高一年级期中考试数学试题卷
- 格式:pdf
- 大小:156.32 KB
- 文档页数:5
2024-2025学年上期高一年级期中考试数学试题(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、考号填写在答题卡上相应的位置。
2.作答时,全部答案在答题卡上完成,答在本试卷上无效。
3.考试结束后,只交答题卡,试卷由考生带走。
一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.若集合,集合,,则A ∪(C U B )=( )A .B .C .D .2.“”是“”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知,,则( )A .B .C .D .4.已知函数,( )A .B .C .D .15.函数的定义域为( )A .B .C .D .6.为提高生产效率,某公司引进新的生产线投入生产,投入生产后,除去成本,每条生产线生产的产品可获得的利润(单位:万元)与生产线运转时间(单位:年)满足二次函{}1,2,3,4U ={}1,2A ={}2,3B ={}2{}1,3{}1,2,4{}1,2,302x <<13x -<<0a b >>d c <0ac bd >>ac bd >a c b d +>+0a cb d +>+>211,1()1,11x x f x x x ⎧--≤⎪=⎨>⎪+⎩((2))f f =15-151-()()01f x x =-2,3⎛⎫+∞ ⎪⎝⎭()2,11,3∞⎡⎫⋃+⎪⎢⎣⎭()2,11,3∞⎛⎫⋃+ ⎪⎝⎭2,3⎡⎫+∞⎪⎢⎣⎭s t数关系:,现在要使年平均利润最大,则每条生产线运行的时间t 为( )年.A .7B .8C .9D .107.已知函数,且,则实数的取值范围是( )A .B .C .D .8.德国著名数学家狄利克雷在数学领域成就显著,以其命名的函数f (x )={1, x ∈Q0, x ∈C R Q 被称为狄利克雷函数,其中为实数集,为有理数集,以下关于狄利克雷函数的四个结论中,正确的个数是( )个.①函数偶函数;②函数的值域是;③若且为有理数,则对任意的恒成立;④在图象上存在不同的三个点,,,使得∆ABC 为等边角形. A .1B .2C .3D .4二、多项选择题:本大题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的四个选项中,有多项符合题目要求. 全部选对得 6 分,选对但不全的得部分分,有选错的得0分.9.下列说法正确的有( )A .命题“,”的否定是“,”B .若,则C .命题“,”是假命题D .函数是偶函数,且在上单调递减.10.下列选项中正确的有( )A .已知函数是一次函数,满足,则的解析式可能为B .与表示同一函数C .函数的值域为224098s t t =-+-()()4f x x x =+()()2230f a f a +-<a ()3,0-()3,1-()1,1-()1,3-R Q ()f x ()f x ()f x {}0,10T ≠T ()()f x T f x +=x R ∈()f x A B C 1x ∀>20x x ->1x ∃≤20x x -≤a b >22ac bc ≥Z x ∀∈20x >21y x =()0,∞+()f x ()()98f f x x =+()f x ()34f x x =--||()x f x x =1,0()1,0x g x x >⎧=⎨-≤⎩()2f x x =+(,4]-∞D .定义在上的函数满足,则11.下列命题中正确的是( )A .若,,,则B .已知,,,则的最小值是C .若,则的最小值为4D .若,,,则的最小值为三、填空题:本大题共 3 小题,每小题 5 分,共 15 分.12.已知集合,若,则实数13.已知函数,则的单调增区间为14.若定义在上的函数同时满足;①为奇函数;②对任意的,,且,都有.则称函数具有性质P .已知函数具有性质P ,则不等式的解集为 .四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15.已知集合,.(1)当时,求,,A ∩(C R B ); (2)若,求实数m 的取值范围.16.已知关于x 的不等式的解集为.(1)求m ,n 的值;(2)正实数a ,b 满足,求的最小值.R ()f x 2()()1f x f x x --=+()13x f x =+0a >0b >21a b +=ab 0a >0b >32a b +=12a b a b+++20ab >4441a b ab ++0a >0b >31132a b a b+=++2+a b 165{}21,2,1A a a a =---1A -∈a =()2f x x x x =-+()f x (,0)(0,)-∞+∞ ()f x ()f x 1x 2(0,)x ∈+∞12x x ≠x f x x f x x x -<-211212()()0()f x ()f x 2(4)(2)2f x f x x --<+{}27|A x x =-<<{}|121B x m x m =+≤≤-4m =A B ⋂A B A B B = 2200x mx --<{}2|x x n -<<2na mb +=115a b+17.已知幂函数为偶函数.(1)求的解析式; (2)若在上是单调函数,求实数的取值范围.18.已知函数.(1)证明:函数是奇函数;(2)用定义证明:函数在上是增函数;(3)若关于的不等式对于任意实数恒成立,求实数的取值范围.19.已知函数(1)证明:,并求函数的值域;(2)已知为非零实数,记函数的最大值为.①求;②求满足的所有实数.()()2157m f x m m x -=-+()f x ()()3g x f x ax =--[]1,3a ()31x f x x x =++()f x ()f x ()0,∞+x ()()2310f ax ax f ax ++-≥x a ()()f x g x ==()()222f x g x =+()f x a ()()()x x h f g x a =-()m a ()m a ()1m a m a ⎛⎫= ⎪⎝⎭a。
山东省实验中学2024~2025学年第一学期期中高一数学试题2024.11(必修第一册阶段检测)说明:本试卷满分150分,分为第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷为第1页至第2页,第II 卷为第2页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效.考试时间120分钟.第I 卷(选择题58分)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( )A. B. C. D.2.命题,,则命题的否定为( )A., B.,C., D.,3.若,函数最小值为( )B.2C. D.44.若幂函数为偶函数,则( )A.或4 B. C.2 D.45.“”的一个必要不充分条件为( )A. B. C. D.6.已知不等式的解集为或,则( )A. B.C. D.的解集为7.已知函数,对任意,,当时,都有成立,则实数的取值范围是( )A. B. C. D.{2,1,0,1,2}A =--122x B x ⎧⎫=≤⎨⎬⎩⎭A B = {1}-{2,1}--{1}{1,0,1}-:2p x ∀>210x ->p 2x ∀>210x -≤2x ∀≤210x ->2x ∃>210x -≤2x ∃≤210x -≤0x >13y x x=+()2()19m f x m m x =+-m =5-5-3a ≥1a ≥1a <3a ≥3a >20ax bx c ++<{1x x <-}3x >0a >0c <0a b c ++<20cx bx a -+<113x x ⎧⎫-<<⎨⎬⎩⎭2(31)4,1()6,1a x a x f x x ax x -+<⎧=⎨-+≥⎩1x 2x ∈R 12x x ≠()()12120f x f x x x ->-a [2,)+∞1,23⎛⎤ ⎥⎝⎦1,13⎛⎤ ⎥⎝⎦[1,2]8.在山东省实验中学科技节中,高一李明同学定义了可分比集合:若对于集合满足对任意,,都有,则称是可分比集合.例如:集合是可分比集合.若集合A ,B 均为可分比集合,且,则正整数的最大值为( )A.6B.7C.8D.9二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列函数中,既是偶函数,又在上单调递增的是( )A. B.C. D.10.若,,且,则( )A. B.C. D.11.