NOx产生机理及控制技术
- 格式:ppt
- 大小:1.90 MB
- 文档页数:100
燃煤 NOx 产生机理及控制摘要:简要介绍了燃煤电厂NOx产生机理及相应控制措施。
关键词:NOx产生机理1.NOx产生机理NOx 主要指 NO 和 NO2,其次是 N2O3, N2O , N2O4和 N2O5。
发电厂锅炉的煤粉燃烧程中NOx的形成途径主要有两条:一是有机地结合在煤中的氮化物在高温火焰中发生热分解,并进一步氧化而生成 NOx ;二是供燃烧用的空气中的氮在高温状态与燃烧空气中的氧发生化合反应而生成 NOx 。
在煤粉锅炉生成的 NOx 中,主要是NO, 约占95%,而 NO2仅占5%左右, N2O3, N2O3, N2O4和 N2O5的量很少。
NOx 的生成量与锅炉的容量、结构、燃烧设备,煤种、炉内温度水平和氧量、运行方式等有关。
煤燃烧过程中所生成的 NOx 分为三种类型,即热力型 NOx 、燃料型 NOx 和快速型 NOx[1]。
按生成比例为,燃料型NOx是最主要的,占NOx 总量60%~80%,热力型NOx次之,快速型NOx量最少[2]。
1.1热力型NOx热力型NOx,也称温度型NOx,是指在高温环境中,燃烧用空气中的氮被氧化生成的NOx。
热力型NOx的产生机理是由前苏联科学家Zeldovich提出的,按照这一机理,其产生过程可由链锁反应原理来说明,主要的反应方程式如下[1]:O2+M→2O+M (2-1)O+N2→NO+N (2-2)N+O2→NO+O (2-3)N+OH→NO+H (2-4)其总反应式为:N2+O2=2NO (2-5)2NO+O2=2NO2(2-6)燃烧系统中共存着以上两个反应,主要是反应式2-5,所以,烟气中同时存在NO、NO2,主要是NO,大约占总 NOx的95%,其余是NO2[13]。
Arrhenius定律适用于热力型NOx的产生速率,以下速率表达式用于计算其产生速率[1]:(2-7)式中 [NO]、[O2]、[N2]——相应组分NO、O2、N2的摩尔浓度,mol/cm3;t——反应时间,s;T——反应温度,K;根据速率表达式可以看出,温度与热力型NOx产生速率为指数函数关系,温度为影响热力型NOx产生的主要因素。
NOX形成机理,如何控制NOX浓度1、NOx的危害:氮氧化物(NOx)是重要的空气污染物质,其产生的途径为燃烧火焰在高温下氮气与氧气的化合,以及燃料中的氮成分在燃烧时氧化而成。
氮氧化物的环境危害有二种,在阳光的催化作用下,氮氧化物易与碳氢化物光化反应,造成光雾及臭氧之二次空气污染;此外氮氧化物也易与水气结合成为含有硝酸成分的酸雨。
2、NOx生成机理和特点2.1 NOx生成机理在NOx中,一氧化氮约占90%以上,二氧化氮占5%~10%,产生机理一般分为如下3种:(1)热力型NOx,燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。
其生成机理可用捷里多维奇(ZELDOVICH)反应式表示,即O2+N→2O+N, O+N2→NO+N, N+O2→NO+O在高温下总生成式为N2+O2→2NO, NO+0.5O2→NO2随着反应温度T的升高,其反应速率按指数规律增加。
当T<1 500 ℃时,NO的生成量很少,而当T>1 500 ℃时,T每增加100 ℃,反应速率增大6~7倍。
(2)快速型NOx,快速型NOx是1971年FENIMORE通过实验发现的。
在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx,由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成NOx,其形成时间只需要60 ms,所生成的NOx与炉膛压力的0.5次方成正比,与温度的关系不大。
(3)燃料型NOx,指燃料中含氮化合物,在燃烧过程中进行热分解,继而进一步氧化而生成NOx。
由于燃料中氮的热分解温度低于煤粉燃烧温度,在600~800 ℃时就会生成燃料型NOx。
在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN等中间产物基团,然后再氧化成NOx。
