PCR相关知识
- 格式:doc
- 大小:29.00 KB
- 文档页数:5
P C R技术基本原理及相关知识PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。
PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA 经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。
每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。
到达平台期(Plateau)所需循环次数取决于样品中模板的拷贝。
PCR的反应动力学 PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。
反应最终的DNA 扩增量可用Y=(1+X)n计算。
Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。
平均扩增效率的理论值为100%,但在实际反应中平均效率达不到理论值。
反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进入线性增长期或静止期,即出现“停滞效应”,这种效应称平台期数、PCR扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素。
大多数情况下,平台期的到来是不可避免的。
PCR反应体系的基本成分:模板DNA、特异性引物、DNA聚合酶、dNTP、 Mg2+的缓冲液。
PCR反应体系与反应条件--------------------------------------------------------------------------------标准的PCR反应体系:10×扩增缓冲液 10ul4种dNTP混合物各200umol/L引物各10~100pmol模板DNA 0.1~2ugTaq DNA聚合酶 2.5uMg2+ 1.5mmol/L加双或三蒸水至100ulPCR反应五要素:参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+引物:引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度。
高考生物PCR的过程及应用考点归纳总结一、基础考点1.名称:多聚酶链式反应2.原理:DNA双链复制(DNA的半保留复制)、DNA的热变性原理3.前提:要有一段已知目的基因的核苷酸序列4.过程:PCR由变性--退火--延伸三个基本反应步骤构成:会解释三个步骤①变性:当温度上升到90℃以上时,双链DNA解聚为单链②复性:当温度下降到50℃左右时,两种引物通过碱基互补配对与两条单链结合;③延伸:当温度上升到72℃左右时,溶液中的4种脱氧核苷酸再耐高温的DNA 聚合酶的作用下,根据碱基互补配原则合成新的DNA链④重复:第一轮循环的产物作为第二轮的模板:重复循环变性—复性--延伸三过程。
5.PCR反应体系的成分及作用DNA模板:从样本或细胞中提取的微量总DNA原料∶dNTP(dATP、dGTP、dCTP、TTP),提供原料和能量酶∶Taq聚合酶(热稳定DNA聚合酶,从嗜热菌中分离得到)引物∶一小段能与DNA母链的一段碱基序列互补配对的短单链核酸(注意:引物与目的DNA片段两条母链各自的3’端序列互补)Mg2+:维持酶活性所必需PCR缓冲液∶维持pH,保护Taq酶6.DNA在体内复制的条件模板∶DNA分子的每条链酶∶解旋酶、DNA聚合酶、DNA连接酶原料、能量∶dATP、dGTP、dCTP、dTTP引物∶RNA引物,温和的反应条件7.