[真题]2018年广东省佛山市顺德区中考数学模拟试卷带答案解析(4月份)
- 格式:doc
- 大小:1.20 MB
- 文档页数:24
2018年广东省深圳市中考数学试卷(含答案解析版)12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9= .14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)(2018•深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=√2,则AC= .三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a= ,b= .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)(2018•深圳)已知顶点为A抛物线y=a(x−12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.2018年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)(2018•深圳)6的相反数是()A.﹣6 B.−16 C.16D.6【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)(2018•深圳)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)(2018•深圳)图中立体图形的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55:几何图形.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)(2018•深圳)观察下列图形,是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【专题】27 :图表型.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)(2018•深圳)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,10【考点】W5:众数;W6:极差.【专题】1 :常规题型.【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)(2018•深圳)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.√a+√b=√ab【考点】35:合并同类项;46:同底数幂的乘法;48:同底数幂的除法;78:二次根式的加减法.【专题】1 :常规题型.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、√a+√b无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)(2018•深圳)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)【考点】F8:一次函数图象上点的坐标特征;F9:一次函数图象与几何变换.【专题】53:函数及其图象.【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,故选:D.【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)(2018•深圳)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a,b被c,d所截,且a∥b,∴∠3=∠4,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .{x +y =708x +6y =480 B .{x +y =706x +8y =480 C .{x +y =4806x +8y =70D .{x +y =4808x +6y =70【考点】99:由实际问题抽象出二元一次方程组.【专题】1 :常规题型.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x 个,小房间有y 个,由题意得:{x +y =708x +6y =480,故选:A .【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A 为60°角与直尺交点,AB=3,则光盘的直径是( )A .3B .3√3C .6D .6√3【考点】MC :切线的性质.【专题】1 :常规题型;55A :与圆有关的位置关系.【分析】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=3√3,∴光盘的直径为6√3,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)(2018•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【专题】53:函数及其图象.【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab <0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】由点P 是动点,进而判断出①错误,设出点P 的坐标,进而得出AP ,BP ,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P 是动点,∴BP 与AP 不一定相等,∴△BOP 与△AOP 不一定全等,故①不正确;设P (m ,n ),∴BP ∥y 轴,∴B (m ,12m), ∴BP=|12m ﹣n|,∴S △BOP =12|12m ﹣n|×m=12|12﹣mn|∵PA ∥x 轴,∴A (12n ,n ),∴AP=|12n ﹣m|,∴S △AOP =12|12n ﹣m|×n=12|12﹣mn|,∴S △AOP =S △BOP ,故②正确;如图,过点P 作PF ⊥OA 于F ,PE ⊥OB 于E ,∴S △AOP =12OA ×PF ,S △BOP =12OB ×PE ,∵S △AOP =S △BOP ,∴OB ×PE=OA ×PE ,∵OA=OB ,∴PE=PF ,∵PE ⊥OB ,PF ⊥OA ,∴OP 是∠AOB 的平分线,故③正确;如图1,延长BP 交x 轴于N ,延长AP 交y 轴于M ,∴AM ⊥y 轴,BN ⊥x 轴,∴四边形OMPN 是矩形,∵点A ,B 在双曲线y=12x上,∴S △AMO =S △BNO =6, ∵S △BOP =4,∴S △PMO =S △PNO =2,∴S 矩形OMPN =4,∴mn=4, ∴m=4n, ∴BP=|12m﹣n|=|3n ﹣n|=2|n|,AP=|12n﹣m|=8|n|,∴S △APB=12AP ×BP=12×2|n|×8|n|=8,故④错误;∴正确的有②③,故选:B .【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9= (a+3)(a﹣3).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:12.【考点】X4:概率公式.【专题】17 :推理填空题.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:3 6=1 2,故答案为:1 2.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是8 .【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【专题】11 :计算题.【分析】根据正方形的性质得到AC=AF ,∠CAF=90°,证明△CAE ≌△AFB ,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可.【解答】解:∵四边形ACDF 是正方形,∴AC=AF ,∠CAF=90°,∴∠EAC+∠FAB=90°, ∵∠ABF=90°, ∴∠AFB+∠FAB=90°, ∴∠EAC=∠AFB , 在△CAE 和△AFB 中,{∠CAE =∠AFB∠AEC =∠FBA AC =AF ,∴△CAE ≌△AFB ,∴EC=AB=4,∴阴影部分的面积=12×AB ×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)(2018•深圳)在Rt △ABC 中,∠C=90°,AD 平分∠CAB ,BE 平分∠ABC ,AD 、BE 相交于点F ,且AF=4,EF=√2,则AC= 8√105.【考点】IJ :角平分线的定义;KQ :勾股定理;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE ,最后判断出△AEF ∽△AFC ,即可得出结论.【解答】解:如图,∵AD ,BE 是分别是∠BAC 和∠ABC 的平分线,∴∠1=∠2,∠3=∠4, ∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E 作EG ⊥AD 于G ,在Rt △EFG 中,EF=√2,∴FG=EG=1,∵AF=4,∴AG=AF ﹣FG=3,根据勾股定理得,AE=√AG 2+EG 2=√10,连接CF ,∵AD 平分∠CAB ,BE 平分∠ABC , ∴CF 是∠ACB 的平分线,∴∠ACF=45°=∠AFE ,∵∠CAF=∠FAE ,∴△AEF ∽△AFC , ∴AE AF =AF AC, ∴AC=AF 2AE =√10=8√105,故答案为8√105.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE 是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×√22+√2+1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.【考点】6D:分式的化简求值.【专题】11 :计算题.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=x−x+1x−1⋅(x+1)(x−1)(x+1)2=1x+1把x=2代入得:原式=1 3【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为100 人,a= 0.25 ,b= 15 .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【考点】V5:用样本估计总体;V7:频数(率)分布表;VC:条形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【考点】N3:作图—复杂作图;S9:相似三角形的判定与性质;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA ∴四边形ACDB 是菱形,∵∠ACD 与△FCE 中的∠FCE 重合,它的对角∠ABD 顶点在EF 上,∴四边形ACDB 为△FEC 的亲密菱形;(2)解:设菱形ACDB 的边长为x ,∵四边形ABCD 是菱形,∴AB ∥CE ,∴∠FAB=∠FCE ,∠FBA=∠E ,△EAB ∽△FCE则:FA FC =AB CE ,即x 12=6−x 6,解得:x=4,过A 点作AH ⊥CD 于H 点,∵在Rt △ACH 中,∠ACH=45°,∴AH =AC√2=2√2,∴四边形ACDB 的面积为:4×2√2=8√2.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD 是菱形是解此题的关键.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】34 :方程思想;522:分式方程及应用;524:一元一次不等式(组)及应用.【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•1600x=6000x+2,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【考点】MR:圆的综合题.【专题】15 :综合题;559:圆的有关概念及性质.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=12BC=1,∵cosB=BMAB=√1010,在Rt△AMB中,BM=1,∴AB=BMcosB=√10;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴AC AD =AE AC,∴AD•AE=AC 2=10;(3)在BD 上取一点N ,使得BN=CD ,在△ABN 和△ACD 中{AB =AC∠3=∠1BN =CD,∴△ABN ≌△ACD (SAS ),∴AN=AD ,∵AN=AD ,AH ⊥BD , ∴NH=HD ,∵BN=CD ,NH=HD ,∴BN+NH=CD+HD=BH .【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)(2018•深圳)已知顶点为A 抛物线y =a(x −12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB 与x 轴相交于点M ,y 轴相交于点E ,抛物线与y 轴相交于点F ,在直线AB 上有一点P ,若∠OPM=∠MAF ,求△POE 的面积;(3)如图2,点Q 是折线A ﹣B ﹣C 上一点,过点Q 作QN ∥y 轴,过点E 作EN ∥x 轴,直线QN 与直线EN 相交于点N ,连接QE ,将△QEN 沿QE 翻折得到△QEN 1,若点N 1落在x 轴上,请直接写出Q 点的坐标.【考点】HF :二次函数综合题.【专题】15 :综合题;537:函数的综合应用.【分析】(1)将点B 坐标代入解析式求得a 的值即可得;(2)由∠OPM=∠MAF 知OP ∥AF ,据此证△OPE ∽△FAE 得OP FA=OE FE=134=43,即OP=43FA ,设点P (t ,﹣2t ﹣1),列出关于t 的方程解之可得;(3)分点Q 在AB 上运动、点Q 在BC 上运动且Q 在y 轴左侧、点Q 在BC 上运动且点Q 在y 轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点B(−32,2)代入y =a(x −12)2−2,解得:a=1,∴抛物线的解析式为:y =(x −12)2−2;(2)由y =(x −12)2−2知A (12,﹣2),设直线AB 解析式为:y=kx+b ,代入点A ,B 的坐标,得:{−2=12k +b 2=−32k +b,解得:{k =−2b =−1,∴直线AB 的解析式为:y=﹣2x ﹣1,易求E (0,1),F(0,−74),M(−12,0),若∠OPM=∠MAF , ∴OP ∥AF ,∴△OPE ∽△FAE ,∴OP FA =OE FE =134=43,∴OP =43FA =43√(12−6)2+(−2+74)2=√53,设点P (t ,﹣2t ﹣1),则:√t 2+(−2t −1)2=√53解得t 1=−215,t 2=−23,由对称性知;当t 1=−215时,也满足∠OPM=∠MAF ,∴t 1=−215,t 2=−23都满足条件,∵△POE 的面积=12OE ⋅|l|,∴△POE 的面积为115或13.(3)若点Q 在AB 上运动,如图1,设Q (a ,﹣2a ﹣1),则NE=﹣a 、QN=﹣2a ,由翻折知QN′=QN=﹣2a 、N′E=NE=﹣a ,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴QR N′S =RN′ES =QN′EN′,即QR 1=−2a−1ES =−2a −a=2,∴QR=2、ES=−2a−12,由NE+ES=NS=QR 可得﹣a+−2a−12=2,解得:a=﹣54,∴Q (﹣54,32);若点Q 在BC 上运动,且Q 在y 轴左侧,如图2,设NE=a ,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a ,在Rt △SEN′中,(√5﹣a )2+12=a 2,解得:a=3√55,∴Q (﹣3√55,2);若点Q 在BC 上运动,且点Q 在y 轴右侧,如图3,第31页(共31页)设NE=a ,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a ,在Rt △SEN′中,(√5﹣a )2+12=a 2, 解得:a=3√55, ∴Q (3√55,2).综上,点Q 的坐标为(﹣54,32)或(﹣3√55,2)或(3√55,2). 【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。
2018年广东省佛山市中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、13、﹣3.14、2中,最小的数是( )A .0B .13C .﹣3.14D .2 2.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( )A .1.442×107B .0.1442×107C .1.442×108D .0.1442×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是( )A .B .C .D . 4.(3分)数据1、5、7、4、8的中位数是( )A .4B .5C .6D .7 5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是( )A .圆B .菱形C .平行四边形D .等腰三角形 6.(3分)不等式3x ﹣1≥x +3的解集是( ) A .x ≤4B .x ≥4C .x ≤2D .x ≥2 7.(3分)在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则△ADE 与△ABC 的面积之比为( ) A .12 B .13 C .14 D .168.(3分)如图,AB ∥CD ,则∠DEC =100°,∠C =40°,则∠B 的大小是( )A .30°B .40°C .50°D .60° 9.(3分)关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根,则实数m 的取值范围是( ) A .m <94 B .m ≤94 C .m >94 D .m ≥9410.(3分)如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿在A →B →C →D 路径匀速运动到点D ,设△P AD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )A .B .C .D .二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知AB ̂所对的圆心角是100°,则AB̂所对的圆周角是 . 12.(3分)分解因式:x 2﹣2x +1= .13.(3分)一个正数的平方根分别是x +1和x ﹣5,则x = .14.(3分)已知√a −b +|b ﹣1|=0,则a +1= .15.(3分)如图,矩形ABCD 中,BC =4,CD =2,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)16.(3分)如图,已知等边△OA 1B 1,顶点A 1在双曲线y =√3x(x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2∥OA 1交双曲线于点A 2,过A 2作A 2B 2∥A 1B 1交x 轴于点B 2,得到第二个等边△B 1A 2B 2;过B 2作B 2A 3∥B 1A 2交双曲线于点A 3,过A 3作A 3B 3∥A 2B 2交x 轴于点B 3,得到第三个等边△B 2A 3B 3;以此类推,…,则点B 6的坐标为 .三、解答题17.(6分)计算:|﹣2|﹣20180+(12)﹣118.(6分)先化简,再求值:2a 2a+4•a 2−16a 2−4a ,其中a =√32. 19.(6分)如图,BD 是菱形ABCD 的对角线,∠CBD =75°,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求∠DBF 的度数.20.(7分)某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等.(1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为 人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如图1,连接BC.(1)填空:∠OBC=°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?2018年广东省佛山市中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、13、﹣3.14、2中,最小的数是( )A .0B .13C .﹣3.14D .2 【考点】2A :实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3.14<0<13<2, 所以最小的数是﹣3.14.故选:C .2.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( )A .1.442×107B .0.1442×107C .1.442×108D .0.1442×108【考点】1I :科学记数法—表示较大的数.【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:14420000=1.442×107,故选:A .3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是( )A .B .C .D .【考点】U 2:简单组合体的三视图.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B 中的图形,故选:B .4.(3分)数据1、5、7、4、8的中位数是( )A .4B .5C .6D .7【考点】W 4:中位数.【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B .5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是( )A .圆B .菱形C .平行四边形D .等腰三角形 【考点】P 3:轴对称图形;R 5:中心对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4B.x≥4C.x≤2D.x≥2【考点】C6:解一元一次不等式.【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.7.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.12B.13C.14D.16【考点】KX:三角形中位线定理;S9:相似三角形的判定与性质.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴S△ADES△ABC=(DEBC)2=14.故选:C.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°【考点】JA:平行线的性质.【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.9.(3分)关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根,则实数m 的取值范围是( )A .m <94B .m ≤94C .m >94D .m ≥94 【考点】AA :根的判别式.【分析】根据一元二次方程的根的判别式,建立关于m 的不等式,求出m 的取值范围即可.【解答】解:∵关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根,∴△=b 2﹣4ac =(﹣3)2﹣4×1×m >0,∴m <94. 故选:A .10.(3分)如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿在A →B →C →D 路径匀速运动到点D ,设△P AD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )A .B .C .D .【考点】E 7:动点问题的函数图象.【分析】设菱形的高为h ,即是一个定值,再分点P 在AB 上,在BC 上和在CD 上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P 在AB 边上时,如图1,设菱形的高为h ,y =12AP •h , ∵AP 随x 的增大而增大,h 不变,∴y 随x 的增大而增大,故选项C 不正确;②当P 在边BC 上时,如图2,y =12AD •h , AD 和h 都不变,∴在这个过程中,y 不变,故选项A 不正确;③当P 在边CD 上时,如图3,y =12PD •h , ∵PD 随x 的增大而减小,h 不变,∴y 随x 的增大而减小,∵P 点从点A 出发沿在A →B →C →D 路径匀速运动到点D ,∴P 在三条线段上运动的时间相同,故选项D 不正确;故选:B .二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知AB̂所对的圆心角是100°,则AB̂所对的圆周角是50°.【考点】M5:圆周角定理.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.12.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【考点】54:因式分解﹣运用公式法.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=2.【考点】21:平方根.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.14.(3分)已知√a−b+|b﹣1|=0,则a+1=2.【考点】16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵√a−b+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为π.(结果保留π)【考点】LB :矩形的性质;MC :切线的性质;MO :扇形面积的计算.【分析】连接OE ,如图,利用切线的性质得OD =2,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S 正方形OECD ﹣S 扇形EOD 计算由弧DE 、线段EC 、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E ,∴OD =2,OE ⊥BC ,易得四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S扇形EOD =22﹣90⋅π⋅22360=4﹣π,∴阴影部分的面积=12×2×4﹣(4﹣π)=π. 故答案为π.16.(3分)如图,已知等边△OA 1B 1,顶点A 1在双曲线y =√3x (x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2∥OA 1交双曲线于点A 2,过A 2作A 2B 2∥A 1B 1交x 轴于点B 2,得到第二个等边△B 1A 2B 2;过B 2作B 2A 3∥B 1A 2交双曲线于点A 3,过A 3作A 3B 3∥A 2B 2交x 轴于点B 3,得到第三个等边△B 2A 3B 3;以此类推,…,则点B 6的坐标为 (2√6,0) .【考点】G 6:反比例函数图象上点的坐标特征;KK :等边三角形的性质.【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B 2、B 3、B 4的坐标,得出规律,进而求出点B 6的坐标.【解答】解:如图,作A 2C ⊥x 轴于点C ,设B 1C =a ,则A 2C =√3a ,OC =OB 1+B 1C =2+a ,A 2(2+a ,√3a ).∵点A 2在双曲线y =√3x(x >0)上, ∴(2+a )•√3a =√3,解得a =√2﹣1,或a =﹣√2﹣1(舍去),∴OB 2=OB 1+2B 1C =2+2√2﹣2=2√2,∴点B 2的坐标为(2√2,0);作A 3D ⊥x 轴于点D ,设B 2D =b ,则A 3D =√3b ,OD =OB 2+B 2D =2√2+b ,A 2(2√2+b ,√3b ).∵点A 3在双曲线y =√3x (x >0)上,∴(2√2+b )•√3b =√3,解得b =﹣√2+√3,或b =﹣√2﹣√3(舍去),∴OB 3=OB 2+2B 2D =2√2﹣2√2+2√3=2√3,∴点B 3的坐标为(2√3,0);同理可得点B 4的坐标为(2√4,0)即(4,0);…,∴点B n 的坐标为(2√n ,0),∴点B 6的坐标为(2√6,0).故答案为(2√6,0).三、解答题17.(6分)计算:|﹣2|﹣20180+(12)﹣1 【考点】2C :实数的运算;6E :零指数幂;6F :负整数指数幂.【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【解答】解:原式=2﹣1+2=3.18.(6分)先化简,再求值:2a 2a+4•a 2−16a 2−4a ,其中a =√32. 【考点】6D :分式的化简求值.【分析】原式先因式分解,再约分即可化简,继而将a 的值代入计算.【解答】解:原式=2a 2a+4•(a+4)(a−4)a(a−4) =2a ,当a =√32时, 原式=2×√32=√3. 19.(6分)如图,BD 是菱形ABCD 的对角线,∠CBD =75°,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求∠DBF 的度数.【考点】KG :线段垂直平分线的性质;L 8:菱形的性质;N 2:作图—基本作图.