已知函数的定义域为,且,的图象关于对称.当时,,若,则( )A.的周期为4 B.的图象关于对称C. D.当时,第II 卷(非选择题 92分)三、填空题:本题共3小题,每小题5分,共15分.12.若函数的定义域为,则的定义域为_________.13.若正实数x ,y 满足,则的最小值为_________.14.已知函数,若关于的方程至少有两个不相等的实数根,则实数的取值范围为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设集合,.(1)当时,求与;M a b M ∈[2,3]ab∉M {}1,4,6,7{}1,2,,A B n = n (0,)x ∈+∞()f x =()||f x x =2()||f x x x =+()22xxf x -=-a 0b ≠||||a bc c >a b>11a b<||a b >||||a cbc >()f x R ()(2)f x f x =-(2)y f x =+(0,0)[0,1]x ∈()2xf x a b =⋅+(3)1f =-()f x ()y f x =(4,0)(2025)1f =[4,5]x ∈()21xf x =-(31)f x +[1,2]-()f x 32x y +=31x y+22,0()112,0x x x f x x x ⎧->⎪=⎨-+≤⎪⎩x ()2f x kx k =-k {}23100A x x x =--≤{}121B x m x m =-<<+4m =()A B R ðA B(2)当时,求实数的取值范围.16.(本小题满分15分)已知定义域为上的奇函数满足当时,.(1)求函数的解析式;(2)求函数在上的最大值和最小值及对应的值.17.(本小题满分15分)已知二次函数.(1)当时,解关于的不等式;(2)当,时,求的最大值.18.(本小题满分17分)已知函数.(1)判断并证明的奇偶性;(2)判断并证明在上的单调性;(3)若关于的不等式对于任意实数恒成立,求实数的取值范围.19.(本小题满分17分)已知函数,.(1)求函数的值域;(2)证明:曲线是中心对称图形;(3)若对任意,都存在及实数,使得,求实数的最大值.A B A = m R ()f x (,0]x ∈-∞2()4f x x x =+()f x ()f x [1,3]-x 2()33f x x mx x m =+--m ∈R x ()0f x ≤2m =[],1x t t ∈+()f x ()g t 3()2||1xf x x x =++()f x ()f x [0,)+∞x ()()2310f ax ax f ax ++->x a 1()21x f x =+x ∈R ()f x ()y f x =1[1,]x n ∈2[1,2]x ∈m ()()11231f mx f x x -+=n。
2024学年第一学期嘉兴八校联盟期中联考高一年级数学学科试题(答案在最后)考生须知:1.本卷满分150分,考试时间120分钟.2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字3.所有答案必须写在答题纸上,写在试卷上无效.4.考试结束后,只需上交答题纸.选择题部分(共58分)一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个合题目要求的.1.设集合{}{}21,2,1,0,1,2A x x B =-<<=--,则A B = ()A .{}1,0-B .{}0C .{}0,1D .{}1,0,1-2.已知1,12是方程20x bx a -+=的两个根,则a 的值为()A .12-B .2C .12D .2-3.“1x =”是“21x =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知幂函数ay x =的图象过点(9,3),则a 等于()A .3B .2C .32D .125.已知0.20.50.23,3,log 5a b c ===,则,,a b c 的大小关系是()A .a b c <<B .c a b <<C .c b a <<D .a c b <<6.方程2ln 50x x +-=的解所在区间为()A .(4,5)B .(3,4)C .(2,3)D .(1,2)7.已知函数()22xf x =-,则函数()y f x =的图象可能是()A .B .C .D .8.已知函数()f x 为定义在R 上的奇函数,且在[0,1)为减函数,在[1,+)∞为增函数,且(2)0f =,则不等式(1)()0x f x +≥的解集为()A .(,2][0,1][2,)-∞-+∞B .(,1][0,1][2,+)-∞-∞C .(,2][1,0][1,)-∞--+∞ D .(,2][1,0][2,)-∞--+∞ 二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列叙述正确的是()A .2,230x R x x ∃∈-->B .命题“,12x R y ∃∈<≤”的否定是“,1x R y ∀∈≤或2y >”C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要不充分条件D .命题“2,0x R x ∀∈>”的否定是真命题10.已知集合{}1,2,3A =,集合{},B x y x A y A =-∈∈,则()A .{}1,2,3AB = B .{}1,0,1,2,3A B =-C .0B∈D .1B-∈11.下列说法不正确的是()A .函数1()f x x=在定义域内是减函数B .若函数()g x 是奇函数,则一定有(0)0g =C .已知函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩在R 上是增函数,则实数a 的取值范围是[3,1]--D .若函数()f x 的定义域为[2,2]-,则(21)f x -的定义域为13[,22-非选择题部分(共92分)三、填空题:本大题共3小题,每小题5分,共15分.12.函数22,1()23,1x x f x x x ⎧-≤=⎨+>⎩,则((2))f f -的值是▲.13.计算:0ln 2lg 252lg 2eπ+-+=▲.14.x R ∀∈,用函数()m x 表示函数()f x 、()g x 中的最小者,记为{}()min (),()m x f x g x =.若()min m x ={}21,(1)x x -+--,则()m x 的最大值为▲.四、解答题:本大题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤15.(本题满分13分)已知集合{}13A x x =<<,集合{}21B x m x m =<<-.(1)当1m =-时,求A B ;(2)若A B ⊆.求实数m 的取值范围.16.(本题满分15分)已知函数2()23()f x x ax a R =-+∈.(1)若函数()f x 在(,2]-∞上是减函数,求a 的取值范围;(2)当[1,1]x ∈-时,讨论函数()f x 的最小值.17.(本题满分15分)已知函数()af x x x=+,且(1)2f =.(1)求a ;(2)根据定义证明函数()f x 在区间(1,)+∞上单调递增;(3)在区间(1,)+∞上,若函数()f x 满足(2)(21)f a f a +>-,求实数a 的取值范围.18.(本题满分17分)已知函数()ln(1)ln(1)f x x x =--+,记集合A 为()f x 的定义域.(1)求集合A ;(2)判断函数()f x 的奇偶性;(3)当x A ∈时,求函数221()(2x xg x +=的值域.19.(本题满分17分)某校学生社团心理学研究小组在对学生上课注意力集中情况的调查研究中,发现注意力指数p 与听课时间t 之间的关系满足如图所示的曲线.当(0,14]t ∈时,曲线是二次函数图象的一部分,当[14,45]t ∈时,曲线是函数log (5)83a y t =-+,(0a >且1a ≠)图象的一部分.根据专家研究,当注意力指数p 大于80时听课效果最佳.(1)试求()p f t =的函数关系式;(2)老师在什么时段内讲解核心内容能使学生听课效果最佳?请说明理由.2024学年第一学期嘉兴八校联盟期中联考高一年级数学学科试题答案1234567891011A C A DBCBDABDCDABC12.713.114.015.解:(1)当{}1,22m B x x =-=-<<∵{}13A x x =<<∴{}23A B x x =-<< (2)∵A B⊆2113m m ≤⎧⎨-≥⎩,122m m ⎧≤⎪⎨⎪≤-⎩∴2m ≤-∴(,2]m ∈-∞-16.