与(A)卷第 5 题相同.二、填空题:(本题满分 28 分,每小题 7 分)1.题目和解答与(A)卷第 1 题相同.2 .设O是锐角三角形ABC的外心,D,E分别为线段BC,OA的中点,∠ACB=7∠OED,∠ABC =5∠OED ,则∠OED =_________.A 【答】10︒.如图,设∠OED = x ,则∠A B =C5,x ∠ACB =7x ,∠DOC= ∠BAC =180︒ -12x ,∠AOC =10x ,所以∠AOD =180︒ -2x ,∠ODE =180︒ - x -(180︒ -2 x)= x ,所以OD=OE=1OA =1OC ,所22B 以∠DOC =60︒,从而可得 x =10︒.3.题目和解答与(A)卷第 3 题相同.4.题目和解答与(A)卷第 4 题相同.EODC第二试(A)一、(本题满分20分)已知实数 x, y 满足x+y=3,1+1=1,求 x 5+ y5的值. x+ y 2x 2+ y2解由1+1=1可得 2( x+y+x2+ y 2)= x 3+ y 3+ x 2 y 2+ xy . x + y 2x 2+ y2设xy = t ,则 x 2+ y 2=( x + y )2-2xy =9-2t , x 3+ y 3=( x + y )[( x + y )2-3 xy ]=3(9-3t ),代入上式可得 2(3 + 9 - 2t ) = 3(9 - 3t ) +t2+t,解得t=1或t=3.……………………10分当 t =3时,xy=3,又x+y=3,故x,y是一元二次方程m2-3m+3=0的两实数根,但易知此方程没有实数根,不合题意.……………………15分当 t =1时,xy=1,又x+y=3,故x,y是一元二次方程m2-3m+1=0的两实数根,符合题意.此时x 5+ y 5=( x 2+ y 2)( x 3+ y 3)-( x + y ) x 2 y 2=(9-2t )⋅[3(9-3t )]-3t 2=123.……………………20分二(、本题满分 25 分)如图,△ ABC 中,AB > AC ,∠BAC = 45︒ ,E 是 ∠BAC的外角平分线与 △ ABC 的外接圆的交点,点 F 在 AB 上且 EF ⊥ AB . 已知 AF =1, BF = 5,求△ ABC 的面积.解 在 FB 上取点 D ,使 FD =AF ,连接 ED 并延长,交△ ABC 的外接圆于点 G.由 EF ⊥AD ,AF =FD 知△AED 是等腰三角形,所以∠AED =180︒ - 2 ∠EAD =∠BAC , ……………………10 分EAFDCGB……………………15 分 所以 AG = BC ,所以 AC = BG ,所以 AC =BG. 又∠BGE =∠BAE =∠ADE =∠BDG ,所以 BG =BD ,所以 AC =BD =5-1=4, ……………………20 分△ ABC 的 AB 边上的高 h = AC sin 45︒ = 2 2 .所以,△ ABC 的面积 S = 1 ⋅ AB ⋅ h = 1 ⨯ 6 ⨯ 2 = 6 .2 2 ……………………25 分22三、(本题满分 25 分)求所有的正整数数对 ( a , b ) ,使得 a 3 = 49 ⨯ 3b +8 . 解 显然, 49 ⨯ 3b +8 为奇数,所以 a 为奇数.又因为 a 3 = 49 ⨯ 3b + 8 ≥ 49 ⨯ 3 + 8 > 53 ,所以 a > 5 .……………………5 分由 a 3 = 49 ⨯ 3b +8 可得 a 3 - 8 = 49 ⨯3b ,即 ( a - 2)( a 2 + 2a + 4) = 7 2 ⨯3b . ……………………10 分设 ( a - 2, a 2 + 2a + 4) = d ,则 d 为奇数.注意到 a 2 + 2a + 4 = ( a - 2)( a + 4) +12 ,所以 d | 12 ,所以 d=1 或 3. ……………………15 分⎧a - 2 = 7 2,⎧a - 2 = 3b,均无正整数解.……………………20 分若 d =1,则有 ⎨a 2 + 2 a + 4 或 ⎨a 2 + 2 a + 4 = 7 2 ⎪ = 3b ,⎪ , ⎩⎩⎧a - 2 = 3 ⨯7 2, ⎧a - 2 = 3b -1,解得 a =11, b = 3 . 若 d =3,则有 ⎨ 2 + 2 a + 4 b -1或 ⎨ 2 + 2 a + 4 = 3 ⨯7 2 ⎪ a = 3 , ⎪ a ,⎩⎩所以,满足条件的正整数对只有一个,为(11,3).……………………25 分第二试 (B )一、(本题满分 20 分)已知实数 a , b , c 满足 a ≤ b ≤ c , a + b + c =16 , a 2 + b 2 + c 2 +14 abc =128 ,求 c 的值.解 设 a + b = x , ab = y ,依题意有 x 2 - 2 y + (16 - x ) 2 +14 y (16 - x ) =128 ,整理得( x - 8) 2 = 1y ( x -8) ,8所以 x = 8 或 y = 8( x -8) .