TTL电平与EIA电平
- 格式:doc
- 大小:27.00 KB
- 文档页数:2
一些电平标准下面总结一下各电平标准,和新手以及有需要的人共享一下^_^.现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有一些速度比较高的LVDS、GTL、PGTL、CML、HSTL、SSTL等。
下面简单介绍一下各自的供电电源、电平标准以及使用注意事项。
TTL:Transistor-Transistor Logic 三极管结构。
Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。
因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。
所以后来就把一部分“砍”掉了。
也就是后面的LVTTL。
LVTTL又分3.3V、2.5V以及更低电压的LVTTL(Low Voltage TTL)。
3.3V LVTTL:Vcc:3.3V;VOH>=2.4V;VOL<=0.4V;VIH>=2V;VIL<=0.8V。
2.5V LVTTL:Vcc:2.5V;VOH>=2.0V;VOL<=0.2V;VIH>=1.7V;VIL<=0.7V。
更低的LVTTL不常用就先不讲了。
多用在处理器等高速芯片,使用时查看芯片手册就OK了。
TTL使用注意:TTL电平一般过冲都会比较严重,可能在始端串22欧或33欧电阻; TTL电平输入脚悬空时是内部认为是高电平。
要下拉的话应用1k以下电阻下拉。
TTL输出不能驱动CMOS输入。
CMOS:Complementary Metal Oxide Semiconductor PMOS+NMOS。
Vcc:5V;VOH>=4.45V;VOL<=0.5V;VIH>=3.5V;VIL<=1.5V。
相对TTL有了更大的噪声容限,输入阻抗远大于TTL输入阻抗。
对应3.3V LVTTL,出现了LVCMOS,可以与3.3V的LVTTL直接相互驱动。
逻辑电平的一些概念要了解逻辑电平的内容,首先要知道以下几个概念的含义:1:输入高电平(Vih):保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih时,则认为输入电平为高电平。
2:输入低电平(Vil):保证逻辑门的输入为低电平时所允许的最大输入低电平,当输入电平低于Vil时,则认为输入电平为低电平。
3:输出高电平(Voh):保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的电平值都必须大于此Voh。
4:输出低电平(Vol):保证逻辑门的输出为低电平时的输出电平的最大值,逻辑门的输出为低电平时的电平值都必须小于此Vol。
5:阀值电平(Vt):数字电路芯片都存在一个阈值电平,就是电路刚刚勉强能翻转动作时的电平。
它是一个界于Vil、Vih之间的电压值,对于CMOS电路的阈值电平,基本上是二分之一的电源电压值,但要保证稳定的输出,则必须要求输入高电平> Vih,输入低电平<Vil,而如果输入电平在阈值上下,也就是Vil~Vih 这个区域,电路的输出会处于不稳定状态。
对于一般的逻辑电平,以上参数的关系如下:Voh > Vih > Vt > Vil > Vol。
6:Ioh:逻辑门输出为高电平时的负载电流(为拉电流)。
7:Iol:逻辑门输出为低电平时的负载电流(为灌电流)。
8:Iih:逻辑门输入为高电平时的电流(为灌电流)。
9:Iil:逻辑门输入为低电平时的电流(为拉电流)。
门电路输出极在集成单元内不接负载电阻而直接引出作为输出端,这种形式的门称为开路门。
开路的TTL、CMOS、ECL门分别称为集电极开路(OC)、漏极开路(OD)、发射极开路(OE),使用时应审查是否接上拉电阻(OC、OD门)或下拉电阻(OE门),以及电阻阻值是否合适。
对于集电极开路(OC)门,其上拉电阻阻值RL应满足下面条件:(1):RL < (VCC-Voh)/(n*Ioh+m*Iih)(2):RL > (VCC-Vol)/(Iol+m*Iil)其中n:线与的开路门数;m:被驱动的输入端数。
