华东师范大学数学系《数学分析》(第4版)(上册)(章节题库 实数集与函数)【圣才出品】
- 格式:pdf
- 大小:659.07 KB
- 文档页数:3
数学分析教案_(华东师大版)上册全集_1-10章第一章实数集与函数导言数学分析课程简介( 2 学时 )一、数学分析(mathematical analysis)简介:1.背景: 从切线、面积、计算 32sin、实数定义等问题引入.2.极限 ( limit ) ——变量数学的基本运算:3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论.微积运算是高等数学的基本运算.数学分析与微积分(calculus)的区别.二、数学分析的形成过程:1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想.2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期.3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期.4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:三、数学分析课的特点:逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯.四、课堂讲授方法:1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材:[1]华东师范大学数学系编,数学分析,高等教育出版社,2001;[2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992;[3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;[4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999;[5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003.2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。
§1 关于实数集完备性的基本定理1.证明数集有且只有两个聚点和解:令数集数列则数列都是各项互异的数列,根据定义2,1和-1是S的两个聚点.对任意且令由得取,则当n>N时,或者有或者有总之由定义2知x0不是S的聚点,故数集有且只有1和-1两个聚点.2.证明:任何有限数集都没有聚点.证明:用反证法.设S是一个有限数集.假设ζ是S的一个聚点,按照定义2,在ζ的任何邻域内都含有S中无穷多个点,这个条件是不可能满足的,因为S是一个有限集.故任何有限集都没有聚点.3.设是一个严格开区间套,即满足且证明:存在惟一的一点ξ,使得证明:由题设知,是一个闭区间套.由区间套定理知,存在惟一的点ξ,使n以…,即4.试举例说明:在有理数集内,确界原理、单调有界定理、聚点定理和柯西收敛准则一般都不能成立.解:(1)设则S是有界集,并且但故有理数集S在Q内无上、下确界,即确界原理在有理数集内不成立.(2)由的不足近似值形成数列这个数列是单调有上界的,2是它的一个上界.它的上确界为于是它在有理数集内没有上确界.因此,单调有界原理在有理数集内不成立.(3)设M是由的所有不足近似值组成的集合.则1.4是M的一个下界,2是M 的一个上界.即M是一个有界无限集,但它只有一个聚点故在有理数集内不存在聚点.因此,聚点定理在有理数集内不成立.(4)的不足近似值形成的数列满足柯西条件(因为当m,n>N时,但其极限是而不是有理数,于是这个满足柯西条件的数列在有理数集内没有极限.因此,柯西收敛准则在有理数集内不成立.5.设问(1)H能否覆盖(0,1)?(2)能否从H中选出有限个开区间覆盖(i)解:(1)有有所以即故H 能覆盖(0,1).(2)设从H 中选出m 个开区间,它们是令则并集的下确界为于是的子集,实际上故不能从H 中选出有限个开区间来覆盖从H 中选出98个开区间因为所以这些开区间覆盖了故可以从H 中选出有限个开区间覆盖6.证明:闭区间的全体聚点的集合是本身.证明:设的全体聚点的集合是M .设不妨设则由实数集的稠密性知,集合中有无穷多个实数,故a 是的一个聚点.同理,b也是的一个聚点.设不妨设则故x 0的任意邻域内都含有中的无穷多个点,故x 0为的一个聚点.总之设令则即不是的聚点,即故M.综上所述,M=,即闭区间的全体聚点的集合是本身.7.设为单调数列.证明:若存在聚点,则必是惟一的,且为的确界.证明:设是一个单调递增数列.假设ξ,η是它的两个不相等的聚点,不妨设ξ<η.令δ=η-ξ,则δ>0,按聚点的定义,中含有无穷多个中的点,设则当n>n1时,x n 于是中只能含有{x n }中有穷多个点,这与ξ是聚点矛盾.因此,若存在聚点,则必是惟一的.假设无界,则即任给M>0,存在正整数N,当n>N时,x n>M,于是小于M 的只有有限项,因此不可能存在聚点,这与已知题设矛盾,故有界.对任给的ε>0,由聚点定义,必存在x N,使按上确界定义知综上,若有聚点,必惟一,恰为的确界.8.试用有限覆盖定理证明聚点定理.证明:设S 是实轴上的一个有界无限点集,并且假设S没有聚点,则任意都不是S 的聚点,于是存在正数使得中只含有S中有穷多个点.而开区间集是的一个开覆盖.由有限覆盖定理知,存在的一个有限覆盖,设为它们也是S的一个覆盖.因为每一个中只含有S 中有穷多个点,故S 是一个有限点集.这与题设矛盾.