……………………10 分(1)若 x =8,则 a + b =8,此时 c =8.(2)若 y =8( x -8),即 ab =8( a + b -8),则( a -8)(b -8)=0,所以a=8或b=8.当a =8时,结合 a ≤ b ≤ c 可得 a + b + c ≥24,与 a + b + c =16矛盾.当b =8时,结合 a ≤ b ≤ c 及 a + b + c =16可得 a =0, c =8.综合可知: c =8.……………………20分二、(本题满分 25 分)求所有的正整数m,使得22m-1-2m+1是完全平方数.解当 m =1时,22m-1-2m+1=1是完全平方数.……………………5分当 m >1时,设22m-1-2m+1=n2( n 为正整数).注意到 22m-1- 2m+ 1 = 2 ⋅ (2m-1 ) 2- 2 ⋅ 2 m-1+ 1 = (2 m-1- 1) 2+ (2 m-1 )2,故可得(2 m-1- 1) 2+ (2 m-1 )2=n2,……………………10分所以 22m-2=n2- (2m-1- 1) 2= ( n+ 2 m-1- 1)( n- 2 m-1+1) .……………………15分设 x = n -2m-1+1, y = n +2m-1-1,则x<y, xy =22m-2,所以x,y均为2的方幂.……………………20分又 y - x =2m-2被4除余数为2,所以,只可能x=2, y =2m,故2⨯2m=22m-2,解得m=3.综上可知:满足条件的正整数 m 有两个,分别为1和3.……………………25分三、(本题满分 25 分)如图,O为四边形ABCD内一点,∠OAD= ∠OCB,DOA ⊥ OD , OB ⊥ OC .求证:AB2+CD2=AD2+BC2.AOP 证明由题设条件可知∠AOD = ∠BOC =90︒,又∠OAD =∠OCB,所以△ AOD ∽△ COB ,……………………5分OD AO OC AOB所以OB=CO,从而OB=OD .……………………10分C 又∠AOC = ∠AOB + ∠BOC = ∠AOB + ∠AOD = ∠DOB ,所以△ AOC ∽ △ DOB ,所以∠OAC = ∠ODB .……………………15分设AC 和BD交于点P,则∠APD = ∠AOD =90︒,所以 AC ⊥ DB ,……………………20分所以 AB 2+ CD 2=( AP 2+ PB 2)+( PD 2+ PC 2)=( AP 2+ PD 2)+( PB 2+ PC 2)= AD 2+ BC2.……………………25分。
可编辑修改精选全文完整版2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数.对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时.)9(log )(2x x f -=.则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x .则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中.椭圆C 的方程为1109:22=+y x .F 为C 的上焦点.A 为C 的右顶点.P 是C 上位于第一象限内的动点.则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1.则称其为“平稳数”.平稳数的个数是 。
5.正三棱锥P-ABC 中.AB=1.AP=2.过AB 的平面α将其体积平分.则棱PC 与平面α所成角的余弦值为________.6.在平面直角坐标系xOy 中.点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点.则这三点中存在两点之间距离为5的概率为__________.7.在ABC ∆中.M 是边BC 的中点.N 是线段BM 的中点.若3π=∠A .ABC ∆的面积为3.则AN AM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a .对任意正整数n .有n n n a a a +=++12.n n b b 21=+.则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数.不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数.满足1321=++x x x .求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z .0)Re(2>z .且2)Re()Re(2221==z z (其中)Re(z 表示复数z 的实部). (1)求)Re(21z z 的最小值; (2)求212122z z z z --+++的最小值.2017年全国高中数学联赛A 卷二试一.