电平是什么?电平电,我们在日常生活、工作中都经常用到,但不知道大家对“电平是什么?”是否知道呢?本文收集整理了一些资料,希望本文能对各位读者有比较大的参考价值。
概念“电平”就是指电路中两点或几点在相同阻抗下电量的相对比值。
这里的电量自然指“电功率”、“电压”、“电流”并将倍数化为对数,用“分贝”表示,记作“dB”。
分别记作:10lg(P2/P1)、20lg(U2/U1)、20lg(I2/I1)上式中P、U、I分别是电功率、电压、电流。
使用“dB”有两个好处:其一读写、计算方便。
如多级放大器的总放大倍数为各级放大倍数相乘,用分贝则可改用相加。
其二能如实地反映人对声音的感觉。
实践证明,声音的分贝数增加或减少一倍,人耳听觉响度也提高或降低一倍。
即人耳听觉与声音功率分贝数成正比。
简介人们在初学“电”的时候,往往把抽象的电学概念用水的具体现象进行比喻。
如水流比电流、水压似电压、水阻喻电阻。
解释“电平”不妨如法炮制。
我们说的“水平”,词典中解释与水平面平行、或在某方面达到一定高度,引申指事物在同等条件下的比较结论。
如人们常说到张某工作很有水平、李某办事水平很差。
这样的话都知其含义所在。
即指“张某”与“李某”相比而言。
故借“水平”来比喻“电平”能使人便于理解。
电平目前,电平在当代的应用可谓是越来越广泛。
综上所述,本文已为讲解电平的概念和简介,相信大家对电平的认识越来越深入,希望本文能对各位读者有比较大的参考价值。
电平信号信号,我们在日常生活、工作中都经常用到,但不知道大家对“电平信号”是否知道呢?本文收集整理了一些资料,希望本文能对各位读者有比较大的参考价值。
电平信号TTL电平-规定范围电平是个电压范围,规定输出高电平>2.4V,输出低电平<0.4V。
在室温下,一般输出高电平是3.5V,输出低电平是0.2V。
最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。
TTL电平、CMOS电平和EIA电平的一些总结
手机串口一般是CMOS电平,当把android手机当做开发板上的一个器件(比如利用android系统自带的GPRS模块,wifi模块,语音视频模块等等)看待时,常常会涉及到自己重写底层协议和驱动的情况,同时也会涉及到不同开发板不同电平之间的转换。
最近在做一个利用android手机收发数据的实验,其中就涉及到了EIA电平和TTL电平的转换,TTL电平和CMOS电平的转换。
现简要的总结下常用的TTL电平,CMOS电平和EIA电平,以及一些与上述电平有关集成逻辑电路和rs232串口的一些基本知识:
一、集成逻辑电路的分类:
按电路组成的结构来分,可将数字电路分为分立元件电路和集成电路两类。
集成电路具有体积小、成本低、可靠性高等优点。
按制造工艺的不同,集成逻辑门可分为双极型逻辑门和单极型逻辑门两大类。
TTL(晶体管-晶体管逻辑)属于双极型逻辑门,速度快、抗干扰能力和带负载能力强。
功耗较大,集成度较低,不适合做成大规模集成电路,主要有
54/74系列标准TTL、高速型TTL(H-TTL)、低功耗型TTL(L-TTL)、肖特基型TTL(S-TTL)、低功耗肖特基型TTL(LS-TTL)五个系列。
TTL和CMOS电平总结(回答了什么是TTL和CMOS电平)1,TTL电平(什么是TTL电平):输出高电平>2.4V,输出低电平<0.4V。
在室温下,一般输出高电平是3.5V,输出低电平是0.2V。
最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。
2,CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。
而且具有很宽的噪声容限。
3,电平转换电路:因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。
哈哈4,OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。
否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。