【分析】(1)分别以A 、B 为圆心,大于12AB 长为半径画弧,过两弧的交点作直线即可; (2)根据∠DBF =∠ABD ﹣∠ABF 计算即可;【解答】解:(1)如图所示,直线EF 即为所求;(2)∵四边形ABCD 是菱形,∴∠ABD =∠DBC =12∠ABC =75°,DC ∥AB ,∠A =∠C . ∴∠ABC =150°,∠ABC +∠C =180°,∴∠C =∠A =30°,∵EF 垂直平分线段AB ,∴AF =FB ,∴∠A =∠FBA =30°,∴∠DBF =∠ABD ﹣∠FBE =45°.20.(7分)某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等.(1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?【考点】B 7:分式方程的应用.【分析】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据数量=总价÷单价结合用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据总价=单价×数量,即可得出关于a 的一元一次方程,解之即可得出结论.【解答】解:(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据题意得:3120x−9=4200x ,解得:x =35,经检验,x =35是原方程的解,∴x ﹣9=26.答:A 型芯片的单价为26元/条,B 型芯片的单价为35元/条.(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据题意得:26a +35(200﹣a )=6280,解得:a =80.答:购买了80条A 型芯片.21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为 800 人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?【考点】V 5:用样本估计总体;VB :扇形统计图;VC :条形统计图.【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+40)=280人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×280800=3500人.22.(7分)如图,矩形ABCD 中,AB >AD ,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE .(1)求证:△ADE ≌△CED ;(2)求证:△DEF 是等腰三角形.【考点】KD :全等三角形的判定与性质;LB :矩形的性质;PB :翻折变换(折叠问题).【分析】(1)根据矩形的性质可得出AD =BC 、AB =CD ,结合折叠的性质可得出AD =CE 、AE =CD ,进而即可证出△ADE ≌△CED (SSS );(2)根据全等三角形的性质可得出∠DEF =∠EDF ,利用等边对等角可得出EF =DF ,由此即可证出△DEF 是等腰三角形.【解答】证明:(1)∵四边形ABCD 是矩形,∴AD =BC ,AB =CD .由折叠的性质可得:BC =CE ,AB =AE ,∴AD =CE ,AE =CD .在△ADE和△CED中,{AD=CE AE=CD DE=ED,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:{b=−39a+b=0,解得:{a=13b=−3,所以二次函数的解析式为:y=13x2﹣3;(3)存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D ,则∠ODC =45°+15°=60°,∴OD =OC •tan 30°=√3,设DC 为y =kx ﹣3,代入(√3,0),可得:k =√3,联立两个方程可得:{y =√3x −3y =13x 2−3, 解得:{x 1=0y 1=−3,{x 2=3√3y 2=6, 所以M 1(3√3,6);②若M 在B 下方,设MC 交x 轴于点E ,则∠OEC =45°﹣15°=30°,∴OE =OC •tan 60°=3√3,设EC 为y =kx ﹣3,代入(3√3,0)可得:k =√33, 联立两个方程可得:{y =√33x −3y =13x 2−3, 解得:{x 1=0y 1=−3,{x 2=√3y 2=−2, 所以M 2(√3,﹣2),综上所述M 的坐标为(3√3,6)或(√3,﹣2).24.(9分)如图,四边形ABCD 中,AB =AD =CD ,以AB 为直径的⊙O 经过点C ,连接AC 、OD 交于点E .(1)证明:OD ∥BC ;(2)若tan ∠ABC =2,证明:DA 与⊙O 相切;(3)在(2)条件下,连接BD 交⊙O 于点F ,连接EF ,若BC =1,求EF 的长.【考点】MR :圆的综合题.【分析】(1)连接OC ,证△OAD ≌△OCD 得∠ADO =∠CDO ,由AD =CD 知DE ⊥AC ,再由AB 为直径知BC ⊥AC ,从而得OD ∥BC ;(2)根据tan ∠ABC =2可设BC =a 、则AC =2a 、AD =AB =√AC 2+BC 2=√5a ,证OE 为中位线知OE =12a 、AE =CE =12AC =a ,进一步求得DE =√AD 2−AE 2=2a ,再△AOD 中利用勾股定理逆定理证∠OAD =90°即可得;(3)先证△AFD ∽△BAD 得DF •BD =AD 2①,再证△AED ∽△OAD 得OD •DE =AD 2②,由①②得DF •BD =OD •DE ,即DF OD =DE BD ,结合∠EDF =∠BDO 知△EDF ∽△BDO ,据此可得EF OB =DE BD ,结合(2)可得相关线段的长,代入计算可得.【解答】解:(1)连接OC ,在△OAD 和△OCD 中,∵{OA =OC AD =CD OD =OD, ∴△OAD ≌△OCD (SSS ),∴∠ADO =∠CDO ,又AD =CD ,∴DE ⊥AC ,∵AB 为⊙O 的直径,∴∠ACB =90°,∴∠ACB =90°,即BC ⊥AC ,∴OD ∥BC ;(2)∵tan ∠ABC =AC BC =2,∴设BC =a 、则AC =2a ,∴AD =AB =√AC 2+BC 2=√5a ,∵OE ∥BC ,且AO =BO ,∴OE =12BC =12a ,AE =CE =12AC =a , 在△AED 中,DE =√AD 2−AE 2=2a ,在△AOD 中,AO 2+AD 2=(√5a 2)2+(√5a )2=254a 2,OD 2=(OE +DE )2=(12a +2a )2=254a 2, ∴AO 2+AD 2=OD 2,∴∠OAD =90°,则DA 与⊙O 相切;(3)连接AF ,∵AB 是⊙O 的直径,∴∠AFD =∠BAD =90°,∵∠ADF =∠BDA ,∴△AFD ∽△BAD ,∴DF AD =AD BD ,即DF •BD =AD 2①,又∵∠AED =∠OAD =90°,∠ADE =∠ODA ,∴△AED ∽△OAD ,∴AD OD =DE AD ,即OD •DE =AD 2②,由①②可得DF •BD =OD •DE ,即DF OD =DE BD , 又∵∠EDF =∠BDO ,∴△EDF ∽△BDO ,∵BC =1,∴AB =AD =√5、OD =52、ED =2、BD =√10、OB =√52, ∴EF OB =DE BD ,即√52=√10,解得:EF =√22.25.(9分)已知Rt △OAB ,∠OAB =90°,∠ABO =30°,斜边OB =4,将Rt △OAB 绕点O 顺时针旋转60°,如图1,连接BC .(1)填空:∠OBC = 60 °;(2)如图1,连接AC ,作OP ⊥AC ,垂足为P ,求OP 的长度;(3)如图2,点M ,N 同时从点O 出发,在△OCB 边上运动,M 沿O →C →B 路径匀速运动,N 沿O →B →C 路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N 的运动速度为1单位/秒,设运动时间为x 秒,△OMN 的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?【考点】RB :几何变换综合题.【分析】(1)只要证明△OBC 是等边三角形即可;(2)求出△AOC 的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x ≤83时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE ⊥OC 且交OC 于点E .②当83<x ≤4时,M 在BC 上运动,N 在OB 上运动. ③当4<x ≤4.8时,M 、N 都在BC 上运动,作OG ⊥BC 于G .【解答】解:(1)由旋转性质可知:OB =OC ,∠BOC =60°,∴△OBC 是等边三角形,∴∠OBC =60°.故答案为60.(2)如图1中,∵OB =4,∠ABO =30°,∴OA =12OB =2,AB =√3OA =2√3, ∴S △AOC =12•OA •AB =12×2×2√3=2√3,∵△BOC 是等边三角形,∴∠OBC =60°,∠ABC =∠ABO +∠OBC =90°,∴AC =√AB 2+BC 2=2√7,∴OP =2S △AOC AC =√32√7=2√217. (3)①当0<x ≤83时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE ⊥OC 且交OC 于点E .则NE =ON •sin 60°=√32x ,∴S △OMN =12•OM •NE =12×1.5x ×√32x , ∴y =3√38x 2. ∴x =83时,y 有最大值,最大值=8√33. ②当83<x ≤4时,M 在BC 上运动,N 在OB 上运动.作MH ⊥OB 于H .则BM =8﹣1.5x ,MH =BM •sin 60°=√32(8﹣1.5x ), ∴y =12×ON ×MH =﹣3√38x 2+2√3x . 当x =83时,y 取最大值,y <8√33,③当4<x ≤4.8时,M 、N 都在BC 上运动,作OG ⊥BC 于G .MN =12﹣2.5x ,OG =AB =2√3,∴y =12•MN •OG =12√3﹣5√32x , 当x =4时,y 有最大值,最大值=2√3, 综上所述,y 有最大值,最大值为8√33.。
2024学年顺德区普通高中高三教学质量检测(一)数学试题(答案在最后)2024.11本试卷共4页,19小题,满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必填写答题卡上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卡相应的位置上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.请考生保持答题卡的整洁.考试结束后,将答题卡交回.第I 卷(选择题共58分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z满足3i1z -=,则z =()A.2 B.1C.D.【答案】B 【解析】【分析】依题意可得z =,再根据复数代数形式的除法运算化简,最后再计算其模.【详解】因为i1z-=+,所以i 1i z --==-,所以1z =.故选:B2.已知集合{}Z |13A x x =∈-<,{}03B xx =≤≤∣,则A B = ()A.{}0,1,2,3 B.{}1,0,1,2- C.{}03xx ≤≤∣ D.{24}xx -<<∣【答案】A 【解析】【分析】首先解绝对值不等式求出集合A ,再根据交集的定义计算可得.【详解】由13x -<,即313x -<-<,解得24-<<x ,所以{}{}{}Z |13Z |241,0,1,2,3A x x x x =∈-<=∈-<<=-,又{}03B xx =≤≤∣,所以{}0,1,2,3A B = .故选:A3.“21a >,2log 1b >”是“24a b +>”的()A.充分不必要条件B.必要不充分条件C .充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分条件、必要条件的定义及指数函数、对数函数的性质判断即可.【详解】由21a >可得0a >,由2log 1b >可得2b >,由24a b +>可得2a b +>,所以由“21a >,2log 1b >”推得出“24a b +>”,故充分性成立;由“24a b +>”推不出“21a >,2log 1b >”,如0a =,3b =,满足24a b +>,但是21a =,故必要性不成立;所以“21a >,2log 1b >”是“24a b +>”的充分不必要条件.故选:A4.已知单位向量a,b 满足1a b += ,则下列说法正确的是()A.,150a b =B.3a b -= C.向量a b +在向量a上的投影向量为2a D.12b a b ⎛⎫⊥+ ⎪⎝⎭【答案】D 【解析】【分析】根据数量积的运算律求出a b ⋅ ,即可求出,a b ,从而判断A ,再根据a b -=判断B ,根据投影向量的定义判断C ,计算12b a b ⎛⎫⋅+ ⎪⎝⎭ ,即可判断D.【详解】单位向量a,b 满足1a b += ,则()22221a ba ab b ++⋅==+ ,所以12a b ⋅=-r r ,所以1cos ,2a b a b a b⋅==-⋅,又0,180a b ≤≤ ,所以,120a b = ,故A 错误;a b -====,故B 错误;因为()2211122a b a a b a ⎛⎫+⋅=+⋅=+-= ⎪⎝⎭ ,所以向量a b + 在向量a 上的投影向量为()212a a b a a a+⋅⋅=,故C 错误;因为221111102222b a b b a b ⎛⎫⋅+=⋅+=-+⨯= ⎪⎝⎭ ,所以12b a b ⎛⎫⊥+ ⎪⎝⎭ ,故D 正确.故选:D5.函数()cos2cos f x x x =-是()A.偶函数,且最小值为-2B.偶函数,且最大值为2C.周期函数,且在π0,2⎛⎫⎪⎝⎭上单调递增 D.非周期函数,且在π,π2⎛⎫⎪⎝⎭上单调递减【答案】B 【解析】【分析】根据函数的奇偶性判定方式以及函数的最值判断A ,B ;根据周期性判断,结合复合函数的单调性判断C ,D.【详解】()cos2cos f x x x =-定义域为R ,关于原点对称,()()()()cos 2cos cos 2cos f x x x x x f x -=---=-=,所以()f x 为偶函数,又()2cos2cos 2cos cos 1f x x x x x =-=--,令cos x t =,11t -≤≤,()221f t t t =--,当14t =时,即1cos 4x =,()f x 有最小值,最小值为98-,当1t =-时,即cos 1x =-时,()f x 有最大值,最大值为2,故A 错误,故B 正确;因为()()()()2πcos22πcos 2πcos 2cos f x x x x x f x +=+-+=-=,所以()f x 为周期函数,因为cos y x =在π0,2⎛⎫ ⎪⎝⎭上单调递减,在π,π2⎛⎫ ⎪⎝⎭上单调递减,当π0,2x ⎛⎫∈ ⎪⎝⎭,()22cos cos 1f x x x =--,令cos x t =,01t <<,()221f t t t =--,()f t 在10,4⎛⎫ ⎪⎝⎭单调递减,在1,14⎛⎫⎪⎝⎭单调递增,当π,π2x ⎛⎫∈⎪⎝⎭,()22cos cos 1f x x x =--,令cos x t =,10t -<<,()221f t t t =--,()f t 在()1,0-单调递减,由复合函数的单调性知,()f x 在π0,2⎛⎫ ⎪⎝⎭上先减后增,在π,π2⎛⎫ ⎪⎝⎭上单调递增;故C ,D 错误,故选:B.6.印度数学家卡普列加在一次旅行中,遇到猛烈的暴风雨,他看到路边写有3025的一块牌子被劈成了两半,一半上写着30,另一半上写着25.这时,他发现302555+=,2553025=,即将劈成两半的数加起来,再平方,正好是原来的数字.数学家将3025等符合上述规律的数字称之为雷劈数(或卡普列加数).则在下列数组:92,81,52,40,21,14中随机选择两个数,其中恰有一个数是雷劈数的概率是()A.815B.35C.13D.0【答案】C 【解析】【分析】找出这6个数中的雷劈数,结合组合数公式求相应的概率.【详解】因为()2281981+==,所以81是雷劈数.其余的不是雷劈数.记:“从6个数中随机选择两个数,其中恰有一个数是雷劈数”为事件A ,则()1526C 51C 153P A ===.故选:C7.已知函数()()21,1,ax x af x x x a-+<⎧⎪=⎨-≥⎪⎩的值域为R ,则实数a 的取值范围是()A.(),0-∞ B.(],1-∞- C.[]1,1- D.[)1,0-【答案】D 【解析】【分析】分段求函数值域,根据原函数值域为R ,求实数a 的取值范围.【详解】若0a <,在(),a -∞上,函数1y ax =-+单调递增,所以()2,1y a∈-∞-;此时,函数()21y x =-在[],1a 上单调递减,在()1,+∞上单调递增,无最大值,所以[)0,y ∈+∞;因为函数()f x 的值域为R ,所以210a -≥,结合0a <得10a -≤<.若0a =,则()()21,01,0x f x x x <⎧⎪=⎨-≥⎪⎩的值域为[)0,+∞;若01a <<,在(),a -∞上,函数1y ax =-+单调递减,所以()21,y a ∈-+∞(210a ->);在[],1a 上,函数()21y x =-单调递减,在()1,+∞上单调递增,无最大值,所以[)0,y ∈+∞;所以函数()f x 的值域不可能为R ;若1a ≥,则函数在(),a -∞上,函数1y ax =-+单调递减,所以()21,y a ∈-+∞(210a -≤);在[),a +∞上,函数()21y x =-单调递增,())21,y a ⎡∈-+∞⎣,此时函数()f x 的值域不可能为R .综上可知:当10a -≤<时,函数()f x 的值域为R .故选:D8.记正项数列{}n a 的前n 项积为n T ,已知()12n n n a T a -=,若10011000n a <,则n 的最小值是()A.999B.1000C.1001D.1002【答案】C 【解析】【分析】由数列的前项积满足()12n n n a T a -=,可求得{}n T 是等差数列,并求得n T 的通项,进而得到{}n a 的通项,再由10011000n a <,即可求得正整数n 的最小值.【详解】∵n T 为正项数列{}n a 的前n 项积,()12n n n a T a -=,∴当1n =时,()11112T T T -=,113a T ==2n ≥时,1nn n T a T -=,又()12n n n a T a -=,∴11122211n nn nn n n n n n T T T T a T a T T T -----=-==,即12n n T T --=,∴{}n T 是首项为3,公差为2的等差数列,且32(1)21n T n n =+-=+.由()2n n n T a T -=,得21221n n n T n a T n +==--若10011000n a <,则211001211000n n +<-,∴2001,2n >所以,正整数n 的最小值为1001.故选:C.二、多项选择题:本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分.9.现有甲、乙两组数据,甲组数据为:1216,,,x x x ;乙组数据为:121639,39,,39x x x --- ,若甲组数据的平均数为m ,标准差为n ,极差为a ,第60百分位数为b ,则下列说法一定正确的是()A.乙组数据的平均数为39m -B.乙组数据的极差为3aC.乙组数据的第60百分位数为39b -D.乙组数据的标准差为n【答案】ABC 【解析】【分析】根据平均数、极差、标准差的性质及百分位数的定义判断即可.【详解】不妨设甲组数据从小到大排列为:1216,,,x x x ,则乙组数据从小到大排列为:121639,39,,39x x x --- ,因为甲组数据的平均数为m ,标准差为n ,极差为a ,第60百分位数为b ,则161a x x =-,又1660%9.6⨯=,所以10b x =,所以乙组数据的平均数为39m -,故A 正确;乙组数据的极差为()()161161393933a x x x x ----==,故B 正确;乙组数据的第60百分位数为109393b x -=-,故C 正确;乙组数据的标准差为3n ,故D 错误.故选:ABC10.在三棱台111ABC A B C -中,侧面11ACC A 是等腰梯形且与底面垂直,111A C =,1AA =,3AC BC ==,AB =)A.1A A BC ⊥B.11119A ABC B A B C V V --=C.1112A ABC B A CC V V --= D.三棱台111ABC A B C -的体积为136【答案】ABD 【解析】【分析】根据面面垂直证明线面垂直,再证线线垂直,可判断A 的真假;根据两个同高的三棱锥的体积之比等于它们的底面积之比,可判断BC 的真假;根据台体的体积公式求出台体体积,判断D 的真假.【详解】如图:对于A :在ABC V 中,3AC BC ==,AB =,所以90ACB ∠=︒,即AC BC ⊥.由平面11ACC A ⊥平面ABC ,平面11ACC A 平面ABC AC =,⊂BC 平面ABC ,所以⊥BC 平面11ACC A ,又1A A ⊂平面11ACC A ,所以1BC A A ⊥,故A 正确;对于B :因为111A C =,3AC =,且111A B C △∽ABC V ,所以11119A B C ABC S S =.又三棱锥1A ABC -和111B A B C -的高相同,所以11119A ABC B A B C V V --=,故B 正确;对于C :因为113AC A C =,所以1113A AC A C C S S = ,所以1113B A AC B A C C V V --=,即1113A ABC B A CC V V --=,故C 错误;对于D :因为三棱台的高为1,所以三棱台111ABC A B C -的体积为:119133226V ⎛=⋅++= ⎝,故D 正确.故选:ABD11.已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若()()22f x f x +-=,()1g x -为偶函数,则下列说法一定正确的是()A.()()()0123f f f ++= B.()()4g x g x +=C.()()4f x f x += D.1322g g ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭【答案】ABD 【解析】【分析】根据奇函数和偶函数的定义,结合函数的周期性和对称性,即可判断.【详解】对A :令1x =,则()()112f f +=⇒()11f =;令0x =,则()()022f f +=.所以()()()0123f f f ++=,故A 正确;对B :因为()()22f x f x +-=,两边求导,得()()20g x g x --=即()()2g x g x =-;因数()1g x -为偶函数,所以()()11g x g x -+=--⇒()()24g x g x -=-+,所以()()4g x g x =-+,故()()4g x g x +=成立,故B 正确;对C :因为()()4g x g x +=,所以()()124f x c f x c ++=+⇒()()4f x f x c +=+,c 未必为0,故C 错误;对D :因为()()2g x g x =-,令12x =,则1322g g ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,故D 正确.故选:ABD【点睛】结论点睛:若()f x ,()g x 的定义域均为R ,且()()g x f x '=,则:(1)若()f x 为奇函数,则()g x 为偶函数;若()f x 为偶函数,则()g x 为奇函数.反之也成立.(2)若()f x 为周期函数,则()g x 也是周期函数,且周期相同,反之未必成立.第II 卷(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分.12.若3cos 4sin 5αα+=,则tan α=_____________.【答案】43【解析】【分析】由已知条件结合同角三角函数间的平方关系,求得sin cos αα,,进而可得解.【详解】联立223cos 4sin 5cos sin 1αααα+=⎧⎨+=⎩,得4sin 53cos 5αα⎧=⎪⎪⎨⎪=⎪⎩,因此sin 4tan cos 3ααα==.故答案为:4313.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,过2F 且垂直于x 轴的直线交椭圆于A 、B 两点,若1AF B ∆为等边三角形,则椭圆C 的离心率为_________.【答案】3【解析】【分析】由已知及1AF B ∆是等边三角形即可求得:23AF c =,13AF =,利用椭圆定义列方程可得:21233AF AF a +=+=a =,问题得解.【详解】如图,依据题意作出图形,由题可得:122F F c =,又1AF B ∆为等边三角形,由椭圆的对称性可得:126AF F π∠=,又12AB F F ⊥计算可得:2233AF c =,1433AF c =由椭圆定义可得:2133233AF AF a +=+=整理得:3c a =所以33c e a ==【点睛】本题主要考查了椭圆的简单性质,还考查了三角形中的边、角计算,还考查了椭圆的定义应用,考查方程思想及计算能力,属于中档题.14.现有甲、乙、丙等7位同学,各自写了一封信,然后都投到同一个邮箱里.若甲、乙、丙3位同学分别从邮箱里随机抽取一封信,则这3位同学抽到的都不是自己写的信的不同取法种数是__________(用数字作答).【答案】134【解析】【分析】设甲、乙、丙3位同学的信件分别为A 、B 、C ,对A 、B 、C 取到的个数分四种情况讨论,按照分类、分步计数原理计算可得.【详解】设甲、乙、丙3位同学的信件分别为A 、B 、C ,若A 、B 、C 都没有取到,则有34A 24=种不同的取法;若A 、B 、C 取到一个,则有112324C A A 72=种不同的取法;若A 、B 、C 取到两个,则有()21113244C A A C 36+=种不同的取法;若A 、B 、C 取到三个,则有12C 2=种不同的取法;综上可得一共有2472362134+++=种不同的取法.故答案为:134四、解答题:本大题共5小题,满分77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且sin sin sin B C A ⋅=,2a =.(1)求ABC V 的面积S ;(2)若2212b c +=,求A .【答案】(1)2(2)π4【解析】【分析】(1)利用正弦定理得到sin 2b C a ⋅==,从而得到2sin C b=,再由面积公式计算可得;(2)由余弦定理得到cos 4bc A =,从而得到2cos bc A a =,再由正弦定理将边化角,即可求出tan A ,从而得解.【小问1详解】因为sin sin sin B C A ⋅=,2a =,由正弦定理可得sin 2b C a ⋅==,所以2sin C b=,所以112sin 2222ABC S ab C b b==⨯⨯= ;【小问2详解】因为2222cos a b c bc A =+-,又2212b c +=,2a =,所以4122cos bc A =-,所以cos 4bc A =,则2cos bc A a =,由正弦定理可得2sin sin co s s in A B C A =,又sin sin sin B C A ⋅=,所以2sin cos sin A A A =,显然sin 0A >,所以cos sin A A =,则tan 1A =,又()0,πA ∈,所以π4A =.16.如图,四棱锥P ABCD -的底面是正方形,且2AB =,PA PB ⊥.四棱锥P ABCD -的体积为43.(1)证明:平面PAB ⊥平面ABCD ;(2)求平面PAB 与平面PCD 夹角的余弦值.【答案】(1)证明见解析(2)55【解析】【分析】(1)取AB 的中点O ,连接OP ,即可得到1PO =,设P 到平面ABCD 的距离为h ,根据锥体的体积公式求出1h =,即可得到⊥PO 平面ABCD ,从而得证;(2)取CD 的中点,连接OE ,建立空间直角坐标系,利用空间向量法计算可得.【小问1详解】取AB 的中点O ,连接OP ,因为2AB =,PA PB ⊥,所以112PO AB ==,又四棱锥P ABCD -的底面是正方形,所以224ABCD S ==,设P 到平面ABCD 的距离为h ,则1144333AB P ABCD CD V hS h -==⨯⨯=,所以1h =,所以PO h =,即⊥PO 平面ABCD ,又PO ⊂平面PAB ,所以平面PAB ⊥平面ABCD;【小问2详解】取CD 的中点,连接OE ,则//OE BC ,即OE AB ⊥,如图建立空间直角坐标系,则0,0,1,()1,2,0C ,()1,2,0D -,所以()2,0,0DC = ,()1,2,1PC =-,设平面PCD 的法向量为(),,n x y z = ,则2020n DC x n PC x y z ⎧⋅==⎪⎨⋅=+-=⎪⎩,取()0,1,2n = ,又平面PAB 的一个法向量为()0,1,0m =,设平面PAB 与平面PCD 夹角为θ,则cos 5m n m n θ⋅===⋅ ,所以平面PAB 与平面PCD夹角的余弦值为5.17.已知函数()()()2e21e 2210xx f x a ax a a =-++++>.(1)求函数()f x 在0x =处的切线方程;(2)讨论函数()f x 的单调性;(3)若函数()f x 存在两个零点1x ,2x ,且120x x +>,求实数a 的取值范围.【答案】(1)0y =(2)答案见解析(3)()1,+∞【解析】【分析】(1)求出()0f ,再求出导函数,即可得到切线的斜率,从而求出切线方程;(2)由(1)可得()()()12e exxf x a=--',再分1a =、1a >、01a <<三种情况讨论,分别求出函数的单调区间;(3)由()00f =,可得()f x 必有一个零点为0,再结合(2)讨论可得.