总结:PCR与体内DNA分子复制的不同点:PCR DNA复制复制起点无有复制叉无有场所及条件体外;控制3个不同温度体内细胞核、线粒体、叶绿体;温和条件步骤变性、退火、延伸起始、延伸、终止酶Taq酶解旋酶、DNA聚合酶、DNA连接酶引物2种,一小段与DNA母链的一段碱基序列互补配对的短单链DNA;人工合成多种RNA做引物;自行合成引物是否去除否是变性的条件90℃以上的高温解旋酶结果短时间内快速扩增目的基因片段复制完整的DNA分子特点半保留复制两条链连续合成半保留复制半不连续复制8.PCR技术在基因工程中的应用:(1)特异性、快速扩增目的基因获取目的基因(2)目的基因的检测与鉴定9.用PCR技术可以扩增mRNA吗?不可以;在逆转录酶的作用下,需以mRNA为模板按照碱基互补配对的原则合成cDNA再进行扩增10.提取mRNA扩增目的基因的过程:第一步:逆转录酶以RNA为模板合成一条与RNA互补的DNA链,形成RNA-DNA杂交分子第二步:核酸酶H降解RNA-DNA杂交分子中的RNA链,使之变成单链DNA;第三步:以单链DNA为模板,在DNA聚合酶的作用下合成另一条互补的DNA链,形成双链DNA分子第四步:以双链DNA分子为模板,经过③变性、④复性、⑤延伸,循环扩增形成目的基因产物11.cDNA中缺少真核生物基因的哪些结构:启动子、内含子、终止子12.目前在PCR反应中使用Taq酶而不使用大肠杆菌DNA聚合酶的主要原因是:Taq酶热稳定性高,而大肠杆菌DNA聚合酶在高温下会失活13.PCR产物的影响因素:模板DNA的量、脱氧核苷酸的量、引物的量、酶的数量和活性、循环次数、Mg2+的浓度14.PCR后期,反应速率下降的原因:酶的活性降低、引物和dNTP浓度降低、反应产物增多15.变性温度过低会导致双链不能充分解开;16:PCR扩增中预变性的目的:预变性破坏DNA中可能存在的较难破坏的二级结构。
pcr知识点总结归纳PCR(Polymerase Chain Reaction),即聚合酶链反应,是一种用于抑制、合成、扩增DNA的技术。
PCR技术广泛应用于科学研究、临床诊断、法医鉴定和生物工程等领域。
PCR技术的出现不仅提高了DNA的扩增速度,而且在很大程度上解决了DNA分析的难题和可行性问题。
PCR技术的关键在于DNA的扩增,通过特定的引物(primer)和热稳定的DNA聚合酶在不同温度下进行多次循环反应,使目标DNA片段扩增成百上千倍。
PCR技术的应用可以在较短时间内获得充足的DNA,为后续的实验提供了可行性基础。
PCR技术是分子生物学研究的重要工具,掌握PCR技术的原理和操作方法对于分子生物学研究者来说至关重要。
下面将对PCR技术的知识点进行总结和归纳,包括PCR的基本原理、PCR反应体系、PCR引物设计、PCR技术的优缺点以及PCR技术在生物学研究中的应用等方面。
一、PCR的基本原理PCR技术是通过DNA的酶解、DNA的引物延伸、DNA的片段合成来实现DNA扩增。
PCR主要由以下三个步骤组成:变性、退火和延伸。
1. 变性步骤:将DNA的双链解链成两条单链,即使DNA解链。
2. 退火步骤:将引物与DNA模板结合成双链,即使DNA复性。
3. 延伸步骤:在退火变性条件下将引物作为起始核酸,然后DNA聚合酶将其扩增成DNA。
通过以上三个步骤的循环反应即可实现DNA的多次扩增。
二、PCR反应体系PCR反应体系主要包括DNA模板、引物、DNA聚合酶、四种dNTPs、缓冲液和辅助剂等。
1. DNA模板:PCR反应的起始材料,可以是基因组DNA、cDNA或其他DNA模板。
2. 引物:在退火步骤中将与DNA模板特异性结合,为DNA的扩增提供起始核酸。
3. DNA聚合酶:用于合成DNA,PCR反应中通常采用热稳定的DNA聚合酶如Taq DNA聚合酶。
4. dNTPs:即脱氧核苷酸三磷酸盐,即dATP、dCTP、dGTP和dTTP,是DNA聚合的四种脱氧核苷酸单体。
PCR的种类原理及其应用1. PCR的简介PCR(Polymerase Chain Reaction,聚合酶链反应)是一种在体外复制DNA的技术,它通过反复进行DNA的复制,扩增出目标DNA的数目,从而使得原来数量有限的DNA样本变得足够检测。