5,TTL和COMS电路比较:1)TTL电路是电流控制器件,而coms电路是电压控制器件。
2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。
COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。
COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。
3)COMS电路的锁定效应:COMS电路由于输入太大的电流,内部的电流急剧增大,除非切断电源,电流一直在增大。
这种效应就是锁定效应。
当产生锁定效应时,COMS的内部电流能达到40mA以上,很容易烧毁芯片。
防御措施: 1)在输入端和输出端加钳位电路,使输入和输出不超过不超过规定电压。
2)芯片的电源输入端加去耦电路,防止VDD端出现瞬间的高压。
3)在VDD和外电源之间加线流电阻,即使有大的电流也不让它进去。
4)当系统由几个电源分别供电时,开关要按下列顺序:开启时,先开启COMS电路得电源,再开启输入信号和负载的电源;关闭时,先关闭输入信号和负载的电源,再关闭COMS电路的电源。
常用电平及接口电平常用电平及接口电平目录一.常用逻辑电平标准 (3)1.1 COMS电平 (4)1.2 LVCOMS电平 (5)2.1 TTL电平 (5)2.2 LVTTL电平 (5)3.1 LVDS电平 (6)4.1 PECL(VCC=5V)/LVPECL(VCC=3.3V)电平 (7)5.1 CML电平 (7)6.1 VML电平 (7)7.1 HSTL电平 (8)7.2 SSTL电平 (8)二.常用接口电平标准 (9)1. RS232、RS485、 RS422 (9)2 DDR1 ,DDR2,DDR3 (10)3 PCIE2. 0、PCIE3.0 (11)4 USB2.0, USB3.0 (13)5 SATA2.0, SATA3.0 (14)6 GTX高速接口 (14)一.常用逻辑电平标准附图1:附图2:附图3:附图4:1.1 COMS电平电平参数条件最大值典型值最小值单位备注电源电压(VCC) 5.5 5 4.5 V输入高压(VIH) 3.5 V输入低压(VIL) 1.5 V输出高压(VOH) 4.44 V输出低压(VOL)0.5 V共模电压(VT) 2.5 V传输延迟时间(25-50ns)最高速率耦合方式1.2 LVCOMS电平LVCOMS电平参数条件最大值典型值最小值单位备注电源电压(VCC) 3.6 3.3 2.7 V输入高压(VIH)0.7VCC V输入低压(VIL) 0.2VCC V输出高压(VOH) VCC-0.1 V输出低压(VOL)0.1 V共模电压(VT)0.5VCC V最高速率耦合方式2.1 TTL电平电平参数条件最大值典型值最小值单位备注电源电压(VCC) 5.5 5 4.5 V输入高压(VIH) 2 V输入低压(VIL) 0.8 V输出高压(VOH) 2.4 V输出低压(VOL)0.5 V共模电压(VT) 1.5 V传输延迟时间(5-10ns),最高速率耦合方式2.2 LVTTL电平电平参数条件最大值典型值最小值单位备注电源电压(VCC)3.6 3.3 3 V 输入高压(VIH)2 V 输入低压(VIL) 0.8 V 输出高压(VOH) 2.4 V 输出低压(VOL)0.4 V 共模电压(VT) 1.5 V 最高速率耦合方式3.1 LVDS电平最高速率:3.125Gbps耦合方式:4.1 PECL(VCC=5V)/LVPECL(VCC=3.3V)电平最高速率:LVPECL为10+Gbps耦合方式:5.1 CML电平最高速率:10+Gbps耦合方式:VCC相同时CML与CML之间采用直流耦合,VCC不同时CML与CML 之间采用交流耦合6.1 VML电平电平参数条件最大值典型值最小值单位备注电源电压(VCC)V输入高压(VIH)V输入低压(VIL) V输出高压(VOH) 1.65 V输出低压(VOL) 0.85 V共模电压(VT) 1.25 V最高速率耦合方式VML电平与LVDS电平兼容,TLK2711输出是VML 电平。