由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型NOx的形成也由气相氮的氧化和焦炭中剩余氮的氧化两部分组成。
氮氧化物生成的原理
氮氧化物(NOx)生成的原理主要有两个方面:热氧化生成和燃烧生成。
1. 热氧化生成:在高温条件下,氮气和氧气会发生氧化反应生成氮氧化物。
这种情况经常出现在工业燃烧过程中,特别是高温燃烧。
2. 燃烧生成:在燃烧过程中,燃料中的氮(通常是空气中的氮气)会与氧气反应生成氮氧化物。
这主要是由于燃料氮在高温燃烧区域内与氧气发生复杂反应,其中包括氧化、还原和氮气的氧化等过程。
总体来说,氮氧化物的生成与燃料中的氮含量、燃烧过程中的温度和氧气的供应有关。
高温和富氧条件下,气体燃烧过程中产生的氮氧化物含量较高。
烧结砖窑炉氮氧化物的产生及控制一、NOx(氮氧化物)中国是一个以煤炭为能源的国家,煤在一次能源中占75%,其中84%以上是通过燃烧方式利用的。
NOx是煤与空气在高温燃烧时产生的,是造成大气污染的主要污染源之一。
其主要危害有:对人体健康的直接危害,主要影响呼吸系统;对植物有损害;参与形成光化学烟雾,形成酸雨,污染环境;N2O(一氧化碳)是一种温室气体,会破坏环臭氧层。
二、NOX产生机理煤在燃烧过程中产生的氮氧化物主要是一氧化氮和二氧化氮,其生成量和排放量与燃烧方式、特别是烧成温度和空气过剩系数等密切相关。
NOX生成途径主要有燃料型、热力型和快速性三种方式。
其中快速型生成量很少,可以忽略不计。
1、热力型NOX指空气中的氮气和氧气在燃料燃烧时所形成的高温环境下生成的一氧化氮和二氧化氮总和。
其反应式为:N2+O2=2NO2NO+ O2=2NO2当燃烧区域温度低于1000℃时,一氧化氮的生成量较少,而温度在1300~1500℃时,一氧化氮的浓度为500~1000ppm,而且随温度的升高,NOX的生成速度按指数规律增加。
当温度足够时,热力型NOX可达20%。
因此温度对热力型NOX的生成具有绝对性作用,过量空气系数和烟气停留时间对热力型NOX的生成有很大影响。
根据热力型NOX的生成过程,要控制其生成,就需要降低溶炉的最高烧成温度,并免产生场部高区,以降低热力型N0的生成2、燃料型NOX燃料型NOx的生成是燃料中的氮化台物在燃烧过程中氧化反应而生成的,称为料型一般的炉察产生的0中大约%%是燃料型的NOx因此,燃料型O是察产生x的主要途径。
燃料型NOx的生成和破坏过程不仪与煤种性燃料中氮化合物受热分解后在发分和焦影中的例,成分和分布有关,而目其反应过程还和燃烧多件(如温度和氧)及各种成分的浓度密切相关,在接加燃料的坯体进入察炉被加热以后,燃料中的氮有机化台物首先被分解成(HCN)。
氢(NH4)和CN等中间产物,它们随挥发分一起从燃料中析出,被称为挥发分析出后仍残留在燃料中的氢化合物称为焦炭N。
NOX形成机理,如何控制NOX浓度1、NOx的危害:氮氧化物(NOx)是重要的空气污染物质,其产生的途径为燃烧火焰在高温下氮气与氧气的化合,以及燃料中的氮成分在燃烧时氧化而成。
氮氧化物的环境危害有二种,在的催化作用下,氮氧化物易与碳氢化物光化反应,造成光雾及臭氧之二次空气污染;此外氮氧化物也易与水气结合成为含有硝酸成分的酸雨。
2、NOx生成机理和特点2.1 NOx生成机理在NOx中,一氧化氮约占90%以上,二氧化氮占5%~10%,产生机理一般分为如下3种:(1)热力型NOx,燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。
其生成机理可用捷里多维奇(ZELDOVICH)反应式表示,即O2+N→2O+N, O+N2→NO+N, N+O2→NO+O在高温下总生成式为N2+O2→2NO, NO+0.5O2→NO2随着反应温度T的升高,其反应速率按指数规律增加。
当T<1 500 ℃时,NO的生成量很少,而当T>1 500 ℃时,T每增加100 ℃,反应速率增大6~7倍。
(2)快速型NOx,快速型NOx是1971年FENIMORE通过实验发现的。