PCR技术的应用广泛,不仅可以在分子生物学研究中应用,也可以用于医学诊断、法医学鉴定等领域。
2. PCR的原理PCR技术主要依赖于DNA的复制酶(聚合酶)、DNA模板、引物以及dNTPs等原料。
PCR反应一般包括三个步骤:变性、退火和扩增。
2.1 变性在PCR反应开始时,将目标DNA加热到94-96°C,使其双链DNA解旋成两条单链,这个过程称为变性。
此时,DNA模板中的两条链将被分离开来,为下一步的引物结合提供条件。
2.2 退火随后,在PCR反应中,温度会降低到50-60°C,引物可以与模板DNA中的特定区域互补配对,这个过程称为退火。
引物的选择是PCR反应中的关键步骤之一,引物的序列需要与目标DNA序列的两端互补,使得引物在此处能够结合。
2.3 扩增一旦引物与DNA模板结合,聚合酶通过在引物上合成新的DNA链。
这个过程称为扩增。
聚合酶从引物的3’端开始构建新的DNA链,复制DNA模板。
扩增过程通常会进行30-40个周期,每个周期包括变性、退火和扩增三个步骤,使得目标DNA的数量呈指数增长。
3. PCR的种类3.1 普通PCR普通PCR是最基本的PCR类型,采用传统的PCR原理和步骤进行扩增。
普通PCR适用于检测目标DNA序列的存在与否,常用于基因组克隆、突变分析和基因表达分析等研究领域。
3.2 定量PCR定量PCR是基于普通PCR的基础上进行改进和优化的一种技术。
它可以定量测定PCR反应体系中目标DNA模板的初始数量。
定量PCR广泛应用于基因表达分析、病原体定量检测、药物代谢分析等领域。
3.3 反转录PCR反转录PCR是在普通PCR基础上结合了反转录过程的一种PCR技术。
PCR技术基本原理及相关知识PCR(聚合酶链式反应)是一种分子生物学技术,用于扩增DNA分子。
PCR技术革命性地改变了分子生物学的研究和应用领域,并且在医学、农业、环境科学等领域具有广泛的应用。
以下是PCR技术的基本原理及相关知识。
1. 变性(Denaturation):将目标DNA融合成两条单链,使其成为单股DNA。
在PCR反应开始时,样本中的DNA经过高温处理(通常为95°C),使其双股DNA分离,形成单股DNA。
2. 退火(Annealing):通过引入两个特异性引物,使其与目标DNA的靶序列互补结合。
延伸引物是由短的DNA或寡核苷酸片段(18-24个核苷酸)组成的特定DNA序列,它与目标序列的两端相互补。
在PCR反应温度较低时(通常为50-65°C),引物结合到目标DNA的两端。
3. 延伸(Extension):通过DNA聚合酶的催化,将引物与目标DNA形成的复合物延长,生成新的DNA分子。
在PCR反应中,引物延长所需要的二倍体DNA将通过DNA聚合酶的催化作用来实现。
DNA聚合酶能够识别引物与模板DNA之间的同源性,并在引物的3'末端开始合成新的DNA链。
以上三个步骤组成一个PCR循环,每个循环将扩增目标DNA的数量。
通常,在30-40个PCR循环后,目标DNA的量将扩增到百万级。
1.DNA模板:DNA模板是PCR反应的起点,它可以是基因组DNA、cDNA或已知序列的DNA片段。
2.引物设计:引物的选择非常重要,引物应该与目标DNA序列的两端相互补,以确保引物的有效结合和延长。
3. DNA聚合酶:DNA聚合酶是PCR反应的催化剂,通常使用热稳定聚合酶(如Taq聚合酶)。
热稳定聚合酶能够在高温下保持稳定,并且具有较高的DNA聚合活性。
4.PCR缓冲液:PCR反应需要在特定的pH和离子浓度条件下进行,PCR缓冲液可以提供适宜的反应环境。
5.循环条件:PCR反应需要在特定的温度条件下进行循环反应。
聚合酶链反应(Polymerase Chain Reaction ,PCR)是80年代中期发展起来的体外核酸扩增技术。
它具有特异、敏感、产率高、快速、简便、重复性好、易自动化等突出优点;能在一个试管内将所要研究的目的基因或某一DNA片段于数小时内扩增至十万乃至百万倍,使肉眼能直接观察和判断;可从一根毛发、一滴血、甚至一个细胞中扩增出足量的DNA供分析研究和检测鉴定。