ECL电平、LVDS电平、TTL电平2008年10月29日星期三 10:07在通用的电子器件设备中,TTL和CMOS电路的应用非常广泛。
但是面对现在系统日益复杂,传输的数据量越来越大,实时性要求越来越高,传输距离越来越长的发展趋势,掌握高速数据传输的逻辑电平知识和设计能力就显得更加迫切了。
1 几种常用高速逻辑电平1.1LVDS电平LVDS(Low Voltage Differential Signal)即低电压差分信号,LVDS接口又称RS644总线接口,是20世纪90年代才出现的一种数据传输和接口技术。
LVDS的典型工作原理如图1所示。
最基本的LVDS器件就是LVDS驱动器和接收器。
LVDS的驱动器由驱动差分线对的电流源组成,电流通常为3.5 mA。
LVDS接收器具有很高的输入阻抗,因此驱动器输出的大部分电流都流过100 Ω的匹配电阻,并在接收器的输入端产生大约350 mV的电压。
当驱动器翻转时,它改变流经电阻的电流方向,因此产生有效的逻辑“1”和逻辑“0”状态。
LVDS技术在两个标准中被定义:ANSI/TIA/EIA644 (1995年11月通过)和IEEE P1596.3 (1996年3月通过)。
这两个标准中都着重定义了LVDS的电特性,包括:① 低摆幅(约为350 mV)。
低电流驱动模式意味着可实现高速传输。
ANSI/TIA/EIA644建议了655 Mb/s的最大速率和1.923 Gb/s的无失真通道上的理论极限速率。
② 低压摆幅。
恒流源电流驱动,把输出电流限制到约为3.5 mA左右,使跳变期间的尖峰干扰最小,因而产生的功耗非常小。
这允许集成电路密度的进一步提高,即提高了PCB板的效能,减少了成本。
③ 具有相对较慢的边缘速率(dV/dt约为0.300 V/0.3 ns,即为1 V/ns),同时采用差分传输形式,使其信号噪声和EMI都大为减少,同时也具有较强的抗干扰能力。
所以,LVDS具有高速、超低功耗、低噪声和低成本的优良特性。
ttl电平应用场合
TTL(Transistor-Transistor Logic)是一种数字电平标准,常用于数字电路中,特别是在集成电路和逻辑电路中。
TTL电平有两个状态,分别是高电平(High Level)和低电平(Low Level)。
TTL电平广泛应用于以下场合:
1.逻辑门电路:TTL电平被用于构建各种逻辑门电路,如与
门、或门、非门等。
TTL逻辑门电路通常具有简单的电路
结构、高速响应和较低的功耗。
2.分立逻辑电路:TTL电平可用于构建分立逻辑电路,例如
计时器、计数器、显示驱动器等。
3.串行和并行通信:TTL电平常被用于串行和并行通信接口,
例如串行通信的UART(通用异步收发器)接口和并行通
信的打印机接口。
4.传感器接口:TTL电平常用于处理和传感器的接口,例如
用于光电传感器、温度传感器和压力传感器等的信号处理。
需要注意的是,虽然TTL电平在过去是非常常见和广泛使用的,但随着技术的发展,现在也有更先进的逻辑电平标准(如CMOS电平)被广泛应用。
在实际应用中,应根据具体需求和电路要求选择适当的电平标准和电路设计。
串⼝通讯TTL详解分析lRS-232-C是美国电⼦⼯业协会EIA(Electronic Industry Association)制定的⼀种串⾏物理接⼝标准。
采⽤150pF/m的通信电缆时,最⼤通信距离为15m;若每⽶电缆的电容量减⼩,通信距离可以增加。
传输距离短的另⼀原因是RS-2 32属单端信号传送,存在共地噪声和不能抑制共模⼲扰等问题,因此⼀般⽤于20m以内的通信。
RS-232C规定了⾃⼰的电⽓标准,由于它是在TTL电路之前研制的,所以它的电平不是+5 V和地,⽽是采⽤负逻辑,即逻辑“0”:+5 V~+15 V;逻辑“1”:-5 V~-15 V。
【TTL电平:逻辑“0:<0.4V;逻辑“1”:+3 V~+5 V 】因此,RS-232C不能和TTL电平直接相连,使⽤时必须进⾏电平转换,否则将使TTL电路烧坏,实际应⽤时必须注意!⼀种常⽤的电平转换电路是使⽤MAX232还可以使⽤如下电路:RS-232C虽然应⽤⼴泛,但因为推出较早,在现代通信系统中存在以下缺点:数据传输速率慢,传输距离短,未规定标准的连接器,接⼝处各信号间易产⽣串扰。
