当前位置:文档之家› 2020年初升高数学衔接专题13 初高中衔接综合测试A卷(解析版)

2020年初升高数学衔接专题13 初高中衔接综合测试A卷(解析版)

2020年初升高数学衔接专题13 初高中衔接综合测试A卷(解析版)
2020年初升高数学衔接专题13 初高中衔接综合测试A卷(解析版)

初高中天衣无缝衔接教程(2020版)

专题13初高中衔接综合测试A 卷

1.某农业大镇2018年葡萄总产量为1.2万吨,预计2020年葡萄总产量达到1.6万吨,求葡萄总产量的年平均增长率,设葡萄总产量的年平均增长率为x ,则可列方程为( ) A .2 1. 2(1) 1.6x += B .2 1. 6(1) 1.2x -= C . 1. 2(12) 1.6x += D .(

)2

1.21 1.6x

+=

【答案】A 【解析】

解:由题意知,葡萄总产量的年平均增长率为x ,

根据“2018年葡萄总产量为1.2万吨,预计2020年葡萄总产量达到1.6万吨”可得:2

1.2(1) 1.6x +=. 故选:A .

2.下列四个选项中,可以表示21

11

x x x -++的计算结果的选项是( )

A .2

1x - B .1x -

C .()2

1x -

D .(

)2

11

x x -+

【答案】B 【解析】

解:2211(1)(1)

11111

x x x x x x x x x -+--===-++++

故选:B.

3.若分式242

x x --的值为0,则x 的值为( )

A .±2

B .2

C .﹣2

D .4

【答案】C 【解析】

解:由题意可得:240x -=且20x -≠, 解得:2x =- 故选C.

4.如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD 沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()

A.5 B.7 C.8 D.13 2

【答案】B

【解析】

作CH⊥AB于H,如图.

∵菱形ABCD的边AB=8,∠B=60°,∴△ABC为等边三角形,

∴CH=

3

2

AB=43,AH=BH=4.

∵PB=3,∴HP=1.

在Rt△CHP中,CP=22

(43)1

=7.

∵梯形APQD沿直线PQ折叠,A的对应点A′,∴点A′在以P点为圆心,P A为半径的弧上,

∴当点A′在PC上时,CA′的值最小,

∴∠APQ=∠CPQ,而CD∥AB,

∴∠APQ=∠CQP,

∴∠CQP=∠CPQ,

∴CQ=CP=7.

故选B.

本题考查了菱形的性质.解答本题的关键是确定A ′在PC 上时CA ′的长度最小.

5.如图,在ABC ?中,D ,E 分别是BC ,AC 的中点,AD 与BE 交于点G .若6BG =,则EG =( )

A .4.5

B .4

C .3.5

D .3

【答案】D 【解析】

解:∵D ,E 分别是BC ,AC 的中点, ∴点G 是△ABC 的重心, ∴26BG EG ==, ∴3EG =, 故选D .

6.如图,在ABCD 中,30,,2,DBC CD BD CD AC BD ∠=⊥=、交于点O ,则AC 的长是( )

A .4

B .7

C .23

D .5

【答案】B 【解析】

解:∵30,,2,DBC CD BD CD ∠=⊥= ∴BC=2CD=4

∴224223+= ∵ABCD

∴OD=1

2

, AC=2OC

∴=

∴. 故答案为B .

7.△ABC 是直角三角形,则下列选项一定错误的是( ) A .∠A -∠B=∠C B .∠A=60°,∠B=40° C .∠A+∠B=∠C D .∠A :∠B :∠C=1:1:2

【答案】B 【解析】

解:A 、∵∠A ﹣∠B =∠C , ∴∠A =∠B +∠C , ∵∠A +∠B +∠C =180°, ∴2∠A =180°, ∴∠A =90°,

∴△ABC 是直角三角形,故A 选项是正确的; B 、∵∠A =60°,∠B =40°, ∴∠C =180°﹣∠A ﹣∠B =180°﹣60°﹣40° =80°,

∴△ABC 是锐角三角形,故B 选项是错误的; C 、∵∠A +∠B =∠C ,∠A +∠B +∠C =180°, ∴2∠C =180°, ∴∠C =90°,

∴△ABC 是直角三角形,故C 选项是正确的; D 、∵∠A :∠B :∠C =1:1:2, ∴∠A +∠B =∠C , ∵∠A +∠B +∠C =180°, ∴2∠C =180°,

∴∠C=90°,

∴△ABC是直角三角形,故D选项是正确的;

故选:B.

8.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()

A.∠ABD=∠C B.∠ADB=∠ABC C.AB CB

BD CD

=D.

AD AB

AB AC

=

【答案】C

【解析】

∵∠A是公共角,

∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;

当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D 正确,不符合题意要求;

AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,

故选C.

9.如图,在平行四边形ABCD中,E为CD上一点,DE∶EC=2∶3,连接AE、BD,且AE、BD交于点F,则DF∶BF等于()

A.2∶5 B.2∶3 C.3∶5 D.3∶2

【答案】A

【解析】

解:∵四边形ABCD为平行四边形,

∴AB∥CD,且AB=CD.

∵DE ∶EC =2∶3, ∴

DE DC =DE DE EC +=25=DE

BA

. ∵AB ∥CD , ∴DEF BAF △△∽, ∴

DF

BF =DE BA =25

. 故选:A .

10.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( ) A .1a ≥ B .1a >且5a ≠

C .1a ≥且5a ≠

D .5a ≠

【答案】A 【解析】

当a=5时,原方程变形为-4x-1=0,解得x=-1

4

; 当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根, 所以a 的取值范围为a≥1. 故选A .

11.如图,线段 AB 的长为 4,C 为 AB 上一个动点,分别以 AC 、BC 为斜边在 AB 的同侧作两个等腰直角三角形 ACD 和 BCE , 连结 DE , 则 DE 长的最小值是( )

A 2

B .2

C .22

D .4

【答案】B 【解析】

解:设 AC=x ,BC=4﹣x ,

∵△CDA ,△BCE 均为等腰直角三角形, ∴CD=

22x ,CE=2

2

(4﹣x), ∵∠ACD=45°,∠BCE=45°, ∴∠DCE=90°,

∴DE2

=CD2+CE2=()()22

22114482422

x x x x x +-=-+=-+ ∵根据二次函数的最值,

∴当 x 取 2 时 ,DE 取最小值 ,最小值为:2. 故答案为B.

12.如图,抛物线2y ax bx c =++(,,a b c 是常数,0a ≠)与x 轴交于,A B 两点,顶点()P m n ,给出下列结论:①20a c +<;②若122311,,,,,222y y y ??????

