植物生长激素5类
- 格式:doc
- 大小:139.50 KB
- 文档页数:6
植物生长调节剂一、分类现在大家公认的生长调节剂有五大类:生长素、赤霉素、细胞分裂素、脱落酸、乙烯,按生产中的应用也分为三类:生长促进剂类、生长抑制剂、生长延缓剂。
(一)生长促进剂促进细胞分裂、分化和伸长生长,也可促进植物营养器官的生长和生殖器官的发育。
吲哚丙酸、萘乙酸、激动素、6-苄基腺嘌呤、二苯基脲都属于这一类。
(二)生长抑制剂抑制植物茎顶端分生组织生长的生长调节剂。
往往促进侧枝的分化和生长,从而破坏顶端优势,增加侧枝数目。
有些还能使叶片变小,生殖器官发育受到影响。
外施生长素也以扭转其过量的负效应。
常见的生长抑制剂:三碘苯甲酸、青鲜素、水杨酸、整形素。
(三)生长延缓剂抑制植物亚顶端分生组织生长的生长调节剂为植物生长延缓剂,亚顶端分生组织中的细胞主要是伸长,由于赤霉素在这里起作用,所以外施赤霉素可以逆转其效应。
这类物质包括烯效矬,多效矬,矮壮素,比久。
二、生长调节剂在防止番茄落花落果上的应用坐果激素都是生长素类,常用的番茄坐果激素有番茄灵、2,4-D、番茄丰产剂,番茄丰产剂是番茄灵、2,4-D根据一定配比混合而成。
1、涂抹法2,4-D应用这种方法,使用浓度为10-20mg/kg,。
首先根据说明将药液配好,并加入少量红或蓝色染料做标记,然后用毛笔蘸取少量的药液涂在花柄的离层或花柱上。
这种方法需一朵一朵的涂抹,比较费工,处理的果穗果实之间生长不整齐,成熟期相差较大,容易发生药害,应防止喷到植物幼叶和生长点上。
2、蘸花法应用番茄灵和番茄丰产剂可用此法。
番茄丰产剂浓度为20-30mg/kg,番茄灵使用浓度为25-50mg/kg。
将配好的药液倒入小碗内,将开有3、4朵的整个花穗在激素溶液里浸蘸一下,然后将小碗边缘轻轻触动花序,让花序上过多的激素流到碗里,这种方式同一果穗果实生长整齐,成熟一致,省工省力。
3、喷雾法应用番茄灵和番茄丰产剂也可采用此法,当番茄每穗花有3、4朵开放时用装有药液的小喷雾或喷枪对准花穗喷洒,使雾滴布满花朵又不下滴,此法效果与蘸花法基本相同。
第七章植物生长物质复习思考题与答案(一) 名词解释?植物生长物质(plant growth substance) 能够调节植物生长发育的微量化学物质,包括植物激素和植物生长调节剂。
植物激素(plant hormone,phytohormone) 在植物体内合成的、能从合成部位运往作用部位、对植物生长发育产生显著调节作用的微量小分子有机物。
目前国际上公认的植物激素有五大类:生长素类、赤霉素类、细胞分裂素类、脱落酸、乙烯。
另外有人建议将油菜素甾体类、茉莉酸类也列为植物激素。
植物生长调节剂(plant growth regulator) 一些具有类似于植物激素活性的人工合成的物质。
如:2,4-D、萘乙酸、乙烯利等。
极性运输(polar transport) 物质只能从植物形态学的一端向另一端运输而不能倒过来运输的现象,如植物体内生长素的向基性运输。
乙烯的"三重反应"(triple response) 乙烯对植物生长具有的抑制茎的伸长生长、促进茎或根的增粗和使茎横向生长(即使茎失去负向地性生长)的三方面效应。
偏上生长(epinasty growth)指器官的上部生长速度快于下部的现象。
