自控-第三章作业答案-超调量计算
- 格式:docx
- 大小:132.45 KB
- 文档页数:4
3-1设系统的微分方程式如下:(1)0.2c(t) 2r(t)单位脉冲响应:C(s) 10/s g(t) 103t3 3tc(t) 1 e cos4t e si n4t413-2 温度计的传递函数为 —,用其测量容器内的水温,1min 才能显示出该温度的Ts 198%的数值。
若加热容器使水温按 10(C/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数由一阶系统阶跃响应特性可知: c(4T) 98 o o ,因此有 4T 1 min ,得出T 0.25 min 。
视温度计为单位反馈系统,则开环传递函数为(s)1K 1TG(s)—1(s) Tsv 1用静态误差系数法,当r(t) 10t 时,e ss10 10T 2.5 C oK(2) 0.04c(t)0.24c(t) c(t)r(t)试求系统闭环传递函数① 部初始条件为零。
解:(s),以及系统的单位脉冲响应 g(t)和单位阶跃响应 c(t)。
已知全(1)因为 0.2sC(s)2R(s) 闭环传递函数(s)C(s) 10R(s) s单位阶跃响应c(t) C(s) 10/s 2c(t) 10t t 0(2) (0.04s 20.24s 1)C(s) R(s)C (s )闭环传递函数(s)C(s) R(s)120.04s0.24s 1单位脉冲响应:C(s)120.04s 2 0.24s 1g(t)25 e 33tsi n4t单位阶跃响应h(t) C(s)25 s[(s 3)216]1 s 6 s (s 3)216(s)1 Ts 1解法二依题意,系统误差疋义为e(t) r(t) c(t),应有e(s)E(s)1 C(s)R(s)11 TsR(s) Ts 1 Ts 13-3 已知二阶系统的单位阶跃响应为c(t) 10 12.5e 1.2t sin(1.6t 53.1o)试求系统的超调量c%、峰值时间t p和调节时间t'si n( 1n t )t p Jl- 1.96(s■1 2n1.63.5 3.5t s 2.92(s)n 1.2或:先根据c(t)求出系统传函,再得到特征参数,带入公式求解指标。
第三章习题答案名词解释1.超调量:系统响应的最大值与稳态值之差除以稳态值。
定义为)()(max ∞∞-=c c c σ 2.开环传递函数中含有2个积分因子的系统称为II 型系统。
3.单位阶跃响应达到第一个峰值所需时间。
4.指响应达到并保持在终值5%内所需要的最短时间。
5. 稳态误差:反馈系统误差信号e(t) 的稳态分量(1分),记作e ss (t)。
6.开环传递函数中不含有积分因子的系统。
7.上升时间:○1响应从终值10%上升到终值90%所需的时间;或○2响应从零第一次上升到终值所需的时间。
简答1. 在实际控制系统中,总存在干扰信号。
1) 时域分析:干扰信号变化速率快,而微分器是对输入信号进行求导,因此干扰信号通过微分器之后,会产生较大的输出;2) 频域分析:干扰信号为高频信号,微分器具有较高的高频增益,因此干扰信号易被放大。
这就是实际控制系统中较少使用纯微分器的原因。
2.系统稳定的充分条件为:劳斯阵列第一列所有元素不变号。
若变号,则改变次数代表正实部特征根的数目。
3.二阶临界阻尼系统特征根在负实轴上有两个相等的实根,其单位阶跃响应为单调递增曲线,最后收敛到一个稳态值。
4. 闭环特征根严格位于s 左半平面;或具有负实部的闭环特征根。
5.欠阻尼状态下特征根为一对具有负实部的共轭复数,单位阶跃响应是一个振荡衰减的曲线,最后收敛到一个稳态值。
6.阻尼小于-1的系统,特征根位于正实轴上,单位阶跃响应是一个单调发散的曲线。
7. 无阻尼状态下特征根为一对虚根,响应为等幅振荡过程,永不衰减。
8.图4(a)所示系统稳定,而图4(b)所示系统不稳定。
原因是图4(b)所示系统的小球收到干扰后将不能恢复到原来的平衡状态。
9.不能。
原因是:两个一阶惯性环节串联后的极点为实极点;而二阶振荡环节的极点为复数极点。
计算题1. 解:r(t)=2t.v=1,系统为I 型系统k v =2,e ss =1.2.解:构造Routh 表:25:010:255:03/803/16:25203:35121:012345s s s s s s辅助方程:02552=+s 故纯虚根为:j s 52,1±=;故系统处于临界稳定状态。
3.1.已知系统的单位阶跃响应为)0(2.1.0)(16≥-+=--t e e t c tt 0021试求:(1)系统的闭环传递函数Φ(s)=?(2) 阻尼比ζ=?无自然振荡频率ωn =? 解:(1)由c (t )得系统的单位脉冲响应为t te et g 10601212)(--+-=600706006011210112)]([)(2++=+-+==Φs s s s t g L s (2)与标准2222)(nn ns s ωζωω++=Φ对比得: 5.24600==n ω,429.1600270=⨯=ζ3.2.设图3.36 (a )所示系统的单位阶跃响应如图3.36 (b )所示。
试确定系统参数,1K 2K 和a 。