【小问1详解】因为()()()2e21e 2210xx f x a ax a a =-++++>,所以()00f =,()()22e21e 2xx f x a a '=-++,则()00f '=,所以函数()f x 在0x =处的切线方程为0y =;【小问2详解】函数()()()2e 21e 2210xx f x a ax a a =-++++>的定义域为R ,且()()()()22e21e 22e e 1xx x x f x a a a '=--+=-+,当1a =时,()()22e 10x f x '=-≥恒成立,所以()f x 在R 上单调递增;当1a >时,则当ln x a >或0x <时()0f x '>,当0ln x a <<时()0f x '<,所以()f x 在(),0-∞,()ln ,a +∞上单调递增,在()0,ln a 上单调递减;当01a <<时,则当0x >或ln x a <时()0f x '>,当ln 0a x <<时()0f x '<,所以()f x 在(),ln a -∞,()0,∞+上单调递增,在()ln ,0a 上单调递减;综上可得,当1a =时,()f x 在R 上单调递增;当1a >时,()f x 在(),0-∞,()ln ,a +∞上单调递增,在()0,ln a 上单调递减;当01a <<时,()f x 在(),ln a -∞,()0,∞+上单调递增,在()ln ,0a 上单调递减.【小问3详解】因为()00f =,()f x 必有一个零点为0,由(1)可得,当1a =时()f x 只有一个零点,不符合题意;当1a >时,()f x 在(),0-∞,()ln ,a +∞上单调递增,在()0,ln a 上单调递减,显然()()ln 00f a f <=,当()ln 21x a >+⎡⎤⎣⎦时()e 21x a >+,则()e 210xa -+>,e 0x>,20ax >,所以()()()2e21e 221e 21e 2210xx x xf x a ax a a ax a ⎡⎤=-++++=-++++>⎣⎦,所以()f x 在()ln ,a +∞上存在一个零点,此时()f x 有两个零点1x ,2x (不妨令12x x <),且10x =,()2ln ,x a ∈+∞,即20x >,满足120x x +>;当01a <<时,()f x 在(),ln a -∞,()0,∞+上单调递增,在()ln ,0a 上单调递减,所以()f x 在()0,∞+不存在零点,且一个零点为0,则另一零点不可能大于0,此时不满足120x x +>,故舍去;综上可得实数a 的取值范围为()1,+∞.18.密室逃脱是当下非常流行的解压放松游戏,现有含甲在内的7名成员参加密室逃脱游戏,其中3名资深玩家,4名新手玩家,甲为新手玩家.(1)在某个游戏环节中,需随机选择两名玩家进行对抗,若是同级的玩家对抗,双方获胜的概率均为12;若是资深玩家与新手玩家对抗,新手玩家获胜的概率为13,求在该游戏环节中,获胜者为甲的概率;(2)甲作为上一轮的获胜者参加新一轮游戏:如图,有两间相连的密室,设两间密室的编号分别为①和②.密室①有2个门,密室②有3个门(每个门都可以双向开),甲在每个密室随机选择1个门出去,若走出密室则挑战成功.若甲的初始位置为密室①,设其挑战成功所出的密室号为()1,2X X =,求X 的分布列.【答案】(1)542(2)分布列见解析【解析】【分析】(1)先求出7人中随机选择2人的情况数和包含甲的情况数,分析得到6种情况中,甲和资深玩家对抗的情况有3种,和同级的玩家对抗情况有3种,分两种情况,求出甲获胜的概率,相加即可;(2)设1P 为甲在密室①,且最终从密室①走出密室,挑战成功的概率,2P 为甲在密室②,且最终从密室①走出密室,挑战成功的概率,分析得到两个方程,求出135P =,从而得到()315P X ==和()225P X ==,得到分布列.【小问1详解】7人中随机选择2人,共有27C 21=种情况,其中含甲的情况有16C 6=种,6种情况中,甲和资深玩家对抗的情况有3种,和同级的玩家对抗情况有3种,则甲和资深玩家对抗并获胜的概率为31121321⨯=,和同级的玩家对抗并获胜的概率为31321242⨯=,故在该游戏环节中,获胜者为甲的概率为135214242+=;【小问2详解】设1P 为甲在密室①,且最终从密室①走出密室,挑战成功的概率,2P 为甲在密室②,且最终从密室①走出密室,挑战成功的概率,考虑1P ,需考虑甲直接从a 号门走出密室或者进入密室②且最终从密室①走出密室,故121122P P =+①,考虑2P ,则甲从b 号门进行密室①,且从密室①走出密室,故2113P P =②,联立①②,可得135P =,所以()1315P X P ===,故()322155P X ==-=,故分布列如下:X12P352519.已知数列{}n a 的前n 项和为n S ,且23n n S a n =+-.(1)求数列{}n a 的通项公式;(2)设11,12,11k n n k k k n a b b k a n a -+=-⎧=⎨+-<<-⎩,*N k ∈(i )当2k ≥,11k n a +=-时,求证:()11n k n b a b -≥-⋅;(ii )求1n S nii b -=∑.【答案】(1)121n n a -=+(2)(i )证明见解析;(ii )114399n n ⎛⎫-⨯+ ⎪⎝⎭【解析】【分析】(1)根据数列的前n 项和,可构造数列的递推公式,再构造等比数列,可求数列的通项公式.(2)先利用等差数列的前n 项和公式求12121k k i i b --=+∑,因为1n S ni i b -=∑()11141n nk i k i k -===+-∑∑114nk k k -==⋅∑,再利用错位相减法求和.【小问1详解】当1n =时,11213=+-a a ⇒12a =.当2n ≥时,23n n S a n =+-,1124n n S a n --=+-,两式相减得:1221n n n a a a -=-+⇒121n n a a -=-⇒()1121n n a a --=-.所以{}1n a -是以111a -=为首项,以2为公比的等比数列,所以112n n a --=⇒121n n a -=+.当1n =时,上式也成立.所以数列{}n a 的通项公式为:121n n a -=+【小问2详解】由题意:111,22,22k n k kn k n b b k n ---⎧==⎨+<<⎩,*N k ∈(i )当2k ≥,11k n a +=-时,1n b k =+,112k k a --=,()111221222k k k n b k k k k ---=+--⨯=⨯-.因为()11n k n b a b ---⋅()112212k k k k k --=⨯--+⋅()112k k k -=-⋅-,因为2k ≥,所以()()1122120k k k k k k --⋅-≥--=-≥,所以:()11n k n b a b -≥-⋅.(ii )因为()111222112nni n n i S n n n -=-=+=+=+--∑,所以21n n S n -=-.()()()()11121121212221222k k k k k i i b k k k -----=+--=-++⨯∑()141k k -=-,所以1n S ni i b -=∑()11141nnk i k i k -===+-∑∑114nk k k -==⋅∑设01211424344n n T n -=⨯+⨯+⨯++⋅ ,则()12141424144n nn T n n -=⨯+⨯++-⋅+⋅ 两式相减得:01134444n n n T n --=+++-⋅ 11433n n ⎛⎫=-⋅- ⎪⎝⎭,所以114399n n n T ⎛⎫=-⨯+⎪⎝⎭.即1n S ni i b -=∑114399n n ⎛⎫=-⨯+ ⎪⎝⎭.【点睛】关键点点睛:(1)当122k k n -<<时,数列{}n b 是首项为2k k +,公差为2k 的等差数列,项数为:1122121k k k ----=-.(2)当数列是“等差⨯等比”形式时,其前n 项和用“错位相减法”求和.。
2022年广东省佛山市顺德区中考数学二模试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 在−1、−√3、0、−√2这四个数中,最小的数是( )A. −1B. −√3C. 0D. −√22. 神舟十三号从距离地面约390千米空间站返回.将390千米用科学记数法表示为米.( )A. 3.9×102B. 0.39×103C. 39×104D. 3.9×1053. 在▱ABCD中,对角线AC,BD相交于点O,下列结论一定正确的是( )A. OB=ODB. AB=BCC. AC=BDD. ∠ABC+∠ADC=180°4. 如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是( )A. 13B. 14C. 16D. 185. (−12)−2=( )A. −14B. 14C. −4D. 46. 如图是一个几何体的三视图,对这个几何体的描述正确的是( )A. 底面是长方形B. 侧面是三角形C. 三棱柱D. 四棱柱7. 不等式组{x+1≥24x−8<0的解集在数轴上表示正确的是( )A. B.C. D.8. 一根钢管放在V形架内,横截面如图所示,钢管的半径是6.若∠ACB=60°,则阴影部分的面积是( )A. 18√3−12πB. 36√3−12πC. 18√3−6πD. 36√3−24π9. 命题:已知△ABC,AB=AC.求证:∠B<90°.运用反证法证明这个命题时,第一步应假设成立.( )A. AB≠ACB. ∠B>90°C. ∠B≥90°D. AB≠AC且∠B≥90°10. 如图,⊙O的两条弦AB,CD互相垂直,垂足为E,直径CF交线段BE于点G,且AC⏜=AF⏜,点E是AG的中点.下列结论正确的个数是( )①AB=CD;②∠C=22.5°;③△BFG是等腰三角形;④BG=√2AE.A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共7小题,共28.0分)11. 化简:(√2+1)(√2−1)=______ .12. 如图,点A,B,C在直线l上,PB⊥l,PA=6,PB=5,PC=7,点P到直线l的距离是______.13. 方程1x+3=2x的解为______.14. 若一组数据2,3,a,5,7的平均数为4,则它的众数是______.15. 在△ABC中,∠ACB=90°,∠A=30°,D是AB的中点,CD=3,则AC=______.16. 化简:x2−4x+4x2+2x ÷(4x+2−1)=.17. 若等腰三角形一腰上的高与另一腰的夹角为48°,则底角的度数为______.三、解答题(本大题共8小题,共62.0分。
2023年初三模拟考试数学满分为120分,考试时间90分钟.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数为( )A. 13−B. 1C.D. π 【答案】A【解析】【分析】先根据负指数幂进行计算,再根据实数的大小比较法则比较数的大小,即可得到答案. 【详解】解:1133−= , 11π3∴<<<, 故选:A .【点睛】本题考查了实数的大小比较,负指数幂,熟练掌握:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.2. 如图,a b ∥,130∠=°,则2∠的度数是( )A. 150°B. 145°C. 35°D. 30°【答案】D【解析】 【分析】根据两直线平行,内错角相等可直接得到答案.【详解】∵,130a b ∠=° ,∴2130∠=∠=°,故选:D .【点睛】本题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.3. 当前随着新一轮科技革命和产业变革孕育兴起,新能源汽车产业正进入加速发展的新阶段.下列图案是我国的一些国产新能源车企的车标,车标图案既是轴对称图形,又是中心对称图形的是( )A.B. C. D.【答案】C【解析】 【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、该图形不是轴对称图形,也不是中心对称图形,不符合题意;B 、该图形是轴对称图形,不是中心对称图形,不符合题意;C 、该图形既是中心对称图形又是轴对称图形,符合题意;D 、该图形不是轴对称图形,是中心对称图形,不符合题意.故选:C .【点睛】本题考查了轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的概念是解题关键. 4. 下列各式中,正确的是( )A. B. 5=C. 6=D. = 【答案】D【解析】【详解】解:AB ,故本选项错误,不符合题意;CD故选:D .【点睛】本题主要考查了二次根式的加法、乘法、除法等知识点,熟练掌握二次根式的相关运算法则是解题的关键.5. 在平面直角坐标系中,将点(1,1)−向右平移2个单位后,得到点的坐标是( )A. (3,1)−B. (1,1)C. (1,3)−D. (1,1)−− 【答案】B【解析】【分析】把点()1,1−的横坐标加2,纵坐标不变,据此即可解答.【详解】解:点()1,1−向右平移2个单位长度后得到的点的坐标为()1,1.故选:B .【点睛】本题主要考查了坐标与图形变化﹣平移.掌握平移的规律“左右横,上下纵,正加负减”是解答本题的关键.6. 如图,工人砌墙时,先在两个墙脚的位置分别插一根木桩,再拉一条直的参照线,就能使砌的砖在一条直线上.这样做应用的数学知识是( )A. 两点之间,线段最短B. 两点确定一条直线C. 垂线段最短D. 三角形两边之和大于第三边【答案】B【解析】【分析】由直线公理可直接得出答案. 法用几何知识解释应是:两点确定一条直线.故选:B .【点睛】此题主要考查了直线的性质,要想确定一条直线,至少要知道两点.7. 如图是一个可以自由转动的转盘.转动转盘,当指针停止转动时,指针落在红色区域的概率是( )A. 1B. 23C. 12D. 13【答案】D【解析】【分析】用红色区域的圆心角除以周角度数即可. 【详解】解:转动转盘,当指针停止转动时,指针落在红色区域的概率是12013603°=°, 故选:D .【点睛】本题主要考查几何概率,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.8. 如图,以点O 为位似中心,作四边形ABCD 的位似图形A B C D ′′′′,已知13OA OA =',若四边形ABCD 的面积是2,则四边形A B C D ′′′′的面积是( )A. 3B. 6C. 9D. 18【答案】D【解析】 【分析】直接利用位似图形的性质得出面积比进而得出答案.【详解】解: 以点O 为位似中心,作四边形ABCD 的位似图形A B C D ′′′′,13OA OA =', 21139ABCDA B C D S S ′′′′ ∴== 四边形四边形, 四边形ABCD 的面积是2,∴四边形A B C D ′′′′的面积是18,故选:D .【点睛】本题主要考查了位似变换,正确得出面积比是解决此题的关键.9. 如图,在ABC 中,AB AC BC >>,按如下步骤作图.第一步:作BAC ∠的平分线AD 交BC 于点D ;第二步:作AD 的垂直平分线EF ,交AC 于点E ,交AB 于点F ;第三步:连接DE .则下列结论正确的是( )A. DE AB ∥B. EF 平分ACC. CD DE =D. CD BD =【答案】A【解析】 【分析】如图,由角平分线和垂直平分线的性质可得1223∠=∠∠=∠、,进而得到13∠=∠,最后运用平行线的判定定理即可说明B 选项正确.【详解】解:如图:∵AD 是BAC ∠的角平分,EF AD 的中垂线,∴12∠=∠,AE DE =,∴23∠∠=,∴13∠=∠,∴DE AB ∥.故选:A .【点睛】本题主要考查了角平分线的定义、垂直平分线的性质以及平行线的判定,灵活运用相关知识成为解答本题的关键.10. 某个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图所示的是该台灯的电流()A I 与电阻()R Ω的关系图象,该图象经过点()8800.25P ,.根据图象可知,下列说法正确的是( )A. 当0.25I <时,880R <B. I 与R 的函数关系式是()2000I R R >C. 当1000R >时,0.22I >D. 当8801000R <<时,I 的取值范围是0.220.25I <<【答案】D【解析】【分析】设I 与R 的函数关系式是()0U I R R >,利用待定系数法求出()2200I R R>,然后求出当1000R =时, 2200.221000I =,再由2200>,得到I 随R 增大而减小,由此对各选项逐一判断即可. 【详解】解:设I 与R 的函数关系式是()0U IR R >, ∵该图象经过点()8800.25P ,, ∴()0.250880U R =>, ∴220U =,∴I 与R 的函数关系式是()2200IR R >,故B 不符合题意; 当1000R =时, 2200.221000I=, ∵2200>,∴I 随R 增大而减小,∴当0.25I <时,880R >,当1000R >时,0.22I <,当8801000R <<时,I 的取值范围是0.220.25I <<,故A 、C 不符合题意,D 符合题意;故选D .【点睛】本题主要考查了反比例函数的实际应用,正确求出反比例函数解析式是解题的关键.二、填空题(本大题共5小题,每小题3分,共15分)11. 若实数a ,b 满足2(2)|3|0a b −++=,则ab =_________.【答案】6−【分析】根据非负数的性质列出算式求出a ,b 的值,代入计算即可得到答案.【详解】解: 2(2)|3|0a b −++=,2(2)|3|00a b ≥−+≥,, 2030a b ∴−=+=,,23a b ∴==−,,()236ab ∴=×−=−,故答案为:6−.【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键. 12. 如果一个三角形两边的长分别等于一元二次方程217660x x −+=的两个实数根,那么这个三角形的第三边的长可能是20吗?__________.(填“可能”或“不可能”)【答案】不可能【解析】【分析】先求出方程的解,再根据三角形三边关系定理判断即可得到答案.【详解】解: 217660x x −+=,()()1160x x ∴−−=, 11x ∴=或6x =,即三边为6、11、20,61120+< ,不符合三角形三边关系定理,∴这个三角形的第三边的长不可能是20,故答案为:不可能.【点睛】本题考查了解一元二次方程,三角形三边关系定理的应用,能求出一元二次方程的解是解此题的关键.13. 化学中直链烷烃的名称用“碳原子数+烷”来表示,当碳原子数为110 时,依次用天干——甲、乙、丙、丁、戊、己、庚、辛、壬、癸——表示,其中甲烷、乙烷、丙烷,丁烷的分子结构式如图所示,则第7个庚烷分子结构式中“H ”的个数是_________.【答案】16【分析】根据题目中的图形,可以发现“H ”的个数的变化特点,然后即可写出第7个庚烷分子结构式中“H ”的个数.详解】解:由图可得:甲烷分子结构中“H ”的个数是:2214+×=,乙烷分子结构中“H ”的个数是:2226+×=,丙烷分子结构中“H ”的个数是:2238+×=,……∴庚烷分子结构中“H ”的个数是:22716+×=,故答案为:16.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现“H ”的个数的变化特点. 14. 如图,在四边形ABCD 中,E 、F 分别是AD 、BC 的中点,G 、H 分别是BD 、AC 的中点,依次连接E 、G 、F 、H 得到四边形是__________.【答案】平行四边形【解析】【分析】根据中位线性质和平行四边形的判定条件,即可解答;【详解】解: E 、F 分别是AD 、BC 的中点,G 、H 分别是BD 、AC 的中点,,GF DC EH DC ∴∥∥,且11,22GF CD EH CD ==, GF EH ∴∥且GF EH =,∴四边形GFHE 为平行四边形,故答案为:平行四边形.【点睛】本题考查了中位线的性质,平行四边形的判定,能判断出GF 是BCD △的中位线,EH 是ACD 的中位线是解题的关键.15. 如图,AD 是一根3cm 的绳子,一端拴在柱子(点A )上,另一端(点D )拴着一只羊,EABC 为一道围墙,3AE >cm ,2AB =cm ,120ABC ∠=°,则羊最大的活动区域的面积是__________.(结果保【的留π)【答案】229cm 12π 【解析】【分析】羊最大的活动区域的面积是一个扇形+一个小扇形的面积.详解】解:如图所示:大扇形的圆心角是90度,半径是3, ∴面积229039cm 3604ππ°×°==, 小扇形圆心角是18012600°−°=°,半径是1, ∴面积226011cm 3606ππ°×°==,则羊最大的活动区域的面积是()2929cm 412ππ=, 故答案为:229cm 12π. 【点睛】本题关键是从图中找出小羊的活动区域是由哪几个图形组成的.三、解答题(一)(本大题共3小题,每小题8分,共24分)16. 求不等式组()3135131x x x x + >− −≥−的解集,并把不等式组的解集在数轴上表示出来.【答案】不等式组的解集为13x −≤<,图见解析【解析】【分析】先分别求出每一个不等式的解集,再根据不等式组解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无处找,即可得到解集,在数轴上画出解集即可.【【详解】解:()3135131x x x x + >− −≥−①②,解不等式①可得:()331x x +>−,333x x +>−,333x x −>−−,26x −>−,3x <,解不等式②可得:5133x x −≥−,5313x x −≥−,22x ≥−,1x ≥−,∴不等式组的解集为13x −≤<,在数轴上表示为:.大中间找,大大小小无处找,是解题的关键.17. 在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,调查统计了部分学生一周的课外阅读时长(单位:小时),整理数据后绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为__________,图①中m 的值为__________;(2)求统计的这部分学生一周课外阅读时长的平均数、众数和中位数.【答案】(1)20;30(2)统计的这部分学生一周课外阅读时长的平均数、众数和中位数分别为8,9,8【解析】【分析】(1)用条形统计图中的数据除以扇形统计图中对应的占比,即可得到总人数;再用学生一周的课外阅读时长为9小时的人数除以总人数,即可得到m的值;(2)按照平均数,众数和中位数的概念,依次求出即可.【小问1详解】解:本次接受调查的人数为315%20÷=(人);根据条形统计图,学生一周的课外阅读时长为9小时的人数为6人,故学生一周的课外阅读时长为9小时的人数占比为6200.330÷==%,30m∴=,故答案为:20;30【小问2详解】解:36748596210820x×+×+×+×+×=,观察条形统计图,9出出现的次数最多,故众数为9;将这组数据从小到大排列,其中位于中间的两个数都是8,故中位数为8,∴统计的这部分学生一周课外阅读时长的平均数、众数和中位数分别为8,9,8.键.18. 按下列程序计算,把答案填写在表格内,并回答下列问题:(1)根据上述计算你发现了什么规律?(2)你能说明你发现的规律是正确的吗?【答案】(1)输入除0以外的数,输出结果都为1;(2)见解析【解析】【分析】(1)输入-2时,输出结果为1,输入13−时,输出结果为1,即可得;(2)结合题意可将程序表示:221()(0)x x x x x+÷−≠,进行计算即可得. 【详解】解:(1)输入-2时,输出结果为1,输入13−时,输出结果为1,故可得规律:输入除0以外的数,输出结果都为1; (2)结合题意可将程序表示为:221()(0)x x x x x+÷−≠, 222221111()11x x x x x x x x x x x+÷−=+−=+−=,所以发现的规律是正确的.【点睛】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的顺序和运算法则.四、解答题(二)(本大题共3小题,每小题9分,共27分)19. 佛山奇龙大桥犹如一架巨大的竖琴,横跨于东平水道上,是禅城区的“东大门”,大桥采用独塔斜拉桥结构,全长395米,已知主塔AB 垂直于桥面BC 于点B ,其中两条斜拉索AD 、AC 与桥面BC 的夹角分别为60°和45°,两固定点D 、C 之间的距离约为60m ,求主塔AB 的高度.(结果保留整数,参考数1.41≈1.73≈)【答案】141m 【解析】【分析】在Rt △ABD中,利用正切的定义求出=AB ,然后根据45C ∠=°得出AB BC =,列方程求出BD 即可解答. 【详解】解:∵AB BC ⊥,∴90ABC ∠=°, 在Rt △ABD中,tan 60AB BD =⋅°=,在Rt ABC △中,45C ∠=°,为∴AB BC=,∴AB BD CD=+,60BD=+,∴)301 BD=m,∴)16090141.3141 AB BC==30++=+=≈m.答:主塔AB的高度约为141m.【点睛】本题主要考查了解直角三角形的应用,熟练掌握正切的定义是解题的关键.20. 某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)(1)分别求出y1、y2的函数关系式(不写自变量取值范围);(2)通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?【答案】(1)y1=273x−+;y2=13x2﹣4x+13;(2)5月出售每千克收益最大,最大为73.【解析】【分析】(1)观察图象找出点的坐标,利用待定系数法即可求出y1和y2的解析式;(2)由收益W=y1-y2列出W与x的函数关系式,利用配方求出二次函数的最大值.【详解】解:(1)设y1=kx+b,将(3,5)和(6,3)代入得,3563k bk b+=+=,解得237kb=−=.∴y1=﹣23x+7.设y2=a(x﹣6)2+1,把(3,4)代入得,4=a(3﹣6)2+1,解得a=13.∴y2=13(x﹣6)2+1,即y2=13x2﹣4x+13.(2)收益W =y 1﹣y 2, =﹣23x+7﹣(13x 2﹣4x+13) =﹣13(x ﹣5)2+73, ∵a =﹣13<0,∴当x =5时,W 最大值=73. 故5月出售每千克收益最大,最大为73元. 【点睛】本题考查了一次函数和二次函数的应用,熟练掌握待定系数法求解析式是解题关键,掌握配方法是求二次函数最大值常用的方法21. 如图,在△ABC 中,以边AB 为直径作⊙O ,交AC 于点D ,点E 为边BC 上一点,连接DE .给出下列信息:①AB =BC ;②∠DEC =90°;③DE 是⊙O 的切线.(1)请在上述3条信息中选择其中两条作为条件,剩下的一条作为结论,组成一个命题.你选择的两个条件是______,结论是______(只要填写序号).判断此命题是否正确,并说明理由; (2)在(1)的条件下,若CD =5,CE =4,求⊙O 的直径.【答案】(1)①和②,③,真命题,证明见解析;(答案不唯一) (2)254【解析】【分析】(1)选择①和②为条件,③为结论,连接OD ,由等边对等角可得出∠A =∠C ,∠A =∠ODA ,即可推出∠C =∠ODA ,从而可证明//OD BC ,再根据平行线的性质和∠DEC =90°,可证明∠ODE =∠DEC =90°,即OD DE ⊥,说明DE 是⊙O 的切线;(2)连接BD ,由直径所对圆周角为直角得出DB AC ⊥.再结合等腰三角形三线合一的性质可得出AD =CD =5.又易证 ABD CDE ,即得出AB ADCD CE=,代入数据即可求出AB 的长. 【小问1详解】解:选择①和②为条件,③为结论,且该命题为真命题. 证明:如图,连接OD , ∵AB =BC , ∴∠A =∠C . ∵OA =OD , ∴∠A =∠ODA , ∴∠C =∠ODA , ∴//OD BC . ∵∠DEC =90°,∴∠ODE =∠DEC =90°,即OD DE ⊥, ∴DE 是⊙O 的切线.故答案为:①和②,③;(答案不唯一) 【小问2详解】 解:如图,连接BD , ∵AB 为直径,∴90ADB ∠=°,即DB AC ⊥. ∵AB =BC , ∴AD =CD =5.在ABD △和CDE 中90ADB DEC A C ∠=∠=° ∠=∠,∴ ABD CDE , ∴AB AD CD CE=,即554AB =, ∴254AB =. 故圆O 的直径为254.【点睛】本题考查等腰三角形的性质,平行线的判定和性质,切线的判定和性质,圆周角定理以及三角形相似的判定和性质.解题的关键是连接常用的辅助线.五、解答题(三)(本大题共2小题,每小题12分,共24分)22. 在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“不动点”,例如(3,3)−−、(1,1)、(2023,2023)都是“不动点”,已知双曲线9y x=. (1)求双曲线9y x=上的“不动点”; (2)若抛物线23y ax x c =−+(a 、c 为常数)上有且只有一个“不动点”. ①当1a >时,求c 的取值范围; ②如果1a =,过双曲线9y x=图象上第一象限的“不动点”作平行于x 轴的直线l ,若抛物线上有四个点到l 的距离为m ,直接写出m 的取值范围.【答案】(1)双曲线9y x=上的“不动点”为()3,3和()3,3−−; (2)①04c <<;②504m <<【解析】【分析】(1)根据定义设“不动点”为(),x x ,即可求解;(2)①设抛物线23y ax x c =−+(a 、c 为常数)上的“不动点”为(),x x ,根据抛物线上有且只有一个“不动点”,列不等式求解;②根据题意先求出抛物线解析式和直线l ,设直线r 在直线l 下方且到直线l 的距离为m ,直线32x =交直线l 于点A ,交直线r 于点C ,可得AB 即可求出答案. 【小问1详解】 解:设双曲线9y x=上的“不动点”为(),x x ,则9x x=,解得:13x =,23x =-, ∴双曲线9y x=上的“不动点”为()3,3和()3,3−−; 【小问2详解】解:①设抛物线23y ax x c =−+(a 、c 为常数)上的“不动点”为(),x x , 则23x ax x c =−+,∵抛物线上有且只有一个“不动点”,∴关于x 的一元二次方程240ax x c −+=有两个相等的实数根, ∴()224440b ac ac −−−==, 解得:4a c=, ∵1a >, ∴4>1c, ∴04c <<; ②当1a =时,则41c=, 解得:4c =,∴抛物线为234y x x =−+, 由(1)得:双曲线9y x=在第一象限上的“不动点”为()3,3, ∴直线l 即直线3y =,∵223734+24y x x x =−+=−, ∴抛物线顶点坐标为37,24,对称轴为直线32x =,设直线r 在直线l 下方且到直线l 的距离为m ,直线32x =交直线l 于点A ,交直线r 于点C , ∴AC m =,3,32A, ∴75344AB =−=, 设直线t 与直线r 关于直线l 对称,∵当点C 在点B 上方时,抛物线上四个点到l 的距离为m , ∴504m <<; 【点睛】本题考查反比例函数图像与性质、二次函数的图像与性质、新定义问题的求解等,综合性强、难度大.23. 如图1,在矩形ABCD 中,5AB =,3AD =,点P 在线段AB 上运动,设AP x =,现将纸片折叠,使点D 与点P 重合,得折痕EF (点E 为折痕与AD 或AB 的交点,点F 为折痕与BC 或CD 的交点),再将纸片还原.(1)①当0x =时,折痕EF 的长为__________; ②当x =__________时,点E 与点A 重合.(2)当点P 与点B 重合时,在图2中画出四边形DEPF ,求证:四边形DEPF 为菱形,并求出菱形DEPF 的周长;(3)如图3,若点E 在边AD 上,点F 在边CD 上,线段DP 与EF 相交于点M ;连接EP ,FP ,用含x 的代数式表示四边形DEPF 的面积. 【答案】(1)①5;②3 (2)证明见解析,周长为685(3)33271224x x x++【解析】【分析】(1)①当0x =时,折痕EF 的长正好等于矩形的长为5;②当点E 与点A 重合时,画出符合要求的图形,根据折叠的性质即可得到答案;(2)由由折叠的性质可得:DE PE DF PF DEF PEF ==∠=∠,,,由矩形的性质可得AB CD ,从而得到PEF DFE ∠=∠,则DFE DEF ∠=∠,从而得到DE PD DF PF ===,即可得证,设DF x =,则DF PF x ==,5CF x =−,在Rt CFP △中,222CF PC PF +=,解方程即可得到答案; (3)作FGAB ⊥,交AB 于G ,在Rt AEP △中,222AE AP EP +=,由勾股定理可得,296xAE −=,则296x DE PE +==,通过证明AEP GPF ∽,可得AP EP FG PF =,即2963x x PF+=,可得29+2x PF x=,最后由APE DEPFAPFD S S S =− 四边形梯形即可得到答案. 【小问1详解】解:① 折叠纸片,使点D 与点P 重合,得折痕EF ,∴当0AP x ==时,点D 与点P 重合,即为A D 、重合,B C 、重合,5EF AB CD ∴===,故答案为:5;②当点E 与点A 重合时,如图所示:由折叠的性质可得:3AD AP ==,∴当3x =时,点E 与点A 重合,故答案为:3; 【小问2详解】,由折叠性质可得:DE PE DF PF DEF PEF ==∠=∠,,, 四边形ABCD 为矩形,AB CD ∴∥,PEF DFE ∴∠=∠,DFE DEF ∴∠=∠,DE PD DF PF ∴===,∴四边形DEPF 为菱形,设DF x =,则DF PF x ==,5CF x =−,的在Rt CFP △中,222CF PC PF +=,()22253x x ∴−+=, 解得:751x =, ∴菱形DEPF 的周长为1768455×=; 【小问3详解】 解:如图所示,作FGAB ⊥,交AB 于G ,,则四边形ADFG 为矩形,3FG AD ∴==,由折叠的性质可得:90DE PE DF PF EPF EDF ==∠=∠=°,,, 设AE a =,则3DE PE a ==−, 在Rt AEP △中,222AE AP EP +=, 即()2223a x a +=−,解得:296x a −=,296x AE −∴=,296x DE PE +==, 9090EPA FPG EPA AEP ∠+∠=°∠+∠=° ,, AEP FPG ∴∠=∠,90EAP FGP ∠=∠=° , AEP GPF ∴ ∽,AP EP FG PF∴=,即2963x x PF+=,29+2x PF x∴=,第21页/共22页22319+19327322261224APE DEPF APFD x x x x S S S x x x x−=−=+×−⋅=++ 四边形梯形. 【点睛】本题主要考查了折叠的性质、矩形的性质、菱形的判定与性质、相似三角形的判定与性质、勾股定理,熟练在掌握折叠的性质、矩形的性质、菱形的判定与性质、相似三角形的判定与性质,添加适当的辅助线,是解题的关键.第22页/共22页。