乙烯对茎和叶柄都有偏上生长的作用,从而造成茎的横向生长和叶片下垂。
生长延缓剂(growth retardant) 抑制植物亚顶端分生组织生长的生长调节剂,它能抑制节间伸长而不抑制顶芽生长,其效应可被活性GA所解除。
生产中广泛使用的生长延缓剂有矮壮素、烯效唑、缩节安等。
生长抑制剂(growth inhibitor) 抑制顶端分生组织生长的生长调节剂,它能干扰顶端细胞分裂,引起茎伸长的停顿和破坏顶端优势,其作用不能被赤霉素所恢复,常见的有脱落酸、青鲜素、水杨酸、整形素等。
激素受体(hormone receptor) 能与激素特异结合并引起特殊生理效应的物质,一般是属于蛋白质。
?(二)写出下列符号的中文名称,并简述其主要功能或作用IAA 吲哚乙酸(indole-3-acetic acid),最早发现的一种生长素类植物激素,能显著影响植物的生长,在低浓度下促进生长(主要促进细胞伸长);中等浓度抑制生长;高浓度可导致植物死亡。
植物激素植物生长与发育的调节因子植物激素:植物生长与发育的调节因子植物生长和发育是一个复杂而精密的过程,受到多种调节因子的控制。
其中,重要的一种是植物激素。
植物激素是一类由植物自身合成的化合物,能够在极低浓度下调控植物的生长和发育过程。
本文将就植物激素的作用和调节机制展开讨论。
一、植物激素的种类和作用机制1. 赤霉素(Gibberellins,GAs)赤霉素是一类具有飞机航班居的植物激素,能促进幼苗的伸长生长和花芽的分化,抑制芽的分枝生长。
赤霉素能够通过活化多种生物化学过程,例如合成和降解蛋白质,影响植物的生长和发育。
2. 生长素(Auxins)生长素是一类经常被提及的植物激素,它在调控植物的细胞分裂、伸长和分化中起重要作用。
生长素主要通过促进细胞壁松弛和生长旺盛,影响植物器官的形成和向阳性生长。
3. 细胞分裂素(Cytokinins)细胞分裂素是促进细胞分裂和活化的植物激素。
它能促进芽的分裂和侧芽的形成,遏制细胞老化。
细胞分裂素与生长素共同调节植物的生长和发育,保持器官的相对平衡。
4. 赤露酸(Abscisic Acid,ABA)赤露酸是一类负向调节植物生长和发育的激素。
它在逆境条件下如干旱、盐胁迫和低温等情况下起到重要作用。
赤露酸能够抑制植物生长、开花和种子萌发,从而帮助植物在胁迫环境下适应和生存。
5. 焦磷酸(Ethylene)焦磷酸是一类气体植物激素,其生物活性非常高。
焦磷酸能够促进花朵开放,促使果实成熟和坚硬,还对植物的胁迫反应和根发育起到重要调控作用。
二、植物激素的相互作用和调控机制植物激素之间存在着复杂的相互作用关系,这种相互作用是植物生长和发育调控的基础。
例如,赤霉素和生长素可以相互作用,赤霉素促进伸长生长,而生长素通过控制细胞壁松弛来促进细胞伸长。
细胞分裂素和生长素也有着协同作用,维持植物器官的相对平衡。
此外,植物激素的合成、运输和降解过程也受到多种调控因素的影响。
例如,赤霉素的生物合成过程中受到光周期和温度的调节,而生长素的合成、运输和降解过程则受到光信号和胁迫因子的影响。
植物生长素知识点1.类型和功能:植物生长素包括激动素(IAA)、吲哚酯类激素(IAA 甲酯)、吲哚醋酸甲酯(IBA)、吲哚丙酸甲酯(IPA)、生长酮(GA)及合成类似物等。