-

- ? ? ???????

在抛物线上,则123y y y >>;③关于x 的方程2

0ax bx k ++=有实数解,则k c n >-;④当1

n a

=-

时,ABP ?为等腰直角三角形,其中正确的结论是( )

A .①②

B .①③

C .②③

D .②④

【答案】D 【解析】 解:∵-

2b a <1

2

,a >0, ∴a >-b , ∴2a=a +a >a -b ∵x=-1时,y >0, ∴a-b+c >0,

∴2a+c >a-b+c >0,故①错误; 若13,2y ??-

???,21,2y ??- ???,31

,2

y ?? ???在抛物线上,

由图象法可知,y1>y2>y3;故②正确;

∵抛物线与直线y=t有交点时,方程ax2+bx+c=t有解,t≥n,∴ax2+bx+c-t=0有实数解

要使得ax2+bx+k=0有实数解,则k=c-t≤c-n;故③错误;

设抛物线的对称轴交x轴于H.

2

41

4

ac b

a a

-

=-,

∴b2-4ac=4,

∴x=

2

2

b

a

∴|x1-x2|=2

a

∴AB=2PH,

∵BH=AH,

∴PH=BH=AH,

∴PAB

△是直角三角形,

∵PA=PB,

∴PAB

△是等腰直角三角形,故④正确.

故选D.

13.如图,?OABC的周长为7,∠AOC=60°,以O为原点,OC所在直线为x轴建立直角坐标系,函数

k y

x =

(x>0)的图像经过?OABC的顶点A和BC的中点M,则k的值为()

A .43

B .12

C .3

D .6

【答案】C 【解析】

解:作AD ⊥x 轴于D ,MN ⊥x 轴于N ,

∵四边形OABC 是平行四边形, ∴OA =BC ,AB =OC ,OA ∥BC , ∴∠BCN =∠AOC =60°.

设OA =a ,由?OABC 的周长为7, ∴OC =

7

2

-a , ∵∠AOC =60°,13

,2OD a AD ∴=

=, 13,22A a a ??

∴ ???

∵M 是BC 的中点,BC =OA =a ,∴CM =1

2

a , 又∠MCN =60°,

13,44

CN a MN a ∴=

=, ∴ON =OC +CN =

7173

2424

a a a -+=-,

73,24

3M a a ??∴- ???,

∵点A ,M 都在反比例函数k

y x

=

的图象上, 3137322244

a a a a ??∴?=-? ???,解得a =2, (1,3)A ∴,

133k ∴=?=.

故选:C .

14.如图,等边三角形ABC 边长是定值,点O 是它的外心,过点O 任意作一条直线分别交AB ,BC 于点D ,E ,将△BDE 沿直线DE 折叠,得到△B′DE ,若B′D ,B′E 分别交AC 于点F ,G ,连接OF ,OG ,则下列判断错误的是( )

A .△ADF ≌△CGE

B .△B′FG 的周长是一个定值

C .四边形FOEC 的面积是一个定值

D .四边形OGB'F 的面积是一个定值 【答案】D 【解析】

A 、连接OA 、OC ,

∵点O 是等边三角形ABC 的外心,

∴AO平分∠BAC,

∴点O到AB、AC的距离相等,由折叠得:DO平分∠BDB',

∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,

∠DFO=∠OFG=1

2

(∠FAD+∠ADF),

由折叠得:∠BDE=∠ODF=1

2

(∠DAF+∠AFD),

∴∠OFD+∠ODF=1

2

(∠FAD+∠ADF+∠DAF+∠AFD)=120°,

∴∠DOF=60°,

同理可得∠EOG=60°,

∴∠FOG=60°=∠DOF=∠EOG,

∴△DOF≌△GOF≌△GOE,

∴OD=OG,OE=OF,

∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,

∴△OAD≌△OCG,△OAF≌△OCE,

∴AD=CG,AF=CE,

∴△ADF≌△CGE,

故选项A正确;

B、∵△DOF≌△GOF≌△GOE,

∴DF=GF=GE,

∴△ADF≌△B'GF≌△CGE,

∴B'G=AD,

∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;

C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=1

3

S△ABC(定值),

故选项C正确;

D、S四边形OGB'F=S△OFG+S△B'GF=S△OFD+△ADF=S四边形OFAD=S△OAD+S△OAF=S△OCG+S△OAF=S△OAC-S△OFG,

过O 作OH ⊥AC 于H , ∴S △OFG =

1

2

?FG?OH , 由于OH 是定值,FG 变化,故△OFG 的面积变化,从而四边形OGB'F 的面积也变化, 故选项D 不一定正确; 故选D .

15.已知抛物线2231y ax ax a =-++()0a ≠图象上有两点()11,A x y 、()22,B x y ,当121x x <<-时,有12y y <;当112x -≤≤时,1y 最小值是6.则a 的值为( ) A .1- B .5-

C .1或5-

D .1-或5-

【答案】B 【解析】

解:∵2

2

31y ax ax a =-++

∴2

239124y a x a a ??=--++ ??

?,即该抛物线的对称轴为x=32 ∵121x x <<-时,12y y < ∴a <0

∵x=

3

2在112x -≤≤范围内, ∴当x=3

2

时有最大值,x=-1时有最小值

∴()()2

21311=6---++a a a

整理得2450a a +-=,解得a=1(舍去)或a=-5 故答案为B .

16.若α、β为方程2x 2-5x-1=0的两个实数根,则2235++ααββ的值为( ) A .-13 B .12

C .14

D .15

【答案】B 【解析】

根据一元二次方程的根与系数的关系,可知2α2﹣5α﹣1=0,

α+β=-52

b a =,α·β=1

2c a =-,因此可得2α2=5α+1,

代入2α2+3αβ+5β=5α+1+3αβ+5β=5(α+β)+3αβ+1=5×52

+3×(-12)+1=12.

故选B.

17.写出一个满足735a <<的整数a 的值为________.

【答案】3、4或5 【解析】

∵2<7<3,5<35<6, ∴2

∴整数a 的值为3、4或5, 故答案为:3、4或5.

18.在矩形ABCD 中,8AB =,6BC =.点O 为对角线AC 上一点(不与A 重合),⊙O 是以点O 为圆心,

AO 为半径的圆.当⊙O 与矩形各边的交点个数为5个时,半径OA 的范围是________.