在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx,由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成NOx,其形成时间只需要60 ms,所生成的NOx与炉膛压力的0.5次方成正比,与温度的关系不大。
(3)燃料型NOx,指燃料中含氮化合物,在燃烧过程中进行热分解,继而进一步氧化而生成NOx。
由于燃料中氮的热分解温度低于煤粉燃烧温度,在600~800 ℃时就会生成燃料型NOx。
在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN等中间产物基团,然后再氧化成NOx。
由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型NOx的形成也由气相氮的氧化和焦炭中剩余氮的氧化两部分组成。
关于锅炉燃烧NOx生成机理及调整控制方法锅炉燃烧产生的NOx可分为热力型、燃料型和快速型三种,热力型、燃料型和快速型NOx在煤粉燃烧时会同时生成。
但在燃用挥发分较高的烟煤时,燃料型NOx含量较多,快速型NOx极少。
热力型NOx产生的主要条件是高的燃烧温度使氮分子游离增本化学活性,其次是高的氧浓度,要减少热力型NOx的生成,可采取: (1)减少燃烧最高温度区域范围;(2)降低锅炉燃烧的峰值温度;(3)降低燃烧的过量空气系数和局部氧浓度。
燃料型NOx是燃料内含氮在燃烧过程中成离子析出与含氧物质反应形成NOx,或与含氮物质反应又成氮分子。
燃料中氮并非全部转变为NOx,它存在一个转换率,降低此转换率,控制NOx排放总量,可采取:(1)减少燃烧的过量空气系数;(2)控制燃料与空气的前期混合;(3)提高入炉的局部燃料浓度。
根据NOx的生成机理,在燃烧器设计上采用了SOFA和OFA分级燃烧技术的同时,还采用了煤粉浓淡分离技术,尽可能抑制NOx的生成。
另外,我厂锅炉在高负荷时产生的NOx降低、低负荷时升高的情况,原因主要是由于负荷降低时,各层燃烧器煤粉浓度降低,炉膛内局部还原性气氛减弱,引起NOx产生增加。
根据NOx产生的机理,从降低排放NOx浓度方向,提出以下调整方法:1.根据NOx产生机理,以下调整主要通过燃烧、配风等方式的改变来减少NOx的生成。
但可能造成汽温的变化时,应通过燃烧器摆角的调整来调节汽温;2.提高炉膛与风箱差压,满负荷时0.65~0.75kPa,低负荷区段保持在0.4~0.55kPa。
高负荷开足上部OFA和SOFA风门挡板,关小周界风挡班开度至20%,除下部AA层挡板开度在60%,其余各层挡板开度30%;3.经常检查氧量测点及标定表计,并根据总风量以及送风机的电流、开度等,判断炉内燃烧是否正常,在保证燃烧安全的前提下,尽量维持低氧量燃烧,对降低NOx排放有利;4.调整各层煤量,最下层和最上层的煤量要少于中间两层10~15%,如果总煤量是120T/h,则B:28 T/h、C:32 T/h、D:32 T/h、E:28 T/h,并且根据各层煤量,按规程控制磨的出口温度;5.在减少漏煤、飞灰和炉渣的含碳量,且不明显增加磨煤机电耗的情况下,调整煤粉细度,A、E两层R90=19%,其余各层R90=24%,如果磨煤机有较大裕量,还可以适当减小细度,以增加煤粉初期的低氧燃烧生成还原性强的CO,以抑制NO的形成。
一、氮氧化物的产生机理在氮氧化物中,NO占有90%以上,二氧化氮占5%-10%,产生机理一般分为如下三种:(a)热力型燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。
其生成机理可用捷里多维奇(Zeldovich)反应式表示。
随着反应温度T的升高,其反应速率按指数规律。
当T<1500℃时,NO的生成量很少,而当T>1500℃时,T每增加100℃,反应速率增大6-7倍。
热力型氮氧化物生成机理(Zeldovich反应式)在高温下总生成式为(b)瞬时反应型(快速型)快速型NOx是1971年Fenimore通过实验发现的。
在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx。