(1)对称轴:x a =∵为减函数∴2a ≥∴[2,)a ∈+∞(2)①当1a <-时,在[1,1]-,则min ()(1)24f x f a =-=+②当11a -≤≤,在[1,1]-有最低点,2min ()()3f x f a a ==-+③1a >时,在[1,1]-,min ()(1)24f x f a ==-+17.(1)∵(1)2f =∴21a=+∴1a =(2)1()f x x x=+12,(1,)x x ∀∈+∞,且12x x <,则12()()f x f x --121211x x x x =+--211212x x x x x x -=-+12121()(1)x x x x =--∵1212,(1,)x x x x <∈+∞∴121212110,01,10x x x x x x -<<<->∴12()()0f x f x -<,即12()()f x f x <故()f x 在(1,)+∞(3)∵在(1,)+∞,(2)(1)f a f a +>-∴211121a a a a +>⎧⎪->⎨⎪+>-⎩,12a a >-⎧⎪>⎨⎪⎩任意成立∴2a >18.(1)1010x x ->⎧⎨+>⎩,11x x <⎧⎨>-⎩,{}11A x x =-<<(2)1()ln()1xf x x-=+可知定义域关于原点对称111()ln(ln(ln ()111x x xf x f x x x x+---====-+++故()f x 为奇函数.(3)令22t x x =+,对称轴1x =-t 在(1,1)-上,故(1,3)t ∈-又1()2ty =在R 上递减故221()(2x xg x +=的值域是:1(,2)8.19.(1)当(0,14]t ∈,设2()f t at bt c =++代入顶点(12,82)1481(,,)可得:21()[12)824f t t =--+当[14,45]t ∈,由log (5)83(01)a y t a a =-+>≠且代入(14,81),13a =,故:1()log (5)833f t t =-+综上2131(12)82,((0,14])4()log (5)83,([14,45])t t p f t t t ⎧--+∈⎪==⎨-+∈⎪⎩(2)当014t <≤,21()(12)82804f t t =--+>∴1214t -<≤当[14,45]t ∈,13()log (5)8380f t t =-+>∴1432t ≤<∴在(1232)-这段时间安排核心内容效果最佳.。
江苏省扬州中学2024-2025学年第一学期期中试题高一数学 2024.11试卷满分:150分,考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码2.将选择题答案填写在答题卡的指定位置上(用2B 铅笔填涂),非选择题一律在答题卡上作答(用0.5mm 黑色签字笔作答),在试卷上答题无效。
3.考试结束后,请将答题卡交监考人员。
一、单项选择题:本大题共8小题,每小题5分,共40分。
在每题给出的四个选项中只有一项是最符合题意的。
1.已知集合,,则( )A. B. C. D. 或2. 已知为常数,集合,集合,且,则的所有取值构成的集合元素个数为( )A. 1B. 2C. 3D.43.设为奇函数,且当时,,则当时,( )A. B. C. D. 4.函数的值域为( )A. B. C. D. 5.已知函数的定义域为,则函数)A. B. C. D. 6. 若不等式的解集为,那么不等式的解集为( ){|02}A x x =<<{|14}B x x =<<A B = {|02}x x <<{|24}x x <<{|04}x x <<{2|x x <4}x >a {}260A x x x =+-=∣{20}B x ax =-=∣B A ⊆a ()f x 0x ≥()2f x x x =+0x <()f x =2x x +2x x -2x x --2x x -+x x y 211-++=(]2,∞-()2,∞-()20,[)∞+,2(2)f x +(3,4)-()g x =(1,6)(1,2)(1,6)-(1,4)20ax bx c ++>{}12x x -<<()()2112a x b x c ax ++-+>A. B. 或C. 或 D. 7.命题在单调增函数,命题在上为增函数,则命题是命题的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要8. 已知,则的最大值为( )A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分。
江西省2024—2025学年上学期第一次模拟选科联考高一数学试卷共4页,19小题,满分150分。
考试用时120分钟。
注意事项:1.考查范围:必修第一册第一章至第三章第二节。
2.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上。
3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
4.考生必须保持答题卡的整洁。
考试结束后,请将答题卡交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则A.{2,3,4,5}B.{1,3,4}C.{3,4}D.{3}2.已知命题,,则为A., B.,C., D.,3.已知为定义在R 上的奇函数,当时,,则A. B.C. D.4.已知是幂函数,若,则a =A.B.2C.4D.65.若A. B. C. D.6.已知定义在R 上的函数满足,且,且,,则A. B.C. D.7.若关于x 的不等式的解集为,且,则实数m 的值为}{1,2,3,4,5U =2}{1,M =}2,{3,4N =()U M N = ð:1p x ∃>320x ->p ⌝1x ∀…320x ->1x ∀…320x -…1x ∀>320x -<1x ∀>320x -…()f x 0x >31()1f x x x =-+(1)f -=12-1232-3292()(4)m f x m x -=-()2f a =121a <-=5(1)a -+5(1)a +6(1)a -+6(1)a +()f x (5)(5)f x f x +=-12,(5,)x x ∀∈+∞12x x ≠121[(()()x x x f --2]()0f x >(5.5)(4.5)f f >(2.7)(3.2)f f <(7.3)(7.9)f f >(2.7)(5.2)f f >220()21x m x m m +-+-<12(,)x x 12112x x +=A.-4B.-1C.1D.48.已知函数若存在实数x ,使,则实数a 的取值围为A. B.C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列计算中正确的是A.C. D.10.使成立的一个充分条件可以是A.且 B.且C.且 D.且11.已知函数的定义域为R ,且的图象关于原点对称,的图象关于y 轴对称,则A. B.C.函数是增函数D.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数,则________.13.已知幂函数的图象过点,则________.14.对于任意实数x ,表示不小于x 的最小整数,例如(1.2)=2,,表示不大于x 的最大整数,例如[1.2]=1,.已知定义在R 上的函数,若集合,则集合A 中所有元素的和为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数在上单调递减,其中,且.(1)求的解析式;(2)求函数,的值域.16.(15分)已知集合,,且.23,2,(),2,x ax a x f x a x ⎧-++>⎪=…()0f x <(,1)-∞-(,2)(6,)-∞-+∞(,6)(1,)-∞--+∞(,1)(6,)-∞-+∞ 1144-=2=±23(8)4-=23184-=3a b c ->a c >2b c >-2a c >b c >-2a c >b c>-3a c >2b c>()f x (2)4y f x =+-(4)4y f x x =++(2)4f =(6)12f =-()f x (8)(4)824f x f x x -+-=-30,()()1,0,x f x g x x x x ==-<⎪⎩…((1))g f -=()m f x x =3(3,33[(2)]f =()x (0.2)0-=[]x 0.21[]-=-()(2)[3]f x x x =⋅4|(),23A y y f x x ⎧⎫==-<-⎨⎬⎩⎭…()af x b x=+(0,)+∞24a =(1)1f =()f x 2()2()[()]g x f x f x =+[1,4]x ∈(4,29]A m =+{|2233}B x m x m =-+……12B ∈(1)当时,求实数m 的取值范围;(2)设;,若p 是q 的必要不充分条件,求实数m 的取值范围.17.