故实轴上的任一有界无限点集S至少有一个聚点.9.试用聚点定理证明柯西收敛准则.证明:设收敛,令于是,对任给的ε>0,存在正整数N,使得当n,m >N时,有于是设数列满足柯西收敛准则的条件.如果集合只含有有限多个不同的实数,则从某一项起这个数列的项为常数,否则柯西条件不会成立.此时,这个常数就是数列的极限.如果集合含有无限多个不同的实数,则由柯西条件容易得知它是有界的.于是由聚点定理,集合至少有一个聚点假如有两个不等的聚点ξ,η,不妨设η>ξ,令δ=η-ξ,则与都含有集合中无限多个点.这与取,存在正整数N ,当n ,m >N 时,有矛盾.故的聚点是惟一的,记之为ξ.对于任意ε>0,存在N ,使得当n ,m >N 时,又因为ξ是的聚点,所以存在n0>N ,使得因而,当n >N 时,故数列收敛于ξ.10.用有限覆盖定理证明根的存在性定理.证明:根的存在定理:若函数f 在闭区间上连续,且f (a )与f (b )异号,则至少存在一点,使得f (x 0)=0.假设方程f (x )=0在(a ,b )内无实根,则对每一点有由连续函数的局部保号性知,对每一点存在x 的一个邻域,使得f (x )在内保持与f (x )相同的符号.于是,所有的形成的一个开覆盖.根据有限覆盖定理,从中可以选出有限个开区间来覆盖.把这些开区间的集合记为S ,则点a 属于S 的某个开区间,设为它的右端点x 1+δ1又属于S的另一个开区间,设为以此类推,经过有限次地向右移动,得到开区间,使得δn )这n 个开区间显然就是的一个开覆盖.f (x )在每一个内保持同一个符号.在内f (x )与f (a )具有相同的符号.因为所以f (x )在内也具有f (a )的符号.以此类推,f (b )与f (a )具有相同的符号.这与f (a )与f (b )异号矛盾.故至少存在一点,使得f (x 0)=0.11.用有限覆盖定理证明连续函数的一致连续性定理.证明:一致连续性定理:若函数f 在闭区间上连续,则f 在上一致连续.因为f 在上连续,所以任绐任意ε>0,存在对任意有取.则H 是的无限开覆盖.由有限覆盖定理,从中可以选出有限个开区间来覆盖不妨设选出的这有限个开区间为取对任意不妨设,即当时,由于因此由一致连续定义,f 在上一致连续.§2 上极限和下极限1.求以下数列的上、下极限。
数学分析习题选解第一章 实数与函数 §1. 实数 习题Page. 41. 设a 为有理数,x 为无理数,证明:(1). a x +是无理数; (2)当0a ≠时,ax 是无理数。
证明:(用反证法) 3. 设,a b ∈R ,证明:若对任何正数ε有a b ε-<,则a b =。
证明:反证法,如果a b ≠,则取02a b ε-=>,有:a b ε-≥,矛盾。
6. 设,,a b c +∈R (+R 表示全体正实数的集合),证明:b c ≤-你能说明此不等式的几何意义吗? 证明:用分析法,b c ≤-22222222a b a c b c b c ⇐+++-≤+-22a cb c⇐≤-22a b c⇐+422242222a a b c bc a a ca bb c⇐++≤+++ 222bc c b ⇐≤+()20b c ⇐-≥(显然成立)几何意义,如图,在R t A B C ∆中,记B C a =,A C b =,在直角边A C 上,取一点D连接B D ,记D C c =,则A D b c =-,由勾股定理,A B =,B D =此结论说明,三角形的两边之和大于第三边。
7. 设0x >,0b >,a b ≠。
证明:a x b x++介于1与a b之间。
证明:1a x a b b xb x+--=++与a b -同号(注意,0x >,0b >);又()()x b a a x a b xbb b x -+-=++与b a -同号,故a x b x++介于1与a b之间。
8. 设p 为正整数,证明:若p证明:(反证法)设m n=,其中,n m ∈N ,(,)1n m =,于是,22p n m =。
由于大于1的整数能唯一地分解为素因数之积,若p 不是完全平方数,ac b D CBA则p 的素因数分解式中,必有r 是p 的具有奇指数的素因数。
则22p n m =的左端有奇数个素因数r ,而右端没有,与分解的唯一性矛盾,证毕 补充题:证明任何二个不同的有理数之间必有无理数。
第9章 定积分§1 定积分概念1.按定积分定义证明:证明:对于[a ,b]的任一分割,任取,f (x )=k 相应的积分和为从而可取δ为任何正数,只要使,就有根据定积分定义有2.通过对积分区间作等分分割,并取适当的点集,把定积分看作是对应的积分和的极限,来计算下列定积分:解:(1)因f (x )=x 3在[0,1]上连续,所以f (x )在[0,1]上可积.对[0,1]进行n 等分,记其分割为,取为区间的右端点,i =1,2,…,n ,得(2)同(1),有(3)由在[a,b]上连续知,f(x)在[a,b]上可积,对[a,b]进行n等分,记其分割为,则,取为区间的右端点,i=1,2,…,n,得(4)同(3),取,得§2 牛顿-莱布尼茨公式1.计算下列定积分:解:(7)先求原函数,再求积分值:2.利用定积分求极限:解:(1)把极限化为某一积分的极限,以便用定积分来计算,为此作如下变形:这是函数在区间[0,1]上的一个积分和的极限.这里所取的是等分分割,,而恒为小区间的右端点,i=1,2,…,n.所以有(2)不难看出,其中的和式是函数在区间[0,1]上的一个积分和.所以有(3)(4)3.