如图.在ABC ∆中.AC AB =.I 为ABC ∆的内心.以A 为圆心.AB 为半径作圆1Γ.以I 为圆心.IB 为半径作圆2Γ.过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a . ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一.使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同.则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数.n m ≥.n a a a ,,,21 是n 个不超过m 的互不相同的正整数.且n a a a ,,,21 互素.证明:对任意实数x .均存在一个)1(n i i ≤≤.使得x m m x a i )1(2+≥.这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A卷一试答案1.2.3.4.5.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列{}n a 中.2a =.3a =则1201172017a a a a ++的值为 .2.设复数z 满足91022z z i +=+.则||z 的值为 .3.设()f x 是定义在R 上的函数.若2()f x x +是奇函数.()2xf x +是偶函数.则(1)f 的值为 . 4.在ABC ∆中.若sin 2sin A C =.且三条边,,a b c 成等比数列.则cos A 的值为 .5.在正四面体ABCD 中.,E F 分别在棱,AB AC 上.满足3BE =.4EF =.且EF 与平面BCD 平行.则DEF ∆的面积为 .6.在平面直角坐标系xOy 中.点集{(,)|,1,0,1}K x y x y ==-.在K 中随机取出三个点.则这三个点两两之间距离均不超过2的概率为 .7.设a 为非零实数.在平面直角坐标系xOy 中.二次曲线2220x ay a ++=的焦距为4.则a 的值为 .8.若正整数,,a b c 满足2017101001000a b c ≥≥≥.则数组(,,)a b c 的个数为 .二、解答题 (本大题共3小题.共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|x xa -<-对所有[1,2]x ∈成立.求实数a 的取值范围.10.设数列{}n a 是等差数列.数列{}n b 满足212n n n n b a a a ++=-.1,2,n =.(1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ≠.并且存在正整数,s t .使得s t a b +是整数.求1||a 的最小值.11.在平面直角坐标系xOy 中.曲线21:4C y x =.曲线222:(4)8C x y -+=.经过1C 上一点P 作一条倾斜角为45的直线l .与2C 交于两个不同的点,Q R .求||||PQ PR ⋅的取值范围.2017年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分)设实数,,a b c 满足0a b c ++=.令max{,,}d a b c =.证明:2(1)(1)(1)1a b c d +++≥-二、(本题满分40分)给定正整数m .证明:存在正整数k .使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A .每个子集i A 中均不存在4个数,,,a b c d (可以相同).满足ab cd m -=.三、(本题满分50分)如图.点D 是锐角ABC ∆的外接圆ω上弧BC 的中点.直线DA 与圆ω过点,B C 的切线分别相交于点,P Q .BQ 与AC 的交点为X .CP 与AB 的交点为Y .BQ 与CP 的交点为T .求证:AT 平分线段XY .四、(本题满分50分)设1220,,,{1,2,,5}a a a ∈.1220,,,{1,2,,10}b b b ∈.集合{(,)120,()()0}i j i j X i j i j a a b b =≤<≤--<.求X 的元素个数的最大值.一试试卷答案1.答案:89 解:数列{}n a 的公比为33232a q a ==.故120111201166720171201118()9a a a a a a q a a q ++===++. 2.答案:5。