【答案】

1540

49

OA <<

【解析】 如图所示,

⊙2O 与矩形有4个交点,当2O 再往点C 运动一点就会与矩形有5个交点, ⊙3O 与矩形有6个交点,当3O 往点A 运动一点就与矩形有5个交点, 所以,⊙O 在⊙2O 与⊙3O 之间时与矩形有5个交点,

过点2O 作2O E CD ⊥,过点3O 作3O F BC ⊥, 设⊙O 的半径为r ,

∵在Rt △ABC 中,8AB =,6BC =,

∴AC=10 ∵2O E AD ∥ ∴22O C O E

AC AD

=, ∴

10106

r r

-=, ∴15

4

r =

, ∵3O F AB ∥,

33O C O F

AC AB =

10108r r

-=, 409r =,

1540

49

OA <<, 故答案为:154049

OA <<. 19.如图,一艘船由A 港沿北偏东65?方向航行30km 至B 港,然后再沿北偏西40?方向航行至C 港,C 港在A 港北偏东20?方向,则A ,C 两港之间的距离为______km .

【答案】15265【解析】

解:根据题意得,652045CAB ∠=?-?=?,402060ACB ∠=?+?=?,30AB =, 过B 作BE AC ⊥于E ,

90AEB CEB ∴∠=∠=?,

在Rt ABE ?中,

45ABE ∠=?,30AB =,

2

152AE BE AB ∴==

=

在Rt CBE ?中,60ACB ∠=?,

3

56CE BE ∴=

=, 15256AC AE CE ∴=+=+,

A ∴,C 两港之间的距离为(15256)km +,

故答案为:15265+.

20.一透明的敞口正方体容器装有一些液体,棱AB 始终在水平桌面上,容器底部的倾斜角为α,(CBE α∠=,如图1所示),此时液面刚好过棱CD ,并与棱'BB 交于点Q ,此时液体的形状为直三棱柱,三视图及尺寸如图2所示,当正方体平放(正方形ABCD 在桌面上)时,液体的深度是__________dm .

【答案】1.5 【解析】

解:∵由图知:CQ ∥BE ,BQ=4,CQ=5, 根据勾股定理得:22543BQ =-=(dm ), 液体的体积为:

1

344=242

???(dm 3), 液体深度为:24÷(4×4)=1.5(dm ), 故答案为:1.5

21.已知ABC 的周长为1,连接其三边中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形,以此类推,则第2019个三角形周长为______.

【答案】2018

12

【解析】

由题意可得,

第1个三角形的周长是1,

第2个三角形的周长是

12

, 第3个三角形的周长是2111

222?=,

第4个三角形的周长是23111

222

?=,

则第2019个三角形的周长是20181

2

故答案为:20181

2

22.若关于x 的方程(x ﹣4)(x 2﹣6x +m )=0的三个根恰好可以组成某直角三角形的三边长,则m 的值为_____. 【答案】65

9

【解析】

设某直角三角形的三边长分别为a 、b 、c , 依题意可得

x ﹣4=0或x 2﹣6x +m =0, ∴x =4,x 2﹣6x +m =0, 设x 2﹣6x +m =0的两根为a 、b , ∴(﹣6)2﹣4m >0,m <9,

根据根与系数关系,得a +b =6,ab =m ,则c =4,

①c为斜边时,a2+b2=c2,(a+b)2﹣2ab=c2∴62﹣2m=42,m=10(不符合题意,舍去);

②a为斜边时,c2+b2=a2,

42+(6﹣a)2=a2,

a=13

3

,b=6﹣a=

5

3

∴m=ab=13

3

5

3

=

65

9

故答案为65

9

23.如图,一段抛物线:y=-x(x-2)(0≤x≤2)记为C1 ,它与x轴交于两点O,A;将C1绕点A旋转180°得到C2,交x轴于A1;将C2绕点A1旋转180°得到C3,交x轴于点A2......如此进行下去,直至得到C2018,若点P(4035,m)在第2018段抛物线上,则m的值为________.

【答案】-1

【解析】

由抛物线C1:y=-x(x-2),

令y=0,∴-x(x-2)=0,解得

∴与x轴的交点为O(0,0),A(2,0).

抛物线C2的开口向上,且与x轴的交点为∴A(2,0)和A1(4,0),

则抛物线C2:y= (x-2)(x-4);

抛物线C3的开口向下,且与x轴的交点为∴A1(4,0)和A2(6,0),

则抛物线C3:y= -(x-4)(x-6);

抛物线C4的开口向上,且与x轴的交点为∴A2(6,0)和A3(8,0),

则抛物线C4:y=(x-6)(x-8);

同理:

抛物线C2018的开口向上,且与x轴的交点为∴A2016(4034,0)和A2017(4036,0),

则抛物线C2018:y=(x-4034)(x-4036);

当x=4035时,y= 1×(-1)-1. 故答案为:-1.

24.如图,已知二次函数4

(2)(4)9

y x x =-

+-的图象与x 轴交于A 、B (点B 在点A 的右侧)两点,顶点为C ,点P 是y 轴上一点,且使得PB PC -最大,则PB PC -的最大值为_________.

【答案】5 【解析】

解:由题意可知:A 、B 、C 的坐标分别为(-2,0)、(4,0)、(1,4) 设P 点坐标为(0,p )

如图,当P 、C 、B 不在同一条直线上,根据三角形的三边关系有:PC-PB <BC, ∴当P 、C 、B 在同一条直线上,PC-PB=BC,即此时PC-PB 有最大值BC ∴BC=

()

2

241(04)5-+-=

故答案为5.

25.如图,AB 为O 的直径,BC ,AD 为O 的切线,直线OC 交DA 延长线于E ,DC DE =.

(1)求证:CD 是O 的切线;

(2)若60E ∠=?,1AE =,求阴影部分的周长. 【答案】(1)证明见解析;(2)阴影部分的周长是23

6π+ 【解析】

(1)证明:如图,过点O 作OH ⊥CD ,垂足为H ,连接OD ,

∵BC ,AD 为⊙O 的切线, ∴∠CBO =∠OAE =90°, 又OB =OA ,∠BOC =∠EOA , ∴BOC ≌AOE (ASA ), ∴OC =OE , 又DC =DE ,

∴DO 平分∠ADE ,OD ⊥CE , ∴OH =OA , ∴OH =OB , 又∵OH ⊥CD , ∴CD 是⊙O 的切线;

(2)解:∵在Rt AEO 中,∠E =60°, ∴tan 3OA

E AE

∠==∵AE =1, ∴3OA =

∵OD ⊥CE ,

∴∠DOA =90°-∠EOA =∠E =60°,

∠DOH =90°-∠COH =90°-∠COB =90°-∠AOE =∠E =60°,

tan60333 DH DA OA?