(a) (b)图3.36 习题3.2图解:系统的传递函数为22212212112)(1)()(nn n s K K as s K K K a s s K a s s K s W ωζωω++=++=+++= 又由图可知:超调量 43133p M -== 峰值时间 ()0.1p t s =代入得⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==-==--221121.01312K K eK n n ζωπωζζπ 解得:213ln ζζπ-=;33.0≈ζ,3.331102≈-=ζπωn ,89.110821≈=nK ω, 98.213.3333.022≈⨯⨯≈=n a ζω,32==K K 。
3.3. 给定典型二阶系统的设计性能指标:超调量p σ5≤%,调节时间 s t 3<s ,峰值时间1<p t s ,试确定系统极点配置的区域,以获得预期的响应特性。
解:设该二阶系统的开环传递函数为()()22nn G s s s ωξω=+ 则满足上述设计性能指标:⎪⎪⎪⎩⎪⎪⎪⎨⎧<-=<=≤=--113305.0212ζωπζωσζζπn p ns p t t e得:69.0≥ζ,1>n ζωπζω>-21n由上述各不等式得系统极点配置的区域如下图阴影部分所示:3.4.设一系统如图3.37所示。
3-1 设系统的微分方程式如下:(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。
若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Tss s s G 1)(1)()(=Φ-Φ=⎩⎨⎧==11v TK 用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。
解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T s Ts Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 23-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。
第三章习题及答案3-1 已知系统脉冲响应如下,试求系统闭环传递函数Φ(s)。
t e t k 25.10125.0)(-=解 Φ()()./(.)s L k t s ==+001251253-2 设某高阶系统可用下列一阶微分方程近似描述T c t c t r t r t ••+=+()()()()τ其中,0<(T-τ)<1。
试证系统的动态性能指标为 T T T t d ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=τln 693.0t T r =22. T T T t s ⎥⎦⎤⎢⎣⎡-+=)ln(3τ 解 设单位阶跃输入ss R 1)(= 当初始条件为0时有:11)()(++=Ts s s R s C τ 11111)(+--=⋅++=∴Ts T s s Ts s s C ττ C t h t T Te t T()()/==---1τ 1) 当 t t d = 时h t T Te t td ()./==---051τ12=--T T e t T d τ/ ; Tt T T d-⎪⎭⎫ ⎝⎛-=-τln 2ln ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∴T T T t d τln 2ln2) 求t r (即)(t c 从0.1到0.9所需时间) 当 Tt e TT t h /219.0)(---==τ; t T T T 201=--[ln()ln .]τ当 Tt eTT t h /111.0)(---==τ; t T T T 109=--[ln()ln .]τ 则 t t t T T r =-==21090122ln ... 3) 求 t sTt s s eTT t h /195.0)(---==τ ∴=--t T T T s [ln ln .]τ005=-+T T T[ln ln ]τ20=+-T T T [ln]3τ3-3 一阶系统结构图如题3-3图所示。
要求系统闭环增益2=ΦK ,调节时间4.0≤s t (s ),试确定参数21,K K 的值。
3-1(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4s i n 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。
若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Tss s s G 1)(1)()(=Φ-Φ=⎩⎨⎧==11v TK 用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。
解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T s Ts Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 23-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。