(15分)已知定义在R 上的奇函数与偶函数满足,若.(1)求的解析式;(2)求关于x 的不等式的解集.18.(17分)某糕点连锁店现有五家分店,出售A ,B 两款糕点,A 为特价糕点,为吸引顾客,按进价销售.已知用16000元购进A 糕点与用22000元购进B 糕点的重量相同,且B 糕点每斤的进价比A 糕点每斤的进价多6元.(1)求A ,B 两种糕点每斤的进价;(2)经市场调查发现,B 糕点每斤售价30元时,每月可售出3120斤,售价每提高1元,则每月少售出120斤,售价每降低1元,则每月多售出120斤,糕点店不会低于进价销售.则B 糕点每斤定价为多少元时,糕点店通过卖B 糕点获得的月利润最大?最大是多少?(3)因为使用进价销售的A 糕点物美价廉,所以深受顾客青睐,五个分店每月的总销量为10000斤.今年年初该连锁店用50万购进一批设备,用于生产A 糕点.已知每斤糕点的原材料价格为8元,若生产A 糕点n 个月()所用的原材料之外的各种费用总计为万元,若只考虑A 糕点,记该连锁店前n 个月的月平均利润为z 万元,求z 的最大值.19.(17分)对非空数集A 及实数k ,定义,,已知.(1)当时,若集合A 为单元素集,求A ;(2)当时,若集合,求ab 的所有取值构成的集合;(3)若A 中有3个元素,求实数k 的取值范围.16A ∉:p t A ∈:q t B ∈()f x ()g x ()()2||2f x g x x x +=++()()()h x f x g x =⋅()h x 2(3)(3)0h x tx h x t -+-<*n ∈N 211324n n +2{|,}A k x x a k a A ==-∈ {|,}A k x x k a a A ⊗==-∈A k A k =⊗ 1k =3k ={,}A a b =江西省2024—2025学年上学期第一次模拟选科联考高一数学参考答案及评分细则1.【答案】A【解析】,故选A.2.【答案】D【解析】根据存在量词命题的否定是全称量词命题,得,.故选D.3.【答案】B【解析】因为为定义在R 上的奇函数,所以.故选B.4.【答案】C【解析】因为是幂函数,所以,得,故时,.故选C.5.【答案】C【解析】当时,.故选C.6.【答案】D【解析】由题意得函数在上单调递减,在上单调递增.对选项A ,,A 错误;对选项B ,因为函数在上单调递减,所以,B 错误;对选项C ,因为函数在上单调递增,所以,C 错误;对选项D ,因为,函数在上单调递减,故,D 正确.故选D.7.【答案】B【解析】因为关于x 的不等式的解集为,所以关于x 的方程有两个不相等的实数根,所以,解得,且,,所以,解得.故选B.8.【答案】D【解析】当时,,即,因为,所以,故有解,{3,4,5}{2,3,4}{2,3,4,5}()U M N == ð:1p x ⌝∀>320x -…()f x 311(1)(1)1112f f ⎛⎫-=-=--= ⎪+⎝⎭92()(4)m f x m x-=-41m -=5m =12()f x x ==2=4a =1a <-10a +<3(1)a =--3(1)a =+=336(1)(1)(1)a a a --+=-+()f x (,5)-∞(5,)+∞(5.5)(50.5)f f =+=(50.5)(4.5)f f -=()f x (,5)-∞(2.7)(3.2)f f <()f x (5,)+∞(7.3)(7.9)f f >(5.2)(5f f =+0.2)(50.2)(4.8)f f =-=()f x (,5)-∞(2.7)(4.8)(5.2)f f f >=220()21x m x m m +-+-<12(,)x x 220()21x m x m m +-+-=12,x x 22[2(1)]41()440m m m m ∆=--⨯⋅-=-+>1m <122(1)x x m +=--212x x m m =-1221212112(1)2x x m x x x x m m+--+===-1m =-2x >230x ax a -++<23(1)x a x +<-2x >11x ->231x a x +>-即,因为,当且仅当,即时等号成立,故;当时,有解,即有解,也即,因为单调递增,故时,取最大值-1,故.综上,实数a的取值范围为.故选D.9.【答案】ACD (每选对1个得2分)【解析】对于A ,,A 正确;对于B,B 错误;对于C ,,C 正确;对于D ,,D 正确.故选ACD.10.【答案】AC (每选对1个得3分)【解析】充分性成立,即选项能推出,对于A ,,又,同向不等式相加得,A 成立;对于B ,令,,,满足且,但,B 不成立;对于C ,,又,同向不等式相加得,,C 成立;对于D ,令,,,满足且,但,D 不成立.故选AC.11.【答案】ABD (每选对1个得2分)【解析】A 选项,的定义域为R ,因为的图象关于原点对称,所以为奇函数,所以,故,令,得,A 正确;B 选项,由的图象关于y 轴对称,得为偶函数,所以,即,令,得,得,B 正确;C 选项,因为,C 错误;D 选项,因为,所以,因为,令,得,即,故,,D 正确.故选ABD.12.【答案】-8【解析】,.13.【答案】64【解析】由,所以.14.【答案】67【解析】当时,;当时,,,2min31x ax ⎛⎫+>⎪-⎝⎭223(11)341226111x x x x x x +-++==-+++=--- (4)11x x -=-3x =6a >2x …0a +<a <max (a <y =2x =y =1a <-(,1)(6,)-∞-+∞ 1144-=2=23(8)4-==232311848-===3a b c ->22b c b c <-⇒->a c >3a b c ->3a =7b =1c =-2a c >b c >-433a b c -=-<-=b c b c <-⇒->2a c >3a b c ->5a =8b =1c =-3a c >2b c >33a b c -=-=()f x (2)4y f x =+-(2)4y f x =+-(2)4(2)40f x f x --++-=(2)(2)8f x f x -++=0x =(2)4f =(4)4y f x x =++(4)4y f x x =++(4)4(4)4f x x f x x --=++(4)(4)8f x f x x -=++2x =4(2)(6)16f f ==+(6)12f =-(2)(6)f f >(2)(2)8f x f x -++=()8(4)f x f x =--(4)(4)8f x f x x -=++4x t -=()(8)328f t f t t =-+-()(8)328f x f x x =-+-8(4)(8)328f x f x x --=-+-(8)(4)824f x f x x -+-=-(1)112f -=--=-3((1))(2)(2)8g f g -=-=-=-333m =3m =-3()f x x =333(3(36[(2)](22264f ⨯====2x =-()(4)[6](4)(6)24f x =-⋅-=-⨯-=523x -<<-10423x -<<-(2)3x =-,,;当时,,,,,;当时,,,,,.综上,,集合A 中所有元素的和为67.15.解:(1)由得,(2分)因为函数在上单调递减,所以,故.(5分)由得,所以.(7分)(2),(10分)当时,,,,所以函数,的值域为.(13分)【评分细则】值域写成集合或区间形式均给分.16.解:(1)因为,所以,得,(2分)又因为,所以,即,(5分)故当时,m 的取值范围是.(7分)(2)因为,所以,,若p 是q 的必要不充分条件,则B 是A 的真子集,(10分)故(12分)解得.故实数m 的取值范围是.(15分)【评分细则】结果写成集合或区间或不等式形式均给分.17.