鉴于此,EIA制定了新的标准RS-485总线:在要求通信距离为⼏⼗⽶到上千⽶时,⼴泛采⽤RS-485 串⾏总线标准。
RS-485采⽤平衡发送和差分接收,因此具有抑制共模⼲扰的能⼒。
加上总线收发器具有⾼灵敏度,能检测低⾄200mV的电压,故传输信号能在千⽶以外得到恢复。
RS-485采⽤半双⼯⼯作⽅式,任何时候只能有⼀点处于发送状态,因此,发送电路须由使能信号加以控制。
RS-485⽤于多点互连时⾮常⽅便,可以省掉许多信号线。
应⽤RS-485 可以联⽹构成分布式系统,其允许最多并联32台驱动器和32台接收器。
RS232接⼝是1970年由美国电⼦⼯业协会(EIA)联合贝尔系统、调制解调器⼚家及计算机终端⽣产⼚家共同制定的⽤于串⾏通讯的标准。
它的全名是“数据终端设备(DTE)和数据通讯设备(DCE)之间串⾏⼆进制数据交换接⼝技术标准”该标准规定采⽤⼀个25个脚的DB25连接器,对连接器的每个引脚的信号内容加以规定,还对各种信号的电平加以规定。
ttl电平标准TTL电平标准。
TTL(Transistor-Transistor Logic)电平标准是数字电路中常用的一种标准,它定义了逻辑门的输入和输出电平范围,以确保数字电路的正常工作。
TTL电平标准的制定对于数字电路的设计和应用具有重要意义。
本文将对TTL电平标准进行介绍和分析,以便读者更好地理解和应用这一标准。
TTL电平标准规定了逻辑门的输入和输出电平范围,一般情况下,输入高电平(逻辑“1”)的电压范围为2.0V至5.0V,输入低电平(逻辑“0”)的电压范围为0V至0.8V;输出高电平的电压范围为2.4V至5.0V,输出低电平的电压范围为0V至0.4V。
这些电压范围的定义保证了TTL逻辑门在不同工作条件下的稳定性和可靠性。
TTL电平标准的制定考虑了多种因素,包括器件的工作速度、抗干扰能力、功耗等。
在实际应用中,TTL电平标准得到了广泛的应用,例如在数字电路、计算机系统、通信设备等领域。
TTL电平标准的统一有利于不同厂家生产的器件之间的互连和兼容,提高了数字系统的灵活性和可靠性。
除了传统的TTL电平标准外,还衍生出了多种改进型的TTL标准,如低功耗TTL(LVTTL)、高速TTL(HSTTL)等,它们在保持TTL电平标准基本特性的基础上,针对不同应用场景进行了优化和改进,满足了不同领域对数字电路的需求。
总的来说,TTL电平标准作为数字电路中的重要标准,对于数字系统的设计、应用和维护具有重要意义。
掌握TTL电平标准,有助于工程师更好地设计和应用数字电路,提高系统的性能和可靠性。
希望本文能够帮助读者更好地理解TTL电平标准,并在实际应用中发挥作用。
结语。
通过本文对TTL电平标准的介绍和分析,相信读者对TTL电平标准有了更深入的了解。
TTL电平标准作为数字电路中的重要标准,对于数字系统的设计和应用具有重要意义。
希望本文能够帮助读者更好地理解和应用TTL电平标准,提高数字系统的性能和可靠性。
ttl高低电平标准
一、TTL电平标准定义
TTL(Transistor-Transistor Logic)电平是一种常见的数字逻辑电平,其高低电平标准通常定义如下:
高电平(H):逻辑值为1,电压范围为2.4V-5.0V;
低电平(L):逻辑值为0,电压范围为0.0V-0.8V。
二、TTL电平参数
TTL电平标准的主要参数包括以下几个:
1.VCC:电源电压,通常为5V;
2.VOH:高电平输出电压,通常为2.4V;
3.VOL:低电平输出电压,通常为0.8V;
4.Vih:输入高电平电压阈值,通常为2.0V;
5.Vil:输入低电平电压阈值,通常为0.4V。
三、TTL电平与LVTTL电平的区别
LVTTL(Low Voltage TTL)是TTL电平的一个变种,主要用于满足低功耗、低电压和高速数据传输的需求。
LVTTL电平和TTL电平的区别在于以下几点:
1.电压范围:LVTTL的电压范围通常为1.2V-3.3V,相对于TTL的
2.4V-5.0V
来说,LVTTL可以在更低的电压下工作,从而降低功耗并提高速度。
2.输入输出特性:LVTTL的输入输出特性与TTL相似,但通常具有更快的上
升和下降时间,以满足高速数据传输的需求。