2018年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.22.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107C.1.442×108D.0.1442×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆 B.菱形C.平行四边形 D.等腰三角形6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥27.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)分解因式:x2﹣2x+1= .13.(3分)一个正数的平方根分别是x+1和x﹣5,则x= .14.(3分)已知+|b﹣1|=0,则a+1= .15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B 1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简,再求值:•,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD 交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N 沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y 取得最大值?最大值为多少?2018年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣3.14.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107C.1.442×108D.0.1442×108【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:14420000=1.442×107,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B中的图形,故选:B.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.7【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆 B.菱形C.平行四边形 D.等腰三角形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥2【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE ∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分)分解因式:x2﹣2x+1= (x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x= 2 .【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14.(3分)已知+|b﹣1|=0,则a+1= 2 .【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.【点评】此题主要考查了非负数的性质以及绝对值的性质,正确得出a,b的值是解题关键.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为π.(结果保留π)【分析】连接OE,如图,利用切线的性质得OD=2,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD ﹣S扇形EOD计算由弧DE、线段EC、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC,易得四边形OECD为正方形,∴由弧DE、线段EC、CD所围成的面积=S正方形OECD ﹣S扇形EOD=22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B 1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点Bn的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B 3、B4的坐标进而得出点Bn的规律是解题的关键.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣1【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【解答】解:原式=2﹣1+2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简,再求值:•,其中a=.【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【解答】解:原式=•=2a,当a=时,原式=2×=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为800 人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+20)=300人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,(3,6);所以M1②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,(,﹣2),所以M2综上所述M的坐标为(3,6)或(,﹣2).【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD 交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==,证OE为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.【解答】解:(1)连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,解得:EF=.【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= 60 °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N 沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y 取得最大值?最大值为多少?【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为60.(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,=•OA•AB=×2×2=2,∴S△AOC∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===.(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin60°=x,=•OM•NE=×1.5x×x,∴S△OMN∴y=x2.∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x.当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y=•MN•OG=12﹣x,当x=4时,y有最大值,最大值=2,综上所述,y有最大值,最大值为.【点评】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
2021年广东省佛山市顺德区中考数学一模试卷一、选择题(共10小题).1.2020年,我国脱贫攻坚战取得了全面胜利,现行标准下的9899万农村贫困人口全部脱贫,其中9899万用科学记数法表示为()A.989.9×105B.98.99×106C.9.899×107D.0.9899×108 2.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.3.下列运算正确的是()A.a5÷a2=a3B.3a2+a=3a3C.(a2)3=a5D.a(a+1)=a2+14.为了估计某地区梅花鹿的数量,先捕捉20只梅花鹿做上标记,然后放走,待有标记的梅花鹿完全混合于鹿群后,第二次捕捉100只梅花鹿,发现其中5只有标记.估计这个地区的梅花鹿的数量约有()只.A.200B.300C.400D.5005.已知a=+1介于两个连续自然数之间,则下列结论正确的是()A.1<a<2B.2<a<3C.3<a<4D.4<a<56.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,则∠BAC的度数为()A.60°B.85°C.75°D.90°7.如图,E是平行四边形ABCD边AD延长线上一点,且DE=AD,连接BE、CE、BD.若AB=BE,则四边形BCED是()A.平行四边形B.矩形C.菱形D.正方形8.如图,一次函数y=x+1的图象与反比例函数y=的图象的一个交点为A(2,m),则不等式>3的解集是()A.x>2B.0<x<2C.x>0D.x<﹣3或0<x<29.如图,AB为⊙O的直径,C、D为⊙O上两点,∠BCD=30°,BD=2,则AB的长度为()A.3B.4C.5D.610.若关于x的不等式组有且只有8个整数解,关于y的方程=1的解为非负数,则满足条件的整数a的值为()A.﹣8B.﹣10C.﹣8或﹣10D.﹣8或﹣9或﹣10二、填空题(7个题,每题4分,共28分)11.因式分解:x2﹣16=.12.若关于x的一元二次方程x2﹣2x+c=0没有实数根.则实数c取值范围是.13.一个正多边形的每个内角都是144°,则这个多边形的内角和为.14.在边长为2的正方形ABCD中,点E是AB的中点,EF⊥BD于点F,则EF的长度.15.某校组织了一次初三科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品.C班提供的参赛作品的获奖率为50%,其它几个班的参赛作品情况及获奖情况绘制在图1和图2两幅尚不完整的统计图中,则获奖率最高的班级是.16.如图,在A点有一个热气球,由于受西风的影响,以20米/分的速度沿与地面成75°角的方向飞行,10分钟后到达C处,此时热气球上的人测得地面上的B点俯角为30°,则A、B两点间的距离为米.17.如图,在四边形ABCD中,AB=CB,AD=CD.若∠ABD=∠ACD=30°,AD=1,则△ABC的内切圆面积(结果保留π).三、解答题(一)(3个题,每题6分,共18分)18.计算:2cos30°﹣()﹣2++|1﹣|.19.先化简,再计算:(+)÷,其中x满足x2﹣2x+2=0.20.如图,M是⊙O的半径OA的中点,弦BC⊥AO于点M,过点C作CD⊥BA交BA的延长线于点D,连接AC.(1)求∠OAC的值;(2)求证:CD是⊙O的切线.四、解答题(二)(3个题,每题8分,共24分)21.某历史文化街区需要加装一批垃圾分类提示牌和垃箱.根据需求,提示牌比垃圾箱多5个,且提示牌和垃圾箱的个数之和不少于100个,则至少购买垃圾箱多少个?22.如图,在直角三角形ABC中,∠C=90°,AC=40,BC=30,作△ABC的内接矩形CDEF.设DE=x,求x取何值时矩形的面积最大?23.如图,点A在反比例函数y=(其中k>0)图象上,OA=2,以点A为圆心,OA 长为半径画弧交x轴正半轴于点B.(1)当OB=4时,求k的值;(2)过点B作BC⊥OB交反比例函数的图象于点C,连接OC交AB于点D,求的值.五、解答题(三)(2个题,每题10分,共20分)24.已知抛物线C1:y=﹣x2﹣x+4交x轴于点A、B,顶点为M,A、B、M关于原点的对称点分别是E、F、N.(1)求点A、B的坐标;(2)求出经过E、且以N为顶点的抛物线C2的表达式;(3)抛物线C2与y轴交点为D,点P是抛物线C2在第四象限部分上一动点,点Q是y 轴上一动点,求出一组P、Q的值,使得以点D、P、Q为顶点的三角形与△EFD相似.25.在△ABC中,AC=BC=10,AB=12,点D是AB边上的一点.(1)如图1,过点D作DM⊥AC于点M,DN⊥BC于点N,求DM+DN的值;(2)将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A、C重合),折痕交BC边于点E;①如图2,当点D是AB的中点时,求AP的长度;②如图3,设AD=a,若存在两次不同的折痕,使点B落在AC边上两个不同的位置,求a的取值范围.参考答案一、选择题(10个题,每题3分,共30分)1.2020年,我国脱贫攻坚战取得了全面胜利,现行标准下的9899万农村贫困人口全部脱贫,其中9899万用科学记数法表示为()A.989.9×105B.98.99×106C.9.899×107D.0.9899×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:9899万=98990000=9.899×107,故选:C.2.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图形,从上面看有两层,上层有4个正方形,下层有一个正方形且位于左二的位置.解:从上面看,得到的视图是:,故选:A.3.下列运算正确的是()A.a5÷a2=a3B.3a2+a=3a3C.(a2)3=a5D.a(a+1)=a2+1【分析】各式利用同底数幂的除法,合并同类项法则,幂的乘方运算法则,以及单项式乘以多项式法则判断即可.解:A、原式=a3,此选项计算正确;B、原式不能合并,此选项计算错误;C、原式=a6,此选项计算错误;D、原式=a2+a,此选项计算错误.故选:A.4.为了估计某地区梅花鹿的数量,先捕捉20只梅花鹿做上标记,然后放走,待有标记的梅花鹿完全混合于鹿群后,第二次捕捉100只梅花鹿,发现其中5只有标记.估计这个地区的梅花鹿的数量约有()只.A.200B.300C.400D.500【分析】设这个地区的梅花鹿的数量约有x只,根据做标记的梅花鹿熟练所占比例等于捕捉100只梅花鹿中有标记的只数所占比例列出方程,解之即可.解:设这个地区的梅花鹿的数量约有x只,根据题意,得:=,解得x=400,经检验:x=400是分式方程的解,所以这个地区的梅花鹿的数量约400只,故选:C.5.已知a=+1介于两个连续自然数之间,则下列结论正确的是()A.1<a<2B.2<a<3C.3<a<4D.4<a<5【分析】估算确定出的大小范围,进而确定出所求即可.解:∵9<13<16,∴3<<4,即4<+1<5,则4<a<5.故选:D.6.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,则∠BAC的度数为()A.60°B.85°C.75°D.90°【分析】先根据旋转的性质得∠C=∠E=70°,∠BAC=∠DAE,再根据垂直的定义得∠AFC=90°,则利用互余计算出∠CAF=90°﹣∠C=20°,所以∠DAE=∠CAF+∠EAC=85°,于是得到∠BAC=85°.解:∵△ABC绕点A逆时针旋转得到△ADE,∴∠C=∠E=70°,∠BAC=∠DAE,∵AD⊥BC,∴∠AFC=90°,∴∠CAF=90°﹣∠C=90°﹣70°=20°,∴∠DAE=∠CAF+∠EAC=20°+65°=85°,∴∠BAC=∠DAE=85°.故选:B.7.如图,E是平行四边形ABCD边AD延长线上一点,且DE=AD,连接BE、CE、BD.若AB=BE,则四边形BCED是()A.平行四边形B.矩形C.菱形D.正方形【分析】由平行四边形的性质得到AD∥BC,AD=BC,AB=DC,继而证得四边形BCED 是平行四边形,再证得BE=DC,根据矩形的判定即可证得▱BCED是矩形.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,AB=DC,∴DE∥BC,∵DE=AD,∴DE=BC,∴四边形BCED是平行四边形,∵AB=BE,∴BE=DC,∴▱BCED是矩形,故选:B.8.如图,一次函数y=x+1的图象与反比例函数y=的图象的一个交点为A(2,m),则不等式>3的解集是()A.x>2B.0<x<2C.x>0D.x<﹣3或0<x<2【分析】由点A在一次函数图象上利用一次函数图象上点的坐标特征即可求出点A的坐标,根据图象即可求得.解:∵点A在一次函数y=x+1的图象上,∴m=2+1=3,∴点A的坐标为(2,3).由图象可知,不等式>3的解集是0<x<2,故选:B.9.如图,AB为⊙O的直径,C、D为⊙O上两点,∠BCD=30°,BD=2,则AB的长度为()A.3B.4C.5D.6【分析】构造直角三角形,利用直角三角形30度角的性质解决问题即可.解:如图,连接AD.∵AB是直径,∴∠ADB=90°,∵∠A=∠DCB=30°,BD=2,∴AB=2BD=4,故选:B.10.若关于x的不等式组有且只有8个整数解,关于y的方程=1的解为非负数,则满足条件的整数a的值为()A.﹣8B.﹣10C.﹣8或﹣10D.﹣8或﹣9或﹣10【分析】解不等式组,得到不等式组的解集,根据整数解的个数判断a的取值范围,解分式方程,用含有a的式子表示y,根据解的非负性求出a的取值范围,确定符合条件的整数a,相加即可.解:不等式组,解①得x≤5,解②得x>,∴不等式组的解集为<x≤5;∵不等式组有且只有8个整数解,∴﹣3≤<﹣2,解得﹣10≤a<﹣7;解分式方程=1得y=﹣a﹣1(a≠8);∵方程的解为非负数,∴﹣a﹣1≥0即a≤﹣1;综上可知:﹣10≤a<﹣7;∵a是整数,∴a=﹣8或﹣9或﹣10.故选:D.二、填空题(7个题,每题4分,共28分)11.因式分解:x2﹣16=(x+4)(x﹣4).【分析】直接利用平方差公式分解因式得出答案.解:x2﹣16=(x+4)(x﹣4).故答案为:(x+4)(x﹣4).12.若关于x的一元二次方程x2﹣2x+c=0没有实数根.则实数c取值范围是c>1.【分析】利用判别式的意义得到△=(﹣2)2﹣4c<0,然后解不等式即可.解:根据题意得△=(﹣2)2﹣4c<0,解得c>1.故答案为c>1.13.一个正多边形的每个内角都是144°,则这个多边形的内角和为1440°.【分析】首先根据内角的度数可得外角的度数,再根据外角和为360°可得边数,利用内角和公式可得答案.解:∵一个正多边形的每个内角都是144°,∴它的每一个外角都是:180°﹣144°=36°,∴它的边数为:360°÷36=10,∴这个多边形的内角和为:180°(10﹣2)=1440°,故答案为:1440°.14.在边长为2的正方形ABCD中,点E是AB的中点,EF⊥BD于点F,则EF的长度.【分析】根据正方形的性质和等腰直角三角形的性质即可得到结论.解:∵四边形ABCD是正方形,∴∠ABD=45°,∵AB=2,点E是AB的中点,∴BE=AB=1,∵EF⊥BD,∴∠EFB=90°,∴EF=BE=,故答案为:.15.某校组织了一次初三科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品.C班提供的参赛作品的获奖率为50%,其它几个班的参赛作品情况及获奖情况绘制在图1和图2两幅尚不完整的统计图中,则获奖率最高的班级是C班.【分析】根据题意和统计图中的数据,可以计算各个班的获奖率,从而可以得到哪个班的获奖率最高.解:由统计图可得,A班的获奖率为:14÷(100×35%)×100%=40%,B班的获奖率为:11÷[100×(1﹣35%﹣20%﹣20%)]×100%=44%,C班的获奖率为50%,D班的获奖率为:8÷(100×20%)×100%=40%,由上可得,获奖率最高的班级是C班,故答案为:C班.16.如图,在A点有一个热气球,由于受西风的影响,以20米/分的速度沿与地面成75°角的方向飞行,10分钟后到达C处,此时热气球上的人测得地面上的B点俯角为30°,则A、B两点间的距离为200米.【分析】作AD⊥BC于D,根据速度和时间先求得AC的长,在Rt△ACD中,求得∠ACD 的度数,再求得AD的长度,然后根据∠B=30°求出AB的长.解:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=20×10=200(米),∴AD=AC•sin45°=100(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=200(米).故答案为:200.17.如图,在四边形ABCD中,AB=CB,AD=CD.若∠ABD=∠ACD=30°,AD=1,则△ABC的内切圆面积(结果保留π).【分析】根据AB=CB,AD=CD,得出BD为AC的垂直平分线;利用等腰三角形的三线合一可得∠ABC=60°,进而得出△ABC为等边三角形;利用∠ACD=30°,得出△BCD为直角三角形,解直角三角形,求得等边三角形ABC的边长,再利用内心的性质求出圆的半径,圆的面积可求.解:如图,设AC与BD交于点F,△ABC的内心为O,连接OA.∵AB=CB,AD=CD,∴BD是线段AC的垂直平分线.∴AC⊥BD,AF=FC.∵AB=BC,BF⊥AC,∴∠ABF=∠CBF=30°.∴∠ABC=60°.∴△ABC为等边三角形.∴∠BAC=∠ACB=60°.∵∠ACD=30°,∴∠BCD=∠ACD+∠ACB=30°+60°=90°.∵CD=AD=1,∴BC=.∴AB=BC=AC=.∵AB=BC,BF⊥AC,∴AF=AC=.∵O为,△ABC的内心,∴∠OAF=∠BAC=30°.∴OF=AF•tan30°=.∴△ABC的内切圆面积为π•=.故答案为.三、解答题(一)(3个题,每题6分,共18分)18.计算:2cos30°﹣()﹣2++|1﹣|.【分析】原式利用特殊角的三角函数值,负整数指数幂法则,立方根定义,以及绝对值的代数意义计算即可求出值.解:原式=2×﹣4﹣2+﹣1=﹣4﹣2+﹣1=2﹣7.19.先化简,再计算:(+)÷,其中x满足x2﹣2x+2=0.【分析】根据分式的混合运算法则把原式化简,整体代入计算,得到答案.解:原式=(﹣)×=×=,∵x2﹣2x+2=0,∴x2﹣2x=﹣2,∴原式==﹣1.20.如图,M是⊙O的半径OA的中点,弦BC⊥AO于点M,过点C作CD⊥BA交BA的延长线于点D,连接AC.(1)求∠OAC的值;(2)求证:CD是⊙O的切线.【分析】(1)如图,连接OB,OC,构造菱形ABOC,利用菱形的性质和圆的性质推知△AOC是等边三角形,则∠OAC=60°;(2)想证明CD是⊙O的切线,只需推知OC⊥CD即可.【解答】(1)解:如图,连接OB,OC,∵弦BC⊥AO于点M,AO是半径,∴点M是BC的中点.又∵点M是AO的中点,∴四边形ABOC是菱形.∴AC=OC.又∵OA=OC,∴AC=OC=OA.∴△AOC是等边三角形,∴∠OAC=60°;(2)证明:由(1)知,四边形ABOC是菱形,△AOC是等边三角形.∴∠ABO=∠ACO=60°.∴∠ABC=∠ABO=30°,∠OCB=∠ACO=30°.∵CD⊥BA,∴∠D=90°.∴∠BCD=60°.∴∠OCD=∠OCB+∠BCD=90°,即OC⊥CD.又∵OC是半径,∴CD是⊙O的切线.四、解答题(二)(3个题,每题8分,共24分)21.某历史文化街区需要加装一批垃圾分类提示牌和垃箱.根据需求,提示牌比垃圾箱多5个,且提示牌和垃圾箱的个数之和不少于100个,则至少购买垃圾箱多少个?【分析】设购买x个垃圾箱,则购买(x+5)个提示牌,根据提示牌和垃圾箱的个数之和不少于100个,即可得出关于x的一元一次不等式,解之取其中的最小整数值即可得出结论.解:设购买x个垃圾箱,则购买(x+5)个提示牌,依题意得:(x+5)+x≥100,解得:x≥.又∵x为整数,∴x的最小值为48.答:至少购买垃圾箱48个.22.如图,在直角三角形ABC中,∠C=90°,AC=40,BC=30,作△ABC的内接矩形CDEF.设DE=x,求x取何值时矩形的面积最大?【分析】设矩形CDEF为S,证明△ADE∽△ACB,利用相似比得到x:30=(40﹣CD):40,则用x表示出CD,再利用矩形的面积公式得到S=x•,然后利用二次函数的性质解决问题.解:设矩形CDEF为S,∵四边形CDEF为矩形,∴DE∥BC,∴△ADE∽△ACB,∴DE:BC=AD:AC,即x:30=(40﹣CD):40,∴CD=,∴S=x•=﹣(x﹣15)2+300,当x=15时,S有最大值,最大值为300.即x取15时矩形的面积最大.23.如图,点A在反比例函数y=(其中k>0)图象上,OA=2,以点A为圆心,OA 长为半径画弧交x轴正半轴于点B.(1)当OB=4时,求k的值;(2)过点B作BC⊥OB交反比例函数的图象于点C,连接OC交AB于点D,求的值.【分析】(1)过A点作x轴垂线段,即可得到A点坐标,进而可求k值;(2)利用图中相似三角形的性质可求比值.解:(1)作AF⊥x轴于F,交OC于E.∵OA=AB,由等腰三角形三线合一性质可得OF=BF=OB=2.∴AF==4.∴点A的坐标为(2,4).故k=xy=2×4=8.(2∵点A、C在反比例函数图象上,由反比例函数图象上点的性质可得OF•AF=OB•BC.∵OF=.∴AF=2BC.由∠EFO=∠CBO=90°,∠EOF=∠COB.∴△OEF∽△OCB,∴.∴EF=.AE=AF﹣EF=2BC﹣=.又由AF∥CB,∴∠AED=∠BCD,∴△AED∽△BCD.∴.故.五、解答题(三)(2个题,每题10分,共20分)24.已知抛物线C1:y=﹣x2﹣x+4交x轴于点A、B,顶点为M,A、B、M关于原点的对称点分别是E、F、N.(1)求点A、B的坐标;(2)求出经过E、且以N为顶点的抛物线C2的表达式;(3)抛物线C2与y轴交点为D,点P是抛物线C2在第四象限部分上一动点,点Q是y 轴上一动点,求出一组P、Q的值,使得以点D、P、Q为顶点的三角形与△EFD相似.【分析】(1)令y=0,由﹣x2﹣x+4=0求得的解就是点A、B的横坐标;(2)由(1)得到点A、B、M关于原点的对称点的坐标,然后利用顶点式求得抛物线C2的表达式;(3)先结合图形的特点,构造出与△EFD相似且顶点分别在y轴上和抛物线上的三解形,再利用相似三角形的性质求解.解:(1)当y=0时,由﹣x2﹣x+4=0,得x1=﹣4,x2=3,∴A(﹣4,0)、B(3,0).(2)由y=﹣x2﹣x+4=﹣(x)2+,得抛物线C1的顶点M(,+),∵点E、F、N分别与点A、B、M关于原点对称,∴E(4,0)、F(﹣3,0)、N(,);设经过点E且顶点为N的抛物线C2的解析式为y=a(x﹣)2,则(4﹣)2a=0,解得a=,∴抛物线C2的解析式为y=x2﹣x﹣4.(3)如图,作DP⊥AD交抛物线C2于点P,作PR⊥y轴于点R,在点R上方的y轴上取一点Q,使RQ=RP,则∠PQD=∠QPR=45°;由y=x2﹣x﹣4,得D(0,﹣4).∴OD=OB=4,∠DEF=∠EDQ=45°,又∵∠PDQ=90°﹣∠FDH=∠DFE,∴△QDP∽△EFD.作FH∥PD交y轴于点H,则∠DFH=90°;∵∠HFO=90°﹣∠OAD=∠ADO,∴=tan∠ADO=,∴OH=×3=.设直线FH的解析式为y=kx+,则﹣3k+=0,解得k=,∴y=x+,∴直线DP的解析式为y=x﹣4;由,得,(不符合题意,舍去).∴P(,);∵QR=PR=,∴点Q的纵坐标为+=,∴Q(0,).综上所述,P(,),Q(0,).25.在△ABC中,AC=BC=10,AB=12,点D是AB边上的一点.(1)如图1,过点D作DM⊥AC于点M,DN⊥BC于点N,求DM+DN的值;(2)将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A、C重合),折痕交BC边于点E;①如图2,当点D是AB的中点时,求AP的长度;②如图3,设AD=a,若存在两次不同的折痕,使点B落在AC边上两个不同的位置,求a的取值范围.【分析】(1)如图1中,连接CD,过点B作BE⊥AC于E,过点C作CH⊥AB于H.利用勾股定理求出CH,再利用面积法求出DM+DN的值.(2)①如图2中,连接PB,CD.证明PB⊥AC,CD⊥AB,利用面积法求出PB,可得结论.②如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.求出DP=DB时AD的值,结合图形即可判断.解:(1)如图1中,连接CD,过点B作BE⊥AC于E,过点C作CH⊥AB于H.∵CA=CB,CH⊥AB,∴AH=HB=6,∵S△ABC=S△ACD+S△BCD,DM⊥AC,DN⊥BC,∴•AB•CH=•AC•DM+•BC•DN,∴×12×8=×10×DM+×10×DN,∴DM+DN=.(2)①如图2中,连接PB,CD.∵CA=CB,AD=DB,∴CD⊥AB,由(1)可知,CD=8,∵DP=DA=DB,∴∠APB=90°,即BP⊥AC,∵•AB•CD=•AC•BP,∴BP=,∴AP===.②如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.∵CA=CB,CH⊥AB,∴AH=HB=6,∴CH===8,当DB=DP时,设BD=PD=x,则AD=12﹣x,∵sin A==,∴=,∴x=,∴AD=AB﹣BD=,观察图形可知当6<a<时,存在两次不同的折叠,使点B落在AC边上两个不同的位置.。