==?=?=,

∴弧AH的长是120323

π

π

?

=,

∴阴影部分的周长是

23

6

3

π+.

26.如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.

(1)求证:BD⊥CB;

(2)求四边形ABCD 的面积;

(3)如图2,以A 为坐标原点,以AB、AD所在直线为x轴、y轴建立直角坐标系,

点P在y轴上,若S△PBD=1

4

S四边形ABCD,求P的坐标.

【答案】(1)证明见解析;(2)36m2;(3)P 的坐标为(0,-2)或(0,10).【解析】

(1)证明:连接BD.

∵AD=4m,AB=3m,∠BAD=90°,

∴BD=5m.

又∵BC=12m,CD=13m,

∴BD2+BC2=CD2.

∴BD⊥CB;

(2)四边形ABCD 的面积=△ABD 的面积+△BCD 的面积

=1

2

×3×4+

1

2

×12×5

=6+30

=36(m2).

高中数学解答题通用答题套路

高中数学解答题通用答题套路 1、三角变换与三角函数的性质问题 ①解题路线图 不同角化同角。 降幂扩角。 化f(x)=Asin(ωx+φ)+h。 结合性质求解。 ②构建答题模板 化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。 整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。 求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。 反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。 2、解三角函数问题 ①解题路线图 化简变形;用余弦定理转化为边的关系;变形证明。 用余弦定理表示角;用基本不等式求范围;确定角的取值范围。 ②构建答题模板 定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。 定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。 求结果。 再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。 3、数列的通项、求和问题

①解题路线图 先求某一项,或者找到数列的关系式。 求通项公式。 求数列和通式。 ②构建答题模板 找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。 求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。 定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。 写步骤:规范写出求和步骤。 再反思:反思回顾,查看关键点、易错点及解题规范。 4、利用空间向量求角问题 ①解题路线图 建立坐标系,并用坐标来表示向量。 空间向量的坐标运算。 用向量工具求空间的角和距离。 ②构建答题模板 找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。 写坐标:建立空间直角坐标系,写出特征点坐标。 求向量:求直线的方向向量或平面的法向量。 求夹角:计算向量的夹角。 得结论:得到所求两个平面所成的角或直线和平面所成的角。 5、圆锥曲线中的范围问题 ①解题路线图

初高中数学衔接的必要性

初高中数学教材衔接的必要性与措施 近几年,随着我国教育体制改革步代加大,素质教育理念不断深入人心,课改新教材在我省大多数中小学已经实施。仙桃市初中是率先使用课改新教材的县市之一,经过两届学生实验,结果表明:使用课改新教材的学生学习的自主性,思维的广阔性,师生的互动性明显增强,但思维的严谨性,推理的逻辑性显得有些不足。加上我市高中教材未与课改新教材接轨,教学内容上有明显“脱节”。学生从初中进入高中出现明显“不适应”现象。因此解决初高中数学教材衔接问题势在必行。 一、初高中数学知识“脱节”点 1.立方和与差的公式初中已删去不讲,而高中的运算还在用。 2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。 3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。 4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。 5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。 6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。 7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。方程、不等式、函数的综合考查常成为高考综合题。 8.几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。 另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。 二、“脱节”知识点掌握情况调查 高一新生入学不久,在已进行“乘法公式”与“因式分解”讲授后,我们对学生初高中“脱节”知识点作了全面调查,统计情况如下: 1.代数部分:

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

高考数学解答题解题技巧

高考数学解答题解题技巧 大题是高考数学科目的重要组成部分,也是比分占得很重的一部分,考生需要掌握解题技巧,才能正确答题,下面学习啦小编给大家带来高考数学大题的最佳解题技巧,希望对你有帮助。 一、三角函数题 三角函数题是高考数学试卷的第一道解答题,试题难度一般不大,但其战略意义重大,所以稳拿该题12分对学生至关重要。主要有以下几类: 1.运用同角三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。 2.运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。 3.解三角形问题,判断三角形形状,正余弦定理的应用。 注意辅助角公式、诱导公式的正确性(转化成同名同角三角函数时,套用辅助角公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输! 二、数列题 1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

2、证明不等式时,有时构造函数,利用函数单调性很简单,所以要有构造函数的意识。构造新数列思想,如“累加、累乘、错位相减、倒序相加、裂项求和”等方法的应用与创新。 3、数列自身内部问题的综合考查,如前n项和与通项公式的关系问题、递推数列问题的考查一直是高考的热点,求数列的通项与求数列的和是最常见的题目,数列求和与极限等综合性探索性问题也考查较多。 全国卷的数列大题上手容易,但这不意味着容易拿满分,因为考的很广,像复习时没放在心上的冷门求和方法也会考查。因此全国卷考生复习时不能偷懒耍滑,老师讲解的各种数列解题方法都要掌握,深入复习好累加累乘法、待定系数法、错位相减法等方法。例如总能得到命题人青睐的错位相减法,因难度较大抱着侥幸心理的学生就会放低了对自己的学习要求。 三、立体几何题

浅谈初高中数学教学衔接的问题与策略

淺談初高中數學教學銜接的問題與策略 遂寧市攔江中學陳榮華 [摘要]:新課標下,高中數學與初中數學相比,高中數學在教材內容、教學要求、教學方式、思維層次以及學習方法上都發生了許多變化,如何銜接好初高中數學教學,是提高高中數學教學質量一個十分重要的問題。這些都要求高中數學教師,要認真思考和研究兩者彼此潛在的聯系和區別,做好新舊知識的串連和溝通,在教學中合理處理好二者的銜接。 [关键词]:高中數學;初中數學;銜接 每一個升入高一的同學都滿懷著美好的憧憬,都有強烈的愿望把高中階段的所有課程學好。但經過一段時間,他們普遍感覺高中數學并非想象中那么簡單易學。新課改后學生在學習習慣、思維方式、性格特點等方面都有了較大改變。他們具有強烈的表現欲,敢于發表不同的觀點,動手能力強,但是運算能力卻較弱,書寫不規范,有很強的隨意性。初中升入高中后將面臨很多變化,若高一學生不能很快進入高中學習狀態,隨著學習內容的增多,學生的數學能力也會出現 GAGGAGAGGAFFFFAFAF