3.兼容性:虽然LVTTL和TTL的逻辑电平定义不同,但大多数现代数字芯片
和接口都支持这两种电平标准,因此它们在大多数情况下可以互相兼容。
重新认识一下TTL电平与CMOS电平2022-08-16 发表于湖北问题引入在工作中,会遇到OC门与OD门的称谓。
而感性的认识一般为:OD门是采用MOS管搭建的电路,压(电压)控元器件。
OC门是采用晶体管搭建的电路,流(电流)控元器件。
而OD门的功率损耗一般是小于OC门,为什么?电平TTL电平:输出电平:高电平Uoh >=2.4v 低电平Uol <= 0.4v输入电平:高电平Uih >= 2.0v 低电平 Uil <= 0.8vCMOS电平:输出电平:高电平Uoh ≈ VCC Uol ≈ GND输入电平:高电平Uih >= 0.7*VCC Uil <= 0.2*VCC备注:VCC是电源电压 GND是数字地CMOS电路是电压控制器件,由于是压控,元器件的输入电阻较大。
由此,元器件对于干扰信号比较敏感,因为输入电阻大,干扰信号会全部输入到元器件中。
由此,CMOS电路的输入端管脚,最好不要开路,给定状态,接地或者接到电压源上。
输出高低电平:TTL 输出电平容限:2.4v -0.4v= 2.0vCMOS输出电平容限:VCC (3.3v or 5v)输入高低电平:TTL输入电平容限:2.0v-0.8v = 1.2vCMOS输入电平容限:(0.7-0.2)VCC≈(1.65v 0r 2.5v)由此可见,CMOS电路的输入输出高低电平容限较宽。
压控与流控TTL电路是流控电路,是依靠电流起控制作用的。
通过控制基极电流来控制晶体管的工作情况(发射极集电极电流的工作情况)。
CMOS电路是压控电路,依靠电压起控制作用。
控制栅极与源极的电压,控制CMOS工作在关断区还是截止区。
由于TTL是流控器件,电流起作用,电路的响应速度较快,状态建立时间在在5-10ns,而CMOS电路是压控器件,状态建立时间25-50ns。
由建立时间可以知道,TTL电路的电流较大。
由此其功耗较大。
而元器件功耗与另一因素有关。
ECL电平、LVDS电平、TTL电平在通用的电子器件设备中,TTL和CMOS电路的应用非常广泛。
但是面对现在系统日益复杂,传输的数据量越来越大,实时性要求越来越高,传输距离越来越长的发展趋势,掌握高速数据传输的逻辑电平知识和设计能力就显得更加迫切了。
1 几种常用高速逻辑电平1.1LVDS电平LVDS(Low V oltage Differential Signal)即低电压差分信号,LVDS接口又称RS644总线接口,是20世纪90年代才出现的一种数据传输和接口技术。
LVDS的典型工作原理如图1所示。
最基本的LVDS器件就是LVDS驱动器和接收器。
LVDS的驱动器由驱动差分线对的电流源组成,电流通常为3.5 mA。
LVDS 接收器具有很高的输入阻抗,因此驱动器输出的大部分电流都流过100 Ω的匹配电阻,并在接收器的输入端产生大约350 mV的电压。
当驱动器翻转时,它改变流经电阻的电流方向,因此产生有效的逻辑“1”和逻辑“0”状态。
LVDS技术在两个标准中被定义:ANSI/TIA/EIA644 (1995年11月通过)和IEEE P1596.3 (1996年3月通过)。
这两个标准中都着重定义了LVDS的电特性,包括:①低摆幅(约为350 mV)。
低电流驱动模式意味着可实现高速传输。
ANSI/TIA/EIA644建议了655 Mb/s的最大速率和1.923 Gb/s的无失真通道上的理论极限速率。
②低压摆幅。
恒流源电流驱动,把输出电流限制到约为3.5 mA左右,使跳变期间的尖峰干扰最小,因而产生的功耗非常小。
这允许集成电路密度的进一步提高,即提高了PCB板的效能,减少了成本。
③具有相对较慢的边缘速率(dV/dt约为0.300 V/0.3 ns,即为1 V/ns),同时采用差分传输形式,使其信号噪声和EMI都大为减少,同时也具有较强的抗干扰能力。
所以,LVDS具有高速、超低功耗、低噪声和低成本的优良特性。
数字信号的标准现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有一些速度比较高的LVDS、GTL、PGTL、CML、HSTL、SSTL等。