过去几天几星期才能做到的事情,用PCR几小时便可完成。
PCR技术是生物医学领域中的一项革命性创举和里程碑。
PCR技术简史PCR的最早设想核酸研究已有100多年的历史,本世纪60年代末、70年代初人们致力于研究基因的体外分离技术,Korana于1971年最早提出核酸体外扩增的设想:“经过DNA变性,与合适的引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可克隆tRNA基因“。
PCR的实现1985年美国PE-Cetus公司人类遗传研究室的Mullis等发明了具有划时代意义的聚合酶链反应。
其原理类似于DNA的体内复制,只是在试管中给DNA的体外合成提供以致一种合适的条件---摸板DNA,寡核苷酸引物,DNA聚合酶,合适的缓冲体系,DNA变性、复性及延伸的温度与时间。
PCR的改进与完善Mullis最初使用的DNA聚合酶是大肠杆菌DNA聚合酶I的Klenow片段,其缺点是:①Klenow酶不耐高温,90℃会变性失活,每次循环都要重新加。
②引物链延伸反应在37℃下进行,容易发生模板和引物之间的碱基错配,其PCR 产物特异性较差,合成的DNA片段不均一。
此种以Klenow酶催化的PCR技术虽较传统的基因扩增具备许多突出的优点,但由于Klenow酶不耐热,在DNA模板进行热变性时,会导致此酶钝化,每加入一次酶只能完成一个扩增反应周期,给PCR技术操作程序添了不少困难。
这使得PCR技术在一段时间内没能引起生物医学界的足够重视。
198 8年初,Keohanog改用T4 DNA聚合酶进行PCR,其扩增的DNA片段很均一,真实性也较高,只有所期望的一种DNA片段。
pcr实验知识点总结PCR实验(聚合酶链反应)是一种在生物化学中广泛使用的分子生物学技术,用于扩增特定的DNA片段。
该技术由Kary Mullis于1983年发明,并于1993年获得了诺贝尔化学奖。
以下是关于PCR实验的知识点总结。
一、PCR原理PCR的基本原理是利用DNA聚合酶对单链DNA进行复制的能力。
这个过程分为三个步骤:变性、退火和延伸。
1. 变性:在高温(通常为95℃)下,双链DNA被解旋成两条单链模板。
2. 退火:温度降低(一般为50-65℃),引物与模板DNA的互补序列结合。
3. 延伸:在适宜的温度(72℃左右)和DNA聚合酶的作用下,引物沿着模板DNA向两侧延伸,形成新的双链DNA。
这三个步骤循环进行,每次循环都会使目标DNA的数量翻倍,经过几十到几百次循环后,就能得到大量的目标DNA。
二、PCR所需材料1. DNA模板:待扩增的目标DNA。
2. 引物:两段短的寡核苷酸,与目标DNA的两端互补。
3. dNTPs:脱氧核苷三磷酸,作为合成新链的原料。
4. Taq DNA聚合酶:能在高温下保持活性的酶,用于催化DNA的合成。
5. 缓冲液:提供合适的pH和离子环境。
三、PCR操作步骤1. 设计引物:根据目标DNA的序列设计出两条引物,分别与DNA的正反两条链互补。
2. 配制反应体系:将模板DNA、引物、dNTPs、Taq酶和缓冲液按照一定比例混合。
3. PCR循环:将反应体系放入PCR仪中,设定好变性、退火和延伸的温度和时间,开始循环反应。
4. 产物检测:可以通过凝胶电泳等方法检测PCR产物的大小和数量。
四、PCR的应用1. 分子诊断:如病原体检测、基因突变检测等。
2. 基因克隆:将目的基因扩增后,可以方便地进行后续的克隆和表达。
3. 序列分析:通过扩增特定的基因区域,可以进行基因测序和SNP分析等。
4. 生物考古学:可以从古代样本中提取DNA并进行扩增,研究古生物的遗传信息。
五、PCR实验注意事项1. 引物设计:引物应具有良好的特异性和稳定性,避免产生非特异性扩增和二级结构。
干货分享PCR知识分享01PCR 的基本原理PCR是一种选择性体外快速扩增DNA片段的方法。