证明:若f在[a,b]上可积,F在[a,b]上连续,且除有限个点外有F'(X)=f(x),则有证明:对[a,b]作分割,使其包含等式F'(x)=f(x)不成立的有限个点为部分分点,在每个小区间上对F (x )使用拉格朗日中值定理,则分别存在,使于是因为f 在[a ,b]上可积,所以令,有§3 可积条件1.证明:若T '是T 增加若干个分点后所得的分割,则证明:设T 增加p 个分点得到T ',将p 个新分点同时添加到T ,和逐个添加到T ,都同样得到T ',所以我们只需证p =1的情形.在T 上添加一个新分点,它必落在T 的某一小区间内,而且将分为两个小区间,记作与.但T 的其他小区间(i≠k)仍旧是新分割T 1所属的小区间,因此,比较的各个被加项,它们之间的差别仅仅是前者中的一项换为后者中的两项.又因函数在子区间上的振幅总是小于其在区间上的振幅,即有.故即一般的,对增加一个分点得到,就有这里,故2.证明:若f(x)在[a,b]上可积,[α,β][a,b],则f(x)在[α,β]上也可积.证明:已知f(x)在[a,b]上可积,故任给ε>0,存在对[a,b]的某分割T,使得,在T上增加两个分点α,β,得到一个新的分割T',则由上题结论知分割T'在[α,β]上的部分,构成[α,β]的一个分割,记为T*,则有故由可积准则知,f(x)在[α,β]上可积.3.设f、g均为定义在[a,b]上的有界函数.证明:若仅在[a,b]中有限个点处f(x)≠g(x),则当f在[a,b]上可积时,g在[a,b]上也可积,且证明:设f(x)与g(x)在[a,b]上的值仅在k个点处不同,记,由于f (x )在[a ,b]上可积.存在,使当时,有令,则当时,有当时,,所以上式中至多仅有k项不为0,故这就证明g(x)在[a,b]可积,且。
第1章实数集与函数1.1复习笔记一、实数实数的性质封闭性、有序性、大小的传递性、阿基米德性、稠密性、与数轴上的点一一对应。
三角不等式二、确界原理设S为非空数集。
若S有上界必有上确界;若S有下界必有下确界。
三、函数概念函数的表示法主要有三种,即解析法(或称公式法)、列表法和图像法。
复合函数设有两函数y=f(u),u∈Du=g(x),x∈E式中的u为中间变量,函数f和g的复合运算也可简单地写作。
反函数设y=f(x),x∈D对于任意的一个y∈f(D),D中存在唯一的x,使得f(x)=y。
则按此对应法则得到的函数称为反函数,记作x=f-1(y),y∈f(D)初等函数图1-1-1四、具有某些特性的函数(见表1-1-1)表1-1-1 具有某些特性的函数1.2课后习题详解§1 实数设a为有理数,x为无理数。
证明:(1)a+x是无理数;(2)当a≠0时,ax是无理数。
证明:(1)用反证法。
假设a+x是有理数,那么(a+x)-a=x也是有理数。
这与x是无理数矛盾。
故a+x是无理数。
(2)用反证法。
假设ax是有理数,因为a是不等于零的有理数,所以ax/a=x是有理数。
这与x是无理数矛盾。
故ax是无理数。
试在数轴上表示出下列不等式的解:(1)x(x2-1)>0;(2)|x-1|<|x-3|;(3)。
解:(1)由原不等式得或不等式组① 的解是x>1,不等式组② 的解是-1<x<0。
故x(x2-1)>0的解集是{-1<x<0或x>1}。
在数轴上表示如图1-2-1所示。
图1-2-1(2)原不等式同解于不等式(x-1)2<(x-3)2。
由此得原不等式的解为x<2。
在数轴上表示如图1- 2-2所示。
图1-2-2(3)原不等式的解x首先必须满足不等式组解得x≥1。
原不等式两边平方得即当x≥1时,不可能成立,故原不等式无解。
设a,b∈R。
证明:若对任何正数ε有|a-b|<ε,则a=b。
证明:用反证法。
假设a≠b,那么a-b≠0。
第2章 数列极限§1 数列极限概念1.设(1)对下列ε分别求出极限定义中相应的N :(2)对可找到相应的N ,这是否证明了a n 趋于0?应该怎样做才对;(3)对给定的ε是否只能找到一个N ?解:(1)对任意ε>0,由.设,这个不等式成立的一个充分条件为,即.因此取即可.所以,当ε1=0.1时,相应的;当ε2=0.01时,相应的;当ε3=0.001时,相应的(2)在(1)中对都找到了相应的N .这不能证明a n 趋于0,应该根据数列极限ε-N 定义,对任意正数ε,都找到相应的N .对于本题,由,求得这样才能证明.(3)对任意的正数ε,若存在N ,使得当n >N 时,都有则当n >N +1,n >N +2,…时,也成立.因此,对给定的ε,若能找到一个N,则可以找到无穷多个N .2.按ε-N 定义证明:证明:(1)由于故对任意的ε>0,只要取,则当n >N 时,,这就证明了(2)不妨设n >2,则对任意的ε>0,只要取,则当n >N时,有(3)由于对任意的ε>0,只要取,则当n >N 时,有(4)由于,对于任意的ε>0,只要取,则当n >N 时(5)因为a >1,令a =1+h ,h >0,由得对于任给ε>0,取,则当n >N 时,有故3.根据例2、例4和例5的结果求出下列极限,并指出哪些是无穷小数列:解:根据数列极限可得到以下结果:(1)在中取得(2)在中取得(3)在中取a=3,得(4)在中取,得(5)在中取得(6)在中取a=10,得(7)在中取得其中(1)、(3)、(4)、(5)中的数列是无穷小数列.4.证明:若,则对任一正整数k,有证明:因为,所以,对于任给ε>0,存在N,当n>N时,于是当n>N时,有n+k>n>N,所以,因此5.试用定义1′证明:(1)数列不以1为极限;(2)数列发散.证明:定义1′:任给ε>0,若在U(a;ε)之外数列{a n}中的项至多只有有限个,则称数列{a n}收敛于极限a.(1)取,则,当n>1时,于是,数列{a n)中有无穷多个项落在U(1;ε)之外.