它们在植物体内起到促进细胞分裂、细胞伸长和分化、抑制侧枝生长、调控花蕾和种子发育、调节叶片开展以及植物光生物学过程等方面起到重要作用。
2.生物合成:植物生长素的主要合成途径是通过香豆酸途径。
香豆酸在哺乳动物细胞中被代谢为吲哚乙酸,然后通过一系列酶的参与合成生长素。
另外,微生物和真菌也能产生生长素,这对植物的生长和发育也有一定影响。
3.传输和运输:植物生长素可以通过须根、叶片和茎等植物组织进行传输和运输。
包括活性转运和非活性转运两种方式。
活性转运是由于体内激素的极性和离子度,通过植物体内的激素转运蛋白进行传输。
而非活性转运是通过物质溶液中激素的扩散进行传输。
4.生长素与光合作用之间的关系:生长素对光合作用有直接和间接的影响。
生长素可通过调节叶片开展、蒸腾抑制和刺激叶片细胞增长等途径直接影响光合作用的进程。
另一方面,生长素还可通过促进根系发育和分泌激素,以及调控光合机构的合成和分解等间接影响光合作用。
5.生长素与植物抵抗性之间的关系:生长素在植物的抗逆性中也起着重要作用。
生长素可以调节植物的氧化还原过程,提高植物对环境胁迫的抵抗力。
此外,生长素还可以通过调控植物的抗氧化酶和抗氧化物质的合成来增强植物对逆境的适应能力。
6.生长素的应用:植物生长素可以通过外源施用来调控植物的生长发育。
例如,处理植物幼苗或种子的生理处理,可以促进根系的生长、开展和植物的整体生长。
此外,生长素还可通过应用在植物的多种植物组织培养中,用于愈伤组织的诱导、植物再生、植物融合和植物繁殖等。
总之,植物生长素是一类重要的植物激素,它们在植物的生长发育中起到了至关重要的作用。
通过深入了解植物生长素的生物合成、传输运输、与光合作用的关系以及其在植物抵抗性和应用等方面的作用,我们可以更好地了解和利用植物生长素,为植物的生长和发育提供有效的控制和调节手段。
五种植物激素的作用及应用植物激素是植物内部产生的化学物质,对植物的生长和发育起到调控作用。
常见的植物激素包括赤霉素、生长素、细胞分裂素、脱落酸和乙烯。
下面将分别介绍这五种植物激素的作用及应用。
1. 赤霉素赤霉素是一种含有龙脑环结构的萜类化合物。
赤霉素对生长素的合成和运输起到抑制作用,从而抑制植物的细胞分裂和伸长,促进茎的侧芽发育。
赤霉素还可以促进种子的萌发和采后果实的成熟。
应用:赤霉素在农业生产中有广泛应用,可以促进苗木、花卉和水果的生长发育,提高产量和品质。
赤霉素还可用于控制植物茎伸长和抑制果实过早脱落,在果园管理和果实采后保鲜方面具有重要作用。
2. 生长素生长素是由苯丙氨酸合成的一种植物激素,主要存在于植物的茎尖、根尖和新生叶片等处。
生长素可以促进细胞的分裂和伸长,调节植物的生长方向和形态。
应用:生长素广泛应用于农业生产中,可以促进根系发育、提高植物耐逆性和增加抗病性。
生长素还可用于扦插繁殖、果实膨大和调控果实的成熟,提高产量和品质。
3. 细胞分裂素细胞分裂素是由腺苷脱氨酸合成的一类植物激素,主要参与植物细胞的分裂和组织器官的生长发育。
应用:细胞分裂素主要用于组织培养和无性繁殖中,可以诱导细胞分裂和再生植株,实现杂交种驯化和新品种选育。
细胞分裂素还可以提高作物的光合效率、促进叶片扩大和增加叶绿素含量,提高光合产物的合成能力。
4. 脱落酸脱落酸是一种果酸类似物,是植物体内存在最多的植物激素之一。