較大的分化。相當部分學生進入數學學習的“困難期”,數 學成績出現嚴重的滑坡現象。漸漸地他們認為數學神秘莫測,從而產生畏懼感,動搖了學好數學的信心,甚至失去了學習數學的興趣。造成這種現象的原因是多方面的,但最主要的根源還在于初、高中數學教學上的銜接問題。下面就這個問題進行分析,探討其原因,尋找解決對策。 一.新課改后銜接問題分析 1. 新課改后初高中數學知識的銜接問題 新課標在義務教育階段刪減了很多內容,而這些內容在高中階段卻有著重要作用。例如乘法公式只有平方差、完全平方公式,沒有立方和與立方差公式。多項式相乘僅指一次式相乘。因式分解,只要求提公因式、公式法,導致學生數式化簡的能力不夠。從而使教師在高中數學的函數、數列、不等式、平面解析幾何初步的教學中會感到很吃力,學生也會感到困難重重。在義務教育階段,新課標對一元一(二)次方程中含字母系數的方程、可化為一元二次方程的分式方程、無理方程、二元二次方程組、一元二次方程根與系數的 關系不作要求,導致學生解方程能力不足,大大影響學生在 GAGGAGAGGAFFFFAFAF

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

高一数学试题及答案解析

高一数学 试卷 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟. 第Ⅰ卷(选择题,满分 50分) 一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项 是符合题目要求的,把正确的答案填在指定位置上.) 1. 若角αβ、满足9090αβ-<< B .cos2cos αα< C .tan 2tan αα> D .cot 2cot αα< 7. ABC ?中,若cot cot 1A B >,则ABC ?一定是( ) A .钝角三角形 B . 直角三角形 C .锐角三角形 D .以上均有可能 8. 发电厂发出的电是三相交流电,它的三根导线上的电流分别是关于时间t 的函数: 2sin sin()sin()3 A B C I I t I I t I I t πωωω?==+ =+且 0,02A B C I I I ?π++=≤<, 则? =( ) A .3π B .23π C .43π D .2 π 9. 当(0,)x π∈时,函数21cos 23sin ()sin x x f x x ++=的最小值为( )

浅谈如何做好初高中数学衔接教学

浅谈如何做好初高中数学衔接教学 发表时间:2015-02-02T15:06:13.260Z 来源:《教育学文摘》2014年12月总第142期供稿作者:邓瑞云[导读] 初中数学与高中数学相比较,在教材内容、教学要求、教学方式、思维层次以及学习方法上差异性显著。 邓瑞云山东省昌邑市围子初中261300 初中数学与高中数学相比较,在教材内容、教学要求、教学方式、思维层次以及学习方法上差异性显著。如何做好教学衔接工作,是提高数学科目教学质量的重要保证。初高中衔接一直以来是初中教师和高中教师最头痛的问题,初中教学和高中教学出现了教学思想和教学内容的真空状态。作为初中数学教师,我们应该注重学生的延续性,加强教学思想方法的探讨。 一、初高中数学知识中存在的“真空” 1.立方和与差的公式初中已删去不讲,而高中要用。 2.因式分解一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。 3.二次根式中对分子、分母有理化不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。 4.初中教材对二次函数的要求较低,学生处于了解水平,但二次函数却是贯穿高中的重要内容。 5.二次函数、二次不等式、二次方程的联系、根与系数的关系(韦达定理)在初中不作要求,仅限于简单的常规运算和简单的应用题型,而在高中三者之间的相互转化被视为重要内容,但高中却未安排专门的课程讲解。 6.图象的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图形的上、下、左、右平移,两个函数关于原点、直线、轴的对称问题必须掌握。 7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容被视为重难点,三者的综合考查常成为高考的综合题。 8.几何部分的概念(如重心、垂心等)和定理(平行线分线段成比例、射影定理、相交弦定理),初中生大都没有学习,而高中都要涉及。 二、初高中数学教法与学法的形态对比 1.教材的变化。首先,初中数学教材内容通俗具体,多为常量,题型少而简单;而高中数学内容抽象,多研究变量、字母,不仅注重计算,而且还注重理论分析,这与初中相比增加了难度。其次,由于近几年教材内容的调整,虽然初高中教材都降低了难度,但相比之下,初中降低的幅度大,而高中由于受高考的限制,教师都不敢降低难度,造成了高中数学实际难度没有降低。因此,从一定意义上讲,调整后的教材不仅没有缩小初高中教材内容的难度差距,反而加大了。 2.学法的变化。在初中,教师讲得细,类型归纳得全,练得熟,考试时,学生只要记准概念、公式及教师所讲例题类型,一般均可对号入座取得好成绩。因此,学生习惯于围着教师转,不注重独立思考和对规律的归纳总结。到了高中,由于内容多时间少,教师不可能把知识应用形式和题型讲全讲细,只能选讲一些具有典型性的题目,以落实“三基”培养能力。因此,高中数学学习要求学生勤于思考、善于归纳总结规律、掌握数学思想方法,做到举一反三,触类旁通。然而,刚入学的高一新生往往继续沿用初中学法,致使学习困难较多,完成当天作业都很困难,更没有预习、复习及总结等自我消化、自我调整的时间。这显然不利于良好学法的形成和学习质量的提高。 3.教法的变化。初中教材大都以模型为主,每一个知识点都配以一定的例题,教师仔细进行讲解,然后结合教材和教辅资料上的练习题反复训练。教师在教法上通常是目标明确、直接,对知识点的探索和发散较少,也就是我们通常所说的只教教材。到了高中后,内容加深,对知识点的考查不再是以书上的例题类型为主,而是围绕知识点进行发散,这就要求学生对每一个知识点都要有透彻的理解。因此,高中教师在进行教学时以对知识点的理解为主,然后深层次地进行挖掘。 三、发现问题,解决问题正是由于初中和高中在教法上的差异,初中数学和高中数学在教法的思想统一上越走越远,问题越来越尖锐。当然,这和现行中考、高考的体制以及这种体制下各学校对成绩的考核体制是分不开的,这也造成初中和高中衔接的距离越来越大,学生的适应度逐渐降低。我们应该立足于学生的延续性发展。初中数学教师作为学生数学学习的引领人,除了作好基础性教育之外,更要做好延续性教育。我们初中数学教师要尽量抛开考核机制给我们带来的影响,力争打破这种传统。 四、解决办法 1.初中教师要多研究初中和高中教材,找到初高中在教材上的“脱节”处和联系的地方。 2.初中教师在课余时间要多研究高中教师的教法,溶入初中数学的教法,形成一套完善的初高中衔接教法的特色。(1)互动交流。学生完成初一的基础教育,对初中数学教学已完全适应后,进入初二,要帮助学生树立正确的学习目标和人生观,可在教学过程中适当地让学生了解高中数学的特点,明确高中数学的学习方法,端正学习态度。(2)情感教学与特色教学。初中数学教学中要多创造情境,在情境中激发学生参与探讨,发表自己的观点,训练学生的理解能力。应有适应学生现有学习方法的课堂教学,以后再逐步调整,平稳完成初高中过渡。要针对不同的学习内容,选择不同的授课方式,比如多让学生探究、合作、模仿、体验等,使学生的学习变得丰富而有个性。(3)调动学习积极性。(4)加强学法指导。

高中数学椭圆常考题目解题方法及练习2018高三专题复习-解析几何专题

高中数学椭圆常考题目解题方法及练习 2018高三专题复习-解析几何专题(2) 第一部分:复习运用的知识 (一)椭圆几何性质 椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()0122 22>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,122 22≤≤b y a x ,即 b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3. 顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴: 21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5. 离心率 (1)椭圆焦距与长轴的比a c e = ,()10,0<<∴>>e c a (2)22F OB Rt ?,2 22 22 22OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率. (3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越

初高中数学衔接研究报告

初高中数学衔接研究报告

————————————————————————————————作者: ————————————————————————————————日期: ?