3-1 设系统的微分方程式如下:(1) )(2)(2.0t r t c =&(2) )()()(24.0)(04.0t r t c t c t c =++&&&试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1) 因为)(2)(2.0s R s sC = 闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。
若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Tss s s G 1)(1)()(=Φ-Φ=⎩⎨⎧==11v TK 用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。
第三章3-4 已知二阶系统的单位阶跃响应为1.20()1012.5sin(1.653.1)th t e t-=-+试求系统的超调量σ%、峰值时间tp和调节时间ts。
解:依题意pt t=时()0ph t'=,并且pt是使()ph t'第一次为零的时刻(pt≠)1.20()1012.5sin(1.653.1)th t e t-=-+1.2001012.5(cos53.1sin1.6sin53.1cos1.6)te t t-=-+1.20 1.20 1.2()15sin(1.653.1)20cos(1.653.1)25sin1.6t t th t e t e t e t---'=+-+=可见,当()h t'第一次为0时,1.6 1.96p pt tπ=⇒=,所以1.21.960180()1012.5sin(1.6 1.9653.1)10.95ph t eπ-⨯=-⨯⨯+=()()10.9510%100%100%9.5%()10ph t hhσ-∞-=⨯=⨯=∞根据调节时间st的定义:0.95()() 1.05()sh h t h∞<<∞,即1.29.51012.50.5te-<-<,得ln0.04 3.2122.681.2 1.2st>-==所以:%9.5% 1.96 2.68p st s t sσ===3-5设图3-3是简化的飞行控制系统结构图,试选择参数K1和Kt,使系统ωn=6、ζ=1。
图3-3 飞行控制系统分析:求出系统传递函数,如果可化为典型二阶环节形式,则可与标准二阶环节相对照,从而确定相应参数。
解对结构图进行化简如图所示。
故系统的传递函数为1121112525(0.8)()25(1)(0.825)251(0.8)t t K K s s s K K s s K K s K s s +Φ==++++++和标准二阶系统对照后可以求出:21120.81.44,0.312525nn t K K K ωζω-====3-7已知系统特征方程如下,试求系统在s 右半平面的根数及虚根值。
3-3 解:该二阶系统的最大超调量:%100*21/ζζπσ--=ep当%5=pσ时,可解上述方程得:69.0=ζ当%5=pσ时,该二阶系统的过渡时间为:ns w t ζ3≈所以,该二阶系统的无阻尼自振角频率17.22*69.033==≈sn t w ζ3-4 解:由上图可得系统的传递函数:10)51(*2)1(*10)2()1(*101)2()1(*10)()(2++++==+++++=s K s Ks s s Ks s s Ks s R s C所以10=n w ,K w n 51+=ζ⑴ 若5.0=ζ时,116.0≈K 所以116.0≈K 时,5.0=ζ⑵ 系统单位阶跃响应的超调量和过渡过程时间分别为:9.110*5.033%3.16%100*%100*225.01/14.3*5.01/≈==≈==----ns pw t e eζσζζπ⑶ 加入)1(Ks +相当于加入了一个比例微分环节,将使系统的阻尼比增大,可以有效地减小原系统的阶跃响应的超调量;同时由于微分的作用,使系统阶跃响应的速度(即变化率)提高了,从而缩短了过渡时间:总之,加入)1(Ks +后,系统响应性能得到改善。
3-5 解:由上图可得该控制系统的传递函数:12110)110(10)()(K s s K s R s C +++=τ二阶系统的标准形式为:2222)()(nn nws w s w s R s C ++=ζ所以11021012+==τζn n w K w由5.0%5.91%100*21/2==-==--p pn p pt w t eσζπσζζπ可得85.76.0==n w ζ由11021012+==τζn n w K w 和85.76.0==n w ζ可得:64.0384.016.61=≈==ns w t K ζτ3-6 解:⑴ 列出劳斯表为:因为劳斯表首列系数符号变号2次,所以系统不稳定。
⑵ 列出劳斯表为:因为劳斯表首列系数全大于零,所以系统稳定。