BB第13届中国北方数学奥林匹克试题及解析(提高班)1.已知数列{}n a 满足()31221211,,2,,kk k nn n a e a e eaa an n Z k R -++-++===≥∈∈,求20171i i a =∏解:对12211kk k n n n ea a a -++-=两边同时取对数得()()()()111112l n l n 2l n 1l n 21l n 21l n n n n n n n k k a a k a a k a k a +----++=+⇒+=++-+ 设()()111ln 222n n n n n b a b k b kb n +-=+⇒=+-≥()()11222n n n n b b k b b n +-⇒-=-≥又211121ln 1ln 2,1ln 2n n n n b a e b a a e-=+=+==+=⇒=记()20172017201820191121is ii i S ae e -===-⇒==∑∏2.在ABC ∆中,D 为BC 的中点,,E F 分别为,AB AC 上的点,且DE DF =, 证明:AE AF BE CF EDF BAC +=+⇔∠=∠证明:如图,取,AB AC 的中点,M N , 延长DM 至点P ,使得MP MA = 联结,,EP MN DN一方面,若AE AF BE CF EM FN +=+⇒= 则由,PME MAN DNF MP MA DN ∠=∠=∠== 所以:PME DNF ∆∆≌所以:,PE DF DE NDF MPE PDE ==∠=∠=∠ 所以:EDF MND BAC ∠=∠=∠又因为:若EDF BAC MDE NDF ∠=∠⇒∠=∠ 由正弦定理得sin sin sin sin EM DE DF FNMDE DME DNF NDF===∠∠∠∠所以:EM FN AE AF BE CF =⇒+=+3.记Q 为1,2,,100的若干个排列组成的集合,且满足对于任意的1,100,,a b a b ≤≤≠至多存在一个Q σ∈使得在σ中a 的下一个数恰为b ;求集合Q 的元素个数的最大值解:首先,假设||101Q ≥。
若在某个排列中,x y 连续出现,则称(),x y 为一个“片段”。
由于每个排列恰有99个片段,于是,集合Q 中共有9910199999⨯=个片段;而不同的片段只有100999900⨯=个,,由抽屉原理,知存在一个片段在集合Q 中出现至少两次,矛盾, 从而, ||100Q ≤其次,令(1,100,2,99,,50,51)(099),i i i i i i i i σ=++++⋯++≤≤其中,所有元素均按模100处理,{|099}i Q i σ=≤≤;则对于()()00199,1x x x σσ≤≤+-不重复地取遍模100的除0外的完全剩余系, 故对a b ≠,可唯一找到199k ≤≤,使得()()()001mod100k k b a σσ+-≡- 然后,可找到唯一适当的i ,使得()i k a σ=,从而,此集合Q 满足要求。
综上,,Q 的最大值为1004.已知3(),n n Z n +≥∈个两两互素的正整数12,,,n a a a 满足:可以适当添加+“”或“-”使它们的代数和为0;问:是否存在一组正整数12,,,n b b b ⋯ (允许相同),使得对任意正整数1122,,,,n n k b ka b ka b ka +++两两互素.解:(1)当4n >时(i )若12,,,n b b b ⋯中有两个偶数,则当k 为偶数时,1122,,,n n b ka b ka b ka +++中有两项同为偶数,不互素(ii )若12,,,n b b b ⋯中至多有一个偶数,则其中至少有三个奇数,设123,,b b b 为奇数,考虑123,,a a a ,由题设其中至少有两个奇数,不妨设12,a a 为奇数,则当k 为奇数时,1122,b ka b ka ++同为偶数,不互素. 综上,4n ≥不存在(2)当3n =时,由题设,不妨设123a a a +=,注意到()12,1a a =由裴蜀定理,知存在整数,x y 使得121a x a y +=, 不妨设0x y >>,令12312,,b y b x b b b =-==+,则()()1221233221211211a b a b a b a b a b b a b b -=⇒-=+-+=-()()31131211121a b a b a a b a b b -=+-+=-所以:()()()()1222113111331,1a b a k a b a k a b a k a b a k +-+=+-+=- 故112233,,b ka b ka b a k +++两两互素。
所以,3n =时,这样的整数存在。