初高中数学衔接教学的实验与研究研究报告 平舆县第一高级中学“初高中数学衔接教学的实验与研究”课题组 执笔人:韩雨濛 摘要: 国家教委在八十年代对初中数学教学要求和内容的调整,较大地降低了有关知识的要求,造成了初、高中数学教学的较为严重的脱节。从高一数学老师的现状看:各校大部分是教学不足5年的青年教师,有学历,有热情,但对高一数学教材不熟悉,对初中数学教材知之更少,他们急需要有一个学习、了解初高中数学数学教材的衔接与初高中教学的差异,以便于更好的组织教学,使学生更快适应高中、 一、问题的提出 1.学生升入高中学习之后,无论选择理科或者文科的学习,数学课程都是必须继续学习的课程之一。初高中数学教学内容上有很强的延续性,初中数学是高中数学学习的基础,高中数学是建立在初中数学基础上的延续与发展,在教学内容上、思想方法上,均密切相关。因此,从教学内容、数学思想方法上,理顺初高中数学之间的关系,进而在高中刚开始阶段强化初高中衔接点的教学,为学生进一步深造打下基础,是高中数学教学必须研究的重要课题。 2.初高中数学教学衔接研究,主要从初高中数学教学内容、基本的数学思想方法、新课程标准对数学教学的要求,试图找出初高中数学教学衔接的相关关

键点,从而为高中数学教学提出有用的建议,让高一学生尽快适应高中数学,从而进行有效的学习。 3.近年来初高中数学教学衔接作为“初高中教学衔接”这一宏观课题,在很多地方被人们提及,一些教育科研部门也作过尝试,试图寻找其间的规律与共性,但大多是从教学内容上进行简单地分类研究,也没有作为专项课题进行研究。因为这一课题将直接影响学生高中数学学习的效果,因此有进行全面研究的重要价值。 二、选题目的与意义 1.找出初高中数学教学衔接的相关关键点,从而为高中数学教学提出有用的建议,为学生适应高中数学学习进行有效地定位。 2.从教学内容、数学思想方法上,理顺初高中数学之间的关系,进而在高中初期阶段强化初高中衔接点的教学,为学生进一步深造打下基础。 3.为学生有效适应高中阶段的数学学习打好基础,提高教师对新课程理念以及学科课程目标的全面、深刻地理解; 三、课题研究目标 1、通过研究,促使教师从研究的视角来审视初高中数学衔接问题,在课堂教学中更多地关注学生的这一学习主体。反思自身的教学思想和教学行为。寻找初高中数学教材的知识衔接,结合旧知识,寻找新知识的结合点和突破点,充分发挥数学本身所具有的激发、推动学生学习的动力。

(完整)高中数学解析几何解题方法

高考专题:解析几何常规题型及方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 分析:设P x y 111(,),P x y 222(,)代入方程得x y 1 2 1221-=,x y 22 22 2 1-=。 两式相减得 ()()()()x x x x y y y y 121212121 2 0+-- +-=。 又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x y y y x x - --=·。 又k y y x x y x = --=--12121 2 , 代入得2402 2 x y x y --+=。 当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。 因此所求轨迹方程是2402 2 x y x y --+= 说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。 (1)求证离心率β αβαsin sin ) sin(++= e ; (2)求|||PF PF 13 23 +的最值。

高中数学竞赛训练题解答题

高中数学竞赛训练题—解答题 1.b a ,是两个不相等的正数,且满足2 2 3 3 b a b a -=-,求所有可能的整数 c ,使得ab c 9=. 2.已知不等式 24 131...312111a n n n n > ++++++++对一切正整数a 均成立,求正整数a 的最大值,并证明你的结论。 3.设{}n a 为14a =的单调递增数列,且满足22 111168()2n n n n n n a a a a a a +++++=++,求{n a } 的通项公式。 4.(1)设,0,0>>y x 求证: ;4 32y x y x x -≥+ (2)设,0,0,0>>>z y x 求证: .2 333zx yz xy x z z z y y y x x ++≥+++++ 5. 设数列ΛΛΛ,1 ,,12, 1,,13,22,31,12,21,11k k k -, 问:(1)这个数列第2010项的值是多少; (2)在这个数列中,第2010个值为1的项的序号是多少. 6. 设有红、黑、白三种颜色的球各10个。现将它们全部放入甲、乙两个袋子中,要求每个袋子里三种颜色球都有,且甲乙两个袋子中三种颜色球数之积相等。问共有多少种放法。 7.已知数列{}n a 满足1a a =(0,1a a ≠≠且),前n 项和为n S ,且(1)1n n a S a a = --, 记lg ||n n n b a a =(n *∈N ),当a =时,问是否存在正整数m ,使得对于任意正整数n ,都有m n b b ≥?如果存在,求出m 的值;如果不存在,说明理由. 8. 在ABC ?中,已9,sin cos sin AB AC B A C ==u u u r u u u r g ,又ABC ?的面积等于6. (Ⅰ)求ABC ?的三边之长; (Ⅱ)设P 是ABC ?(含边界)内一点,P 到三边AB 、BC 、AB 的距离为1d 、2d 和3d , 求123d d d ++的取值范围. 9.在数列{}n a 中,1a ,2a 是给定的非零整数,21n n n a a a ++=-. (1)若152a =,161a =-,求2008a ; (2)证明:从{}n a 中一定可以选取无穷多项组成两个不同的常数数列.