2023年广东省佛山市第四中学中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________A.核3.我国古代数学家祖冲之推算出0.0000003用科学记数法可以表示为(A.7310-⨯4.不透明的袋子中装有..C .D.二、填空题三、解答题16.解不等式组:52 3x x⎧⎪+⎨⎪⎩17.目前我市“校园手机数学兴趣小组的同学随机调查了若干名家长对无所谓;.B 基本赞成;.C 赞成;.D 反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)求出图2中扇形C 所对的圆心角的度数为______度,并将图1补充完整;(2)根据抽样调查结果,请你估计该校11000名中学生家长中持反对态度的人数.18.如图,Rt ABC △中,90ACB ∠=︒,CD AB ⊥于D .(1)尺规作图:作CBA ∠的角平分线,交CD 于点P ,交AC 于点Q (保留作图痕迹,不写做法);(2)若46BAC ∠=︒,求CPQ ∠的度数.19.经开区某中学计划举行一次知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.(1)求甲、乙两种奖品的单价;(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品不少于乙种奖品的一半,应如何购买才能使总费用最少?并求出最少费用.20.如图,AC 为平行四边形ABCD 的对角线,点E ,F 分别在AB ,AD 上,AE AF =,连接EF ,AC EF ⊥.(1)反比例函数的解析式;(2)若点P是线段OC上的一个动点,点P的坐标;若不存在,请说明理由.22.如图,AB是⊙O的直径,交CD的延长线于点G,连结(1)求证:△ECF∽△GCE(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点(1)求抛物线的解析式;+最小?若存在,请求出Q点坐标;若(2)在抛物线的对称轴上是否存在点Q使QB QC不存在,请说明理由;⊥,垂足为点D,连接PC,当(3)点P为AC上方抛物线上的动点,过点P作PD ACPCD与ACO△相似时,求点P的坐标.参考答案:【点睛】本题主要考查了简单的概率计算,熟知概率计算公式是解题的关键.5.D【分析】根据合并同类项法则,幂的乘方与积的乘方,同底数幂的乘法以及单项式除以单项式分别求出每个式子的值,再判断即可.【详解】A.22223x x x +=,故本选项不符合题意;B.336x x x ⋅=,故本选项不符合题意;C.()2510x x =,故本选项不符合题意;D.75222x x x ÷=,正确.故选:D .【点睛】本题考查了合并同类项法则,幂的乘方与积的乘方,同底数幂的乘法以及单项式除以单项式等知识点,能正确求出每个式子的值是解答此题的关键.6.C【分析】先求出355∠=︒,再根据平行线的性质解答.【详解】解:由题意可得:3180902180903555∠=︒-︒-∠=︒-︒-︒=︒,∵a b ∥,∴1355∠=∠=︒,故选:C.【点睛】本题主要考查了平行线的性质,属于基础题目,熟知两直线平行、同位角相等是解题的关键.7.B【分析】由三角形内角和定理可得105ABC ∠=︒,根据旋转的性质得出105ADE ABC ∠=∠=︒,利用平行线的性质即可得出75DAB ∠=︒,即为旋转角.【详解】解:∵在ABC 中,50BAC ∠=︒,25C ∠=︒,∴1801805025105ABC BAC C ∠=︒-∠-∠=︒-︒-︒=︒,∵将ABC 绕点A 逆时针旋转α角度(0180α<<︒)得到ADE ,连接OC 交圆O 于点E ',∴当点E 位于点E '位置时,线段在矩形ABCD 中,∠ABC =90°,∵2AB =,∴OA =OB =OE '=1,∵3BC =,∴2221OC OB BC =+=+∴101CE OC OE ''=-=-故答案为:101-【点睛】本题主要考查了圆周角定理,可得到点E 的运动轨迹是以AB⨯=(名)(2)解:1100060%6600即该校11000名中学生家长中有6600名家长持反对态度.【点睛】本题考查折线统计图与扇形统计图的综合、解题的关键是找出折线统计图与扇形统计图的关联信息.18.(1)见解析(2)68︒【分析】(1)根据角平分线的作法作图即可;(2)根据三角形内角和求出ABC ∠,根据角平分线的定义求出ABQ ∠,根据垂线的定义求出CDB ∠,最后利用对顶角相等得到68CPQ BPD ∠=∠=︒.【详解】(1)解:如图,点P 和点Q 即为所求;(2)∵90ACB ∠=︒,46BAC ∠=︒,∴180904644ABC ∠=︒-︒-︒=︒,∵BQ 平分ABC ∠,∴22ABQ CBQ ∠=∠=︒,∵CD AB ⊥,∴90CDB ∠=︒,∴18068CPQ BPD ABQ CDB ∠=∠=︒-∠-∠=︒.【点睛】本题考查了尺规作图—角平分线,垂线的定义,角平分线的定义,三角形内角和,对顶角相等,解题的关键是合理利用定理得出角的关系,通过准确计算得到角的度数.19.(1)甲种奖品的单价为20元,乙种奖品的单价为10元(2)当购买甲种奖品20件、乙种奖品40件时总费用最少,最少费用为800元【分析】(1)设甲种奖品的单价为x 元,乙种奖品的单价为y 元,根据:购买1件甲种奖品和2件乙种奖品共需40元,购买2件甲种奖品和3件乙种奖品共需70元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买甲种奖品m 件,则购买乙种奖品()60m -件,设购买两种奖品的总费用为w 元,由甲种奖品不少于乙种奖品的一半,可得出关于m 的取值范围,列出w 关于m 的函数关系式,利用一次函数的性质即可解决最值问题.【详解】(1)解:设甲种奖品的单价为x 元,乙种奖品的单价为y 元,四边形ABCD 是菱形,BD OA OC ∴=,12OB OD BD ==90AOB ∠=︒∴,1tan 2OA ABD OB ∠== ,112OA OB ∴==,22212AB OA OB ∴=+=+若E 为AB 的中点,则1522OE AB ==.【点睛】本题考查菱形的判定和性质,解直角是三角形,直角三角形斜边上的中线.熟练掌握相关性质,以及锐角三角函数的定义,是解题的关键.21.(1)4y x=(2)存在要求的点P ,坐标为(由(1)可知,对称轴为:2b x a =-=(4,0)- A ,(0,2)C ,CP AO∴∥,,C(0,2)∴点P的纵坐标为2,⊥, ,GA AC PD AC⊥∴∥,GA PD∴△∽△,GAC PDC。
2022年广东省佛山市禅城区中考数学五年真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、为庆祝建党百年,六年级一班举行手工制作比赛,下图小明制作的一个小正方体盒子展开图,把展开图叠成小正方体后,有“爱”字一面的相对面的字是( )A .的B .祖C .国D .我 2、如图,在ABC 中,AB AC =.分别以点A ,B 为圆心,大于12AB 的长为半径画弧.两弧相交于点M 和点N ,作直线MN 分别交BC 、AB 于点D 和点E ,若52C ∠=︒,则CAD ∠的度数是( ) ·线○封○密○外A .22°B .24°C .26°D .28°3、Rt ABC △和Rt CDE △按如图所示的位置摆放,顶点B 、C 、D 在同一直线上,AC CE =,90B D ∠=∠=︒,AB BC >.将Rt ABC △沿着AC 翻折,得到Rt AB C '△,将Rt CDE △沿着CE 翻折,得Rt CD E '△,点B 、D 的对应点B '、D 与点C 恰好在同一直线上,若13AC =,17BD =,则B D ''的长度为( ).A .7B .6C .5D .44、平面直角坐标系中,O 为坐标原点,点A 的坐标为()2,1-,将OA 绕原点按逆时针方向旋转90°得OB ,则点B 的坐标为( )A .()1,2B .()2,1-C .()2,1--D .()1,2--5、一张正方形纸片经过两次对折,并在如图所示的位置上剪去一个小正方形,打开后的图形是( )A .B .C .D .6、如图所示,AC BD =,AO BO =,CO DO =,30D ∠=︒,则C ∠等于( )A .60︒B .25︒C .30D .35︒ 7、对于新能源汽车企业来说,2021年是不平凡的一年,无论是特斯拉还是中国的蔚来、小鹏、理想都实现了销量的成倍增长,下图是四家车企的标志,其中既是轴对称图形,又是中心对称图形的是( ) A . B .C .D . 8、如图,在梯形ABCD 中,AD ∥BC ,过对角线交点O 的直线与两底分别交于点,EF ,下列结论中,错误的是( )·线○封○密○外A .AE OE FC OF =B .AE BF DE FC = C .AD OE BC OF = D .AD BC DE BF= 9、有理数a 、b 、c 、d 在数轴上对应的点的位置如图所示,则下列结论错误的是( )A .3d >B .0bc <C .0b d +>D .c a c a -+=10、如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,将△ABC 沿AC 翻折,得到△ADC ,再将△ADC 沿AD 翻折,得到△ADE ,连接BE ,则tan∠EBC 的值为( )A .819B .413C .25 D .512第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是两个全等的三角形,图中字母表示三角形的边长,则∠1的度数为________º.2、如果点A (﹣1,3)、B (5,n )在同一个正比例函数的图像上,那么n =___.3、如图,在一条可以折叠的数轴上,A 、B 两点表示的数分别是7-,3,以点C 为折点,将此数轴向右对折,若点A 折叠后在点B 的右边,且AA =2,则C 点表示的数是______.4、已知圆弧所在圆的半径为36cm .所对的圆心角为60°,则该弧的长度为______cm .5、单项式−A 2A 2的系数是______. 三、解答题(5小题,每小题10分,共计50分)1、郑州到西安的路程为480千米,由于西安疫情紧张,郑州物资中心对西安进行支援.甲乙两辆物资车分别从郑州和西安出发匀速行驶相向而行.甲车到西安后立即返回,已知乙车的速度为每小时80km ,且到郑州后停止行驶,进行消毒.它们离各自出发地的距离()km y 与行驶时间()h x 之间的关系如下图所示. (1)m =______,n =______. (2)请你求出甲车离出发地郑州的距离()km y 与行驶时间()h x 之间的函数关系式. ·线○封○密○外(3)求出点P的坐标,并说明此点的实际意义.(4)直接写出甲车出发多长时间两车相距40千米.2、小明根据学习函数的经验,对函数y=﹣|x|+3的图象与性质进行了探究.下面是小明的探究过程,请你解决相关问题.(1)如表y与x的几组对应值:①a=;②若A(b,﹣7)为该函数图象上的点,则b=;(2)如图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象:①该函数有(填“最大值”或“最小值”),并写出这个值为;②求出函数图象与坐标轴在第二象限内所围成的图形的面积.3、如图,在ABC 中(AB BC >),2AC BC =,BC 边上的中线AD 把ABC 的周长分成60和40两部分,求AC 和AB 的长.4、如图,直线112y x =+与x ,y 轴分别交于点B ,A ,抛物线22y ax ax c =-+过点A . (1)求出点A ,B 的坐标及c 的值; (2)若函数22y ax ax c =-+在14x -≤≤时有最小值为4-,求a 的值; (3)当12a =时,在抛物线上是否存在点M ,使得1ABM S =,若存在,请直接写出所有符合条件的点M 的坐标;若不存在,请说明理由. 5、先化简,再求值:222a ab b a b a b a b ab ⎛⎫---÷ ⎪--⎝⎭,其中a =,2b = -参考答案- 一、单选题1、B【分析】·线○封○密·○外正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,第一列的“我”与“的”是相对面,第二列的“我”与“国”是相对面,“爱”与“祖”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2、B【分析】由尺规作图痕迹可知MN垂直平分AB,得到DA=DB,进而得到∠DAB=∠B=50°,再利用等腰三角形的性质和三角形内角和计算出∠BAC,然后计算∠BAC-∠DAB即可.【详解】,解:∵AB AC∴∠B=∠C=52°,∠BAC=180°-∠B-∠C=180°-52°-52°=76°,由尺规作图痕迹可知:MN垂直平分AB,∴DA=DB,∴∠DAB=∠B=52°,∴∠CAD=∠BAC-∠DAB=76°-52°=24°.故选:B.【点睛】本题考查了线段垂直平分线的尺规作图及等腰三角形的性质等,熟练掌握线段垂直平分线的性质及等腰三角形的性质是解决本类题的关键. 3、A【分析】由折叠的性质得ABC AB C '≅,CDE CD E '≅,故ACB ACB '∠=∠,DCE D CE '∠=∠,推出90ACB DCE ∠+∠=︒,由90B D ∠=∠=︒,推出BAC DCE ∠=∠,根据AAS 证明ABC CDE ≅,即可得AB CD CD '==,BC ED CB '==,设BC x =,则17AB x =-,由勾股定理即可求出BC 、AB ,由B D CD CB AB BC ''''=-=-计算即可得出答案. 【详解】 由折叠的性质得ABC AB C '≅,CDE CD E '≅, ∴ACB ACB '∠=∠,DCE D CE '∠=∠, ∴90ACB DCE ∠+∠=︒, ∵90B D ∠=∠=︒, ∴90BAC ACB ∠+∠=︒, ∴BAC DCE ∠=∠, 在ABC 与CDE △中, B D BAC DCE AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABC CDE AAS ≅, ∴AB CD CD '==,BC ED CB '==, 设BC x =,则17AB x =-, ∴222(17)13x x +-=, 解得:5x =, ·线○封○密·○外∴5BC =,12AB =,∴1257B D CD CB AB BC ''''=-=-=-=.故选:A .【点睛】本题考查折叠的性质以及全等三角形的判定与性质,掌握全等三角形的判定定理和性质是解题的关键.4、D【分析】如图过点A 作AC 垂直于y 轴交点为C ,过点B 作BD 垂直于y 轴交点为D ,909090OA OB AOB A AOC AOC BOD =∠=︒∠+∠=︒∠+∠=︒,,,A BOD ∠=∠,故有AOC OBD ≌,21OD AC BD OC ====,,进而可得B 点坐标.【详解】解:如图过点A 作AC 垂直于y 轴交点为C ,过点B 作BD 垂直于y 轴交点为D∵909090OA OB AOB A AOC AOC BOD =∠=︒∠+∠=︒∠+∠=︒,,,∴A BOD ∠=∠在AOC △和OBD 中90A BODACO ODB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩ ∴()AOC OBD AAS ≌ ∴21OD AC BD OC ====, ∴B 点坐标为(1,2)-- 故选D . 【点睛】 本题考查了旋转的性质,三角形全等,直角坐标系中点的表示.解题的关键在于熟练掌握旋转的性质以及直角坐标系中点的表示. 5、A 【分析】 由平面图形的折叠及图形的对称性展开图解题. 【详解】 由第一次对折后中间有一个矩形,排除B 、C ; 由第二次折叠矩形正在折痕上,排除D ; 故选:A . 【点睛】 本题考查的是学生的立体思维能力及动手操作能力,关键是由平面图形的折叠及图形的对称性展开图解答. 6、C 【分析】 根据“SSS”证明△AOC ≌△BOD 即可求解. 【详解】·线○封○密○外解:在△AOC 和△BOD 中AC BD AO BO CO DO =⎧⎪=⎨⎪=⎩, ∴△AOC ≌△BOD ,∴∠C =∠D ,∵30D ∠=︒,∴C ∠=30°,故选C .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.7、C【分析】根据轴对称图形与中心对称图形的概念结合所给图形的特点即可得出答案.【详解】解:A 、是轴对称图形,不是中心对称图形,故错误;B 、是轴对称图形,不是中心对称图形,故错误;C 、既是轴对称图形,又是中心对称图形,故正确;D 、既不是轴对称图形,也不是中心对称图形,故错误.故选:C .【点睛】本题考查了中心对称图形及轴对称图形的特点,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.8、B【分析】根据AD ∥BC ,可得△AOE ∽△COF ,△AOD ∽△COB ,△DOE ∽△BOF ,再利用相似三角形的性质逐项判断即可求解. 【详解】解:∵AD ∥BC ,∴△AOE ∽△COF ,△AOD ∽△COB ,△DOE ∽△BOF , ∴AE AO OE FC CO OF ==,故A 正确,不符合题意; ∵AD ∥BC , ∴△DOE ∽△BOF , ∴DE OE DO BF OF BO ==, ∴AE DE FC BF =, ∴AE FC DE BF=,故B 错误,符合题意; ∵AD ∥BC , ∴△AOD ∽△COB , ∴AD AO DO BC CO BO ==, ∴AD OE BC OF =,故C 正确,不符合题意; ∴DE AD BF BC = , ∴AD BC DE BF =,故D 正确,不符合题意; 故选:B·线○封○密○外【点睛】本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.9、C【分析】根据有理数a ,b ,c ,d 在数轴上对应的点的位置,逐个进行判断即可.【详解】解:由有理数a ,b ,c ,d 在数轴上对应的点的位置可得,-4<d <-3<-1<c <0<1<b <2<3<a <4, ∴3d >,0bc <,0b d +<,c a c c a c a -+=-++=,故选:C .【点睛】本题考查数轴表示数的意义,根据点在数轴上的位置,确定该数的符号和绝对值是正确判断的前提.10、A【分析】解:如图,连接CE ,交AD 于,H 过E 作EM BD ⊥于,M 先求解1224,,55CHCE 设,,DM x EM y 再利用勾股定理构建方程组{A 2+A 2=9(3+A )2+A 2=(245)2 ,再解方程组即可得到答案.【详解】解:如图,连接CE ,交AD 于,H 过E 作EM BD ⊥于,M由对折可得:3,4,90,BC CD DE AC AE ACB ACD AED∴AA =AA =5,AA ⊥AA ,AA =AA , ∵12AAAA =12AAAA , ∴AA =125,AA =245, 设,,DMx EM y ∴{A 2+A 2=9(3+A )2+A 2=(245)2 解得:{A =2125A =7225 或{A =2125A =−7225 (舍去) ∴AA =6+2125=17125, ∴AAA ∠AAA =722517125=72171=819. 故选A 【点睛】 本题考查的是轴对称的性质,勾股定理的应用,一元二次方程的解法,锐角的正切,作出适当的辅助线构建直角三角形是解本题的关键. 二、填空题1、70【分析】·线○封○密○外如图(见解析),先根据三角形的内角和定理可得∠2=70°,再根据全等三角形的性质即可得.【详解】解:如图,由三角形的内角和定理得:∠2=180°−50°−60°=70°,∵图中的两个三角形是全等三角形,在它们中,边长为A和A的两边的夹角分别为∠2和∠1,∴∠1=∠2=70°,故答案为:70.【点睛】本题考查了三角形的内角和定理、全等三角形的性质,熟练掌握全等三角形的性质是解题关键.2、−15【分析】设过A(−1,3)的正比例函数为:A=AA,求解A的值及函数解析式,再把A(5,A)代入函数解析式即可.【详解】解:设过A(−1,3)的正比例函数为:A=AA,∴−A=3,解得:A=−3,所以正比例函数为:A=−3A,当A=5时,A=A=−3×5=−15,故答案为:−15【点睛】本题考查的是利用待定系数法求解正比例函数的解析式,正比例函数的性质,熟练的利用待定系数法列方程是解本题的关键.3、1【分析】根据A与B表示的数求出AB的长,再由折叠后AB的长,求出BC的长,即可确定出C表示的数.【详解】解:∵A,B表示的数为-7,3,∴AB=3-(-7)=4+7=10,∵折叠后AB=2,∴BC=10−22=4,∵点C在B的左侧,∴C点表示的数为3-4=-1.故答案为:-1.【点睛】本题考查了数轴,折叠的性质,熟练掌握各自的性质是解本题的关键.4、12A【分析】根据弧长公式直接计算即可.【详解】∵圆的半径为36cm.所对的圆心角为60°,∴弧的长度为:AAA180=60×A×36180=12π,·线○封○密○外故答案为:12π.【点睛】本题考查了弧长的计算,熟练掌握弧长公式及其使用条件是解题的关键.5、−12##【分析】单项式中的数字因数是单项式的系数,根据概念直接作答即可.【详解】解:单项式−A 2A 2的系数是−12, 故答案为:−12【点睛】本题考查的是单项式的系数的概念,掌握“单项式的系数的概念求解单项式的系数”是解本题的关键.三、解答题1、(1)8,6.5(2)()()1200496012048x x y x x ⎧≤≤⎪=⎨-<≤⎪⎩ (3)点P 的坐标为(5,360),点P 的实际意义是:甲车在行驶5小时后,甲乙两车分别距自己的出发地的距离为360千米(4)当甲车出发2.4小时或2.8小时或233小时两车相距40千米 【分析】(1)先根据题意判断出直线的函数图像时乙车的,折线的函数图像时甲车的,然后求出甲车的速度即可求出甲返回郑州的时间,即可求出m ;然后算出乙车从西安到郑州需要的时间即可求出n ;(2)分甲从郑州到西安和从西安到郑州两种情况求解即可;(3)根据函数图像可知P 点代表的实际意义是:在P 点时,甲乙两车距自己的出发地的距离相同,由此列出方程求解即可; (4)分情况:当甲车在去西安的途中,甲乙两车相遇前,当甲车在去西安的途中,甲乙两车相遇后,当甲车在返回郑州的途中,乙未到郑州时,当甲车在返回郑州的途中,乙已经到郑州时,四种情况讨论求解即可. (1) 解:∵甲乙两辆物资车分别从郑州和西安出发匀速行驶相向而行.甲车到西安后立即返回,乙车到底郑州后立即停止, ∴直线的函数图像是乙车的,折线的函数图像是甲车的, 由函数图像可知,甲车4小时从郑州行驶到西安走了480千米, ∴甲车的速度=480÷4=120千米/小时, ∴甲车从西安返回郑州需要的时间=480÷120=4小时, ∴m =4+4=8; ∵乙车的速度为80千米/小时, ∴乙车从西安到达郑州需要的时间=480÷80=6小时, ∵由函数图像可知乙车是在甲车出发0.5小时后出发, ∴n =0.5+6=6.5, 故答案为:8,6.5; (2) 解:当甲车从郑州去西安时, ∵甲车的速度为120千米/小时, ·线○封○密·○外∴甲车与郑州的距离()12004y x x =≤≤,当甲车从西安返回郑州时,∵甲车的速度为120千米/小时,∴甲车与郑州的距离()()480120496012048y x x x =--=-<≤,∴()()1200496012048x x y x x ⎧≤≤⎪=⎨-<≤⎪⎩; (3)解:根据函数图像可知P 点代表的实际意义是:在P 点时,甲乙两车距自己的出发地的距离相同, ∵此时甲车处在返程途中,∴()960120800.5x x -=-,解得5x =,∴9601205360y =-⨯=,∴点P 的坐标为(5,360),∴点P 的实际意义是:甲车在行驶5小时后,甲乙两车分别距自己的出发地的距离为360千米;(4)解:当甲车在去西安的途中,甲乙两车相遇前,由题意得:()120800.548040x x +-=-,解得 2.4x =;当甲车在去西安的途中,甲乙两车相遇后,由题意得:()120800.548040x x +-=+,解得 2.8x =;当甲车在返回郑州的途中,乙未到郑州时, 由题意得:()960120480800.540x x ----=⎡⎤⎣⎦ 解得10x =(不符合题意,舍去), 当甲车在返回郑州的途中,乙已经到郑州时, 由题意得:96012040x -= 解得233x =; 综上所述,当甲车出发2.4小时或2.8小时或233小时两车相距40千米. 【点睛】本题主要考查了从函数图像获取信息,一元一次方程的应用,正确理解题意是解题的关键. 2、(1)①0;②±10;(2)见解析;①最大值,3;②92 【分析】 (1)①根据表中对应值和对称性即可求解;②将点A 坐标代入函数解析式中求解即可; (2)根据表中对应值,利用描点法画出函数图象即可.①根据图象即解答即可;②根据图象在第二象限的部分,利用三角形的面积公式求解即可.(1) 解:①由表可知,该函数图象关于y 轴对称,∵当x =-3时,y =0,∴当x =3时,a =0,·线○封○密○外故答案为:0;②将A(b,-7)代入y=﹣|x|+3中,得:-7=﹣|b|+3,即|b|=10,解得:b=±10,故答案为:±10;(2)解:函数y=﹣|x|+3的图象如图所示:①由图象可知,该函数有最大值,最大值是3,故答案为:最大值,3;②由图象知,函数图象与坐标轴在第二象限内所围成的图形的面积为193322⨯⨯=.【点睛】本题考查求自变量或函数值、画函数图象、从图象中获取信息、解绝对值方程、三角形的面积公式,理解题意,准确从表中和图象中获取有效信息是解答的关键.3、48AC=,28AB=【分析】由题意可得60AC CD +=,40AB BD +=,由中线的性质得244AC BC CD BD ===,故可求得48AC =,即可求得28AB =. 【详解】 由题意知100AC CD BD AB +++=,60AC CD +=,40AB BD +=∵2AC BC =,D 为BC 中点∴244AC BC CD BD === ∴156044AC CD AC AC AC +=+== 即460485AC =⨯= 则BC =24,CD =BD =12 则40401228AB BD =-=-=且28>24符合题意.【点睛】本题考查了中线的性质,中线是三角形中从某边的中点连向对角的顶点的线段.4、(1)A (0,1),B (-2,0),c =1. (2)5或58-. (3)1112M ⎛⎫ ⎪⎝⎭,,()221M ,,34M M ⎝⎭⎝⎭, 【分析】 (1)根据两轴的特征可求y =12x +1与x 轴,y 轴的交点坐标,然后将点A 坐标代入抛物线解析式即可; ·线○封○密○外(2)将抛物线配方为顶点式,根据抛物线开口向上与向下两种情况,当a >0,在—1≤x ≤4时,抛物线在顶点处取得最小值,当x =1时,y 有最小值, 当a <0,在—1≤x ≤4时,离对称轴越远函数值越小,即可求解;(3)存在符合条件的M 点的坐标, 当12a =时,抛物线解析式为:2112y x x =-+,设点P 在y 轴上,使△ABP 的面积为1,点P (0,m ),12112ABP Sm =⨯⨯-=, 求出点P 2(0,0),或P 1(0,2),ABM ABP S S =,可得点M 在过点P 与AB 平行的两条直线上,①过点P 2与 AB 平行直线的解析式为:12y x =,联立方程组212112y x y x x ⎧=⎪⎪⎨⎪=-+⎪⎩,解方程组得出1112M ⎛⎫ ⎪⎝⎭,,()221M ,,②过点P 1与AB 平行的直线解析式为:122y x =+,联立方程组2122112y x y x x ⎧=+⎪⎪⎨⎪=-+⎪⎩,解方程组得出34M M ⎝⎭⎝⎭,即可. (1)解:在y =12x +1中,令y =0,得x =-2;令x =0,得y =1,∴A (0,1),B (-2,0).∵抛物线y =ax 2-2ax +c 过点A ,∴c =1.(2)解:y =ax 2-2ax +1=a (x 2-2x +1-1)+1=a (x -1)2+1-a ,∴抛物线的对称轴为x =1,当a >0,在—1≤x ≤4时,抛物线在顶点处取得最小值,∴当x =1时,y 有最小值,此时1-a=—4,解得a=5;当a<0,在—1≤x≤4时,∵4-1=3>1-(-1)=2,离对称轴越远函数值越小,∴当x=4时,y有最小值,此时9a+1-a=—4,解得a=58 -,综上,a的值为5或58 -.(3)解:存在符合条件的M点的坐标,分别为11 1 2M ⎛⎫⎪⎝⎭,,()221M,,34M M⎝⎭⎝⎭,,当12a=时,抛物线解析式为:2112y x x=-+,设点P在y轴上,使△ABP的面积为1,点P(0,m),∵12112ABPS m=⨯⨯-=,∴11m-=,解得122,0m m==,∴点P2(0,0),或P1(0,2),∴ABM ABPS S=,∴点M在过点P与AB平行的两条直线上,·线○封○密○外①过点P 2与 AB 平行直线的解析式为:12y x =, 将12y x =代入2112y x x =-+中, 212112y x y x x ⎧=⎪⎪⎨⎪=-+⎪⎩, 解得112x y =⎧⎪⎨=⎪⎩,21x y =⎧⎨=⎩, ∴1112M ⎛⎫ ⎪⎝⎭,,()221M , ②过点P 1与AB 平行的直线解析式为:122y x =+, 将122y x =+代入2112y x x =-+中, 2122112y x y x x ⎧=+⎪⎪⎨⎪=-+⎪⎩,解得x x y y ⎧⎧==⎪⎪⎪⎪⎨⎨⎪⎪==⎪⎪⎩⎩∴ 34M M ⎝⎭⎝⎭,,综上所述,存在符合条件的M点的坐标,分别为11 1 2M ⎛⎫⎪⎝⎭,,()221M,,34M M⎝⎭⎝⎭,.【点睛】本题考查一次函数与两轴的交点,抛物线顶点式,二次函数的最小值,平行线性质,联立方程组,三角形面积,掌握一次函数与两轴的交点,抛物线顶点式,二次函数的最小值,平行线性质,联立解方程组,三角形面积公式是解题关键.5、ab,1【分析】根据分式的减法和除法可以化简题目中的式子,然后将a,b的值代入化简后的式子即可解答本题.【详解】解:222a ab b a ba b a b ab⎛⎫---÷⎪--⎝⎭222+=a ab b a ba b ab--÷-2()=a b aba b a b---=ab;当a=2b==(2431=-=【点睛】本题考查分式的化简求值、分式的混合运算,需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.·线○封○密○外。