由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成,其形成时间只需要60ms,所生成的与炉膛压力次方成正比,与温度的关系不大。
上述两种氮氧化物都不占NOx的主要部分,不是主要来源。
(c)燃料型NOx由燃料中氮化合物在燃烧中氧化而成。
由于燃料中氮的热分解温度低于煤粉燃烧温度,在600-800℃时就会生成燃料型,它在煤粉燃烧NOx产物中占60-80%。
在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN和等中间产物基团,然后再氧化成NOx。
由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型的形成也由气相氮的氧化(挥发份)和焦炭中剩余氮的氧化(焦炭)两部分组成。
燃料中氮分解为挥发分N和焦炭N的示意图二、低NOx燃烧技术原理对于没有脱硝设备和脱硝燃烧器的燃煤锅炉来说,也就是采用低氮燃烧技术来减少NOx的生成机会。
1)在燃用挥发分较高的烟煤时,燃料型NOx含量较多,快速型NOx极少。
燃料型NOx是空气中的氧与煤中氮元素热解产物发生反应生成NOx,燃料中氮并非全部转变为NOx,它存在一个转换率,降低此转换率,控制NOx排放总量,可采取:(1)减少燃烧的过量空气系数;(2)控制燃料与空气的前期混合;(3)提高入炉的局部燃料浓度。
燃气轮机NO x生成机理及降低措施一燃烧过程中N Ox生成机理1.热力型NOx生成机理(泽尔道维奇机理)热力型NOx是指空气中的N2在高温条件下氧化生成的氮氧化物,其主要成分是NO。
按照这一机理,空气中的N2氧化,是通过如下一组不分支的链式反应进行在高温下的,生成速率如下式所示:生成NO所需的活化能很大,通常氧原子与燃料中可燃成分之间的活化能较小,反应较快,因此,NO通常不在火焰面上生成,主要生成区域位于火焰下游高温区。
温度对热力型N Ox的影响是非常明显的,当温度低于1800K时,热力型NOx生成量很少,当温度高于 1800K时,反应逐渐明显,而且随着温度的升高,NOx生成量急剧升高。
从图中可以大致看出,温度在1800K左右时,温度每升高l00K,反应速度将增大6一7倍。
由于在实际燃烧过程中,燃烧室内温度分布通常是不均匀的,如果有局部的高温区域,则在这个区域会生成较多的NOx,它可能会对整个燃烧室内的NOx生成起到关键的作用。
因此,在实际的燃烧器设计过程中应尽量避免局部高温区的形成。
过量空气系数对热力型N O x的影响也是非常明显的,热力型NOx生成量与氧浓度的平方根成正比,即氧浓度增大,在较高的温度下会使氧分子分解的氧原子浓度增加,从而使热力型N Ox的生成量增加。
但在实际燃烧过程中情况会更复杂一些,因为过量空气系数的增加一方面增加了氧浓度,另一方面也降低了火焰温度,从总体趋势上来看,随着过量空气系数的增加,NOx生成量先增加,到达一个极值后下降。
气体在高温区域的停留时间对热力型NOx生成也有影响,主要是因为N o x生成反应速度较慢,没有达到化学平衡所致。
在其它条件不变的情况下,气体在高温区停留时间越长,NOx生成量就越大,直到达到化学平衡浓度。
焦炉烟气氮氧化物生成机理及控制1. 焦炉烟气氮氧化物生成机理及控制一、焦炉烟气氮氧化物生成机理1. 烟气中的氮氧化物的生成及影响因素焦炉烟气中的氮氧化物(NOx)是由焦炉燃烧过程中产生的一种有害物质,其主要成分包括NO和NO2。
氮氧化物的生成主要依赖于燃烧过程中温度和氮气浓度等,且受到发电机组参数、燃料品质和燃烧器的设计有关。
(1)燃烧温度氮氧化物的生成主要受到燃烧温度的控制,温度上升会导致其生成分解反应的反应速率加快,应避免燃烧温度过高。
(2)氮气浓度烟气中含有一定量的氮气,氮气的浓度增加会导致氮氧化物的生成量增加,因此应当采用控制吸入空气中的氮气浓度的方法来控制其氮氧化物的生成量。
(3)发电机组参数发电机组参数也会影响氮氧化物的生成量,如排放量、排放速率等。
这些参数可以通过控制和调节发电机组的参数来控制烟气中的氮氧化物含量。
(4)燃料品质燃料品质也会影响氮氧化物的生成量。
烟道燃料的中碳含量越高,烟道燃料中NOx的生成量就越大。