下面简单介绍一下各自的供电电源、电平标准以及使用注意事项。
一、TTL电平TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑"1",0V等价于逻辑"0",这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。
TTL集成电路的全名是晶体管-晶体管逻辑集成电路(Transistor-Transistor Logic),主要有54/74系列标准TTL、高速型TTL(H-TTL)、低功耗型TTL(L-TTL)、肖特基型TTL(S-TTL)、低功耗肖特基型TTL(LS-TTL)五个系列。
1.标准TTL输入高电平最小2V,输出高电平最小2.4V,典型值3.4V,输入低电平最大0.8V,输出低电平最大0.4V,典型值0.2V(输入H>2V,输入L>0.8V;输出L=3.4V,输出L=0.2)。
2.S-TTL输入高电平最小2V,输出高电平最小Ⅰ类2.5V,Ⅱ、Ⅲ类2.7V,典型值3.4V,输入低电平最大0.8V,输出低电平最大0.5V。
3.LS-TTL输入高电平最小2V,输出高电平最小Ⅰ类2.5V,Ⅱ、Ⅲ类2.7V,典型值3.4V,输入低电平最大Ⅰ类0.7V,Ⅱ、Ⅲ类0.8V,输出低电平最大Ⅰ类0.4V,Ⅱ、Ⅲ类0.5V,典型值0.25V。
TTL:Transistor-Transistor Logic 三极管结构。
Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。
因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。
TTL电平与EIA电平一、集成逻辑门的分类:按电路组成的结构来分,可将数字电路分为分立元件电路和集成电路两类。
集成电路具有体积小、成本低、可靠性高等优点。
按制造工艺的不同,集成逻辑门可分为双极型逻辑门和单极型逻辑门两大类。
1.双极型逻辑门以二极管、三极管作为开关元件,电流通过PN结流动。
双极型逻辑门主要有晶体管-晶体管逻辑(TTL)、射极耦合逻辑(ECL)和集成注入逻辑(I2L)三种。
TTL应用广泛、速度快、抗干扰能力和带负载能力强。
功耗较大,集成度较低,不适合做成大规模集成电路。
其它类型的TTL门电路包括:集电路开路与非门(OC门),三态门(TS门)。
ECL速度快、带负载强。
功耗大,主要用于高速中小规模集成电路。
I2L面积小,功耗低,适合做成大规模集成逻辑门。
速度慢、抗干扰能力弱。
2.单极型逻辑门以MOS作为开关元件,电流通过导电沟道流动。
MOS电路具有制造工艺简单、功耗小、集成度高、无电荷存储效应等优点。
其缺点是速度较慢。
单极型逻辑门又分为PMOS逻辑门、NMOS逻辑门和CMOS逻辑门。
CMOS采用了NMOS和PMOS互补电路,所以速度比NMOS更快、功耗更小。
虽然它制造工艺比较复杂,其优点非常突出,在数字系统中逐渐占据了主导地位二、具体的电平分析TTL(晶体管-晶体管)电平:输出高电平>2.4V,输出低电平<0.4V。
在室温下,一般输出高电平是3.5V,输出低电平是0.2V。
最小输入高电平>=2.0V,最大输入低电平<=0.8V,噪声容限是0.4V。
TTL门电路的主要参数:待补充发射极耦合逻辑电路(ECL)(资料参考于)以多个晶体管的发射极相互耦合加上射极跟随器组成的电路,简称ECL电路。
其基本单元电路由提供“或”、“或非”逻辑功能的电流开关和完成电平位移与级联的射极跟随器两部分组成。
发射极耦合逻辑(ECL),有时也叫做电流模式逻辑(Current Mode Logic),是一种极高速数字技术。
EIA标准详解_RS-232-C_详解文档RS-232C数据终端设备DTE(Data Terminal Equipment)与数据通信设备DCE (Data Communication Equipment) 远程通信连接协议。