2022-2023学年广东省广州市中考数学专项突破仿真模拟测试题(3月)一.选一选(共10小题)1. 点A 在数轴上距离原点5个单位长度,若将点A 向右移动7个单位长度到点B ,此时点B 表示的数是( )A. 12B. 2C. 2或12D. 2或122. 在, ( 2)2,| 2.5|,0,3 π,15%中,非负数的个数为( )34A. 2B. 3C. 4D. 53. 6的值与4的相反数的差,再加上﹣7,结果为( )A. 5B. 9C. 3D. 34. 有理数﹣l 的值是( )A. 1B. -lC. ±lD. 25. 小胖同学买了3袋标注质量为200克的食品,他对这3袋食品的实际质量进行了检测,检测结果(用正数记超过标注质量的克数,用负数记没有足标注质量的克数)如下:+10、 16、 11,则这3袋食品的实际质量为( )A. 600克B. 593克C. 603克D. 583克6. 如果点A 、B 、C 、D所对应的数为a 、b 、c 、d ,则a 、b 、c 、d 的大小关系是( )A. a <c <d <bB. b <d <a <cC. b <d <c <aD.d <b <c <a7. 计算| |+1的结果是( )32A. B. 1C. D. 5212148. 下列说确的是( )A. 符号相反的两个数是相反数B. 任何一个负数都小于它的相反数C. 任何一个负数都大于它的相反数D. 0没有相反数9. 若|x +3|+|y 2|=0,则x +y 的值为( )A. 5B. 5C. 1D. 110. 2017的相反数是( )A. B. C. -2017 D. 20171201712017二.填 空 题(共5小题)11. 某产品包装上标明重量是150g±3g ,说明其重量在_____g 至_____g 之间为合格品.12. 的相反数是_____.3813. 值最小的数是_____, 3的值是_____.1314. 小李没有慎将墨水滴在数轴上,根据图中的数值,判断墨迹盖住的整数有_____个.15. 有理数可分为正有理数和负有理数两类._____(判断对错)三.解 答 题(共8小题)16. 画出数轴,并在数轴上表示下列各数,再用“<”号把各数连接: (+4),+( 1),| 3.5|, 2.5.17. 某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(当天运进大米8 吨,记作+8吨;当天运出大米15吨,记作﹣15吨.)某粮仓大米一周进出情况表(单位:吨)星期一星期二星期三星期四星期五星期六星期日﹣32+26﹣23﹣16m+42﹣21(1)若这一周,该粮仓存有大米88吨,求m 的值,并说明星期五该粮仓是运进还是运出大米,运进或运出大米多少吨?(2)若大米进出库的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用.18. 根据如图所示的数轴,解答下面问题.(1)写出点A 表示的数的值;(2)对A ,B 点进行如下操作:先把点A ,B 表示的数乘﹣,再把所得数对应的点向右平移131个单位长度,得到对应点A′,B′,在数轴上表示出点A′,B′.19. 把下列各数填在相应的表示集合的大括号里:2, 3, 1.5,0,π, 0.3(1)非正整数集合{ …}(2)正数集合{ …}(3)非正有理数集合{ …}(4)负分数集合{ …}(5)有理数集合{ …}.20. | a|=21,|+b|=21,且|a+b|= (a+b ),求a b 的值.21. 化简下列各式+( 7)= , (+1.4)= ,+(+2.5)= , [+( 5)]= ; [ ( 2.8)]= , ( 6)= , [ (+6)]= .22. 有一列数a 1,a 2,a 3,…a n ,若a 1=,从第二个数开始,每一个数都等于1与它前面那个12数的差的倒数.(1)试计算a 2,a 3,a 4;(2)根据以上计算结果,试猜测a 2016、a 2017的值.23. 若|x 2|+|y+2|=0,求x y 的相反数.2022-2023学年广东省广州市中考数学专项突破仿真模拟测试题(3月)一.选一选(共10小题)1. 点A 在数轴上距离原点5个单位长度,若将点A 向右移动7个单位长度到点B ,此时点B 表示的数是( )A. 12B. 2C. 2或12D. 2或12【正确答案】D【详解】点A 表示的数是±5,向右移动7个单位,则有5+7=12或-5+7=2,所以点B 表示的数是2或12.故选D.2. 在, ( 2)2,| 2.5|,0,3 π,15%中,非负数的个数为( )34A. 2B. 3C. 4D. 5【正确答案】C【详解】是非负数, ( 2)2=-4是负数,| 2.5|=2.5是非负数,0是非负数,3 π是负数,15%34是非负数,所以非负数共有4个.故选C.3. 6的值与4的相反数的差,再加上﹣7,结果为( )A. 5B. 9C. 3D. 3【正确答案】D【详解】根据题意得6-(-4)-7=3.故选D.4. 有理数﹣l 的值是( )A. 1B. -lC. ±lD. 2【正确答案】A【分析】根据值的定义即可得.【详解】有理数-1的值是1,故选A .本题主要考查值,掌握值的定义:数轴上某个数与原点的距离叫做这个数的值是解题的关键.5. 小胖同学买了3袋标注质量为200克的食品,他对这3袋食品的实际质量进行了检测,检测结果(用正数记超过标注质量的克数,用负数记没有足标注质量的克数)如下:+10、 16、 11,则这3袋食品的实际质量为( )A. 600克 B. 593克C. 603克D. 583克【正确答案】D【详解】根据题意得,10-16-11+300×2=583.故选D.6. 如果点A 、B 、C 、D 所对应的数为a 、b 、c 、d ,则a 、b 、c 、d的大小关系是( )A. a <c <d <bB. b <d <a <cC. b <d <c <aD.d <b <c <a 【正确答案】C【详解】数轴上右边的点表示的数大于左边的点所表示的数,所以b <d <c <a.故选C.7. 计算| |+1的结果是( )32A. B. 1C. D. 521214【正确答案】A【详解】.33511222-+=+=故选A.8. 下列说确的是( )A. 符号相反的两个数是相反数B. 任何一个负数都小于它的相反数C. 任何一个负数都大于它的相反数D. 0没有相反数【正确答案】B【详解】A. 符号相反的两个数是相反数,错误,如-1与5的符号相反,但没有是相反数;B. 任何一个负数都小于它的相反数,正确,因为负数的相反数是正数,而负数小于正数;C. 任何一个负数都大于它的相反数,错误,任何一个负数都小于它的相反数;D. 0没有相反数,错误,0的相反数是0.故选B.9. 若|x +3|+|y 2|=0,则x +y 的值为( )A. 5B. 5C. 1D. 1【正确答案】C【详解】根据非负数的性质得x +3=0,y -2=0,所以x =-3,y =2,则x +y =-3+2=-1.故选C.10. 2017的相反数是( )A. B. C. -2017 D. 20171201712017【正确答案】C【分析】根据一个数的相反数就是在这个数前面添上“−”号,求解即可.【详解】解:2017的相反数是-2017,故选C .本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.没有要把相反数的意义与倒数的意义混淆.二.填 空 题(共5小题)11. 某产品包装上标明重量是150g±3g ,说明其重量在_____g 至_____g 之间为合格品.【正确答案】 ①. 147 ②. 153【详解】根据题意得,150+3=153,150-3=147.故答案为(1). 147 (2). 15312. 的相反数是_____.38【正确答案】38【详解】根据相反数的定义得-的相反数是.3838故答案为.3813. 值最小的数是_____, 3的值是_____.13【正确答案】 ①. 0 ②. 313【详解】根据值的定义得,值最小的数是0;-的值是.133133故答案为(1). 0 (2). 3 .1314. 小李没有慎将墨水滴在数轴上,根据图中的数值,判断墨迹盖住的整数有_____个.【正确答案】6【详解】-6到-2之间的整数个数有3个,-1到3之间的整数个数有3个,共有6个.故答案为6.15. 有理数可分为正有理数和负有理数两类._____(判断对错)【正确答案】错误【详解】有理数可以分为正有理数,0,负有理数三类.故答案为错误.点睛:本题主要考查了有理数的分类,整数和分数统称为有理数.有理数按性质可分为正有理数,0,负有理数,其中正数可分为正整数和正分数,负数可分为负整数和负分数;按定义分可分为整数,分数,其中整数可分为正整数,0,负整数,分数可分为正分数,负分数.三.解答题(共8小题)16. 画出数轴,并在数轴上表示下列各数,再用“<”号把各数连接: (+4),+( 1),| 3.5|, 2.5.【正确答案】﹣(+4)<﹣2.5<+(﹣1)<|﹣3.5|【详解】试题分析:先把每个数化为最简,画数轴,描点,比较大小.试题解析: (+4)=-4,+( 1)=-1,| 3.5|=3.5, 2.5.在数轴上表示为:, (+4)< 2.5<+( 1)<| 3.5|.17. 某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(当天运进大米8 吨,记作+8吨;当天运出大米15吨,记作﹣15吨.)某粮仓大米一周进出情况表(单位:吨)星期一星期二星期三星期四星期五星期六星期日﹣32+26﹣23﹣16m+42﹣21(1)若这一周,该粮仓存有大米88吨,求m的值,并说明星期五该粮仓是运进还是运出大米,运进或运出大米多少吨?(2)若大米进出库的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用.【正确答案】(1)星期五该粮仓是运出大米,运出大米20吨;(2)这一周该粮仓需要支付的装卸总费用2700元【分析】(1)根据原有的大米与一周内运进运出的大米的和是88吨列方程求解;(2)计算出一周内运进运出大米的总和乘以每吨的装卸费用即可求解.【详解】解:(1)132﹣32+26﹣23﹣16+m+42﹣21=88,解得m=﹣20,答:星期五该粮仓是运出大米,运出大米20吨;(2)|﹣32|+26+|﹣23|+|﹣16|+|﹣20|+42+|﹣21|=180,180×15=2700元,答:这一周该粮仓需要支付的装卸总费用2700元.18. 根据如图所示的数轴,解答下面问题.(1)写出点A 表示的数的值;(2)对A ,B 点进行如下操作:先把点A ,B 表示的数乘﹣,再把所得数对应的点向右平移131个单位长度,得到对应点A′,B′,在数轴上表示出点A′,B′.【正确答案】(1)点A 表示的数的值是3;(2)点A′表示的数是: 2,点B′表示的数是:﹣1【详解】试题分析:(1)数轴上点A 所对应的数即为所求;(2)先把点A ,B 表示的数分别乘以-,再分别加1得到A′,B′.然后在数轴上表示.13试题解析:(1)点A表示的数的值是3;(2)点A′表示的数是:﹣3×( )+1=2,点B′表示的数是:6×( )+1= 1,在数轴上表示如下:19. 把下列各数填在相应的表示集合的大括号里:2, 3, 1.5,0,π, 0.3(1)非正整数集合{ …}(2)正数集合{ …}(3)非正有理数集合{ …}(4)负分数集合{ …}(5)有理数集合{ …}.【正确答案】答案见解析.【详解】试题分析:根据题目中的数据和题意,可以将题目中的数据写入没有同的集合中,本题得以解决.试题解析:在2, 3, 1.5,0,π, 0.3中,(1)非正整数集合{ 3,0,…}(2)正数集合{2,π,…}(3)非正有理数集合{ 3, 1.5,0, 0.3,…}(4)负分数集合{ 1.5, 0.3,…}(5)有理数集合{2, 3, 1.5,0, 0.3,…}.故答案为(1) 3,0,(2)2,π,(3) 3, 1.5,0, 0.3,(4) 1.5, 0.3,(5)2, 3, 1.5,0, 0.3.20. | a|=21,|+b|=21,且|a+b|= (a+b),求a b的值.【正确答案】0, 42,42【详解】试题分析:先由值的意义得到a,b所有可能的值,再根据|a+b|= (a+b),得a+b≤0,由a,b值的几种可能的情况后求解.试题解析:∵| a|=21,|+b|=21,∴a=±21,b=±21,∵|a+b|= (a+b),∴a+b≤0,∴①a= 21,b= 21,则a b=0,②a= 21,b=21,则a b= 42,③a=21,b= 21,则a b=42.21. 化简下列各式+( 7)= , (+1.4)= ,+(+2.5)= , [+( 5)]= ; [ ( 2.8)]= , ( 6)= , [ (+6)]= .【正确答案】 7, 1.4,2.5,5, 2.8,6,6【详解】+( 7)= 7, (+1.4)= 1.4,+(+2.5)=2.5, [+( 5)]=5; [ ( 2.8)]= 2.8, ( 6)=6, [ (+6)]=6.故答案为﹣7, 1.4,2.5,5, 2.8,6,6.22. 有一列数a 1,a 2,a 3,…a n ,若a 1=,从第二个数开始,每一个数都等于1与它前面那个12数的差的倒数.(1)试计算a 2,a 3,a 4;(2)根据以上计算结果,试猜测a 2016、a 2017的值.【正确答案】(1)(2)1212【详解】试题分析:(1)根据题中的要求,按所给公式进行计算;(2)由(1)中的计算可知,每三个值为一个循环,把2016除以3,由余数即可确定结果.试题解析:(1)∵a 1=,∴a 2==2,∴a 3== 1,∴a 4==;(2)由(1)得:∵2016÷3=672,∴a 2016= 1,a 2017=.23. 若|x 2|+|y+2|=0,求x y 的相反数.【正确答案】-4【详解】试题分析:由非负数的性质求出x,y 的值,再求出x-y 的值后确定x-y 的相反数.试题解析:∵|x 2|+|y+2|=0,∴x 2=0,y+2=0,解得x=2,y= 2,∴x y=2 ( 2)=4,∴x y的相反数是﹣4.点睛:本题主要考查了相反数的定义和非负数的性质,如果几个非负数的和为零,那么这几个非负数都等于零,由此可列方程求未知数的值,一个数或式子的偶数次方是非负数;一个数或式子的值是非负数,要理解只有符号没有同的两个数互为相反数.2022-2023学年广东省广州市中考数学专项突破仿真模拟测试题(4月)一、单 选 题1. 某学校在进行防溺水教育中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③没有要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是( )A.B. C. D. 121323162. 如果x:(x+y)=3:5,那么x:y =()A .B. C. D. 328523383. 对于函数的图象,下列说法没有正确的是( )A. 开口向下 B. 对称轴是C. 值为0D. 与轴没有相交4. 在△ABC 中,若|sinAco)2=0,∠A,∠B 都是锐角,则∠C 度数是( )A. 75°B. 90°C. 105°D. 120°5. 如图,在⊙O 中,AB 是直径,CD 是弦,AB⊥CD,垂足为E ,连接CO ,AD ,∠BAD=20°,则下列说法中正确的是( )A. AD=2OBB. CE=EOC. ∠OCE=40°D.∠BOC=2∠BAD6. 如图,点,,,在上,是的一条弦,则(4,0)C (0,3)D (0,0)O A BD A ( ).sin OBD ∠=A. B. C. D. 123445357. 若函数的图象与坐标轴有三个交点,则b 的取值范围是 22y x x b =-+()A. 且 B. C. D. 1b <0b ≠1b >01b <<1b <8. 如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OB 、OD ,若∠BOD=∠BCD ,则的长为( )BD A. πB. C. 2π D. 3π32π9. 如图,丁轩同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行20 m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯BD 的底部,已知丁轩同学的身高是1.5 m ,两个路灯的高度都是9 m ,则两路灯之间的距离是( )A. 24 mB. 25 mC. 28 mD. 30 m10. 如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC 交于D 点.若∠BFC =20°,则∠DBC =( )A. 30°B. 29°C. 28°D. 20°11. 如图,抛物线y 1=(x+1)2+1与y 2=a (x﹣4)2﹣3交于点A (1,3),过点A 作x 轴的平12行线,分别交两条抛物线于B 、C 两点,且D 、E 分别为顶点.则下列结论:①a=;②AC=AE;③△ABD 是等腰直角三角形;④当x >1时,y 1>y 2.其中正确结论的个数是23( )A. 1个B. 2个C. 3个D. 4个12. 如图,在正方形ABCD 中,△BPC 是等边三角形,BP ,CP 的延长线分别交AD 于点E ,F ,连接BD ,DP ,BD 与CF 交于点H .下列结论:①BE =2AE ;②△DFP ∽△BPH ;③△PFD ∽△PDB ;④DP 2=PH •PC ,其中正确的结论是A. ①②③④B. ②③C. ①②④D. ①③④二、填 空 题13. 在一个没有透明的口袋中,装有若干个除颜色没有同外,其余都相同的小球.如果口袋中装有3个红球且从中随机摸出一个球是红球的概率为,那么口袋中小球共有_______个.1514. 如图,AB∥CD∥EF,AF 与BE 相交于点G ,且AG =2,GD =1,DF =5,那么的值等于BCCE ________.15. 如图所示,某拦水大坝的横断面为梯形ABCD ,AE 、DF 为梯形的高,其中迎水坡AB 的坡角α=45°,坡长AB =CD 的坡度i =1i 为DF 与FC 的比值),则背水坡CD 的坡长为______米.16. 如图,已知AM 为⊙O 的直径,直线BC 点M ,且AB=AC ,∠BAM=∠CAM ,线段AB 和AC 分别交⊙O 于点D 、E ,∠BMD=40°,则∠EOM=________.17. 如图,在矩形中,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩ABCD 5,3AB BC ==形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 _____ .18. 在一空旷场地上设计一落地为矩形的小屋,.拴住小狗的长ABCD 10AB BC m +=10m 的绳子一端固定在B 点处,小狗在没有能进人小屋内的条件下,其可以的区域面积为.2()S m (1)如图1,若,则_____m 24BC m =S =.(2)如图2,现考虑在(1)中的矩形小屋的右侧以为边拓展一正区域,使之变成ABCD CD CDE ∆落地为五边的小屋,其它条件没有变.则在的变化过程中,当S 取得最小值时,边长ABCDE BC的长为_______.BC三、解 答 题19. 甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.20. 如图,已知抛物线y= x 2+bx +c 与x 轴交于点A ( 1,0)和点B (3,0),与y 轴交于点C ,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)求点C和点D的坐标;(3)若点P在象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.21. 如图,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若BC=,DE=3.求:(1)⊙O的半径;(2)弦AC的长;(3)阴影部分的面积.22. 如图某幢大楼顶部有广告牌CD.张老师目高MA为1.60米,他站立在离大楼45米的A处测得大楼顶端点D的仰角为30°;接着他向大楼前进14米、站在点B处,测得广告牌顶端点C的仰角为45°. ,计算结果保留一位小数)(1)求这幢大楼的高DH;(2)求这块广告牌CD的高度.23. 如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.24. 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在点上正方的处发出一球,羽毛球飞行的高度与水平距离之间满足函数表达式.已知点与球网的水平距离为,球网的高度为.(1)当时,①求的值.②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到点的水平距离为,离地面的高度为的处时,乙扣球成功,求的值.25. 从三角形(没有是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:C D为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.26. 如图,抛物线y=x 2+ x+c 与x 轴的负半轴交于点A ,与y 轴交于点B ,连结AB ,点1414C (6,)在抛物线上,直线AC 与y 轴交于点D .152(1)求c 的值及直线AC 的函数表达式;(2)点P 在x 轴正半轴上,点Q 在y 轴正半轴上,连结PQ 与直线AC 交于点M ,连结MO 并延长交AB 于点N ,若M 为PQ 的中点.①求证:△APM ∽△AON ;②设点M 的横坐标为m ,求AN 的长(用含m 的代数式表示).2022-2023学年广东省广州市中考数学专项突破仿真模拟测试题(4月)一、单 选 题1. 某学校在进行防溺水教育中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③没有要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是( )A. B. C. D. 12132316【正确答案】C【详解】解:∵共有6张纸条,其中正确的有①互相关心;②互相提醒;③没有要相互嬉水;⑥选择有人看护的游泳池,共4张,∴抽到内容描述正确的纸条的概率是=;故选C .46232.如果x:(x+y)=3:5,那么x:y =()A. B. C. D. 32852338【正确答案】A【详解】:()3:5x x y += ,533,x x y ∴=+23,x y ∴=3:3:2.2x y ∴==故选A.3. 对于函数的图象,下列说法没有正确的是( )A. 开口向下 B. 对称轴是C. 值为0D. 与轴没有相交【正确答案】D【详解】试题分析:根据二次函数的性质即可一一判断.对于函数y= 2(x m )2的图象,∵a= 2<0,∴开口向下,对称轴x=m ,顶点坐标为(m ,0),函数有值0,故A 、B 、C 正确,故选D .考点:二次函数的性质;二次函数的最值.4. 在△ABC 中,若|sinAco)2=0,∠A,∠B 都是锐角,则∠C 度数是( )A. 75°B. 90°C. 105°D. 120°【正确答案】C【详解】解:∵|sin A |=0 co )2=0,∴sin A =0,∴sin A ,∴∠A =45°,∠B =30°,∴∠C =180° ∠A ∠B =105°.故选C .本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记角的三角函数值,熟练掌握二次根式、值、非负数等考点的运算.5. 如图,在⊙O 中,AB 是直径,CD 是弦,AB⊥CD,垂足为E ,连接CO ,AD ,∠BAD=20°,则下列说法中正确的是( )A. AD=2OBB. CE=EOC. ∠OCE=40°D.∠BOC=2∠BAD 【正确答案】D【详解】∵AB 是直径,CD 是弦,AB ⊥CD ,∴ ,BC=BD ∵∠BAD 是所对的圆周角,∠COB 是 所对的圆心角,»BDBC ∴,2BOC BAD ∠=∠故选D.本题考查了垂径定理、圆周角定理,熟记定理的内容并图形进行解题是关键.6. 如图,点,,,在上,是的一条弦,则(4,0)C (0,3)D (0,0)O A BD A ( ).sin OBD ∠=A. B. C. D. 12344535【正确答案】D【分析】连接CD ,由圆周角定理可得出∠OBD =∠OCD ,根据点D (0,3),C (4,0),得OD =3,OC =4,由勾股定理得出CD =5,再在直角三角形OCD 中利用三角函数即可求出答案.【详解】解:连接CD,∵D (0,3),C (4,0),∴OD =3,OC =4,∵∠COD =90°,∴,5CD ===∵∠OBD =∠OCD ,∴sin ∠OBD =sin ∠OCD =,35OD DC =故选:D .本题考查了圆周角定理,勾股定理、以及锐角三角函数的定义;熟练掌握圆周角定理是解决问题的关键.7. 若函数的图象与坐标轴有三个交点,则b 的取值范围是 22y x x b =-+()A. 且 B. C. D. 1b <0b ≠1b >01b <<1b <【正确答案】A【详解】抛物线与坐标轴有三个交点,则抛物线与x 轴有2个交点,与y 轴有一个交点.解:∵函数的图象与坐标轴有三个交点,22y x x b =-+∴,且,2(2)40b ∆=-->0b ≠解得,b <1且b ≠0.故选A.8. 如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OB 、OD ,若∠BOD=∠BCD ,则的长为( )BDA. πB.C. 2πD. 3π32π【正确答案】C【分析】由圆内接四边形的性质和圆周角定理求出∠A=60°,得出∠BOD=120°,再由弧长公式即可得出答案.【详解】∵四边形ABCD 内接于⊙O ,∴∠BCD +∠A =180°,∵∠BOD =2∠A ,∠BOD =∠BCD ,∴2∠A +∠A =180°,解得:∠A =60°,∴∠BOD =120°,∴弧BD 的长==2π;1203180π⨯故选C .本题考查了弧长公式、圆内接四边形的性质、圆周角定理;熟练掌握圆内接四边形的性质和圆周角定理,求出∠BOD =120°是解决问题的关键.9. 如图,丁轩同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行20 m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯BD 的底部,已知丁轩同学的身高是1.5 m ,两个路灯的高度都是9 m ,则两路灯之间的距离是( )A. 24 mB. 25 mC. 28 mD. 30 m【正确答案】D【详解】由题意可得:EP ∥BD ,所以△AEP ∽△ADB ,所以,AP EPAP PQ BQ BD =++因为EP =1.5,BD =9,所以,1.59220APAP =+解得:AP =5,因为AP=BQ ,PQ =20,所以AB=AP+BQ+PQ =5+5+20=30,故选:D .点睛:本题主要考查相似三角形的对应边成比例在解决实际问题中的应用,应用相似三角形可以间接地计算一些没有易直接测量的物体的高度和宽度,解题时关键是找出相似三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.10. 如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC 交于D 点.若∠BFC =20°,则∠DBC =( )A. 30°B. 29°C. 28°D. 20°【正确答案】A【详解】解:∵∠BFC =20°,∴∠BAC =2∠BFC =40°,∵AB =AC ,∴∠ABC =∠ACB =(180°-40°)÷2=70°.又EF 是线段AB 的垂直平分线,∴AD =BD ,∴∠A =∠ABD =40°,∴∠DBC =∠ABC ∠ABD =70° 40°=30°.故选:A .11. 如图,抛物线y 1=(x+1)2+1与y 2=a (x﹣4)2﹣3交于点A (1,3),过点A 作x 轴的平12行线,分别交两条抛物线于B 、C 两点,且D 、E 分别为顶点.则下列结论:①a=;②AC=AE;③△ABD 是等腰直角三角形;④当x >1时,y 1>y 2.其中正确结论的个数是23( )A. 1个B. 2个C. 3个D. 4个【正确答案】B【详解】解:∵抛物线与交于点A (1,3),∴3=a (1 4)2 3,解211(1)12y x =++22(4)3y a x =--得:a =,故①正确;23∵E 是抛物线的顶点,∴AE =EC ,∴无法得出AC =AE ,故②错误;当y =3时,3=,解得:x 1=1,x 2= 3,故B ( 3,3),D ( 1,1),则21(1)12x ++AB =4,AD =BD =,∴AD 2+BD 2=AB 2,∴③△ABD 是等腰直角三角形,正确;∵=时,解得:x 1=1,x 2=37,∴当37>x >1时,y 1>y 2,故④错误.21(1)12x ++22(4)33x --故选B .