解:(1)因为,即,又,得,,(4分)635x -<<-[3]6x =-()(2)[3](3)(6)18f x x x =⋅=-⨯-=5332x -- (10)233x --……(2)3x =-9532x --……[3]5x =-()(2)[3](3)(5)15f x x x =⋅=-⨯-=3423x -<<-8323x -<<-(2)2x =-9342x -<<-[3]5x =-()(2)[3](2)(5)10f x x x =⋅=-⨯-={24,18,15,10}A =24a =2a =±()af x b x=+(0,)+∞0a >2a =(1)21f b =+=1b =-2()1f x x=-222424()2()[()]211g x f x f x x x x ⎛⎫=+=-+-=- ⎪⎝⎭[1,4]x ∈2[1,16]x ∈241,44x ⎡⎤∈⎢⎥⎣⎦2131,34x ⎡⎤-∈-⎢⎥⎣⎦2()2()[()]g x f x f x =+[1,4]x ∈3,34⎡⎤-⎢⎥⎣⎦12B ∈221233m m -+……37m ……16A ∉2916m +<72m <16A ∉73,2⎡⎫⎪⎢⎣⎭37m ……A O ≠B O ≠224,3329,m m m ->⎧⎨++⎩…36m <…(3,6]()()2||2f x g x x x -+-=-+-+()()2||2f x g x x x -+=-++()()2||2f x g x x x +=++()2f x x =()||2g x x =+所以.(5分)(2)因为,所以为奇函数,(7分)又当时,单调递增,故函数在R 上单调递增.(9分)则不等式,可化为,即,即,(11分)①若,即时,;②若,即时,不等式无解;③若,即时,,综上,当时,解集为,当时,解集为,当时,解集为.(15分)【评分细则】1.第一问求出和的解析式分别给2分;2.第一问结果写成分段函数形式不扣分;3.第二间结果不写成集合或区间形式扣1分,未总结,但结果正确均给满分,三种情况每少一种情况扣1分.18.解:(1)设A 糕点每斤的进价为a 元,B 糕点每斤的进价为元,所以,解得,所以A 糕点每斤的进价为16元,B 糕点每斤的进价为22元.(4分)(2)设B 糕点每斤涨价元,蛋糕店通过B 糕点获得的月利润为y 元.由题意,(6分)当时,y 有最大值.(8分)所以B 糕点每斤定价为39元时,月利润最大,最大为34680元.(9分)(3)设前n 个月的总利润为w ,因为A 糕点每斤售价为16元,每月可售出10000斤,故每月可收入16万元,其中原材料为8万元,则,(12分)月平均利润万元,(15分)()()()2(||2)h x f x g x x x =⋅=+()2()(||2)2(||2)()h x x x x x h x -=--+=-+=-()h x 0x …2()24h x x x =+()h x 2(3)(3)0h x tx h x t -+-<2(3)(3)(3)h x tx h x t h t x -<--=-23(3)0x t x t +--<(3)(1)0x t x -+<13t <-3t <-13tx <<-13t=-3t =-13t >-3t >-13t x -<<3t <-|13t x x ⎧⎫<<-⎨⎬⎩⎭3t =-∅3t >-|13t x x ⎧⎫-<<⎨⎬⎩⎭()f x ()g x (6)a +16000220006a a =+16a =(8)x x -…22(3022)(3120120)120216024960120(9)34680y x x x x x =+--=-++=--+9x =22*111311685050()324324w n n n n n n n ⎛⎫=--+-=-+-∈ ⎪⎝⎭N 503131215.2532444w n z n n ==--+-+==…当且仅当,即时等号成立,(16分)所以z 的最大值为5.25.(17分)【评分细则】1.第二问未配方,只要结果正确,就给分;2.第三问未说明等号成立条件扣1分.19.解:(1)时,设,由,得,所以,即,得或1,故或.(4分)(2)时,,由,得,得或即或(5分)当时,是方程的两根,故,(6分)当时,两式相减得,由集合中元素的互异性得,所以,故,即,同理,故是方程的两根,所以,(7分)故ab 的所有取值构成的集合为.(8分)(3)设,由,得,①若故是方程的三个不等的实数根,而此方程最多有两个实数根,不可能有三个实数根,故不成立;(11分)②若,当时,,令,得,(12分)对,,两式相减得,因为,所以,代入,得,同理,5032n n=40n =1k ={}A a =11A A =⊗ 2{1}{1}a a -=-211a a -=-220a a +-=2a =-{2}A =-1}{A =3k ={,}A a b =33A A =⊗ 22{3,3}{3,3}a b a b --=--2233,33a a b b ⎧-=-⎨-=-⎩2233,33,a b b a ⎧-=-⎨-=-⎩2260,60a a b b ⎧+-=⎨+-=⎩226,6,a b b a ⎧=-⎨=-⎩2260,60a ab b ⎧+-=⎨+-=⎩,a b 260x x +-=6ab =-226,6a b b a⎧=-⎨=-⎩22a b a b -=-a b ≠1a b +=266(1)5a b a a =-=--=+250a a --=250b b --=,a b 250x x --=5ab =-{6,5}--{,,}A a b c =A k A k =⊗ 222{,,}{,,}a k b k c k k a k b k c ---=---222,,,a k k a b k k b c k k c ⎧-=-⎪-=-⎨⎪-=-⎩,,a b c 220x x k +-=222,,,a k kb b k k ac k k c ⎧-=-⎪-=-⎨⎪-=-⎩2c k k c -=-220c c k +-=180k ∆=+ (1)8k -…2a k k b -=-2b k k a -=-22a b a b -=-a b ≠1a b +=2a k k b -=-2120a a k -+-=2120b b k -+-=故为方程的两个不相等的实根,令,得,(13分)当时,与均有两个不相等的实根,且这两个方程的根不完全相同,故符合题意;(14分)③若则,根据集合中元素的互异性,两两不相等,不妨设,(ⅰ)当时,,又,所以,这与矛盾,故不成立;(ⅱ)当时,,又,所以,这与矛盾,故不成立;(ⅲ)当时,,又,所以,这与矛盾,故不成立;(ⅳ)当时,,又,所以,这与矛盾,故不成立.(16分)综上,实数k 的取值范围是.(17分)【评分细则】1.第一问只得出一种情况,扣2分;结果不写成集合形式,扣1分;2.第二问求出ab 的一个值,给2分,最后结果不写成集合形式,扣1分;3.第三问结果写成不等式、集合或区间形式,结果正确即给满分.,a b 2120x x k -+-=14(12)0k '∆=-->38k >38k >2120x x k -+-=220x x k +-=222,,,a k k b b k k c c k k a ⎧-=-⎪-=-⎨⎪-=-⎩2222a b b c c a k +=+=+=,,a b c a b c >>0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=3,8⎛⎫+∞ ⎪⎝⎭。
2024-2025学年江苏省常熟市高一第一学期期中考试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知命题p:“∃x∈R,x+2≤0”,则命题p的否定为( )A. ∃x∈R,x+2>0B. ∀x∈R,x+2>0C. ∃x∉R,x+2>0D. ∀x∈R,x+2≤02.已知x>0,则x−1+4x的最小值为( )A. 4B. 5C. 3D. 23.已知函数y=f(x)的定义域为[−2,1],则函数y=f(2x+1)的定义域为( )A. RB. [−2,1]C. [−3,3]D. [−32,0]4.若函数f(x)=(m2−2m−2)x2−m是幂函数,且y=f(x)在(0,+∞)上单调递减,则实数m的值为( )A. 3B. −1C. 1+3D. 1−35.常熟“叫花鸡”,又称“富贵鸡”,既是常熟的特产,也是闻名四海的佳肴,以其鲜美、香喷、酥嫩著称。
双十一购物节来临,某店铺制作了300只“叫花鸡”,若每只“叫花鸡”的定价是40元,则均可被卖出;若每只“叫花鸡”在定价40元的基础上提高x(x∈N∗)元,则被卖出的“叫花鸡”会减少5x只.要使该店铺的“叫花鸡”销售收入超过12495元,则该店铺的“叫花鸡”每只定价应为( )A. 48元B. 49元C. 51元D. 50元6.已知f(x)是奇函数,对于任意x1,x2∈(−∞,0)(x1≠x2),均有(x2−x1)(f(x2)−f(x1))>0成立,且f(2)=0,则不等式xf(x−2)<0的解集为( )A. (−2,0)∪(2,4)B. (−∞,−2)∪(2,4)C. (2,4)D. (−2,0)∪(0,2)7.通过研究发现:函数y=f(x)的图象关于点P(a,b)成中心对称图形的充要条件是函数y=f(x+a)−b为奇函数,则函数f(x)=x3−3x2图象的对称中心为( ) 参考公式:(a+b)3=a3+3a2b+3ab2+b3A. (0,0)B. (1,2)C. (1,−2)D. (2,−4)8.已知正实数a,b满足a+b=4,则代数式1b +b+1a的最小值为( )A. 5+12B. 5+14C. 54D. 25+2二、多选题:本题共3小题,共18分。