浅谈初高中数学的衔接

浅谈初高中数学的衔接 摘要:高中数学教师在教学中应该重视初高中数学的衔接,要想做好衔接工作,除了要对高中数学教材充分理解外,对初中数学教材也应该很熟悉。就高中数学教学过程中如何以学生已有的初中数学经验为基础,开展课堂教学做好衔接工作谈一些见解。 关键词:衔接;导入;挖掘拓宽;补充过渡 “数学难学”是高中生普遍反映的问题,这也是高中数学教师十分关心的问题,我觉得高中数学教师在课堂教学中应该重视初高中数学的衔接,要想做好衔接工作,对初中数学教材也应该很熟悉。以下就本人在高中数学教学过程中如何以学生已有的初中数学经验为基础,开展课堂教学做好衔接工作谈几点个人的见解。 一、利用旧概念,导入衔接新概念 高中教师要熟悉初中数学教材和课程标准,对初中数学的概念及其深度要做到心中有数,高中数学的新授课就可以从与之相衔接的初中内容引入新课。比如,在教学人教A 版必修1的《1.2.1函数的概念》时,我利用了学生以前学过的北师大版七年级下册第六章“变量之间的关系”中的《小车下滑的时间》《变化中的三角形》《温度的变化》《一

次函数》中的相应内容做导入衔接:“我们生活在一个变化的世界中,变量和变量之间存在着关系,即一个量的变化会引起另一个量的变化,例如,小车下滑的时间会随着支撑物高度的变化而变化,三角形的面积(高不变)会随着底边的变化而变化,温度会随着时间的变化而变化等等。这种变量之间的关系具有一个共同的特征:都有两个变量,给定其中某一个变量(自变量)的值,相应的就确定了另一个变量(应变量)的值。函数正是刻画变量与变量之间这种依赖关系的重要模型,在初中,我们是这样定义函数的:一般的,在某个变化过程中,有两个变量x和y,如果给定一个x的值,相应的就确定了一个y的值,那么我们称y是x的函数,其中x是自变量,y是应变量。”这样为这一节课《函数的概念》的导入起到了一个很好的衔接作用,使初中函数与高中函数架起一座桥梁,为导入新课奠定了良好的基础。只要我们充分了解了学生原有的认知结构,就可以找到导入问题的切入点,从而顺利地从旧概念过渡到新概念。 二、利用旧知识,挖掘拓宽新内容 新内容是在旧知识的基础上产生的,合理地利用旧知识可以挖掘和拓宽新内容,使学生利用以往的初中知识更好地理解新内容,达到更好的衔接作用。的解简化了它的过程。在初中生只学过二元一次方程组和简单的三元一次方程组,对于三元二次方程组的解法肯定是有困难的,因此,我们应

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

初高中数学衔接的问题及对策

初高中数学衔接的问题及对策 发表时间:2010-09-03T13:43:36.687Z 来源:《当代教育之窗》2010年第6期供稿作者:刘全[导读] 高中数学难学,难就难在初中与高中衔接中出现的“高台阶”。 刘全(渠县职业中专学校四川渠县635200)高中数学难学,难就难在初中与高中衔接中出现的“高台阶”。刚从初中升上高中的学生普遍不能一下子适应过来,都觉得高一数学难学,特别是对意志品质薄弱和学习方法不妥的那部分学生更是使他们过早地失去学数学的兴趣,甚至打击他们的学习信心。如何搞好高初中数学教学的衔接,如何帮助学生尽快适应高中数学教学特点和学习特点,跨过“高台阶”,就成为高一数学教师的首要任务。本文试图从以 下四个方面探讨高中新生在学习数学中存在的问题和可能的解决对策。 1.存在的问题 1.1 初、高中数学教材的差别显著。现行高中数学课本(必修本),与初中数学相比,初步分析有其以下显著特点:从直观到抽象;从单一到复杂;从浅显至严谨;从定量到定性。初中数学教材的文字叙述通俗易懂,语法结构简单、运用的数学知识基本上是四则运算。且其公式参量也较少,因此,学生对初中数学并不感到太难。高中数学语言叙述较为严谨、简练,叙述方式较为抽象、概括、理论性较强。对学生的思维能力和方式的要求大大地提高和加宽了。再加之教材从数学的知识体系出发,将最难的部分“函数”放在高一阶段,也就必然会给学生的学习带来困难,造成障碍。 1.2 学生学习方法上的不适应。初中生的数学学习方法比较机械、简单。习惯于背,不习惯于推理、归纳、论证;习惯于简单的计算,不习惯于复杂计算;习惯于仿,不习惯于创;习惯于课堂合唱,不习惯于独立思考。进入高中后,由于定义、概念、公式多,叙述多,进度快,方法灵活,题型花样多,加之科目多,如果仍靠初中那种以机械记忆为主的学习方法,显然是无能为力了。由于理解能力差,即使背得到定义、公式,因不解其意,对万花筒式的题型变化,更是束手无策,望而生畏,失去了信心。 1.3 学生不重视“听”和基础。许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。没有真正理解所学内容。一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。 2.解决的对策 高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动为主动。针对学生学习中出现的上述情况,教师应当采取以加强学法指导为主,化解分化点为辅的对策: 2.1 妥善过渡,降低台阶,有助于树立学生的学习信心。开始时,适当放慢进度,降低难度。新课的引入,尽量从初中的角度切入,注意新旧对比,前后联系(这要求教师必须熟悉初中教材)。另外,对教学中涉及到的数学知识,要作必要的复习与讲解,这样有利于培养学生运用数学知识的能力。例题、作业和测试题一开始不宜太难,以免学生盲目乐观或丧失信心。对书本上精练的概念、的叙述,要作适当的语法上的分析,用浅显的语言剖析含义,从多角度去阐述它们(文字、公式、图像等)。对学生中想当然的经验错误,一定要及时针对学生情况,帮助他们找出错的原因,并及时纠正(同时还要注意有的错误还可能重犯)。从而改变学生对高中数学的恐怖认识,提高能学好数学的信心。 2.2 温故知新,同化新知,有助于培养学生的学习兴趣。高中教师要熟悉初中数学教材和课程标准对初中的数学概念和知识的要求做到心中有数,把高中教材研究的问题与初中教材研究的问题在文字表述、研究方法、思维特点等方面进行对比,明确新旧知识之间的联系与差异,高中数学新授课就可以从复习初中内容的基础上引入新内容。高一数学的每一节内容都是在初中基础发展而来的,故在引入新知识、新概念时,注意旧知识的复习,用学生已熟悉的知识进行铺垫和引入。如在讲任意角的三角函数时,要先复习初三学过的锐角三角函数的概念,进而提出任意角的三角函数概念而引入坐标定义法。教师在教学过程中,帮助学生以旧知识,同化新知识,使学生掌握新知识,顺利达到知识的迁移。从而提高学生的学习兴趣。 2.3 改进教学,循序渐进,有助于提高学生的思维能力。亚里斯多德说过:“思维开始于疑问与惊奇,问题启动于思维”。例如,在初一代数教学中,要着重发展学生的抽象概括能力;在初二数学教学中应加强推理的训练,发展形式思维的能力;在初三应通过数形结合和解题思路的探索活动,来发展学生思维的预见性、反省性和独创性,以达到为理论型抽象思维的发展做准备、打基础的目的。至于高中数学教学,则要进一步注意理论观点对数学思维活动的指导作用,注意从具体的实践活动中,发展并丰富数学观念系统。所以在衔接阶段,要使学生的思维训练和思维发展阶段相适应。过难、过急是不行的,过易、过慢也是不行的,要设计好教学程序,使教学既要符合学生思维结构所具有的水平,又要有一定强度和适当难度。改进课堂教学,每一节课都设法创造思维情境,组织学生的思维活动,培养学生的概括能力、判断能力、抽象能力、和综合分析能力。【文章编号】1236-3619(2010)06-20-0144