脱落酸参与植物细胞的伸长和分化,调节植物的生长节律和开花等生理过程。
应用:脱落酸主要用于果树产业中的脱果和破休处理。
在控制果实坚实度和调控树势方面,脱落酸具有重要作用。
此外,脱落酸还可以用于调节蔬菜的发芽期,推迟生长和提高产量。
5. 乙烯乙烯是一种气体植物激素,在植物的果实成熟、开花和脱落等生理过程中发挥重要作用。
乙烯能够促进植物的细胞伸长和分化,调节植物的生长和发育过程。
应用:乙烯广泛应用于农业和园艺生产中,可以调控果实的成熟和变色,抑制果实过早脱落。
高二生物植物生长素知识点植物生长素是植物体内的一类激素物质,它对于植物的生长发育起着重要的调节作用。
植物生长素主要分为五类,包括赤霉素、生长酮、硫酸酮和吲哚乙酸等。
它们在植物体内的浓度和比例的不同,会引发不同的生物学效应。
本文将对植物生长素的种类、功能以及应用进行详细介绍。
一、赤霉素赤霉素是一种最早被发现的生长素,它主要起到促进植物茎、叶的伸长和细胞分裂的作用。
赤霉素还能促进植物的开花、果实的发育以及促进根系的生长。
同时,赤霉素还能抑制侧芽的生长,使植物的生长趋向单一。
赤霉素是一种农业生产中常用的植物生长调节剂,可以用来提高农作物的产量和质量。
二、生长酮生长酮是一类抑制植物茎、叶的伸长和促进根系生长的植物生长素。
生长酮对侧芽的生长起到抑制作用,使植物的生长趋向分枝状。
同时,生长酮还能抑制植物的开花和果实的发育。
在农业生产中,生长酮可以用来控制果树的生长、增加根系的发育,从而提高果树的产量和品质。
三、硫酸酮硫酸酮是一类促进根系和侧芽生长的植物生长素。
它能促进根系的分化和生长,增加根系的吸收面积和吸收能力,提高植物对养分的利用效率。
同时,硫酸酮还能促进侧芽的生长和发育,增加植物的分枝。
在植物生产中,硫酸酮可以用来增加苗木的根系发育,提高移栽成活率。
四、吲哚乙酸吲哚乙酸是一类促进植物茎、叶的伸长和细胞分裂的植物生长素。
它对于植物的生长发育起到重要的调节作用。
吲哚乙酸能促进植物的开花和果实的发育,同时还能促进根系的生长。
在农业生产中,吲哚乙酸可以用来增加果实的大小和产量,提高农作物的产量。
五、其他生长素除了以上四类主要生长素外,还有其他一些次要的生长素,如脱落酸、赤霉素酸等。
这些生长素在植物的生长发育过程中也起到一定的调节作用。
总结:植物生长素对植物的生长发育起到重要的调节作用。
赤霉素、生长酮、硫酸酮和吲哚乙酸是植物体内的四类主要生长素,它们在植物的各个部位发挥着不同的生物学效应。
合理利用植物生长素,可以调控植物的生长发育,提高农作物的产量和品质。
【生长素】
名称(缩写)结构略:
●吲哚-3-乙酸(IAA)
●吲哚-3-丁酸(IBA)
●4-氯-3-吲哚乙酸(4-Cl-IAA)
●苯乙酸(PAA)
存在形式:
1.自由生长素:具有活性
2.束缚生长素:没有活性
注:自由生长素和舒束缚生长素可以相互转换.
分布:
1.总体:生长旺盛器官多,衰老器官少.
2.细胞:约有1/3在叶绿体内,余下在细胞质基质.
运输:
1.通过韧皮部运输:运输方向决定于有机物浓度差.
2.仅限于胚芽鞘、幼茎、幼根细胞间的单方向极性运输:只能从植物体形态学上端向下端运输.
合成:
部位:
●主要部位:叶原基、嫩叶和发育中的种子.
●少数部位:成熟叶片和根尖.
途径:依赖和不依赖色氨酸的合成途径,下面是依赖色氨酸的途径.