由定义1′知,{a n}不以1为极限.(2)当n为偶数时.因此,数列是无界的.设a是任意一个实数,取ε=1,则于是,数列{a n}中有无穷多个项落在U(a;1)之外,否则{a n}有界.故数列{a n}不收敛于任何一个数,即数列发散.6.证明定理2.1,并应用它证明数列的极限是1.证明:(1)定理2.1 数列{a n}收敛于a的充要条件是:{a n-a}为无穷小数列.充分性,设{a n-a}为无穷小数列,则,于是,对任意ε>0,存在N,使得当n>N时,即,按照数列收敛的定义,数列{a n}收敛于a.必要性,设数列{a n}收敛于a,那么,对任意ε>0,存在N,使得当n>N时,a n-a<ε,即于是,数列{a n-a}收敛于0,即{a n-a}为无穷小数列.(2)因为是无穷小数列,所以7.在下列数列中哪些数列是有界数列,无界数列以及无穷大数列:解:(1)因为,所以是无界数列,但不是无穷大数列.(2)因为,所以{}是有界数列,但不存在.(3)因为,所以是无穷大数列,也是无界数列.(4)因为,所以是无界数列,但不是无穷大数列.8.证明:若当且仅当a为何值时反之也成立?证明:(1)若,则对任意ε>0,存在N,使得n>N时,因为,所以对于任意ε>0,当n>N时,也有<ε.于是(2)当且仅当a=0时,由可推出,此时,命题变为:证明如下:由知,对任意ε>0,存在N,当n>N时,即}是发|-0|<ε,于是,如果a≠0,数列满足但数列{a散的.9.按ε-N定义证明:证明:(1)对任意ε<0,由.则当n>N时.故(2)因为,所以对任意ε>0,由得,取,则当n>N时,(3)当n为偶数时,当n为奇数时,对任意ε>0,取,则当n>N时,10.设a n≠0,证明的充要条件是证明:必要性,若则当n>N时,有又因为a n≠0,所以.对取,当n>N时,有即充分性,若则当n>N时,有即,对,取,则当n>N时,有,即.§2 收敛数列的性质1.求下列极限:。
第5章 导数和微分1.利用导数定义证明:证明:2.讨论下列问题:(1)f (x),g (x )在点x =0的可导性,其中(2)的可导性,其中(3)则f (x )在点x =0可微,但在x =0的任何一个邻域内有不可微的点.解:(1)因为故f'(0)不存在.由于故(2)因为所以f(x)在点x=1可导,且f'(1)=0.x x≠都不连续,从而f(x)在点因f(x)只在点x=1连续,在其他任一点(1)x x≠不可导.(1)(3)因为故f'(0)=0.取,因为所以同理从而f(x)在处不可微.因故在x=0的任何邻域内都有不可微点.3.若f(x)在[a,b]上连续,且f(a)=f(b)=k,f'+(a)f'-(b)>0,则在(a,b)内至少有一点使得证明:不妨设f'+(a)>0,f'-(b)>0,即由极限的局部保号性知,当时有从而f(x)>k;当时有,从而f(x)<k.取则因为f(x)在上连续,根据连续函数介值性定理,对使得4.讨论在什么条件下,函数在点x=0可微.解:由定义,需要计算.当x>0时,;当x<0时,.所以当且仅当2(α+β)>1时,存在且为0.当β>0时,对充分小的,恒有,故对任意的α,都有,从而.总之,当或β>0时,f(x)在点x=0可微且.5.讨论下列函数的连续性与可导性.解:对,取,在内对任一有理数x均有,对任一无理数x均有f(x)=0.所以f在处都不连续,当然也不可导.同理,对g在x o处也不连续、不可导.当x o=0时,由于,所以f在x o=0处连续,但由于在x→0时极限不存在,因而f在x o=0处不可导.对g,由于所以.当然g在x o=0处也连续.6.设函数f在x=0处连续,f(x)=0,且证明:证明:先证由已知条件,,有或由式(1)可得将上述不等式相加,可得令,由于f在x=0处连续,所以有即这表明同理可证故7.设f(x)定义在[a,b]上在x o处有左、右导数;令又设.证明:存在子列,使.证明:令,则.而由致密性定理,有收敛子列使令q=1-p,则8.设f(x)在[0,+∞)上二次连续可微,且.又设u(x)表示曲线y=f(x)在点(x,f(x))的切线在x轴上的截距,试求极限证明:利用切线方程求出.将f(u)在x=0作泰勒展开:(在0与u之间).(这里利用了当时,这一事实.这一点不难用洛必达法则得到).于是对和使用洛必达法则,可得.故原极限.9.设,记其中是关于x的多项式,求和.解:由莱布尼茨公式,有。
第7章 实数的完备性1.f (x )在[a ,b]上有定义且在每一点有极限,证明:f (x )在[a ,b]上有界.[北京师范大学研]证明:反证法.若f (x )在[a ,b]上无上界,则对任意正整数n ,存在,使得依次取n =1,2,…,则得到数列由致密性定理知,存在收敛子列,记由x n 的选取方法有这与f (x )在x =ε处存在极限矛盾.故f (x )在[a ,b]上有界.2.叙述(1)有限覆盖定理和(2)魏尔斯特拉斯(Weierstrass )定理(致密性定理),并用(1)证明(2).[电子科技大学研]解:(1)有限覆盖定理:若G *为闭区间[a ,b]的一个(无限)开覆盖,则在G *中必存在有限个开区间来覆盖[a ,b].(2)Weierstrass定理(致密性定理):有界数列必存在收敛子列.反证法.设数列.若{x n }中无收敛子列,则对任意的x,x 不是{x n }中任意一子列的极限.由此可知,存在,在中至多只含有{x n }中的有限项.于是得一满足上述条件的开区间族显然G *为[a ,b]的一个开覆盖,由有限覆盖定理,G *中存在有限个开区间根据G k的构造性质可知,中也只含有{x n}中的有限项,从而[a,b]中也只含有{x n}中的有限项,这与{x n}中,矛盾,所以结论得证.3.