自动控制理论第三章作业答案题3-4解:系统的闭环传递函数为由二阶系统的标准形式可以得到因此,上升时间 2.418r dd t s ππβωω--===峰值时间 3.6276p d t s πω=== 调整时间:35% 642% 8s n s n t s t s ωζωζ∆=≈=∆=≈=超调量:100%16.3%p M e =⨯=题3-5解:题3-7解:题3-8 (1)2100()(824)G s s s s =++ 解:闭环传递函数为2()100()(824)100C s R s s s s =+++ 特征方程为328241000s s s +++=列出劳斯表:第一列都是正数,所以系统稳定(2)10(1)()(1)(5)s G s s s s +=-+ 解:闭环传递函数()10(1)()(1)(5)10(1)C s s R s s s s s +=-+++ 特征方程为3255100s s s +++=列出劳斯表:第一列都是正数,所以系统稳定(3)10()(1)(23)G s s s s =-+ 解:闭环传递函数()10()(1)(23)10C s R s s s s =-++ 特征方程为3223100s s s +-+=列出劳斯表:劳斯表第一列的数符号变了2次,因此在s 平面的右半部分有两个特征根,系统不稳定。
题3-9(1)320.10s s s K +++=解:列出劳斯表要使系统稳定,则有(2)432413360s s s s K ++++=解:列出劳斯表:要使系统稳定,则有题3-10解:系统的闭环传递函数为:特征方程为2(2)(4)(625)=0s s s s K +++++系统产生等幅振荡,则特征根在虚轴上令s j ω=,有43212691982000j j K ωωωω--+++=题3-12解:闭环传递函数为特征方程为列出劳斯表:要使系统稳定,有。
3.1.已知系统的单位阶跃响应为)0(2.1.0)(16≥-+=--t e e t c tt 0021试求:(1)系统的闭环传递函数Φ(s)=?(2) 阻尼比ζ=?无自然振荡频率ωn =? 解:(1)由c (t )得系统的单位脉冲响应为t te et g 10601212)(--+-=600706006011210112)]([)(2++=+-+==Φs s s s t g L s (2)与标准2222)(nn ns s ωζωω++=Φ对比得: 5.24600==n ω,429.1600270=⨯=ζ3.2.设图3.36 (a )所示系统的单位阶跃响应如图3.36 (b )所示。
试确定系统参数,1K 2K 和a 。
(a) (b)图3.36 习题3.2图解:系统的传递函数为22212212112)(1)()(nn n s K K as s K K K a s s K a s s K s W ωζωω++=++=+++= 又由图可知:超调量 43133p M -== 峰值时间 ()0.1p t s =代入得⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==-==--221121.01312K K eK n n ζωπωζζπ 解得:213ln ζζπ-=;33.0≈ζ,3.331102≈-=ζπωn ,89.110821≈=nK ω, 98.213.3333.022≈⨯⨯≈=n a ζω,32==K K 。
3.3. 给定典型二阶系统的设计性能指标:超调量p σ5≤%,调节时间 s t 3<s ,峰值时间1<p t s ,试确定系统极点配置的区域,以获得预期的响应特性。
解:设该二阶系统的开环传递函数为()()22nn G s s s ωξω=+ 则满足上述设计性能指标:⎪⎪⎪⎩⎪⎪⎪⎨⎧<-=<=≤=--113305.0212ζωπζωσζζπn p ns p t t e得:69.0≥ζ,1>n ζωπζω>-21n由上述各不等式得系统极点配置的区域如下图阴影部分所示:3.4.设一系统如图3.37所示。
3-1(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。
若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Ts s s s G 1)(1)()(=Φ-Φ= ⎩⎨⎧==11v T K用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。
解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T s Ts Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 23-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。
一、主要内容• 系统时域分析(性能指标的定义、二阶欠阻尼系统计算) • 稳定性(概念、充要条件、劳斯判据) •稳态误差(概念、求解、与系统型别关系)二、基本概念1) 典型输入信号2) 动态过程和稳态过程在典型输入信号作用下,任何一个控制系统的时间响应可以分成动态过程和稳态过程两部分。
1.动态过程动态过程又称过渡过程或瞬态过程,指系统在典型输入倍导作用下,系统输出量从初始状态到最终状态的响应过程。
表现为衰减、发放或等幅振荡形式。
用动态性能描述动态过程的时域性能指标。
2.稳态过程稳态过程又称为稳态响应。
系统在典型输入情号作用下,当时间t 趋于无穷时,系统输出量的表现方式。
反映系统输出量最终复现输入量的程度。
用稳态性能描述稳态过程的时域性能指标。
3) 动态性能指标通常以阶跃响应来定义动态过程的时域性能指标• 延迟时间T d (delay time):响应曲线第一次达到其终值A(m)的一半所需的时间;• 上升时间T r (rise time):响应从终值的10%上升到终值的90%所需的时间,对于有振荡的系统,亦可定义为响应从零第一次上升到终值所需的时间;• 峰值时间T p (peak time):响应超过其终值到达第一个峰值所需的时间;• 调节时间T s (settle time):响应到达并保持在终值的5%之内所需的最短时间; •超调量σ%:4) 稳定性• 平衡位置:• 稳定性:指系统和扰动消失后,由初始偏差状态恢复到原平衡状态的性能。