另外,烟道燃料中的氧含量也会影响NOx的生成量,如果烟道燃料含氧量太低,NOx的生成量也会增加。
(5)燃烧器的设计燃烧器的设计也会影响氮氧化物的生成量,如长度、断面尺寸等都会影响氮氧化物的生成量。
烟道内的混合度会影响烟气中的氧气分布,同时也会影响NOx的生成量。
二、焦炉烟气氮氧化物控制技术1. 氮氧化物控制设备(1)NOx捕捉与脱硝装置NOx捕捉与脱硝装置是一种常用的控制氮氧化物排放的设备,它可以捕捉烟气中的NOx,并将其以氧化物的形式转化为无害的产物。
一般而言,NOx的捕捉可以通过加入富氧化剂(如硫酸锌、硝酸钾等)和吸收剂(如碳酸钠)来实现。
(2)燃烧器优化燃烧器优化是控制氮氧化物排放的有效措施之一,它的主要内容包括火焰参数调节、烟道喷嘴数量和尺寸、烟道结构设计等。
2. 氮气合成和除尘技术(1)氮气合成技术氮气合成技术可以有效减少氮气的含量,从而减少氮氧化物的排放。
这种技术利用电磁感应原理将氮气合成为无害的水蒸汽,并将其引入烟道,以替代空气中的氮气,从而减少氮氧化物的排放。
NOx生成及控制措施一、NOx生成机理氮氧化物(NOx)是指一类由氮气和氧气反应而生成的氮氧化合物,包括一氧化氮(NO)、二氧化氮(NO2)以及氮氧化合物(N2O、N2O4等)。
在大气环境中,NOx的生成主要与燃烧过程和工业生产中的高温化学反应相关。
1. 燃烧过程中的NOx生成当有机物(如煤、原油、天然气)在高温条件下与氧气反应时,会生成NOx。
燃烧过程中的NOx生成主要分为两个步骤:燃料氮的氧化和燃料和空气中氮气的反应。
燃烧过程中的氮氧化合物种类和含量取决于燃料中氮的含量、燃烧温度和氧气浓度等因素。
2. 工业生产中的高温化学反应除了燃烧过程外,工业生产过程中的高温化学反应也会产生大量的NOx。
例如,一些化学反应、电弧炉、高温窑炉等工艺过程都会释放出大量的氮氧化物。
二、NOx控制措施由于NOx对环境和人体健康造成的危害,控制和减少NOx排放已成为工业生产和城市建设中的重要任务。
下面介绍几种常见的NOx控制措施:1. 燃烧控制技术通过改变燃料供给方式、优化燃烧设备设计和调整燃烧过程参数等方法,可以有效降低NOx的生成。
例如,采用低氮燃烧器、增加过量空气系数、控制燃烧温度等手段都能降低燃烧过程中的NOx产生量。
2. 尾气处理技术尾气处理技术是一种常见且有效的NOx控制手段。
其中最常用的技术是选择性催化还原(SCR)和选择性非催化还原(SNCR)技术。
这两种技术通过添加还原剂(如氨水或尿素)来将NOx还原为无害的氮气和水蒸气。
3. 排放监测和管理对NOx排放进行实时监测和合理管理对于控制和减少NOx污染具有重要意义。
建立健全的监测系统,加强排放标准的制定和执行,并进行定期监督和评估,能够有效地减少NOx排放。
4. 新技术研发随着科技的不断进步,一些新技术也被应用于NOx控制中。
例如,低温等离子体处理技术和吸附剂材料的研发都为NOx的控制和去除提供了新的思路和方法。
总结:针对NOx污染的严重性,我们需要采取有效的措施来降低NOx的生成和排放。
NOx的生成机理
在燃烧过程中, NOx生成的途径有3条:
1,是空气中氮在高温下氧化产生,称为热力型NOx;
2,是由于燃料挥发物中碳氢化合物高温分解生成的CH自由基和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成NOx,称为快速型NOx;
3,是燃料中含氮化合物在燃烧中氧化生成的NOx,称为燃料型NOx。
关于热力NOx的生成机理是高温下空气的N2氧化形成NO;,其主成速度与燃烧温度有很大关系,当燃烧温度低于1400℃时热力NOx生成速度较慢,当温度高于1400℃反应明显加快,根据阿累尼乌斯定律,反应速度按指数规律增加。
这说明,在实际炉内温度分别不均匀的情况下,局部高温的地方会生成很多的NOx;并会对整个炉内的NOx生成量起决定性影响。
热力NOx的生成量则与空气过剩系数有很大关系,氧浓度增加,NOx生成量也增加。
当出现15%的过量空气时,NOx生成量达到最大:当过量空气超过15%时。
由于NOx被稀释,燃烧温度下降,反而会导致NOx生成减少。
热力NOx 的生成还与烟气在高温区的停留时间有关,停留时间越长,NOx越多。