用区间套定理证明闭区间上连续函数的零点存在定理.[北京工业大学研]证明:不妨设,若,得证;若,取;若,取.于是有.同样,若,得证;若,取;若,取,.于是有,如此继续可得闭区间套{[a n,b n]}满足且满足于是由闭区间套定理知存在惟一的,且ξ.因为f(x)在x=ξ处连续,故.由于f(a n)<0,f(b n)>0所以,故有4.设{f n}为[0,1]上的连续函数列,满足,且,证明{f n}在[0,1]上一致收敛.[南京理工大学研]证明:由知,对任意的,存在,有又由{f n}为[0,1]上的连续函数列,故存在δ(x)>0,对任意的,有.由此得到满足上述要求的覆盖[0,1]的开区间族G=,由开覆盖定理,存在使得注意到对于每一个为单调递增数列,现令,则对任意的,存在,有,从而5.设函数f(x)在闭区间[a,b]上无界,证明:(1)存在(2)存在,使得对任意的δ>0,f(x)在上无界.[武汉理工大学研]证明:(1)因为f(x)在闭区间[a,b]上无界,所以存在使得同样由,f(x)的无界性知,存在使得如此继续,可得满足,所以.(2)由致密性定理知,(1)中的数列{x n}存在收敛子列(不妨仍记为本身),记,此时的c就是满足要求的点.6.设f(x)在[a,b]上递增,,证明:存在使得f(x o)=x.[西南师范大学研]证明:用确界原理证明.若f(a)=a或f(b)=b,结论成立.下面假设f(a)>a,f(b)<b,记因为a∈E,故E非空且有上界b,从而必有上确界,可记.下证f(x 0)=x0,对任意的,有x≤x0,而f(x)在[a,b]上递增,故f(x)≤f(x0).又z∈E,故有,即f(x0)为E的一个上界,从而有x0≤f(x0).另一方面,由于f(x)在[a,b]上递增,于是有由此得出即而x0=supE,故又有f(x0)≤x0.综上即有成立.。
第一章实数集与函数§1实数1、设a 为有理数,x 为无理数,试证明:⑴x a +是无理数.⑵当0≠a 时,ax 是无理数.证: ⑴ 假设x a +是有理数,则x a x a =-+)(是有理数,这与题设x 为无理数相矛盾, 故x a +是无理数.⑵假设ax 是有理数,则x aax=为有理数,这与题设x 为无理数相矛盾 故ax 是无理数.1、 试在数轴上表示出下列不等式的解: ⑴ 0)1(2>-x x ;⑵⑶2、 设a 、R b ∈.证明:若对任何正数ε有ε<-b a ,则b a =. 证:用反证法.倘若结论不成立,则根据实数集有序性,有b a >或b a <; 若b a >,则又由绝对值定义知:b a b a -=-.令b a -=ε,则ε为正数,但这与ε<-=-b a b a 矛盾; 若b a <,则又由绝对值定义知:a b b a -=-.令a b -=ε,则ε为正数,但这与ε<-=-a b b a 矛盾; 从而必有b a =. 3、 设0≠x ,证明21≥+xx ,并说明其中等号何时成立. 证:因x 与x 1同号,从而21211=⋅≥+=+xx x x x x , 等号当且仅当xx 1=,即1±=x 时成立.4、 证明:对任何R x ∈,有⑴ 121≥-+-x x ;⑵2321≥-+-+-x x x 证: ⑴因为21111-=+-≤--x x x ,所以121≥-+-x x .⑵因为21132-+-≤-≤--x x x x , 所以2321≥-+-+-x x x5、 设a 、b 、+∈R c (+R 表示全体正实数的集合),证明:c b c a b a -≤+-+2222证:对任意的正实数a 、b 、c 有)(22222c b a bc a +≤,两端同时加244c b a +,有224222222242c b a c a b a bc a c b a +++≤++, 即))(()(222222c a b a bc a ++≤+bc c a b a a 2))((2222222-≤++-,两端再同加22c b +,则有c b c a b a -≤+-+2222其几何意义为:当c b ≠时,以),(b a ,),(c a ,)0,0(三点为顶点的三角形,其两边之差小于第三边. 当c b =时,此三角形变为以),(c a ,)0,0(为端点的线段,此时等号成立6、 设0,0>>b x ,且b a ≠,证明x b x a ++介于1与ba之间. 证:因为x b a b x b x a +-=++-1,)()(x b b a b x b a x b x a +-=-++,且0,0>>b x 所以当b a >时, b ax b x a <++<1; 当b a <时, 1<++<xb xa b a ; 故x b x a ++总介于1与ba 之间.7、 设p 为正整数,证明:若p 不是完全平方数,则p 是无理数证:假设p 是有理数,则存在正整数m 、n 使nmp =,且m 与n 互素. 于是22m p n =.可见n 能整除2m .由于m 与n 互素,从而它们的最大公因数为1,由辗转相除法知:存在整数u 、v 使1=+nv mu .从而m mnv u m =+2因n 能整除2m ,又能整除mnv ,故能整除其和,于是n 可整除m ,这样1=n 因此2m p =.这与p 不是完全平方数相矛盾, 故p 是无理数8、 设a 与b 为已知实数,试用不等式符号(不用绝对值符号)表示下列不等式的解: ⑴ b x a x -<-;⑵b x a x -<-;⑶b a x <-2.