5.已知正六边形ABCDEF 边长为a ,两个动点,M N 分别在边,BC DE 上运动,且满足60MAN ∠=, 证明:AM AN BM DN ⋅-⋅恒为定值.证明:如图,延长DC ,分别与,AB AM 的延长线交于点,P Q ,联结,AC AE 由正六边形的性质易知:60CAE MAN ∠==∠,90,,CAQ EAN ACQ AEN AC AE CP a ⇒∠=∠∠=∠====CAQ EAN ∴∆∆≌,,DN a EN a CQ PQ AM AN BM DN AM AQ BM PQ =-=-=⋅-⋅=⋅-⋅记:CAQ θ∠=,在ACM ∆中,由正弦定理得sin sin 30sin 302sin 30sin 30CM AM AM CM θ==⇒==+++所以:()()sin 30sin 302sin 30BM a CM a θθθ+=-==++在ACQ ∆中,注意到tan AQ CQ PQ a CQ θ====-=则()()()223cos 2sin 30cos a AM AQ BM PQ θθθθ-⋅-⋅=+⋅而()()2223cos 3cos 3sin cos θθθθθθ-=-+-⋅()()2cos cos 4cos sin 30θθθθθ==⋅+所以22AM AN BM DN AM AQ BM PQ a ⋅-⋅=⋅-⋅=(定值),有6.定义()r S n 为n 在()1r r >进制下的数码和,例如()3381102=, ()33811024S =+++=;证明: (1)对于任意2r >,存在素数p ,使得对任意正整数n ,有()()mod r S n n p ≡ (2)对于任意1r >及素数p ,存在无穷多个正整数n 满足()()mod r S m n p ≡证明:(1)由2r >,知11r ->,从而,1r -有素国子,取1r -任一素因子p ,于是,()1mod r p ≡ 任取11()s s n a a a -=,在模p 意义下有()11111()s sk s s r k k r k k n a a a r a a S n --====≡=∑∑,即()()mod r S n n p ≡;(2)设p 的r 进制表示为11()k k r p a a a -=,令()()1110p kir k k i n prS n p a a a --==⇒=+++∑,所以()||p n p S n 且所以:存在无穷多个正整数n 满足()()mod r S n n p ≡ 7.给定正整数()1n n >,n 个实数12,,,n x x x 满足[]12,,,0,n x x x n ∈,且()()()1212n n x xx n x n xn x =---;试确定12n y x x x =+++的最大值.解:最大值为2n n -令(1,2,,)kk x y k n n ==⋯,于是[]()110,1,1n nk k k k k y y y ==∈=-∏∏ 若存在0k y =,则11nkk yn =≤-∏若对任意的1k n ≤≤,有01k k y y >⇒<令()1,2,,1k k k y z k n y ==⋯-于是,1kk k z y z =+,且11n k k z ==∏ 不妨设12n z z z ≤<⋯≤,则121z z ≤;所以:1212113121221111nnnk k k k k k kk z z z z z z y n z z z z z z ===++==+≤-+++++∑∑∑从而211nnkk k k y xn y n n ====≤-∑∑又当12,,,n x x x 中恰有1n -个n ,1个为0时2y n n =-8.草原上生活着编号为1,2,,7的7只羊和编号为1,2,,2017的2017匹狼。
在该草原上有如下奇怪的规则:(1)定义()P n 为小于n 的素数个数,仅当()()mod7P i j ≡时,编号为i 的狼可以吃掉编号为j 羊(也可以不吃)(2)若编号为i 的狼吃了编号为j 的羊,则它会立刻变成编号为j 的羊 (3)每匹狼在确保不会被吃的前提下都非常想体验作为一只羊的生活。
假设每匹狼都很聪明,求最后草原上会剩下多少匹狼?解:首先,考虑有1只羊和n 匹狼且所有狼均可以吃这只羊的情形: 当1n =时,这匹狼当然会把羊吃掉,不用担心自己变成羊后会被吃;当2n =时,这两匹狼均不敢吃羊,否则,会在变成羊之后被另外一匹狼吃掉;当3n =时,这三匹狼均想吃这只羊,因为即使自己变成羊,由2n =情形时的推论,另外两匹狼不敢吃自己;设当2n k =时,所有的狼均不敢吃羊,21n k =+时,所有的狼均想吃羊当22n k =+时,若某匹狼吃了羊,由21n k =+的推论,它会立刻被某匹狼吃掉,故22n k =+时所有的狼均不敢吃羊;当23n k =+时,若某匹狼吃了羊,由23n k =+的推论,,其它的狼均不敢吃自己,故23n k =+时所有的狼均想吃羊;由数学归纳法,知n 为奇数时,所有的狼均想吃羊,n 为妈数时,所有的狼均不敢吃羊;(1) 其次,记集合{}()(){}1,2,,2017,|mod7k S A n S P n k =⋯=∈≡,其中,1,2,,7,k =⋯⋯并约定以||A 表示集合A 的元素个数。
由前面的论述,只需考虑||k A 的奇偶性即可。
设不超过2017的所有素数为12,,,2017m p p p =,则满足()(),,P n k k m n S =∈的n 为11,2,,k k k p p p +++共1k k p p +-个当1k >时,||k A 为偶数; 当1k =时,1||A 为奇数;所以:1||A 为奇数,()||2k A k ≥为偶数; 由结论(1),知最后草原上会剩余2016匹狼.。