§1.3 算法案例
第一课时 辗转相除法与更相减损术、秦九韶算法
自学导引 1.理解辗转相除法与更相减损术的含义,了解执行过程. 2.掌握秦九韶算法的计算过程,了解它在数学计算中的应用. 3.进一步体会算法的基本思想.
课前热身
欧几里得算法
两个正整数的最大公约数
1.辗转相除法是用于求
_____________________的一种方 较大的数
解:解法1(辗转相除法):先求175与100的最大公约数: 175=100×1+75, 100=75×1+25, 75=25×3. ∴175与100的最大公约数是25. 以下再求25与75的最大公约数: 75=25×3 ∴25和75的最大公约数是25.
故25是75和25的最大公约数,也就是175、100、75的最大公约数.
Hale Waihona Puke (3)任何两个数,用辗转相除法求其最大公约数的程序框图. 由于辗转相除法总是用较大的数去除以较小的数,所以首先要对一 开始给定的两数的大小进行判断,并将大数赋给m,小数赋给n,然 后再执行下面的过程.程序框图如下图所示:
(4)辗转相除法求两个数的最大公约数的程序设计.
INPUT “a,b”;a,b IF a<b THEN t=a a=b b=t END IF r=a MOD b WHILE r<>0 a=b b=r r=a MOD b WEND PRINT b END
解:(1)98和63 辗转相除法 S1 98=63 ×1+35, S2 63=35 ×1+28, S3 35=28×1+7, S4 28=4 ×7, 最大公约数为7.
更相减损术 S1 98-63=35, S2 63-35=28, S3 35-28=7, S4 28-7=21, S5 21-7=14, S6 14-7=7, 故98和63的最大公约数为7.