全称是EIA-RS-232-C标准,其中EIA(Electronic Industries Association)代表美国电子工业协会,RS (recommended standard)代表推荐标准,232是标识号,C代表RS232的最新一次修改(1969),在这之前,有RS2328、RS232A。
一、RS-232C接口:通常RS-232 接口以9个引脚(DB-9) 或是25个引脚(DB-25) 的型态出现,一般个人计算机上会有两组RS-232 接口,分别称为COM1 和COM2。
二、RS-232-C协议规定:1.RS-232C接口信号:RS-232C规标准接口有25条线,4条数据线、11条控制线、3条定时线、7条备用和未定义线,常用的只有9根,它们是:(1)状态线:数据准备就绪(Data set ready-DSR)——有效时(ON)状态,表明数据通信设备可以使用。
(DCE->DTE)数据终端就绪(Data set ready-DTR)——有效时(ON)状态,表明数据终端设备可以使用。
(DTE->DCE)这两个信号有时连到电源上,上电就立即有效。
这两个设备状态信号有效,只表示设备本身可用,并不说明通信链路可以开始进行通信了,能否开始进行通信要由下面的控制信号决定。
(2)联络线请求发送(Request to send-RTS)——DTE准备向DCE发送数据,DTE使该信号有效(ON 状态),通知DCE要发送数据给DCE了。
(DTE->DCE)允许发送(Clear to send-CTS)——是对RTS的响应信号。
当DCE已准备好接收DTE传来的数据时,使该信号有效,通知DTE开始发送数据。
TTL电平与EIA电平
TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V 等价于逻辑"1",0V等价于逻辑"0",这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准
技术。
TTL电平信号对于计算机处理器控制的设备内部的数据传输是很理想的,首先计算机处理器控制的设备内部的数据传输对于电源的要求不高以及热损耗也较低,另外TTL电平信号直接与集成电路连接而不需要价格昂贵的线路驱动器以及接收器电路;再者,计算机处理器控制的设备内部的数据传输是在高速下进行的,而TTL接口的操作恰能满足这个要求。
TTL 型通信大多数情况下,是采用并行数据传输方式,而并行数据传输对于超过10英尺的距离就不适合了。
这是由于可靠性和成本两面的原因。
因为在并行接口中存在着偏相和不对称的问题,这些问题对可靠性均有影响;另外对于并行数据传输,电缆以及连接器的费用比起串行通信方式来也要高
一些。
RS-232C标准采用EIA电平,规定:
“1”的逻辑电平在-3V~-15v之间
“0”的逻辑电平在+3V~+15V之间。
由于EIA电平与TTL电平完全不同,必须进行相应的电平转换,MCl488完成TTL电平到EIA电平的转换,MCl489完成EIA电平到ITL电平的转换。
还有MAX232可以同时完成TTL->EIA和EIA->TTL的电平转换。
将RS232C和单片机串口的TTL电平相互转换,使得两个设备可以相互通讯。
AT89C51单片机串口的电平标准是TTL电平标准:高电平为+5V,低电平为0V,而RS232C的电平标准是EIA电平标准:高电平为
+3V~+15V,低电平为-3V~-15V,在实际应用中常用±12V或±15V,在PC 电脑中因所用的芯片或电路不同通常在±9V~±12V之间。
要注意的是在RS232C中任何一条信号线的电压均为负逻辑关系,即逻辑"1"为-5~-15V;逻辑"0" +5~+15V ,其噪声容限为2V,也就是说要求接收器能识别低至+3V 的信号作为逻辑"0",高到-3V的信号作为逻辑"1"。
为了让EIA电平转换成TTL电平,电路中用了两个BC547和R4、R5、R6、R7、D1组成简单的电平转换电路。
整个电路只要求信号的收发,所以只用到RS232C接口中的RXD、TXD和地,通过电平转换电路连接在AT89C51的TXD、RXD 和地(具体引脚定义请看下文介绍),也就是说RS232C的接收端连到单片机的发送端,而发送端则连到单片机的接收端。
这样的电路可以取代专用的RS232/TTL转换芯片(如MAX232),满足一般的制作要求。