在体外以类似于细胞内DNA的半保留复制过程,以拟扩增的模板DNA分子,与模板DNA互补的寡核苷酸引物、DNA聚合酶、4种dNTP及适合的缓冲体系组成的反应体系,经过重复地变性一退火一延伸三步,扩增新的目的DNA链,这个过程通过控制反应体系的温度来实现。
PCR包含下列三步反应:1、变性(denaturation)将反应体系混合物经加热至94℃左右,维持较短的时间,使双链DNA变成单链DNA,便于下一步引物的结合。
2、退火(annealing)将反应体系温度下降到特定温度(一般是引物的Tm值以下),引物与DNA模板以碱基互补的方式结合,形成模板-引物杂交双链。
退火温度是保证引物与DNA模板互补结合的关键。
由于引物结构简单,加之引物量远远大于模板DNA的数量,所以DNA模板单链之间的互补结合很少。
3、延伸(elongation)将反应体系的温度上升到72℃左右并维持一段时间,在Taq DNA 聚合酶的作用下,以引物为起始点,以4种单核苷酸(dNTP)为底物,从5'→3'方向延伸反应,合成新的DNA双链。
以上三步反应为一个循环,重复进行变性、退火、延伸这三步反应,如此反复循环可以使DNA以指数形式进行扩增。
上述过程1.5小时左右完成,从而使所需的目的DNA片段扩增放大百万倍。
02PCR反应液成分PCR反应体系主要包含以下五种成分1、模板(template)模板即扩增用的DNA,可以是任何来源DNA(如基因组DNA、质粒DNA等)或RNA(如总RNA、mRNA、tRNA、rRNA、病毒RNA 等),但必须符合两个条件:一是纯度必须较高,二是浓度不能太高以免抑制。
50μl PCR反应体系中模板DNA推荐使用量如下表所示2、引物(primers)人工合成的一对引物可以分别与两条模板DNA互补结合的寡核苷酸序列,其中一条称为上游引物,另一条称为下游引物。
1.半定量RT-PCR(实验室所做的普通PCR)与荧光定量Real-time PCR 最大的区别就在于semi-PCR需要跑电泳根据条带亮度的强弱来
判断模板拷贝数的高低或者是表达量的高低而Real-Time PCR则无需电泳可以实时监测整个PCR的全程并且由给出的Ct值及Standard Curve来判断gene拷贝数的高低。
所以由上可见semi-PCR不如Real-Time PCR精确。
至于RT 应该指Reverse Transcription。
为了便于区分我们更偏好使用qPCR来特指Real-Time PCR
但要注意REALTIME-PCR的定性问题,有时候你扩增出来的很有可能只是引物二聚体。
所以要利用MELTING CURVE,如果是第一次做一个目的基因的REALTIME-PCR,还是要在2%的琼脂糖凝胶中进行电泳,以确定与你要扩增的目的基因大小一致。
RT-pcr 只能通过模板pcr后扩增的结果间接的反应初始模板的量。
而realtime-pcr的结果直接可以看到初始模板的量。
所以,realitime-pcr更精确些。
半定量反转录-聚合酶链反应(semi-quantitative reverse transcription and polymerase Chain reaction ,SqRT-PCR)是近年来常用的一种简捷、特异的定量RNA测定方法,通过mRNA反转录成cDNA,再进行PCR扩增,并测定PCR产物的数量,可以
推测样品中特异mRNA的相对数量。
以半定量RT-PCR为基础建立起来的mRNA含量测定技术,较含内标化的RT-PCR定量测定的mRNA的方法更为简便可行。
这种方法不另设‘内标准',排除了俩对不同引物之间的相互抑制和灵敏读差异,而且具有明显的剂量-效益关系和良好的重复性。
步骤:
1.抽提RNA,
2.反转录获得cDNA,
3.以cDNA为模板做PCR
注意:
步骤1,RNA抽提质量一定要好,注意污染。
内参的选择,常用的有βactin和GAPDH俩中。
步骤3,半定量RT-PCR应该再两管中进行,既内参和目的基因各一管,这样便于控制,做图的时候可以放在一各泳道里跑!指数期和平台期一定要摸清楚!