•线性控制系统的稳定性:在初始扰动的影响下,其动态过程随时间的推移逐渐衰减并趋于零(原平衡点),则称系统浙近稳定。
5) 稳态性能——稳态误差通常用在阶跃函数、斜坡面数或加速度函数作用下系统的稳态误差来报述。
用于衡量系统的控制精度和抗干扰能力。
•误差的基本定义– 在系统输入端定义的误差: – 在系统输出端定义的误差: • 稳态误差:•系统型别:为开环系统在s 平面坐标原点上的极点重数。
超调量的计算公式超调量是指控制系统在初值变化或负载扰动作用下,输出信号超过设定值的最大偏差量。
在控制系统设计中,超调量是一个重要的性能指标,它直接关系到系统的稳定性和响应速度。
超调量的计算公式是超调量(%)=(峰值值 - 稳态值)/ 稳态值× 100%。
其中,峰值值是系统响应过程中输出信号的最大值,稳态值是系统响应过程中输出信号的稳定值。
超调量的计算公式可以通过一个实例来解释。
假设有一个温度控制系统,目标是将温度控制在25摄氏度。
当初始温度为20摄氏度时,控制系统开始调节,经过一段时间后,温度稳定在26摄氏度。
此时,超调量的计算公式为(26 - 25)/ 25 × 100% = 4%。
这意味着温度超过了目标值25摄氏度的4%。
超调量的计算公式可以帮助工程师评估控制系统的性能。
一般来说,超调量越小,系统的稳定性越高,响应速度也越快。
因此,在控制系统设计中,通常会尽量减小超调量,以达到更好的控制效果。
控制系统中的超调量还与系统的控制方式和参数设置有关。
例如,在PID控制器中,超调量可以通过调节比例、积分和微分参数来控制。
当比例参数增大时,超调量会增大;当积分参数增大时,超调量会减小;当微分参数增大时,超调量也会减小。
因此,在实际控制过程中,工程师需要根据实际需求来选择适当的参数设置,以达到理想的超调量。
超调量的计算公式也可以用于评估控制系统的稳定性。
当超调量过大时,系统可能会产生振荡或不稳定的现象,导致输出信号不稳定或无法收敛到设定值。
因此,在控制系统设计过程中,工程师需要根据系统的要求和实际情况,权衡超调量和稳定性之间的关系,选择合适的控制策略和参数设置。
超调量是控制系统设计中重要的性能指标之一,可以通过计算公式来评估系统的稳定性和响应速度。
工程师在实际应用中需要根据实际需求和系统要求,选择合适的超调量和参数设置,以达到理想的控制效果。
作业3-11,3-12,3-15.。
参考答案(知识点:二阶振荡系统的动态特性指标计算)
3-11已知系统结构如图所示,求:
(1) 4K =,0,τ=时系统参数,?n ωζ=,性能指标%,?s t σ=
(2) 如果要求0.707?0K ζτ===,,其中
(3) 4K =,为改善性能加s τ使%5%σ<,求τ=?
习题3-11系统结构图
(1) K s s K s G s G s ++=+=Φ2)(1)()(=)0,4(,2222==++τωζωωK s s n
n n 2==K n ω,25.021==
n ωζ %47%100%21=⨯=--ζζπ
σe 36s n t s ζω==,⎪⎪⎩
⎪⎪⎨⎧===⇒===⇒=5.021********n n n n K K ωωζωζω (2) K s s K s G s G s ++=+=Φ2)(1)()()707.0,0,(,2222==++=ςτωζωωK s s n
n n 求 5.0)707
.021(707.01222=⨯==⇒⎭⎬⎫==n n K ωζζω; (3) )41(4)
1(41)1(4
)(ττ++=+++=s s s s s s s s G k ,24144s s s τΦ=+++()() 457.0412707.024*******=-⨯⨯=-=⇒⎩
⎨⎧=+=n n n ζωτωτζω 注意:教材树P73最佳阻尼比的定义:0707ς=.时,
系统的最大超调量435πσ-=<.%%%=e ,
1.3调节时间最短,即平稳性和快速性最佳。
本题的启示:
(1)求得原系统的超调量47σ=%%非常大,
(2)为了降低超调<5%,降低了开环增益K 。
(注意:求解稳态误差时,为了提高精度,可以增大开环增益。
当设计者进行系统参数设定时,需要兼顾动静态指标) (3)为了降低超调<5%,在前向通道环节引入了微分环节。
3-12已知系统的单位阶跃响应曲线如图所示,求系统的闭环传递函数。
习题3-12系统的单位阶跃响应曲线 由图知 %30%100)
()()(%=⨯∞-∞=h tp h h σ %30%100e % 1.02-1-=⨯==ξξπσtp
6.33 36.0 1.012===-=n n w w tp ξξπ
可得;
2220002()2()lim ()lim ()()lim ()1132.3
()24.31132.3
1;n n n
s s s K s s s c sC s s s s s s s R s K ωζωω→→→ΦΦ=++∞==++==Φ=Φ=二阶振荡系统的传递函数标准式为,(注意:K 的求解所以,)
类似知识点:学习通-期中测试,2道题(计算题、选择题)。