高考数学解答题答题模板

典例1 (12分)已知m =(cos ωx ,3cos(ωx +π)),n =(sin ωx ,cos ωx ),其中ω>0,f (x )=m·n ,且f (x )相邻两条对称轴之间的距离为π2. (1)若f (α2)=-34,α∈(0,π 2 ),求cos α的值; (2)将函数y =f (x )的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,然后向左平移π 6个 单位长度,得到函数y =g (x )的图象,求函数y =g (x )的单调递增区间. 审题路线图 (1)f (x )=m·n ――――→数量积运算 辅助角公式得f (x ) ――→对称性 周期性求出ω()2f α????和差公式 cos α (2)y =f (x )―――→图象变换 y =g (x )―――→整体思想g (x )的递增区间

评分细则 1.化简f (x )的过程中,诱导公式和二倍角公式的使用各给1分;如果只有最后结果没有过程,则给1分;最后结果正确,但缺少上面的某一步过程,不扣分; 2.计算cos α时,算对cos(α-π3)给1分;由cos(α-π3)计算sin(α-π 3)时没有考虑范围扣1分; 3.第(2)问直接写出x 的不等式没有过程扣1分;最后结果不用区间表示不给分;区间表示式中不标出k ∈Z 不扣分;没有2k π的不给分. 跟踪演练1 已知函数f (x )=3sin ωx cos ωx +cos 2ωx -12(ω>0),其最小正周期为π 2. (1)求f (x )的表达式; (2)将函数f (x )的图象向右平移π 8个单位长度,再将图象上各点的横坐标伸长到原来的2倍(纵 坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间[0,π 2]上有且只有一 个实数解,求实数k 的取值范围. 解 (1)f (x )=3sin ωx cos ωx +cos 2ωx -1 2 = 32sin 2ωx +cos 2ωx +12-12=sin(2ωx +π 6 ), 由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2, 所以ω=2,所以f (x )=sin(4x +π 6 ). (2)将f (x )的图象向右平移π8个单位长度后,得到y =sin(4x -π 3)的图象;再将所得图象上所有点 的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin(2x -π3)的图象,所以g (x )=sin(2x -π 3), 因为0≤x ≤π2,所以-π3≤2x -π3≤2π 3, 所以g (x )∈[- 3 2 ,1]. 又g (x )+k =0在区间[0,π2]上有且只有一个实数解,即函数y =g (x )与y =-k 在区间[0,π 2]上 有且只有一个交点,由正弦函数的图象可知-32≤-k <3 2 或-k =1, 解得- 32

浅析初高中数学衔接教学

浅析初高中数学衔接教学 高中新教材教学内容与义务教育初中阶段的课程相比,其教学容量和教学难度大为提高,从初中到高中,学生一下子不适应高中教材的跨度,老师对学生以前的基础知识结构、能力结构也不是很了解。如何研究新教材,按照高中学生的个性特点和认知结构,设计出指导学生高效率学习的有效方法,以使学生适应新教材,顺利完成初高中数学衔接学习,培养学生自学、探索和创新能力,体现新课程标准的原则精神,将十分紧迫地摆在我们面前。这使如何做好初高中数学衔接教学变得具有十分重要的现实意义。 一、学生层面分析 1、环境与心理的变化 对高一新生来讲,环境可以说是全新的,新教材、新同学、新教师……学生有一个由陌生到熟悉的适应过程。其次,经过紧张的中考复习,总算考取了自己理想的高中,有些学生产生“松口气”的想法,入学后无紧迫感。也有些学生有畏惧心理,在入学前就耳闻高中数学很难学。以上这些因素都影响高一新生的学习质量。在初中,教师讲得细,类型归纳得全,练得熟,考试时常见题多,一般均可对号入座。因此,学生习惯于围着教师转,不注重独立思考和对规律的归纳总结。到高中,由于内容多时间少,教师只能选讲一些具有典型性的题目,以落实“三基”培养能力。然而,刚入学的高一新生,往往继续沿用初中学法,这显然不利于良好学法的形成和学习质量的提高。其次,学生在初中三年已形成了固定的学习方法和学习习惯。学生遇到新的问题不是自主分析思考,而是寄希望老师讲解整个解题过程,依赖性较强;不会自我科学地安排时间,缺乏自学能力 2、初高中教学内涵存在两大差异 (1)知识思维层次上的差异(由直观的到抽象的)。初中学生的逻辑思维能力只限于平面几何证明,知识逻辑关系的联系较少,运算要求降得较低,分析解决问题的能力基本得不到培养,至于立体几何,也只能依靠要求较低的零散的,立体几何知识来呈现,想象能力较差。相对来说,高中对数学能力和数学思想的运用要求比较高,高中数学教学中要突出四大能力,即运算能力,空间想象能力,逻辑推理能力和分析问题解决问题的能力。要渗透四大数学思想方法,即数形结合,函数与方程,等价与变换、划分与讨论。这些虽然在初中教学中有所体现,但在高中教学中才能充分反映出来。 (2)知识体系的差异(初高中的跨度太大,人为造成的不衔接)。随着近几年新教材改革,虽然初高中教材都降低了难度,但相比之下,初中降低的幅度大。因此,从一定意义上讲,调整后的教材不仅没有缩小初高中教材内容的难度差距,反而加大了。数学语言在抽象程度上发生突变,思维方法向理性层次跃迁,使相当一部分成绩中等及偏下的学生陷入困境,认为数学高不可攀。

相关主题
文本预览
相关文档 最新文档