解: ⑴原不等式等价于11<---bx ba 这又等价于20<--<b x b a 即⎩⎨⎧-<-<>b x b a b x 220或⎩⎨⎧->-><b x b a bx 220即⎪⎪⎩⎪⎪⎨⎧>+>>b a b a x b x 2或⎪⎪⎩⎪⎪⎨⎧<+<<ba b a x b x 2故当b a >时,不等式的解为2ba x +>当b a <时,不等式的解为2ba x +<当b a =时,不等式无解.⑵原不等式等价于⎩⎨⎧-<->b x a x b x 且⎩⎨⎧-<->b x x a bx即⎩⎨⎧>>b a b x 且⎪⎩⎪⎨⎧+>>2b a x bx 故当b a >时,21bx +>; 当b a ≤时,不等式无解. ⑶当0≤b 时,显然原不等式无解,当0>b 时原不等式等价于b a x b a +<<-2因此①当0≤+b a 或0≤b 时,无解②当0>+b a 且0>b 时,有解 Ⅰ 如果b a ≥,则解为b a x b a +<<-即b a x b a +<<-或b a x b a +>>--Ⅱ 如果b a <,则解为b a x +< 即b a x b a +<<+-§2数集 确界原理1、 用区间表示下列不等式的解: ⑴01≥--x x ;⑵61≤+xx ; ⑶0))()((>---c x b x a x (a 、b 、c 为常数,且c b a <<)⑷22sin ≥x 解 ⑴原不等式等价于以下不等式组⎩⎨⎧≥--<011x x x 或⎩⎨⎧≥--≥011x x x前一不等式组的解为21≤x ,后一不等式组无解. 所以原不等式的解为⎥⎦⎤ ⎝⎛∞-∈21,x ⑵不等式61≤+xx 等价于616≤+≤-x x这又等价于不等式组⎩⎨⎧≤+≤->x x x x 61602或⎩⎨⎧-≤+≤<xx x x 61602前一不等式组的解为]223,223[+-∈x ,后一不等式组解为]223,223[+---∈x . 因此原不等式解为 ]223,223[]223,223[+-+---∈x⑶令))()(()(c x b x a x x f ---=,则由c b a <<知:⎪⎩⎪⎨⎧∞+∈>-∞∈<= ;),(),(,0;),(),(,0)(c b a x c b a x x f因此0)(>x f 当且仅当 ;),(),(∞+∈c b a x因此原不等式的解为 ),(),(∞+∈c b a x .⑷当]43,4[ππ∈x 时22sin ≥x .由正弦函数的周期性知22sin ≥x 的解是]432,42[ππππ++∈k k x ,其中k 是整数2、设S 为非空数集,试给出下列概念的定义:⑴数集S 没有上界; ⑵数集S 无界.解: ⑴设S 为一非空数集,若对任意的0>M ,总存在S x ∈0,使M x >0,则称数集S 没有上界 ⑵设S 为一非空数集,若对任意的0>M ,总存在S x ∈0,使M x >0,则称数集S 无界3、证明:由(3)式确定的数集有上界,无下界. 证:{}22R x x y y S ∈-==.对任意的R x ∈,222≤-=x y 所以数集S 有上界2而对任意的0>M ,取m x +=31,则S M M x y ∈--=--===1322211, 但M y -<1,因此数集S 无下界4、 求下列数集的上、下确界,并依定义加以验证. ⑴{}22<=x x S⑵{},!为自然数n n x x S ==; ⑶{})1,0(内的无理数为x x S =; ⑷⎩⎨⎧=-==},2,1,211 n x x S n 解: ⑴2sup =S ,2inf -=S ,以下依定义加以验证.由22<x 知22<<-x ,因之对任意的S x ∈,有2<x 且2->x ,即2,2-分别是S 的上、下界.又对任意的0>ε,不妨设22<ε,于是存在220ε-=x ,221ε+-=x使0x 、1x S ∈,但ε->20x ,ε+-<21x ,所以2sup =S ,2inf -=S⑵+∞=S sup ,1inf =S ,以下依定义加以验证. 对任意的S x ∈,+∞<≤x 1,所以1是S 的下界.对任意的自然数n ,+∞<!n ,所以+∞=S sup ;对任意的0>ε,存在S x ∈==1!11,使ε+<11x ,所以1inf =S ⑶1sup =S ,0inf =S ,以下依定义加以验证.对任意的S x ∈,有10<<x ,所以1、0分别是S 的上、下界.又对任意的0>ε,取εη<<0,且使η-1为无理数,则η-1S ∈,εη->-11 所以1sup =S ;由η的取法知η是无理数,S ∈η,εεη+=<0,所以0inf =S⑷1sup =S ,21inf =S ,以下依定义加以验证. 对任意的S x ∈,有121≤≤x ,所以1、21分别是S 的上、下界.对任意的0>ε,必存在自然数k ,使S x k k ∈-=211,且ε->-=1211k k x所以1sup =S又S x ∈=-=21211,ε+<=-=2121211x 所以21inf =S5. 设S 为非空有下界数集.证明:S S S min inf =⇔∈=ξξ证:设S S ∈=inf ξ,则对一切S x ∈有ξ≥x ,而S ∈ξ,故ξ是数集S 中最小的数,即S min =ξ. 设S min =ξ,则S ∈ξ,下面验证S inf =ξ. Ⅰ 对一切S x ∈,有ξ≥x ,即ξ是S 的下界. Ⅱ 对任何ξβ>,只须取S x ∈=ξ0,则β<0x ,从而ξ不是S 的下界,故S inf =ξ.6.设S 为非空数集,定义}{S x x S ∈-=-,证明:⑴S S sup inf -=-⑵S S inf sup -=-证: ⑴设-=S inf ξ,由下确界的定义知,对任意的-∈S x ,有ξ≥x ,且对任意的0>ε,存在-∈S x 0,使εξ+<0x由}{S x x S ∈-=-知, 对任意的S x ∈-,ξ-≤-x ,且存在S x ∈-0,使εξ-->-0x ,由上确界的定义知ξ-=-S sup ,即S S sup inf -=-. 