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 已知集合A={1,2,3},B={2,3,4},求A∪B的值。
A. {1,2,3}B. {1,2,3,4}C. {2,3}D. {1,4}2. 函数f(x)=2x^2-3x+1在区间[-1,2]上的最大值是多少?A. 1B. 5C. 7D. 93. 已知等差数列的首项a1=3,公差d=2,求第10项的值。
A. 23B. 25C. 27D. 294. 一个圆的半径为5,求其面积。
A. 25πB. 50πC. 75πD. 100π5. 已知直线y=-3x+5与x轴的交点坐标是什么?A. (0, 5)B. (1, 2)C. (5/3, 0)D. (0, 0)6. 已知sin(α)=3/5,α∈(0,π),求cos(α)的值。
A. 4/5B. -4/5C. √(1-(3/5)^2)D. -√(1-(3/5)^2)7. 一个函数f(x)是奇函数,且f(1)=2,求f(-1)的值。
A. 2B. -2C. 0D. 18. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 7C. 8D. 99. 已知一个函数f(x)=x^3-6x^2+11x-6,求f(2)的值。
A. -2B. 0C. 2D. 410. 已知一个等比数列的首项a1=2,公比q=3,求第5项的值。
A. 162B. 243C. 486D. 729二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,求对称轴的方程。
___________________________12. 已知等比数列的前n项和为S_n=3^n-1,求首项a1。
___________________________13. 已知正弦定理公式为a/sinA=b/sinB=c/sinC,求三角形ABC的面积,已知a=5,sinA=3/5。
___________________________14. 已知某函数的导数f'(x)=6x^2-4x+1,求f'(1)的值。
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是实数集R的子集?A. 整数集ZB. 有理数集QC. 无理数集D. 复数集C2. 函数f(x) = 2x^2 - 3x + 1在区间[0, 2]上的最大值是:A. 1B. 5C. 7D. 93. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B的元素个数。
A. 1B. 2C. 3D. 44. 若a > 0,b < 0,且|a| < |b|,则a + b的符号是:A. 正B. 负C. 零D. 不确定5. 下列哪个不等式是正确的?A. √2 < πB. e < 2.72C. √3 > √2D. log2(3) > log3(2)6. 已知等差数列的首项为a1 = 3,公差为d = 2,第5项a5的值是:A. 9B. 11C. 13D. 157. 函数y = x^3 - 6x^2 + 9x + 2的零点个数是:A. 0B. 1C. 2D. 38. 已知f(x) = x^2 - 4x + 4,求f(x)的最小值。
A. 0B. 4C. 8D. 169. 抛物线y = x^2 - 2x - 3与x轴的交点个数是:A. 0B. 1C. 2D. 310. 已知等比数列的首项为a1 = 2,公比为r = 3,求第4项a4的值。
A. 162B. 486C. 729D. 1458二、填空题(每题2分,共20分)11. 圆的一般方程为x^2 + y^2 + dx + ey + f = 0,其中d^2 + e^2 - 4f > 0时,表示______。
12. 若函数f(x) = 3x - 2在区间[1, 4]上是增函数,则f(1) =______。
13. 已知集合M = {x | x^2 - 5x + 6 = 0},则M的补集∁_R M = {x | ______ }。
14. 函数y = log_2(x)的定义域是{x | x > ______ }。
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 函数f(x) = x^2 - 2x + 1的零点是:A. 1B. -1C. 0D. 23. 集合A = {1, 2, 3},B = {2, 3, 4},则A∩B等于:A. {1}B. {2, 3}C. {4}D. {1, 2, 3, 4}4. 已知数列{a_n}的通项公式为a_n = 2n + 1,那么a_5等于:A. 11B. 9C. 13D. 155. 若函数f(x) = 3x - 5,则f(2)等于:A. 1B. -1C. 7D. 36. 直线y = 2x + 3与x轴的交点坐标是:A. (0, 3)B. (1, 5)C. (-3/2, 0)D. (3/2, 0)7. 圆的一般方程为x^2 + y^2 + 2x - 4y + 5 = 0,其圆心坐标是:A. (-1, 2)B. (1, -2)C. (-1, -2)D. (1, 2)8. 函数y = x^2 - 4x + 3的最小值是:A. -1B. 0C. 1D. 39. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么三角形ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定10. 函数y = √(x - 2)的定义域是:A. x ≥ 2B. x > 2C. x < 2D. x ≠ 2二、填空题(每题3分,共30分)1. 若函数f(x) = x^2 - 4x + 3的最大值为2,则x的值为______。
2. 已知数列{a_n}满足a_1 = 1,a_n = 2a_{n-1} + 1,那么a_3等于______。
3. 函数f(x) = 2x^2 - 3x + 1的对称轴方程是______。
4. 集合A = {x | x^2 - 5x + 6 = 0},则A的元素个数为______。
2024~2025学年度第一学期武汉市部分学校高一年级期中调研考试数学试卷(答案在最后)武汉市教育科学研究院命制2024.11.13本试题卷共4页,19题,全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试卷和答题卡一并上交。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合1,0,1,2,3}{A =-},220}{|B x x x =-<,则A B = A.{0,1,2}B.{1}C.{0,1}D.(0,2)2.命题p :[0,1]x ∀∈,20x x +的否定是A.0[0,1]x ∃∈,200x x +> B.[0,1]x ∀∈,20x x +>C.0[0,1]x ∃∈,200x x + D.[0,1]x ∀∈,20x x +3.下列关于幂函数2()f x x -=的判断:①定义域为(0,)+∞,②值域为R ;③是偶函数;④在(0,)+∞上单调递减.其中正确的个数是A.4B.3C.2D.14.下列不等式中成立的是A.若0a b >>,则22ac bc > B.若a b >,则33a b >C.若0a b <<,则22a ab b << D.若a b <且0ab ≠,则11a b<5.已知函数2()f x 的定义域为[1,2],则函数(21)f x +的定义域为A.1,12⎡⎤⎢⎥⎣⎦B.30,2⎡⎤⎢⎥⎣⎦C.[1,2]D.[1,4]6.已知函数()y f x =的图象关于点(,)P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.若111()123f x x x x =+++++存在对称中心(,)a b ,则2a b +=A.-4B.-3C.3D.47.已知函数()f x 是定义在R 上的偶函数,12,[0,)x x ∀∈+∞,且12x x ≠,恒有122212))1((f x f x x x ->--.若(1)1f =,则不等式2()2f x x <-的解集为A.(,1)-∞ B.(1,)+∞C.(,1)(1,)-∞-+∞ D.(1,1)-8.已知0a <,关于x 的方程22246aa x x x+=-+在[1,2)上有实数解,则a 的取值范围为A.[3,2]-- B.[3,2)--C.[3,-D.