1.吲哚乙酰胺途径
2.吲哚乙腈途径
3.吲哚丙酮酸途径:
4.色胺途径
生理作用和应用:
1.促进作用:
促进细胞分裂,维管束分化,茎伸长,叶片扩大,顶端优势,种子发芽,侧根和不定根形成,根瘤形成,片上性生长,形成层活性,光合产物分配,雌花增加,单性结实,子房壁生长,乙烯产生,叶片脱落,伤口愈合,种子和果实生长,坐果等.
2.抑制作用
抑制花朵脱落,侧枝生长,块根形成,叶片衰老等.
【赤霉素】
缩写:GA
分类结构略:
C20赤霉素:呈酸性.
C19赤霉素:种类多,活性高.
存在形式:
1.自由赤霉素:易被有机溶剂提取.
2.结合赤霉素:没有活性.
分布与运输:
1.生长旺盛器官多,衰老器官少.
2.果实、种子含量比营养器官多两个数量级.
3.器官或组织有两种以上赤霉素
4.没有极性运输
合成:
部位:
发育着的果实伸长着的茎端和根部
步骤:
在质体中->内质网中->细胞基质
生理作用和应用:
1.促进作用:
促进种子萌发和茎伸长,两性花的雄花形成,单性结实,某些植物开花,花粉发育,细胞分裂,叶片扩大,抽薹,侧枝生长,胚轴弯钩变直,果实生长,以及某些植物坐果.
2.抑制作用
抑制成熟,侧芽休眠,衰老,块茎形成.
【细胞分裂素】
缩写:CTK
存在形式:
1.游离的细胞分裂素:
2.tRNA中细胞分裂素:
●自由细胞分裂素:具有生理活性
●束缚细胞分裂素
分布:主要分布在细胞分裂的部位.
运输:主要从根部合成处通过木质部运到递上部,叶片合成部位也能通过韧皮部向下运输.
合成:
部位:在细胞质体合成但细胞分裂素糖苷位于液泡,细胞内运输还有待阐明.
途径:
1.由tRNA水解产生
2.从头合成:主要途径
生理作用和应用:
1.促进作用:
促进细胞分裂,细胞膨大,地上部分分化,侧芽生长,叶片扩大,叶绿体发育,养分移动,气孔张开,偏上性生长,伤口愈合,种子发芽,形成层活动,根瘤形成,果实生长,某些植物坐果.
2.抑制作用
抑制不定根和侧根形成,延缓叶片衰老.
【乙烯】
存在形式:在体内以SAM的形式溶于水,经催化变成ACC运输,在有氧条件下经ACC氧化酶形成乙烯气体.
分布:成熟组织少,分生组织,种子萌发,花叶脱落衰老和果实成熟时产生的多.
合成部位:细胞的液泡膜的内表面.
生理作用和应用:
1.促进作用:
解除休眠,地上部和跟的生长分化,不定根形成,叶片和果实脱落,某些植物花诱导形成,两性花中雌花形成,开花,花和果实衰老,呼吸越变型果实成熟等.
2.抑制作用
抑制某些植物开花,生长素的转运,茎和根的伸长生长.
【脱落酸】
缩写:ABA、S-ABA、R-ABA
存在形式:
天然脱落酸:右旋,S-ABA或(+)-ABA表示.
左旋:R-ABA或(-)-ABA表示.和S-ABA一样具有活性,但不能促进气孔关闭.
运输:
1.脱落酸不存在极性运输.
2.可在木质部和韧皮部运输,大多在韧皮部.
合成:
部位:根茎叶果实种子的细胞质基
生理作用和应用:
1.促进作用:
促进叶、花、果脱落,气孔关闭,侧芽生长,块茎休眠,叶片衰老,光合产物运向发育着的种子,种子成熟,果实产生乙烯,果实成熟.
2.抑制作用
抑制种子萌发,(生长素)IAA运输,植物生长.。