同理可证⑵式成立.7.设B A 、皆为非空有界数集,定义数集},,{B y A x y x z z B A ∈∈+==+. 证明: ⑴B A B A sup sup )sup(+=+ ⑵B A B A inf inf )inf(+=+ 证: ⑴设1sup η=A ,2sup η=B .对任意的B A z +∈,存在A x ∈,B y ∈,使y x z +=. 于是1η≤x ,2η≤y ,从而21ηη+≤z对任意的0>ε,必存在A x ∈0,B y ∈0且210εη->x ,220εη->y ,则存在B A y x z +∈+=000,使εηη-+>)(210z ,所以B A B A sup sup )sup(21+=+=+ηη ⑵同理可证8.设x a a ,1,0≠>为有理数,证明:{{⎪⎩⎪⎨⎧<>=<<,1}inf ,1}sup a r a a r a a rxr r x r x ,当为有理数,当为有理数证: 只证1>a 的情况, 1<a 的情况可以类似地予以证明.设}{x r r a E r<=,为有理数.因为1>a ,r a 严格递增,故对任意的有理数x r <,有x r a a <,即x a 是E 的一个上界.对任意的0>ε,不妨设x a <ε,于是必存在有理数x r <0,使得xr x a a a <<-0ε.事实上,由x a log 递增知:xx a a <-<ε0等价于x a a xa x a =<-log )(log ε取有理数0r ,使得x r a xa <<-0)(log ε.所以E a xsup =,即}{sup 为有理数r aa rxr x<=§4具有某些特征的函数1、证明:21)(x xx f +=是R 上的有界函数. 证: 利用不等式212x x +≤有2112211)(22≤+=+=x x xx x f 对一切的),(∞+-∞∈x 都成立 故21)(x xx f +=是R 上的有界函数2、⑴证明陈述无界函数的定义; ⑵证明:21)(x x f =为)1,0(上的无界函数. ⑶举出函数f 的例子,使f 为闭区间]1,0[上的无界函数.解: ⑴设)(x f 在D 上有定义,若对任意的正数M ,都存在D x ∈0,使M x f >)(0,则称函数)(x f 为D 上的无界函数.⑵对任意的正数M ,存在)1,0(110∈+=M x ,使M M x x f >+==11)(2所以21)(xx f =为)1,0(上的无界函数. ⑶设⎪⎩⎪⎨⎧=∈=0,0]1,0(,1)(x x x x f .下证)(x f 为无界函数0>∀M ,]1,0(110∈+=∃M x ,使得M M x f >+=1)(0 所以⎪⎩⎪⎨⎧=∈=0,0]1,0(,1)(x x x x f 是闭区间[0,1]上的无界函数.3、 证明下列函数在指定区间上的单调性: ⑴13-=x y 在),(∞+-∞内严格递增; ⑵x y sin =在]2,2[ππ-上严格递增;⑶x y cos =在],0[π上严格递减.证: ⑴任取1x 、),(2∞+-∞∈x ,21x x <, 则0)(3)13()13()()(212121<-=---=-x x x x x f x f , 可见)()(21x f x f <,所以13-=x y 在),(∞+-∞内严格递增. ⑵任取1x 、]2,2[2ππ-∈x ,21x x <,则有22221ππ<+<-x x ,02221<-≤-x x π, 因此02cos21>+x x ,02sin 21<-x x , 从而02sin 2cos 2sin sin )()(21212121<-+=-=-x x x x x x x f x f , 故)()(21x f x f <,所以x y sin =在]2,2[ππ-上严格递增.⑶任取1x 、],0[2π∈x ,21x x <,则π<+<2021x x ,02221<-≤-x x π, 从而02sin21>+x x ,02sin 21<-x x 02sin 2sin2cos cos )()(21212121>-+-=-=-x x x x x x x f x f 故)()(21x f x f >,所以x y cos =在],0[π上严格递减.4、 判别下列函数的奇偶性:(1)12)(24-+=x x x f ;(2) x x x f sin )(+=;(3)22)(x e x x f -=; (4))1lg()(2x x x f -+=解(1)因)(121)(2)()(2424x f x x x x x f =-+=--+-=-, 故12)(24-+=x x x f 是偶函数. (2)因),()sin ()sin()()(x f x x x x x f -=+-=-+-=-故x x x f sin )(+=是奇函数.(3)因)()()(222)(2x f e x e x x f x x ==-=----,故22)(x e x x f -=是偶函数. (4))()1lg(11lg)1lg())(1lg()(2222x f x x x x x x x x x f -=++-=++=++-=-++-=-故)1lg()(2x x x f -+=是奇函数.5、 求下列函数的周期:(1)x x f 2cos )(=;(2)x x f 3tan )(=;(3)3sin 22cos )(xx x f +=. 