点睛:本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,已知函数值求自变量的值.12. 如图,在正方形ABCD 中,△BPC 是等边三角形,BP ,CP 的延长线分别交AD 于点E,F,连接BD,DP,BD与CF交于点H.下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC,其中正确的结论是A. ①②③④B. ②③C. ①②④D. ①③④【正确答案】C【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【详解】∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB没有会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,DP PHPC DP =∴DP 2=PH ∙PC ,故④正确;故选C .二、填 空 题13. 在一个没有透明的口袋中,装有若干个除颜色没有同外,其余都相同的小球.如果口袋中装有3个红球且从中随机摸出一个球是红球的概率为,那么口袋中小球共有_______个.15【正确答案】15【详解】设小球共有x 个,则,315x =解得:x =1514. 如图,AB∥CD∥EF,AF 与BE 相交于点G ,且AG =2,GD =1,DF =5,那么的值等于BCCE ________.【正确答案】35【详解】∵AB ∥CD ∥EF ,∴ ,35BC AD AG GD CE DFDF +===故答案为.3515. 如图所示,某拦水大坝的横断面为梯形ABCD ,AE 、DF 为梯形的高,其中迎水坡AB 的坡角α=45°,坡长AB =CD 的坡度i =1i 为DF 与FC 的比值),则背水坡CD 的坡长为______米.【正确答案】12.【分析】由题意可得四边形AEFD是矩形,由AB的坡角α=45°,得出AE的长,利用背水坡CD的坡度i=1i为DF与FC的比值)得出∠C的度数,即可求解.【详解】解:∵AE⊥BC、DF⊥BC,AD//BC,∴∠DAE=∠AEB=90°,∠AEF=∠DFE=∠DFC=90°,∴四边形AEFD是矩形,∴DF=AE,在Rt△AEB中,∠AEB=90°,,∠ABE=45°,∴AE=AB·sin∠ABE=6,∴DF=6,在Rt△DFC中,∠DFC=90°,DF:FC=i=1=tan∠C,∴∠C=30°,∴CD=2DF=12,即背水坡CD在坡长为12米,故12.本题考查了坡度坡角问题.解决此类问题的关键是构造直角三角形,并借助于解直角三角形的知识求解.16. 如图,已知AM为⊙O的直径,直线BC点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D、E,∠BMD=40°,则∠EOM=________.【正确答案】80°【详解】解:连接EM,∵AB=AC,∠BAM=∠CAM,∴AM⊥BC,∵AM 为⊙O 的直径,∴∠ADM=∠AEM=90°,∴∠AME=∠AMD=90°﹣∠BMD=50°∴∠EAM=40°,∴∠EOM=2∠EAM=80°,故答案为80°.本题考查圆周角定理.17. 如图,在矩形中,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩ABCD 5,3AB BC ==形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 _____..【分析】【详解】如图,过点C 作MN ⊥BG ,分别交BG 、EF 于点M 、N ,根据旋转的旋转可得AB=BG=EF=CD=5,AD=GF=3,在Rt △BCG 中,根据勾股定理求得CG=4,再由,即可求得CM= ,在Rt △BCM 中,根据勾股定理求得BM=1122BCGS BC CG BG CM =⋅=⋅ 125,根据已知条件和辅助线作法易知四边形BENM 为矩形,根95==据矩形的旋转可得BE=MN=3,BM=EN= ,所以CN=MN-CM=3-=,在Rt △ECN 中,根据勾股9512535定理求得EC=.===考点:四边形与旋转的综合题.18. 在一空旷场地上设计一落地为矩形的小屋,.拴住小狗的长ABCD 10AB BC m +=10m 的绳子一端固定在B 点处,小狗在没有能进人小屋内的条件下,其可以的区域面积为.2()S m (1)如图1,若,则_____m 24BC m =S =.(2)如图2,现考虑在(1)中的矩形小屋的右侧以为边拓展一正区域,使之变成ABCD CD CDE ∆落地为五边的小屋,其它条件没有变.则在的变化过程中,当S 取得最小值时,边长ABCDE BC 的长为_______.BC 【正确答案】 ①. 88 ②. π52【分析】【详解】试题分析:(1)在B 点处是以点B 为圆心,10为半径的个圆;在A 处是以A 为34圆心,4为半径的个圆;在C 处是以C 为圆心,6为半径的个圆;所以S=1414 ;222113641088444ππππ⨯+⨯+⨯=(2)设BC=x,则AB=10-x , =(x 2-10x+250),222330110(10)43604S x x πππ=⨯+⨯-+⨯3π当x=时,S 最小,即BC=.5252三、解 答 题19. 甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.【正确答案】(1).(2)没有公平.13【分析】(1)利用列表法得到所有可能出现的结果,根据概率公式计算即可;(2)分别求出甲、乙获胜的概率,比较即可.【详解】(1)所有可能出现的结果如图:从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为:;13(2)没有公平,从表格可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,所以甲获胜的概率为:,乙获胜的概率为.5913∵>,5913∴甲获胜的概率大,游戏没有公平.20. 如图,已知抛物线y= x 2+bx +c 与x 轴交于点A ( 1,0)和点B (3,0),与y 轴交于点C ,连接BC 交抛物线的对称轴于点E ,D 是抛物线的顶点.(1)求此抛物线的解析式;(2)求点C 和点D 的坐标;(3)若点P 在象限内的抛物线上,且S △ABP=4S △COE ,求P 点坐标.【正确答案】(1)y= x 2+2x +3;(2)C (0,3),D (1,4);(3)P (2,3).【分析】(1)将A 、B 的坐标代入抛物线的解析式中,即可求出待定系数b 、c 的值,进而可得到抛物线的对称轴方程;(2)令x=0,可得C 点坐标,将函数解析式配方即得抛物线的顶点C 的坐标;(3)设P (x ,y )(x >0,y >0),根据题意列出方程即可求得y ,即得D 点坐标.【详解】(1)由点A ( 1,0)和点B (3,0)得,10930b c b c --+=⎧⎨-++=⎩解得:,23b c =⎧⎨=⎩∴抛物线的解析式为y= x 2+2x +3;(2)令x=0,则y=3,∴C (0,3)∵y= x 2+2x +3= (x 1)2+4,∴D (1,4);(3)设P (x ,y )(x >0,y >0),。
2024年广东省佛山市顺德区碧桂园学校数学九年级第一学期开学达标测试试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)式子有意义,则x 的取值范围是()A .x >1B .x <1C .x≥1D .x≤12、(4分)已知点(-4,y 1),(2,y 2)都在直线y=-12x+2上,则y 1y 2大小关系是()A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能比较3、(4分)以下列各组数作为三角形的边长,其中不能构成直角三角形的是()A .1,B .3,5,4C .1,1,2D .6,8,104、(4分)为了了解我市2019年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析。
在这个问题中,样本是指()A .150B .被抽取的150名考生C .我市2019年中考数学成绩D .被抽取的150名考生的中考数学成绩5、(4分)如图,直线y=-x+m 与y=nx+4n (n≠0)的交点的横坐标为-1.则下列结论:①m <0,n >0;②直线y=nx+4n 一定经过点(-4,0);③m 与n 满足m=1n-1;④当x >-1时,nx+4n >-x+m ,其中正确结论的个数是()A .1个B .1个C .3个D .4个6、(4分)()A .B C D .7、(4分)如图,▱ABCD 中,对角线AC ,BD 相交于O ,BD=2AD ,E ,F ,G 分别是OC ,OD ,AB 的中点,下列结论①BE ⊥AC ②四边形BEFG 是平行四边形③EG=GF ④EA 平分∠GEF 其中正确的是()A .①②③B .①②④C .①③④D .②③④8、(4分)下列是假命题的是()A .平行四边形对边平行B .矩形的对角线相等C .两组对边分别平行的四边形是平行四边形D .对角线相等的四边形是矩形二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,两个完全相同的正五边形ABCDE ,AFGHM 的边DE ,MH 在同一直线上,且有一个公共顶点A ,若正五边形ABCDE 绕点A 旋转x 度与正五边形AFGHM 重合,则x的最小值为_____.10、(4分)在菱形ABCD 中,∠C =∠EDF =60°,AB =1,现将∠EDF 绕点D 任意旋转,分别交边AB 、BC 于点E 、F (不与菱形的顶点重合),连接EF ,则△BEF 的周长最小值是_____.11、(4分)若n 边形的每个内角都是120︒,则n =________.12、(4分)在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高度为1m ,那么它的下部应设计的高度为_____.13、(4分)使分式1x x -有意义的x 的范围是________。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.2.(2021•东港市模拟)在式子中,x的取值范围是.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.二、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b610.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.512.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2三、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.参考答案四、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.【答案】2.【解析】解:∵﹣2的相反数是2,∴m=2.故答案为:2.2.(2021•东港市模拟)在式子中,x的取值范围是.【答案】x>﹣1.【解析】解:由题意得,x+1>0,解得,x>﹣1,故答案为:x>﹣1.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.【答案】2.【解析】解:根据题意得:△=9﹣4a≥0,解得:a,x1+x2=3,x1x2=a,x12+x22=﹣2x1x2=9﹣2a=5,解得:a=2(符合题意),故答案为:2.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.【答案】:y=﹣..【解析】解:∵A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,∴n=,2=,即m=﹣3n,m=2(3n﹣6),消去m得:﹣3n=2(3n﹣6),解得:n=,把n=代入得:m=﹣4,则反比例函数解析式为y=﹣.故答案为:y=﹣.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).【答案】①②③.【解析】解:①∠A与∠1是同位角,此结论正确;②∠A与∠B是同旁内角,此结论正确;③∠4与∠1是内错角,此结论正确;④∠1与∠3不是同位角,原来的结论错误;故答案为:①②③.6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.【答案】6.【解析】解:如图所示,连接AG,CG,由题意,△ABD与△BCD均是BD为斜边的直角三角形,∴AG=BD,CG=BD,即:AG=CG,∴△ACG为等腰三角形,∵∠CBD=15°,CG=BG,∴∠CGE=2∠CBD=30°,∵EC=EG,∴∠ECD=∠CGE=30°,又∵F为AC的中点,∴GF为△ACG的中线,AF=CF,∴由”三线合一”知,GF⊥AC,∠GFC=90°,∵FG=,∴CF=FG=3,∴AC=2FC=6,故答案为:6.五、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元【答案】D.【解析】解:36206.9×(1+6%)=38379.314亿元≈38400亿元=3840000000000元=3.84×1012元.故选:D.8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.【答案】B.【解析】解:立体图形的左视图是.故选:B.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b6【答案】D.【解析】解:A.a2•a3=a2+3=a5,故A运算不符合题意,B.(3a2)3=33•(a2)3=27a6,故B运算不符合题意,C.2﹣3÷2﹣5=2﹣3﹣(﹣5)=22,故C运算不符合题意,D.(﹣ab2)3=﹣a3b2×3=﹣a3b6,故D运算符合题意,故选:D.10.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定【答案】D.【解析】解:∵李娜同学四次的成绩的中位数为=75(分),∴由题意知王玥同学四次的成绩的中位数为80分,则a=80分,故A选项错误;李娜成绩的平均数为=77.5(分),王玥成绩的平均数为=80(分),故B选项错误;李娜同学成绩的众数为70分,王玥同学成绩的众数为80分,故C选项错误;王玥同学的成绩的方差为×[(70﹣80)2+2×(80﹣80)2+(90﹣80)2]=50,李娜同学的成绩的方差为×[2×(70﹣77.5)2+(80﹣77.5)2+(90﹣77.5)2]=68.75,∴王玥同学的成绩比李娜同学的成绩稳定,故D选项正确;故选:D.11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.5【答案】解:∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∵BC=16,∴DE=BC=8.∵∠AFB=90°,D是AB的中点,AB=10,∴DF=AB=5,∴EF=DE﹣DF=8﹣5=3.故选:B.【解析】利用三角形中位线定理得到DE=BC.由直角三角形斜边上的中线等于斜边的一半得到DF =AB.所以由图中线段间的和差关系来求线段EF的长度即可.12.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种【答案】C.【解析】解:如图所示,直线代表一个1×2的小矩形纸片:1+4+3=8(种).答:不同的覆盖方法有8种.故选:C.13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°【答案】B.【解析】解:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴=,∴∠DAB=∠DFC=×48°=24°,∴∠ADC=90°﹣∠DAB=90°﹣24°=66°,∵四边形ADCF内接与⊙O,∴∠CFE=∠ADC=66°,故选:B.14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2【答案】C.【解析】解:∵∠ACB=90°,AC=BC=4,∴S△ABC=×4×4=8,S扇形BCD==2π,S空白=2×(8﹣2π)=16﹣4π,S阴影=S△ABC﹣S空白=8﹣16+4π=4π﹣8,故选:C.六、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.【答案】解:原式=4+2×(﹣1)﹣2=4+2﹣2﹣2=2.【解析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别计算得出答案.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.【答案】.证明:(1)∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵∠C=∠B=26°,∴∠BAC=180°﹣(26°+26°)=128°,∵∠BAC=128°,∠DAE=90°,∴∠BAD+∠CAE=128°﹣90°=38°,∵△ABD≌△ACE,∴∠BAD=∠CAE,∴∠BAD=38°÷2=19°.【解析】(1)由”SAS”可证△ABD≌△ACE,可得AD=AE;(2)由全等三角形的性质可得∠BAD=∠CAE,由三角形内角和定理可求解17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.【答案】解:(1)这组数据的中位数是第20、21个数据的平均数,所以中位数n==74.5,故答案为:74.5;(2)这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生,故答案为:乙,这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生;(3)1200×=390(人),答:学校1200名学生中成绩优秀的大约有390人.【解析】(1)根据中位数的定义求解可得;(2)根据这名学生的成绩为74分,大于甲班样本数据的中位数72.5分,小于乙班样本数据的中位数76分可得;(3)利用样本估计总体思想求解可得.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?【答案】解:(1)设跳绳的单价为x元,则键球的单价为x元,依题意得:﹣=24,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x=18(元).答:键球的单价为18元,跳绳的单价为45元.(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,依题意得:45m+18(100﹣m)≤2700,解得:m≤.又∵m为正整数,∴m的最大值为33.答:最多可以购买33条跳绳.【解析】(1)设跳绳的单价为x元,则键球的单价为x元,根据数量=总价÷单价,结合用720元购买键球的个数比购买跳绳的条数多24,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,根据总价=单价×数量,结合总价不多于2700元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.【答案】解:(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为,故答案为:;(2)画树状图如图:共有12种等可能的情况,其中抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的有2种情况,∴抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率为=.【解析】(1)根据概率公式直接得出答案;(2)先画树状图列出所有等可能的结果数,两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的结果数为2种,再根据概率公式求解可得.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.【答案】解:(1)把点P(﹣3,6)代入y=x2﹣x+c中,得:6=×(﹣3)2﹣(﹣3)+c,解得:c=﹣,∴该二次函数的表达式为y=x2﹣x﹣;(2)y=x2﹣x﹣=(x﹣1)2﹣2,∴该二次函数图象的顶点坐标为(1,﹣2);(3)∵点Q到y轴的距离小于3,∴|m|<3,∴﹣3<m<3,∵x=﹣3时,y=x2﹣x﹣=×(﹣3)2﹣(﹣3)﹣=6,x=3时,y=x2﹣x﹣=×32﹣3﹣=0,又∵顶点坐标为(1,﹣2),∴﹣3<m<3时,n≥2,∴﹣2≤n<6.【解析】(1)把点P(﹣3,6)代入y=x2﹣x+c中,即可求解;(2)把二次函数的表达式化为顶点式即可得该二次函数图象的顶点坐标;(3)由点Q到y轴的距离小于3,可得﹣3<m<3,在此范围内求n即可.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.【答案】证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,∵EG∥BC,FH∥DC,∴四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,∴BE=CG,CH=DF,∵BE=DF,∴CG=CH,∴平行四边形HCGP是菱形;(2)由(1)可知,BE=CG=CH,∵四边形BHPE是菱形,∴BE=BH,∴BE=BH=CH=BC,∵四边形ABCD是菱形,∴AB=BC,∴BE=AB,∴点E是线段AB的中点.【解析】(1)先证四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,得BE=CG,CH=DF,再证CG=CH,即可得出结论;(2)由(1)可知,BE=CG=CH,再由菱形的性质得BE=BH,AB=BC,则BE=BH=CH=BC=AB,即可得出结论.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?【答案】解:(1)y与x满足一次函数关系,设y与x的函数关系式为y=kx+b,,解得:,即这个函数关系式是y=﹣6x+660;(2)由题意可得,(x﹣40)(﹣6x+660)=6000,解得,x1=60,x2=90,答:若想每周的利润为6000元,则其售价应定为每台60元或每台90元;(3)设每周的销售利润为w元,定价为x元,由题意可得,w=(x﹣40)(﹣6x+660)=﹣6(x﹣75)2+7350,45≤x≤40×1.5,即45≤x≤60,∵y=﹣6x+660,∵﹣6<0,对称轴为直线x=75,∴x<75时,y随x的增大而增大,∴当x=60时,w取得最大值,答:定价为60元/台时,才能使每周的销售利润最大.【解析】(1)根据题意和表格中的数据可以判断出y与x的函数关系,并求出这个函数关系式;(2)根据题意可以得到每周的利润为6000元,则其售价应定为多少元;(3)设每周的销售利润为w元,定价为x元,根据题意和(1)中的函数关系式,利用一次函数的性质可以解析本题.23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.【答案】(1)证明:如图1中,∵I是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC.(2)证明:如图1中,连接BD.∵I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI,∵∠DIB=∠BAI+∠ABI,∠DBI=∠CBI+∠CBD,∠CBD=∠CAI,∴∠DBI=∠DIB,∴DB=DI.(3)解:如图2中,连接OG,过点O作OH⊥DG于H.∵OD⊥BC,∴BE=EC=12,∵tan∠OBE==,∴OE=5,∵DG∥OB,∴∠BOE=∠ODH,∵∠BEO=∠OHD=90°,OB=OD,∴△OBE≌△ODH(AAS),∴OE=DH=5,∵OH⊥DG,∴DH=HG=5,∴DG=10.【解析】(1)证明=,再利用垂径定理可得结论.(2)想办法证明∠DBI=∠DIB,即可解决问题.(3)如图2中,连接OG,过点O作OH⊥CG于H,解直角三角形求出OE,再利用全等三角形的性质求出DH,可得结论.。
2023年广东省中考数学模拟试卷(一)一、选择题(共30分)1.(3分)6﹣1=()A.﹣6B.6C.﹣D.2.(3分)下列各组数中互为相反数的是()A.与﹣2B.﹣1与﹣(+1)C.﹣(﹣3)与﹣3D.2与|﹣2| 3.(3分)如图是由6个相同的小正方体组成的几何体,其俯视图是()A.B.C.D.4.(3分)在平面直角坐标系中,点(2,﹣1)关于x轴对称的点是()A.(2,1)B.(1,﹣2)C.(﹣1,2)D.(﹣2,﹣1)5.(3分)将一把直尺与一块直角三角板按如图所示的方式放置,若∠1=125°,则∠2的度数为()A.35°B.40°C.45°D.55°6.(3分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.则斜坡CD的长度为()米.A.80B.40﹣60C.120﹣60D.120﹣407.(3分)某公司今年1~6月份的利润增长率的变化情况如图所示.根据图示条件判断,下列结论正确的是()A.该公司1~6月份利润在逐渐减少B.在这六个月中,该公司1月份的利润最大C.在这六个月中,该公司每月的利润逐渐增加D.在这六个月中,该公司的利润有增有减8.(3分)如图,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径画弧,分别交BA,BC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若AC=12,则在△ABD中AB边上的高为()A.3B.4C.5D.69.(3分)随着国产芯片自主研发的突破,某种型号芯片的价格经过两次降价,由原来每片a元下降到每片b元,已知第一次下降了10%,第二次下降了20%,则a与b满足的数量关系是()A.b=a(1﹣10%﹣20%)B.b=a(1﹣10%)(1﹣20%)C.a=b(1+10%+20%)D.a=b(1+10%)(1+20%)10.(3分)如图,在正方形ABCD中,F为CD上一点,AF交对角线BD于点E,点G是BC上的一点且AE=EG,连结AG,交BD于点H.满足AH2=HE•HD,现给出下列结论:①EG⊥AF;②BG+DF=FG;③若tan∠DAF=,则.其中正确的有()个.A.0B.1C.2D.3二、填空题(共15分)11.(3分)分解因式:2m3﹣8m=.12.(3分)一个不透明的口袋中,装有4个红球,2个黄球,1个白球,这些球除颜色外完全相同.从口袋中随机摸一个球,则摸到红球的概率是.13.(3分)如图是测量玻璃管内径的示意图,点D正对10mm刻度线,点A正对30mm刻度线,DE∥AB.若量得AB的长为6mm,则内径DE的长为mm.14.(3分)已知x=m是一元二次方程x2﹣x+1=0的一个根,则代数式2m﹣2m2+2021的值为.15.(3分)已知在Rt△ABC中,∠C=90°,∠ABC=75°,AB=5.点E为边AC上的动点,点F为边AB上的动点,则线段FE+EB的最小值是.三、解答题(共75分)16.(8分)计算:(2022﹣π)0+3tan30°+|﹣3|﹣()﹣1.17.(8分)解不等式组:.18.(8分)“端午节”吃粽子是我国流传了上千年的习俗.某班学生在“端午节”前组织了一次综合实践活动,购买了一些材料制作爱心粽,每人从自己制作的粽子中随机选取两个献给自己的父母,其余的全部送给敬老院的老人们.统计全班学生制作粽子的个数,将制作粽子数量相同的学生分为一组,全班学生可分为A,B,C,D四个组,各组每人制作的粽子个数分别为4,5,6,7.根据如图不完整的统计图解答下列问题:(1)请补全上面两个统计图;(不写过程)(2)该班学生制作粽子个数的平均数是;(3)若制作的粽子有红枣馅(记为M)和蛋黄馅(记为N)两种,该班小明同学制作这两种粽子各两个混放在一起,请用列表或画树形图的方法求小明献给父母的粽子馅料不同的概率.19.(9分)如图,四边形ABCD内接于⊙O,对角线AC,BD交于点E,过点A作⊙O的切线MN,若MN∥BD,CE=4,AC=5.(1)求证:∠ACD=∠ACB;(2)求AD的长.20.(9分)2019年10月1日是中华人民共和国成立70周年纪念日,某商家用3200元购进了一批纪念衫,上市后果然供不应求,商家又用7200元购进了第二批这种纪念衫,所购数量是第一批购进量的2倍,但每件贵了10元.(1)该商家购进的第一批纪念衫单价是多少元?(2)若两批纪念衫按相同的标价销售,最后剩下20件按标价八折优惠卖出,如果两批纪念衫全部售完利润不低于3520元(不考虑其他因素),那么每件纪念衫的标价至少是多少元?21.(9分)如图,直线y=kx+b与双曲线y=相交于A(1,2),B两点,与x轴相交于点C(4,0).(1)分别求直线AC和双曲线对应的函数表达式;(2)连接OA,OB,求△AOB的面积;(3)直接写出当x>0时,关于x的不等式kx+b>的解集.22.(12分)在平面直角坐标系xOy中,已知抛物线y=mx2﹣3(m﹣1)x+2m﹣1(m≠0).(1)当m=3时,求抛物线的顶点坐标;(2)已知点A(1,2).试说明抛物线总经过点A;(3)已知点B(0,2),将点B向右平移3个单位长度,得到点C,若抛物线与线段BC 只有一个公共点,求m的取值范围.23.(12分)△ABC和△ADF均为等边三角形,点E、D分别从点A,B同时出发,以相同的速度沿AB、BC运动,运动到点B、C停止.(1)如图1,当点E、D分别与点A、B重合时,请判断:线段CD、EF的数量关系是,位置关系是;(2)如图2,当点E、D不与点A,B重合时,(1)中的结论是否依然成立?若成立,请给予证明;若不成立,请说明理由;(3)当点D运动到什么位置时,四边形CEFD的面积是△ABC面积的一半,请直接写出答案;此时,四边形BDEF是哪种特殊四边形?请在备用图中画出图形并给予证明.2023年广东省中考数学模拟试卷(一)参考答案与试题解析一、选择题(共30分)1.【分析】根据负整数指数幂:a﹣p=(a≠0,p为正整数)可得答案.【解答】解:原式=,故选:D.【点评】此题主要考查了负整数指数幂,关键是掌握负整数指数幂计算公式.2.【分析】根据相反数的定义及符号的化简逐一进行判断即可得到答案.【解答】解:A、与﹣2互为倒数,不符合题意;B、﹣(+1)=﹣1与﹣1相同,不符合题意;C、﹣(﹣3)=3与﹣3是相反数,符合题意;D、|﹣2|=2与2相同,不符合题意;故选:C.