[3,-二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某智能手机生产厂家对其旗下的某款手机的续航能力进行了一轮测试(一轮测试时长为6小时),得到了剩余电量y (单位:百分比)与测试时间t (单位:h)的函数图象如图所示,则下列判断中正确的有A.测试结束时,该手机剩余电量为85%B.该手机在前5h 内电量始终在匀速下降C.该手机在0h~3h 内电量下降的速度比3h~5h 内下降的速度更快D.该手机在5h~6h 进行了充电操作10.已知函数|1|,0()1,0x x f x x x+⎧⎪=⎨>⎪⎩,关于x 的方程()0f x k -=,下列判断中正确的是A.1k =时方程()0f x k -=有3个不同的实数根B.方程()0f x k -=至少有2个不同的实数根C.若方程()0f x k -=有3个不同的实数根,则k 的取值范围为(0,1]D.若方程()0f x k -=有3个不同的实数根1x ,2x ,3x ,则123x x x ++的取值范围为[)1,-+∞11.已知正数,a b 满足321a b+=,则下列结论中正确的是A.24abB.5ab +C.2a b-的最小值为1- D.b 与2a -可以相等三、填空题:本题共3小题,每小题5分,共15分.12.已知函数2,0()2,0x x f x x ⎧=⎨<⎩,则((1))f f -=________.13.已知函数32()f x x x=+,若()f a =()f a f -+=________.14.对于任意实数,a b ,定义,min{,},a a b a b b a b ⎧=⎨>⎩,当实数,x y 变化时,令228min ,8yt x y x y =++,则t 的最大值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题13分)已知集合{|21}A x a x a =+,2{|430}B x x x =-+ .(1)当12a =时,求A B ,R B A ð;(2)若“x A ∈”是“x B ∈”成立的充分条件,求实数a 的取值范围.16.(本小题15分)已知函数1()2f x x x=-.(1)判断函数()f x 的奇偶性并证明;(2)讨论函数()f x 在区间(0,)+∞上的单调性并证明.17.(本小题15分)(1)对于正实数,,,a b c d ,求证:2()()a b c d --;(2)已知函数()M t =1)的结论,求函数()M t 的最小值,并求出此时对应的t 的值.18.(本小题17分)在日常生活中,经济学家们通常将函数()f x 的边际函数()M f x 定义为()(1)()M f x f x f x =+-.现已知某高科技企业每月生产某种特殊设备最多11台,根据以往经验:生产x 台(111x ,*x ∈N )这种特殊设备的月收入函数为2281()70R x x x =++(单位:千万元),其月成本函数为126()14C x x x=+(单位:千万元).求:(1)月收入函数()R x 的最小值及此时x 的值;(2)月成本函数()C x 的边际函数()M C x 的定义域及最大值(精确到0.01千万元);(3)生产x 台这种特殊设备的月利润()p x 的最小值.(月利润=月收入-月成本)19.(本小题17分)对于定义在R 上的函数()f x ,若其在区间[,]()p q p q >上存在最小值m 和最大值M ,且满足p m M q < ,则称()f x 是区间[,]p q 上的“聚集函数”.现给定函数22()24x a f x ax =-+.(1)当2a =时,求函数()f x 在[1,4]-上的最大值和最小值,并判断()f x 是否是“聚集函数”;(2)若函数()f x 是[1,4]-上的“聚集函数”,求实数a 的取值范围;(3)已知s a t <<,若函数()f x 是[,]s t 上的“聚集函数”,求t s -的最大值.数学答案一、选择题1234567891011BACBBADBACDACDABD二、填空题12.413.三、解答题15.解:(1)当12a =时,312A x x ⎧⎫=≤≤⎨⎬⎩⎭,由20}{3|4B x x x =-+≤可得:13}{|B x x =≤≤因此[1,3]A B = ,R 3,32B A ⎛⎤= ⎥⎝⎦ð·······················································································6分(2)由题意可得A B ⊆当A =∅时,21a a >+,∴1a >当A ≠∅时,12113a a a ≤⎧⎪≥⎨⎪+≤⎩,解得112a ≤≤综上所述,a 的取值范围1,2⎡⎫+∞⎪⎢⎣⎭.························································································13分16.解:(1)函数()f x 是奇函数,下面给出证明:可知函数定义域为(,0)(0,)-∞+∞ ,关于原点对称.对于任意(,0)(0,)x ∈-∞+∞ ,有1()2()f x x f x x-=-+=-,故为奇函数.·······································6分(2)函数()f x 在区间(0,)+∞内单调递增,证明如下:任取12,(0,)x x ∈+∞,且12x x <,则21212121212112122))()1111((222()x x f x f x x x x x x x x x x x x x ⎛⎫⎛⎫-=---=-+-=-+ ⎪ ⎝-⎪⎭⎝⎭2112)12(x x x x ⎛⎫=-++ ⎪⎝⎭∵210x x ->,12120x x +>∴21)()(f x f x >∴()f x 在(0,)+∞上单调递增.······························································································15分17.(1)证明:∵2()()a b c d ----(()ac bd ac bd bc ad =+--+--20bc ad =+-=-≥∴原不等式得证.(当且仅当bc ad =即a cb d=时取到等号)···············································································6分(2)解:由t 满足430110t t t -≥⎧⇒≥⎨-≥⎩,此时(43)(1)320t t t ---=->∵431t t ->->,∴()0M t >2=1=由(1)可知:222233()(21)(1)44M t t t ⎡⎤⎛⎫=≥----= ⎪⎢⎥⎝⎭⎣⎦,所以3()2M t ≥,当且仅当2231421t t --=,即1312t =时取到等号.综上所述:当1312t =时,()M t 的最小值为32.·······································································15分18.解:(1)2281()7070187088R x x x =++≥=+=当且仅当2281x x =即3x =时取到等号.即()R x 的最小值为88千万元,此时3x =.(2)由()(1)()M C x C x C x =+-,可知定义域为110x ≤≤,*N x ∈.∴126126126()14(1)14141(1)M C x x x x x x x⎛⎫=++-+=- ⎪++⎝⎭,110x ≤≤,*N x ∈.由函数单调性可知:()M C x 在110x ≤≤,*N x ∈上单调递增.∴当10x =时,max 126707()1412.85111055M C x =-=≈⨯(千万元),···············································10分(3)2228112699()()()70141452p x R x C x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-=++-+=+-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,∴29()73p x x x ⎛⎫=+-+ ⎪⎝⎭,111x ≤≤,*N x ∈.令9()7g x x x=+-,∵(1)3g =,1(2)2g =,1(5)5g =,1(6)2g =∴min 76()(5) 3.0425p x p ===(千万元),此时5x =.