2.在RT时,引物设计有3种方法即a:Random 9mers;b:Oligo dT-Adaptor Primer(实验室用这种方法);和c:特异的下游引物。
如果用a和b方法,是扩增的所有的cDNA(理论上),还要用此产物做PCR 的模板继续扩增。
如果用c方法,那么要去哪里查它的序列呢?
3. RT-PCR内参照可以在一个管子里做(那样也是图好看一些),最好分开两管,把除了引物之外的mixture统一配,拍照后,算目的基因和内参的比值,这就是基因表达的相对浓度。
4.注意事项
a、半定量和定量RT-PCR做的都是基因相对表达量,不是绝对表达量,除非你能准确知道来自多少细胞,但是细胞还有死的呢。
b、以电泳为基础的半定量RT-PCR本身是不可信的,作为实验的粗筛是可以的,但不能作为最终结果的,
c、半定量RT-PCR应该在两管中进行,除非内参基因和目的基因表达相同,长度差不多,GC含量相似,或者实在穷的要省PCR管和taq。
d 关于平台期和线性期的问题,实际上线性期是指数期,只不过碰巧2的幂和2的倍数是相同的。
最好选线性期的开始阶段,但是要在你的凝胶成像分辨范围内,所以选一个这两种的契合点
5. 在所有RNA实验中,最关键的因素是分离得到全长的RNA。
而实验失败的主要原因是核糖核酸酶(RNA酶)的污染。
由于RNA酶广泛存在而稳定,一般反应不需要辅助因子。
6. 我做RT-PCR时,提总RNA时,都是用灭菌DEPC水,按1:100稀释后测OD260和OD280,后根据公式:RNA浓度=OD260*稀释度/25(ug/ul),后用1mg total RNA分离mRNA.做逆转录及PCR,效果很好.
7. 我有一个问题请教,RT-PCR要求模板RNA的260nm/280nm的比值最低为多少,如果太低是不是会影响结果?
最低到1.8,最好2.0,我感觉稍微低一点影响不算太大。
8.我是RT-PCR的新手,想请教引物如何设计?
好的引物所具有的令人满意的特点:
* 典型的引物18到24个核苷长。
引物需要足够长,保证序列独特性,并降低序列存在于非目的序列位点的可能性。
但是长度大于24核苷的引物并不意味着更高的特异性。
较长的序列可能会与错误配对序列杂交,降低了特异性,而且比短序列杂交慢,从而降低了产量。
* 选择GC含量为40%到60%或GC含量反映模板GC含量的引物。
* 设计5‘端和中间区为G或C的引物。
这会增加引物的稳定性和引物同目的序列杂交的稳定性。
* 避免引物对3‘末端存在互补序列,这会形成引物二聚体,抑制扩增。
* 避免3‘末端富含GC。
设计引物时保证在最后5个核苷中含有3个A或T。
* 避免3‘末端的错误配对。
3‘端核苷需要同模板退火以供聚合酶催化延伸。
* 避免存在可能会产生内部二级结构的序列,这会破坏引物退火稳定性。
9. 如何确认RNA的质量
1)检测RNA溶液的吸光度
280、320、230、260nm下的吸光度分别代表了核酸、背景(溶液浑浊度)、盐浓度和蛋白等有机物的值。
一般的,我们只看
OD260/OD280(Ratio,R)。
1.8
2.0时,我们认为RNA中蛋白或者时其他有机物的污染是可以容忍的,不过要注意,当你用Tris作为缓冲液检测吸光度时,R值可能会大于2(一般应该是<2.2的)。
当R<1.8时,溶液中蛋白或者时其他有机物的污染比较明显,你可以根据自己的需要决定这份RNA 的命运。
当R>2.2时,说明RNA已经水解成单核酸了。
如果RNA的量够,可在260nm(A260)用分光光度法测定RNA的得率,1个单位等于40ug/mlssRNA。
纯RNA的A260/A280的比值为2.0。
A260/A230的比值还表明RNA的纯度,其值小于2.0表明裂解液中有亚硫氰胍和belta-。