【点评】本题考查了相反数,绝对值化简,掌握相反数的定义:只有符号不同的两个数叫做互为相反数是关键.3.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:由6个相同的小正方体组成的几何体,那么这个几何体的俯视图是:故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.【分析】直接利用关于x轴对称点的性质进而得出答案.【解答】解:点(2,﹣1)关于x轴对称的点是:(2,1).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.5.【分析】由平行线的性质可得∠3=∠1=125°,再利用三角形的外角性质即可求解.【解答】解:如图,由题意得:∠E=90°,AB∥CD,∴∠3=∠1=125°,∵∠3是△ABE的外角,∴∠2=∠3﹣∠E=35°,故选:A.【点评】本题主要考查平行线的性质,熟记平行线的性质是解题的关键.6.【分析】在直角三角形ABC中,利用锐角三角函数定义求出AC的长,然后设CD=2x,则DE=x,CE=x,构建方程即可解决问题.【解答】解:在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,AC===20(米),∵∠DCE=30°,设CD=2x米,则DE=x米,CE=x米,在Rt△BDF中,∵∠BDF=45°,∴BF=DF,∴AB﹣AF=AC+CE,∴60﹣x=20+x,∴x=40﹣60,∴CD=2x=(80﹣120)(米),∴CD的长为(80﹣120)米.故选:A.【点评】此题考查了解直角三角形﹣仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.7.【分析】根据折线统计图中数据的变化以及折线的变化情况进行分析即可.【解答】A.该公司1~4月份的利润率在逐渐减少,4~6月份的利润率在逐渐增加,则A选项错误,不合题意;B.在图中可以看出:在这六个月中,该公司1月份的利润率最大,不代表1月份的利润最大,则B选项错误,不合题意;C.在这6个月中,利润增长率为正数,说明利润每月在上月基础上都在增加,则C选项正确,符合题意,D有误,不合题意.故选:C.【点评】本题考查了折线统计图,准确识图分析是解题的关键.8.【分析】作DE⊥AB于E,利用BD是角平分线以及直角三角形30°所对的直角边是斜边的一半即可求解.【解答】解:作DE⊥AB于E.如图:由作图可知,BD是△ABC的角平分线,∴DE=CD,∵∠A=30°,∠AED=90°,∴AD=2DE,∵AC=12,∴AD+DC=2DE+DE=12,∴DE=4.故选:B.【点评】本题主要考查了含30°角的直角三角形,以及30°角的直角三角形三边的关系,解答本题的关键在于利用其性质进行解答.9.【分析】利用经过两次降价后的价格=原价×(1﹣第一次价格下降的百分率)×(1﹣第二次价格下降的百分率),即可找出a与b满足的数量关系.【解答】解:根据题意得:b=a(1﹣10%)(1﹣20%).故选:B.【点评】本题考查了列代数式,根据各数量之间的关系,找出a与b满足的关系式是解题的关键.10.【分析】①把它AH2=HE•HD化为=,证明△AHE∽△DHA,推出∠HAE=∠ADH,再根据正方形的性质得出∠ADH=45°,再根据AE=EG和三角形内角和求出∠AEG=90°,进而得出EG⊥AF;②将△ADF绕点A顺时针旋转90°到△ABM,推出AF=AM,DF=BM,∠DAF=∠BAM,进而证明△FAG≌△MAG(SAS),推出FG=MG,最后得出BG+DF=FG;③设正方形的边长为4,BG=a,根据tan∠DAF=,求出DF=FC=BM=2,进而得CG=4﹣a,MG=GF=2+a,根据勾股定理求出a,进而求出=.【解答】解:∵AH2=HE•HD,∴=,∵∠AHE=∠DHA,∴△AHE∽△DHA,∴∠HAE=∠ADH,∵四边形ABCD是正方形,∴∠ADC=90°,AC平分∠ADC,∴∠ADH=45°,∴∠HAE=∠EGA=45°,∵AE=EG,∴∠EAH=∠EGA=45°,∴∠AEG=90°,∴EG⊥AF,∴①正确;将△ADF绕点A顺时针旋转90°到△ABM,∴△ADF≌△ABM,∴AF=AM,DF=BM,∠DAF=∠BAM,∵∠FAG=45°,∠DAB=90°,∴∠DAF+∠GAB=45°,∴∠GAB+∠BAM=45°,∴∠FAG=∠MAG,在△FAG和△MAG中,,∴△FAG≌△MAG(SAS),∴FG=MG,∴MB+BG=FG,∴BG+DF=GF,∴②正确;设正方形的边长为4,BG=a,∵tan∠DAF=,∴DF=FC=BM=2,∴CG=4﹣a,MG=GF=2+a,在Rt△FCG中,CG2+CF2=GF2,∴(4﹣a)2+4=(a+2)2,解得:a=,即BG=,GC=,∴=,∴③错误.正确的有2个.故选:C.【点评】本题考查三角形相似的判定和性质、全等三角形的判定与性质、正方形的性质、解直角三角形,熟练掌握这四个知识点的综合应用,将△ADF绕点A顺时针旋转90°到△ABM是证明△FAG≌△MAG的解题关键.二、填空题(共15分)11.【分析】提公因式2m,再运用平方差公式对括号里的因式分解.【解答】解:2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).故答案为:2m(m+2)(m﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.【分析】直接利用概率公式求解即可求得答案.【解答】解:∵袋子中共有4+2+1=7个球,其中红球有4个,∴摸到红球的概率是,故答案为:.【点评】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.【分析】直接利用相似三角形的判定与性质得出△CDE∽△CAB进而得出比例式求出答案.【解答】解:由题意可得:∵DE∥AB,∴△CDE∽△CAB,∴=,即=,解得:DE=2,故答案为:2.【点评】此题主要考查了相似三角形的应用,根据题意得出正确比例关系是解题关键.14.【分析】根据题意可得:把x=m代入方程x2﹣x+1=0中得:m2﹣m+1=0,从而可得m2﹣m=﹣1,然后代入式子中进行计算即可解答.【解答】解:由题意得:把x=m代入方程x2﹣x+1=0中得:m2﹣m+1=0,∴m2﹣m=﹣1,∴2m﹣2m2+2021=﹣2(m2﹣m)+2021=﹣2×(﹣1)+2021=2+2021=2023,故答案为:2023.【点评】本题考查了一元二次方程的解,一元二次方程的定义,熟练掌握一元二次方程的解的意义是解题的关键.15.【分析】作F关于AC的对称点F',延长AF'、BC交于点B',当B、E、F'共线且与AB'垂直时,求BD的长即可.【解答】解:作F关于AC的对称点F',延长AF'、BC交于点B',作BD⊥AB'于D,∴∠BAB'=30°,EF=EF',∴FE+EB=BE+EF',∴当B、E、F'共线且与AB'垂直时,BE+EF'长度最小,即求BD的长,在△ABD中,BD=AB=,故答案为:.【点评】本题主要考查轴对称﹣最短路线问题,将BE+EF转化为求线段BD是解题的关键.三、解答题(共75分)16.【分析】直接特殊角的三角函数值、零指数幂的性质、负整数指数幂的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=1+3×+3﹣﹣=1++3﹣﹣=.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.17.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:,解不等式①,得:x≥﹣1,解不等式②,得:x<2,∴原不等式组的解集为:﹣1≤x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【分析】(1)由A的人数除以所占的百分比求出总人数,进而求出D的人数,得到C占的百分比,补全统计图即可;(2)根据题意列出算式,计算即可得到结果;(3)列表得出所有等可能的情况数,找出粽子馅料不同的结果,即可求出所求的概率.【解答】解:(1)根据题意得:6÷15%=40(人),D的人数为40×40%=16(人),C占的百分比为1﹣(10%+15%+40%)=35%,补全统计图,如图所示:(2)根据题意得:(6×4+4×5+14×6+16×7)÷40=6(个),则该班学生制作粽子个数的平均数是6个;故答案为:6个;(3)列表如下:M M N N M﹣﹣﹣(M,M)(N,M)(N,M)M(M,M)﹣﹣﹣(N,M)(N,M)N(M,N)(M,N)﹣﹣﹣(N,N)N(M,N)(M,N)(N,N)﹣﹣﹣所有等可能的情况有12种,其中粽子馅料不同的结果有8种,则P==.【点评】此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.19.【分析】(1)由切线的性质得到半径OA⊥MN,而MN∥BD,得到OA⊥BD,由垂径定理推出=,即可证明问题;(2)由圆周角定理推出△ADE∽△ACD,得到AD:AC=AE:AD,即可求出AD的长.【解答】(1)证明:连接OA,∵MN切⊙O于A,∴半径OA⊥MN,∵MN∥BD,∴OA⊥BD,∴=,∴∠ACD=∠ACB;(2)∵∠ADE=∠ACB,∠ACD=∠ACB,∴∠ADE=∠ACD,∵∠DAE=∠DAC,∴△ADE∽△ACD,∴AD:AC=AE:AD,∵AE=AC﹣CE=5﹣4=1,∴AD:5=1:AD,∴AD=.【点评】本题考查切线的性质,垂径定理,圆周角定理,相似三角形的判定和性质,熟练掌握以上知识点是解题的关键.20.【分析】(1)设该商家购进的第一批纪念衫单价是x元,则第二批纪念衫单价是(x+10)元,根据购进了第二批这种纪念衫数量是第一批购进量的2倍列出方程,求出方程的解即可得到结果;(2)根据(1)得:第一批数量为40件,第二批为80件,设每件纪念衫的标价是y元,由题意列出不等式,求出不等式的解集确定出y的最小值即可.【解答】解:(1)设该商家购进的第一批纪念衫单价是x元,则第二批纪念衫单价是(x+10)元,根据题意得:×2=,解得:x=80,经检验x=80是分式方程的解,且符合题意,则该商家购进的第一批纪念衫单价是80元;(2)根据(1)得:第一批数量为40件,第二批为80件,设每件纪念衫的标价是y元,根据题意得:40y﹣3200+60y+20×80%y﹣7200≥3520,解得:y≥120,则每件纪念衫的标价至少是120元.【点评】此题考查了分式方程的应用,以及一元一次不等式的应用,弄清题意是解本题的关键.21.【分析】(1)将已知点坐标代入函数表达式,即可求解;(2)直线AC:y=﹣x+与双曲线:y=(x>0)相交于A(1,2),B两点,联立方程组,求出点B的坐标为(3,),根据组合法(即基本图形面积的和差)即可以解决问题;(3)根据图象即可解决问题.【解答】解:(1)将A(1,2),C(4,0)代入y=kx+b,得,解得:,∴直线AC的解析式为y=﹣x+,将A(1,2)代入y=(x>0),得m=2,∴双曲线的解析式为y=(x>0);(2)∵直线AC的解析式为y=﹣x+与y轴交点D,∴点D的坐标为(0,),∵直线AC:y=﹣x+与双曲线:y=(x>0)相交于A(1,2),B两点,∴,∴,,∴点B的坐标为(3,),∴△AOB的面积=4×﹣4×﹣×1=;(3)观察图象,∵A(1,2),B(3,),∴当x>0时,关于x的不等式kx+b>的解集是1<x<3.【点评】本题是反比例函数与一次函数的交点问题,主要考查了待定系数法求一次函数和反比例函数解析式、三角形面积等;解题时着重使用一次函数,体现了方程思想,综合性较强.22.【分析】(1)求出抛物线的解析式,由配方法可得出答案;(2)把x=1,y=2代入y=mx2﹣3(m﹣1)x+2m﹣1,可得出答案;(3)分三种情况:①当抛物线的顶点是点A(1,2)时,抛物线与线段BC只有一个公共点,求出m=3;②当抛物线过点B(0,2)时,将点B(0,2)代入抛物线表达式,得2m﹣1=2.解得m=,则当0<m<时,抛物线与线段BC只有一个公共点.③当抛物线过点C(3,2)时,将点C(3,2)代入抛物线表达式,得m=﹣3<0.则当﹣3<m<0时,抛物线与线段BC只有一个公共点.【解答】解:(1)把m=3代入y=mx2﹣3(m﹣1)x+2m﹣1中,得y=3x2﹣6x+5=3(x ﹣1)2+2,∴抛物线的顶点坐标是(1,2).(2)当x=1时,y=m﹣3(m﹣1)+2m﹣1=m﹣3m+3+2m﹣1=2.∵点A(1,2),∴抛物线总经过点A.(3)∵点B(0,2),由平移得C(3,2).①当抛物线的顶点是点A(1,2)时,抛物线与线段BC只有一个公共点.由(1)知,此时,m=3.②当抛物线过点B(0,2)时,将点B(0,2)代入抛物线表达式,得2m﹣1=2.∴m=>0.此时抛物线开口向上(如图1).∴当0<m<时,抛物线与线段BC只有一个公共点.③当抛物线过点C(3,2)时,将点C(3,2)代入抛物线表达式,得9m﹣9(m﹣1)+2m﹣1=2.∴m=﹣3<0.此时抛物线开口向下(如图2).∴当﹣3<m<0时,抛物线与线段BC只有一个公共点.综上,m的取值范围是m=3或0<m<或﹣3<m<0.【点评】本题是二次函数综合题,考查了二次函数的图象及其性质,二次函数图象上点的坐标特征,平移的性质等知识,熟练利用数形结合的解题方法是解决本题的关键.23.【分析】(1)利用等边三角形的性质解决问题即可;(2)证明△FAB≌△DAC(SAS),推出BF=CD,∠ABF=∠ACD=60°,再证明△EFB 是等边三角形,可得结论;(3)当点D是BC的中点时,四边形EFDC的面积是△ABC的面积的一半.利用相似三角形的性质,等高模型解决问题.【解答】解:(1)∵△ABC,△ADF都是等边三角形,∴EF=AB=CD,∠ADC=∠FED,∴EF∥CD,故答案为:CD=EF,CD∥EF;(2)结论成立.理由:如图2中,连接BF.∵△ABC,△ADF都是等边三角形,∴∠FAD=∠BAC,AF=AD,AB=AC,∴∠FAB=∠DAC,∴△FAB≌△DAC(SAS),∴BF=CD,∠ABF=∠ACD=60°,∵AE=BD,AB=BC,∴BE=CD=BF,∴△EFB是等边三角形,∴EF=BF=CD,∠FEB=∠ABC=60°∴EF∥CD;证法二:先证△CAE≌△ABD,得到CE=AD=DF,再证明CE∥DF,即可得四边形CDFE是平行四边形,即可得出结论平行且相等.(3)当点D是BC的中点时,四边形EFDC的面积是△ABC的面积的一半.此时四边形BDEF是菱形.理由:如图3中,连接DF.由(2)可知,△BEF是等边三角形,BE=CD,∵BD=CD,∴BE=CB,∵△BEF∽△ABC,∴=()2=,∵EF∥CD,EF=CD,∴四边形EFDC是平行四边形,=2S△EFB,∴S平行四边形EFDC∴=.连接DE.∵BE=BD,∠EBD=60°,∴△BDE是等边三角形,∵△BEF是等边三角形,∴四边形BDEF是菱形.【点评】本题属于四边形综合题,考查了等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题。
2018年广东省佛山市顺德区中考数学模拟试卷(4月份)一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确选项填写在答题卡相应的位置上.1.(3分)sin60°的值为()A.B.C.D.2.(3分)在△ABC中,∠C=90°,AB=10,cosA=,则BC的长为()A.6 B.7.5 C.8 D.12.53.(3分)已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O 的位置关系是()A.相交B.相切C.相离D.不能确定4.(3分)抛物线y=(x﹣1)2+3()A.有最大值1 B.有最小值1 C.有最大值3 D.有最小值35.(3分)如图,⊙O是△ABC的外接圆,已知∠ACO=30°,则∠B的度数是()A.30°B.45°C.60°D.75°6.(3分)三角形的内心是三角形中()A.三条高的交点B.三边垂直平分线的交点C.三条中线的交点 D.三条角平分线的交点7.(3分)正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是()A.B.2 C.2 D.28.(3分)二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.c<0C.当﹣1<x<2时,y>0D.当x<时,y随x的增大而减小9.(3分)如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则sin∠EDB 的值是()A.B.C.D.10.(3分)当ab>0时,y=ax2与y=ax+b的图象大致是()A. B. C.D.二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)在Rt△ABC中,∠C=Rt∠,如果AC=3,BC=4,那么sinA=.12.(4分)已知扇形的圆心角是120°,半径是6,则它的面积是.13.(4分)抛物线y=2x2﹣1的对称轴是.14.(4分)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为.15.(4分)已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为.16.(4分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=8cm,则圆形螺母的外直径是.三、解答题(一)(本大题共3小题,每小题6分,共18分)请在答题卡相应位置上作答.17.(6分)计算:(π﹣3.14)0+18.(6分)求二次函数y=﹣2x2﹣4x+1的顶点坐标,并在下列坐标系内画出函数的大致图象.说出此函数的三条性质.19.(6分)如图,AB与⊙O相切于点C,OA=OB,⊙O的直径为8cm,AB=10cm,求OA长.四、解答题(二)(本大题共3小题,每小题7分,共21分)请在答题卡相应位置上作答.20.(7分)如图,一条公路的转弯处是一段圆弧().(1)用直尺和圆规作出所在圆的圆心O;(要求保留作图痕迹,不写作法)(2)若的中点C到弦AB的距离为20m,AB=80m,求所在圆的半径.21.(7分)一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系.(1)求抛物线的表达式;(2)一辆货车高4m,宽4m,能否从该隧道内通过,为什么?22.(7分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置测角仪AB,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果精确到0.1米,参考数据:≈1.414,≈1.732).五、解答题(三)(本大题共3小题,每小题9分,共27分)请在答题卡相应位置上作答.23.(9分)为了美化生活环境,小兰的爸爸要在院墙外的一块空地上修建一个矩形花圃.如图所示,矩形花圃的一边利用长10米的院墙,另外三条边用篱笆围成,篱笆的总长为32米.设AB的长为x米,矩形花圃的面积为y平方米.(1)用含有x的代数式表示BC的长,BC=;(2)求y与x的函数关系式,写出自变量x的取值范围;(3)当x为何值时,y有最大值?最大值为多少?24.(9分)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.25.(9分)如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S=4S△BOC,求点P的坐标;△AOP(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.2018年广东省佛山市顺德区中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确选项填写在答题卡相应的位置上.1.(3分)sin60°的值为()A.B.C.D.【解答】解:sin60°=.故选:B.2.(3分)在△ABC中,∠C=90°,AB=10,cosA=,则BC的长为()A.6 B.7.5 C.8 D.12.5【解答】解:如图:∵cosA==,AB=10,∴AC=8,由勾股定理得:BC===6.故选:A.3.(3分)已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O 的位置关系是()A.相交B.相切C.相离D.不能确定【解答】解:∵⊙O的半径为3,圆心O到直线L的距离为2,∵3>2,即:d<r,∴直线L与⊙O的位置关系是相交.故选:A.4.(3分)抛物线y=(x﹣1)2+3()A.有最大值1 B.有最小值1 C.有最大值3 D.有最小值3【解答】解:由函数关系式可知,x的系数为1>0,抛物线y=(x﹣1)2+3有最小值,于是当x=1时y=3.故选:D.5.(3分)如图,⊙O是△ABC的外接圆,已知∠ACO=30°,则∠B的度数是()A.30°B.45°C.60°D.75°【解答】解:连接OA,如图,∵OA=OC,∠ACO=30°,∴∠ACO=∠CAO=30°,∴∠AOC=120°,∴∠B=60°.故选:C.6.(3分)三角形的内心是三角形中()A.三条高的交点B.三边垂直平分线的交点C.三条中线的交点 D.三条角平分线的交点【解答】解:三角形的内心是三角形中3条角平分线的交点;故选:D.7.(3分)正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是()A.B.2 C.2 D.2【解答】解:连接OB,OC,∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=BC,∵正六边形的周长是12,∴BC=2,∴⊙O的半径是2,故选:B.8.(3分)二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.c<0C.当﹣1<x<2时,y>0D.当x<时,y随x的增大而减小【解答】解:A、由图象可知函数有最小值,故正确;B、由抛物线与y轴的交点在y的负半轴,可判断c<0,故正确;C、由抛物线可知当﹣1<x<2时,y<0,故错误;D、由图象可知在对称轴的左侧y随x的增大而减小,故正确;故选:C.9.(3分)如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则sin∠EDB 的值是()A.B.C.D.【解答】解:设圆O与小正方形网格的另一个切点为F,连接BF、BE,∵,∴∠EDB=∠EFB,由题意知:EB=BF,∴∠EFB=45°,∴sin∠EDB=sin∠EFB=,故选:B.10.(3分)当ab>0时,y=ax2与y=ax+b的图象大致是()A. B. C.D.【解答】解:根据题意,ab>0,即a、b同号,当a>0时,b>0,y=ax2与开口向上,过原点,y=ax+b过一、二、三象限;此时,没有选项符合,当a<0时,b<0,y=ax2与开口向下,过原点,y=ax+b过二、三、四象限;此时,D选项符合,故选:D.二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)在Rt△ABC中,∠C=Rt∠,如果AC=3,BC=4,那么sinA=.【解答】解:在Rt△ABC中,∠C=90°,∵AC=3,BC=4,∴AB===5.∴sinA==.12.(4分)已知扇形的圆心角是120°,半径是6,则它的面积是12π.【解答】解:由题意得,n=120°,R=6,故可得扇形的面积S===12π.故答案为:12π.13.(4分)抛物线y=2x2﹣1的对称轴是y轴.【解答】解:∵y=2x2﹣1,∴抛物线对称轴为y轴,故答案为:y轴.14.(4分)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为65°.【解答】解:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故答案为:65°15.(4分)已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为x1=4,x2=﹣2.【解答】解:根据图象可知,二次函数y=﹣x2+2x+m的部分图象经过点(4,0),所以该点适合方程y=﹣x2+2x+m,代入,得﹣42+2×4+m=0解得m=8 ①把①代入一元二次方程﹣x2+2x+m=0,得﹣x2+2x+8=0,②解②得x1=4,x2=﹣2,故答案为x1=4,x2=﹣2.16.(4分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=8cm,则圆形螺母的外直径是16cm.【解答】解:设圆形螺母的圆心为O,与AB切于E,连接OD,OE,OA,如图所示:∵AD,AB分别为圆O的切线,∴AO为∠DAB的平分线,OD⊥AC,OD⊥AC,又∠CAB=60°,∴∠OAE=∠OAD=∠DAB=60°,在Rt△AOD中,∠OAD=60°,AD=8cm,∴tan∠OAD=tan60°=,即=,∴OD=8cm,则圆形螺母的直径为16cm.故答案为:16cm.三、解答题(一)(本大题共3小题,每小题6分,共18分)请在答题卡相应位置上作答.17.(6分)计算:(π﹣3.14)0+【解答】解:(π﹣3.14)0+=1+2﹣8﹣2=﹣7.18.(6分)求二次函数y=﹣2x2﹣4x+1的顶点坐标,并在下列坐标系内画出函数的大致图象.说出此函数的三条性质.【解答】解:∵y=﹣2x2﹣4x+1=﹣2(x+1)2+3,∴抛物线开口向下,对称轴为x=﹣1,顶点坐标为(﹣1,3),在y=﹣2x2﹣4x+1中,令y=0可求得x=1±,令x=0可得y=1,∴抛物线与x轴的交点坐标为(1+,0)和(1﹣,0),与y轴的交点坐标为(0,1),其图象如图所示,其性质有:①开口向上,②有最大值3,③对称轴为x=﹣1.19.(6分)如图,AB与⊙O相切于点C,OA=OB,⊙O的直径为8cm,AB=10cm,求OA长.【解答】解:连接OC,∵AB与⊙O相切于点C,∴OC⊥AB,∵OA=OB,∴AC=BC=5,在Rt△AOC中,OA===(cm),答:OA的长为cm.四、解答题(二)(本大题共3小题,每小题7分,共21分)请在答题卡相应位置上作答.20.(7分)如图,一条公路的转弯处是一段圆弧().(1)用直尺和圆规作出所在圆的圆心O;(要求保留作图痕迹,不写作法)(2)若的中点C到弦AB的距离为20m,AB=80m,求所在圆的半径.【解答】解:(1)如图1,点O为所求;(2)连接OA,OC,OC交AB于D,如图2,∵C为的中点,∴OC⊥AB,∴AD=BD=AB=40,设⊙O的半径为r,则OA=r,OD=OD﹣CD=r﹣20,在Rt△OAD中,∵OA2=OD2+AD2,∴r2=(r﹣20)2+402,解得r=50,即所在圆的半径是50m.21.(7分)一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系.(1)求抛物线的表达式;(2)一辆货车高4m,宽4m,能否从该隧道内通过,为什么?【解答】(1)解:设抛物线的解析式为y=a(x﹣h)2+k,∵顶点(4,6),∴y=a(x﹣4)2+6,∵它过点(0,2),∴a(0﹣4)2+6=2,解得a=﹣,∴设抛物线的解析式为;(2)当x=2时,y=5>4,∴该货车能通过隧道.22.(7分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置测角仪AB,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果精确到0.1米,参考数据:≈1.414,≈1.732).【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×=2,∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==4+≈5.7(米),答:拉线CE的长约为5.7米.五、解答题(三)(本大题共3小题,每小题9分,共27分)请在答题卡相应位置上作答.23.(9分)为了美化生活环境,小兰的爸爸要在院墙外的一块空地上修建一个矩形花圃.如图所示,矩形花圃的一边利用长10米的院墙,另外三条边用篱笆围成,篱笆的总长为32米.设AB的长为x米,矩形花圃的面积为y平方米.(1)用含有x的代数式表示BC的长,BC=32﹣2x;(2)求y与x的函数关系式,写出自变量x的取值范围;(3)当x为何值时,y有最大值?最大值为多少?【解答】解:(1)由题意可得,BC=32﹣2x,故答案为:32﹣2x;(2)由题意可得,y=x(32﹣2x)=﹣2x2+32x,∵,∴11≤x<16,即y与x的函数关系式是y=﹣2x2+32x(11≤x<16);(3)∵y=﹣2x2+32x=﹣2(x﹣8)2+128,11≤x<16,∴x=11时,y取得最大值,此时y=110,即当x=11时,y取得最大值,最大值为110.24.(9分)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.【解答】解:(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AE为圆O的切线;(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC﹣AE=7.5﹣3=4.5,∴S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG=×2×3+×3×4.5﹣=3+﹣=.25.(9分)如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;=4S△BOC,求点P的坐标;(2)若点P在抛物线上,且S△AOP(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.【解答】解:(1)把A(﹣3,0),C(0,3)代入y=﹣x2+bx+c,得,解得.故该抛物线的解析式为:y=﹣x2﹣2x+3.(2)由(1)知,该抛物线的解析式为y=﹣x2﹣2x+3,则易得B(1,0).∵S=4S△BOC,△AOP∴×3×|﹣x2﹣2x+3|=4××1×3.整理,得(x+1)2=0或x2+2x﹣7=0,解得x=﹣1或x=﹣1±2.则符合条件的点P的坐标为:(﹣1,4)或(﹣1+2,﹣4)或(﹣1﹣2,﹣4);(3)设直线AC的解析式为y=kx+t,将A(﹣3,0),C(0,3)代入,得,解得.即直线AC的解析式为y=x+3.设Q点坐标为(x,x+3),(﹣3≤x≤0),则D点坐标为(x,﹣x2﹣2x+3),QD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+)2+,∴当x=﹣时,QD有最大值.。