································································17分19.解:(1)当2a =时,221()21(2)122x f x x x =-+=--因此()f x 在[1,4]-上的最小值为-1,最大值为72.因为71,[1,4]2⎡⎤-⊆-⎢⎥⎣⎦,所以函数()f x 是“聚集函数”.·······························································4分(2)()f x 在[1,4]-上的最大值为(1)f -与(4)f 中的较大者,因此221(1)442(4)4844a f a a f a ⎧-=++≤⎪⎪⎨⎪=-+≤⎪⎩解得82a -≤≤-+∵[82[1,4]--+⊆-.因此对称轴[1,4]x a =∈-,即221()()24a f x x a =--在[1,4]-上的最小值214a -≥-,解得22a -≤≤.综上所述,a的取值范围是[8-.·················································································10分(3)∵221()()24a f x x a =--,()f x 的对称轴(,)x a s t =∈∴2min ()4a y f a ==-,下面讨论()f x 的最大值.①若2s t a +≤,由抛物线图像可知,22max ()24s a y f s as ==-+∴min max s y y t ≤<≤,设L t s =-,即要求L 的最大值.222222max min11(2)()24422s a a L y y as s as a s a ⎛⎫≥-=-+--=-+=- ⎪⎝⎭,∵2s t a +≥,∴022t s La s --≥=>,代入上式,得2122L L ⎛⎫≥ ⎪⎝⎭,故8L ≤.②若2s ta +≥,由抛物线图像可知,22max ()24t a y f t at ==-+∴min max s y y t ≤<≤,设L t s =-,有()222222max min112()24422t a a L y y at t at a t a ⎛⎫≥-=-+--=-+=- ⎪⎝⎭∵2s t a +≤,∴022t s L t a --≥=>,代入上式,得2122L L ⎛⎫≥ ⎪⎝⎭,故8L ≤.综上可知L t s =-的最大值为8,当且仅当82()t s s t a f a s -=⎧⎪+⎪=⎨⎪=⎪⎩时取到等号,即228442a ta s a s t ⎧-=⎪⎪⎪=-⎨⎪=+⎪⎪⎩,消去,s t 可得:2282a a =-,解得2a =-±即22 6a t s ⎧=-+⎪⎪=+⎨⎪=-+⎪⎩或226a t s ⎧=--⎪⎪=-⎨⎪=--⎪⎩时取到.因此t s -的最大值为8.······································································································17分。
高一年级期中考试数学试题卷
命题人:尹祥审题人:廖永松
一、选择题(本题共12小题,每小题5分,共60分.)
1{1,2,3}{20}(
).{1}.{1,2}.{2}.{12}
A B x x A B A B C D x x ==-≤=≤≤ 、已知集合,,则log 2366232(,,,0,1)()
log ..log ..log log a x x a a a a a M N x a M M A a a a B C a a a D a a N N
>≠⋅==÷==、以下运算正确的是其中且223(4,)(
).2..log .2x A y B y x C y x
D y x +∞====、下列函数中在区间上增长最快的是1.10.90.40.60.50.50.30.34(
).0.9 1.1.0.60.6.2.7 3.1.log 0.6log 0.4A B C D <><>、下列各式中不成立的是35()239(
)
.(1,0).(0,1).(1,2).(2,3)f x x x A B C D =---、函数一定存在零点的区间是06270[1,3],2,(
)
3.(2,3).(,2).(1,3).(1,2)2x x x A B C D +-==、用二分法求方程在区间内的根取区
间的中点为
那么下一个有根的区间是7//4,ΔΔΔ'''''(
) (2)
AB x AB ABC ABC A B C A B A B C D =、已知平面直角坐标系中线段轴,且的面
积为直观图中边上的高为
8()(,0](21)(3)(
).(1,2).(2,1).(1,1).(2,2)
f x f x f x A B C D -∞+<----、已知偶函数在区间上单调递减,则
满足的的取值范围是9()ln ()(),().,(
).1.1.1.f x x f m f n m n m n A mn B mn C mn D ==≠>=<、已知函数,且则关于关系正确的是不确定
2511102510,()1
.1..10.log 10log 10
10a b a b
A B C D ==++、已知则的值为211()(0,1),
(2,)(
).(0,1).(0,1)(1,4].(1,4].[4,)
x ax f x a a a a A B C D -+=->≠+∞+∞ 、已知函数其中且在上单调递增,则的取值范围是12()0()(1)(3),
[()](
).8.10.13.15
f x R x f x x x y f f x A B C D >=--=、已知函数是定义在上的奇函数,当时,则的零点个数为二、填空题(本题共4小题,每小题5分,共20分)
213(1),____
m y m m x m =--=、已知幂函数为偶函数则(,0]1014()ln (0,1],[()]____3(1)(1,)x e x f x x x f f f x x ⎧∈-∞⎪=∈=⎨⎪-∈+∞⎩
、已知则
1211221221216(),,,()()()(),()"",
ln ,0:(1);(2);(3)0,
0""________
x R f x x x x f x x f x x f x x f x f x H x x y e x y x y x H +>+⎧≠⎪=+==⎨=⎪⎩、如果对定义在上的函数对任意两个不相等的实数都有:
则称函数为函数给出下列函数以上函数是函数的所有序号为三、解答题(其中17题10分,18~22题每题12分,共70分)17{25},{121}
(1)3();
(2).
R R A x x B x m x m m C B A C B B A m =-≤≤=+≤≤-=⊆ 、已知集合当时,求集合和若,求实数的取值范围18()ln(5)ln(5)
(1)()();
(2)()(0,5).
f x x x f x f x f x =++-、已知函数求函数的定义域,并判断奇偶性用定义法证明函数在上单调递减2
15(:),____cm cm 、某几何体的正视图和侧视图相同,
是由边长为4的正方形和等腰三角
形组成,其中等腰三角形底边上的
高为1.5,如图所示单位则该
几何体的表面积是
22
19
()():()24100(0,10]()240(10,20]140log 520(20,40]5f t t f t t t t f t t t t ⎧-++∈⎪⎪⎪=⎨∈⎪-+∈⎩
、研究发现,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,
学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设表示学生注意力随时间分钟的变化规律【注越大,表明学生注意力越集中】,经过实验分析得知:
(1)40(2)⎪⎪讲课开始后的第2分钟与讲课开始后的第分钟比较,
何时学生的注意力更集中?
讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?20().
(1);
(2).
cm V S 、一几何体的三视图如图所示单位求该几何体的体积求该几何体的表面积
221()0()2(1)()0()1;
(2)()(,),
,.
f x x f x x x
f x f x f x k k R k k ≥=-≤≤=∈、已知函数为偶函数,当时,勾画函数的草图,结合图象求不等式的解集对于方程其中且为常数讨论当取不同值时方程解的个数情况4422()lo
g (41)().
(1);
(2)()log (2),.
x x f x kx k R k f x a a a =++∈=⋅-、已知函数为偶函数求的值若方程有且只有一个解求实数的取值范围。