解 (1) )2cos 1(21cos )(2x x x f +==,而x 2cos 1+的周期是π,所以x x f 2cos )(=的周期是π. (2))3tan(x 的周期是3π,所以x x f 3tan )(=的周期是3π. (3)2cos x 的周期是π4,3sin x 的周期是π6,所以3sin 22cos )(xx x f +=的周期是π12.6、 设)(x f 为定义在],[a a -上的任一函数,证明: (1) ],[),()()(a a x x f x f x F -∈-+=为偶函数; (2) ],[),()()(a a x x f x f x G -∈--=为奇函数; (3) f 可表示为某个奇函数与某个偶函数之和.证 (1)由已知函数)(x F 的定义域关于原点对称且],,[a a x -∈∀)()()()()()(x F x f x f x f x f x F =-+=+-=-.故)(x F 为],[a a -的偶函数.(2) 由已知函数)(x G 的定义域关于原点对称且],,[a a x -∈∀有)()]()([)()()(x G x f x f x f x f x G -=---=--=-.故)(x G 为],[a a -的奇函数.(3)由(1)(2)知: ),(2)()(x f x G x F =+从而)(21)(212)()()(x G x F x G x F x f +=+=,而)(x F ,)(x G 分别是偶函数和奇函数.显然)(21x F 也是偶函数, )(21x G 也是奇函数.从而f 可表示为某个奇函数与某个偶函数之和.7、 设)(x f ,)(x g 为定义在D 上的有界函数,且对任一)()(,x g x f D x ≤∈,证明:(1))(sup )(sup x g x f Dx D x ∈∈≤;(2) )(inf )(inf x g x f Dx D x ∈∈≤. 证 (1)假设)(sup )(sup x g x f Dx D x ∈∈>. 令))(sup )(sup (21x g x f D x D x ∈∈-=ε,则0>ε 由上确界定义知,存在D x ∈0,))(sup )(sup (21)(sup )(0x g x f x f x f Dx D x D x ∈∈∈+=->ε,又对任意的D x ∈,<)(x g ))(sup )(sup (21)(sup x g x f x g D x D x D x ∈∈∈+=+ε. 由此知)()(0x g x f >,这与题设)()()(D x x g x f ∈∀≤相矛盾,所以)(sup )(sup x g x f D x D x ∈∈≤.(2)同理可证结论成立.8、 设f 为定义在D 上的有界函数,证明:(1) )(inf )}({sup x f x f Dx D x ∈∈-=-;(2) )(sup )}({inf x f x f Dx D x ∈∈-=- 证: (1)令ξ=∈)(inf x f Dx .由下确界的定义知,对任意的D x ∈,ξ≥)(x f ,即ξ-≤-)(x f , 可见ξ-是)(x f -的一个上界;对任意的0>ε,存在D x ∈0,使εξ+<)(0x f ,即εξ-->-)(0x f ,可见ξ-是)(x f -的上界中最小者.所以)(inf )}({sup x f x f Dx D x ∈∈-=-=-ξ(2)同理可证结论成立.9、 证明:函数x x f tan )(=在)2,2(ππ-内为无界函数,但在)2,2(ππ-内任一闭区间[]b a ,上有界.证: (1)对任意的正数M ,取)1arctan(0+=M x , 则220ππ<<-x ,M M M x >+=+=1)1(tan(arctantan 0 所以x x f tan )(=在)2,2(ππ-内是无界函数. (2)任取[]b a ,)2,2(ππ-∈,由于x tan 在[]b a ,上是严格递增的,从而b x a tan tan tan ≤≤对任意的[]b a x ,∈都成立.令}tan ,tan max{a a M =,则对一切的[]b a x ,∈,有M x ≤tan ,所以x x f tan )(=在)2,2(ππ-内任一闭区间[]b a ,上有界.10、 讨论狄利克雷函数⎩⎨⎧=为无理数时当为有理数时当x x x D ,0,1)(的周期性、单调性、有界性。
第
1章 实数集与函数
1.设,求证:
证明:方法一:
①
②
联合①与②即得
方法二:分c≥0和c<0两种情况考虑.
①当c≥0
时,
②当c<0时,,
c≥a
即得
2.设f (
x ),
g (
x )在集合x 上有界,求证:
证明:由下确界定义有
移项即得
由下确界定义有
即得要证的第一式,又因为f (x )与g (x )所处的地位是对称的,故第二式也成立.
3.设函数f (x )
,
g (x )在(a ,b )上严格单调增加,求证:函数
也在(a ,b )上严格单调增加.
证明:
且设,因为f (x ),
g (
x )在(a ,b )上严格单调增加,
所以
,于是同理可证
在(a ,b )上严格单调增加.
4.(1)问
是否是周期函数?并画出它的图形(其中表示x
的整数部分);(2)两个周期函数之和是否一定是周期函数?
解:(1
)因为
,所以按的定
义,即得从而即f (x )是以1为周期的周期函数,其图像如图1-1所示.
图1-1
(2)不一定.例如,函数就不是周期函数.
5.设
,求证:(1
)若
,则f 为单射,g 为满射;(2
)若则f 与g 互为反函数.证明:(1)由条件得
即使得,故g 为满射;若,则由条件推出即f
为单射. 6.设f (x )在区间I 上有界,记证明:
',''|f(x')f(x'')|M m.
sup x x
I
∈-
=-证明:对因为所以有从而即M-m 是的一个上界.对
,由
知使得
同理使得,
所以综上所述:。