基于单片机的温度检测器
- 格式:doc
- 大小:921.86 KB
- 文档页数:19
基于单片机的数字温度计的课程设计随着科技发展,单片机技术受到了广泛的应用,并得到了广泛的重视。
本设计以现有单片机ADUC7024系统为基础,设计和实现了一款基于单片机的数字温度计,旨在解决过热或者过冷的问题,通过温度检测器在给定的温度范围内确定温度,并控制过热和过冷的情况。
(一)设计的概述本设计的主要内容是分析ADUC7024硬件,对硬件进行器件选型,完成系统模块的设计,以及ADUC7024以现有程序设计语言完成控制程序设计,最后采用ADUC7024作为控制器,与温度检测器、LED等模块进行硬件联通,完成一个简单的温度检测控制系统。
1、器件选型:本设计采用ADUC7024作为系统的控制器,采取温度传感器采用的是DS18B20温度芯片芯片,显示采用的是LED系列的指示灯,系统开关采用的是两个按键作为上升按钮和下降按钮。
2、硬件模块:本次设计以ADUC7024硬件为主框架,以温度检测器连接ADUC7024控制器,可以实现温度范围内数字检测,LED显示屏以温度为参数,可根据设定的温度范围指示异常温度;系统开关采用按键开关来控制,多出的端口可实现报警功能。
本设计采用ADUC7024系统控制器,设计一款基于单片机的温度检测控制系统的电路,主要包括:外部中断、输入输出口、充电输出和按键检测电路,电路图如下图1所示:1、主程序:本次设计采用C语言编写,主程序负责实现温度检测、控制操作功能。
主程序中采用外部中断和充电输出实现数据的获取和操作的控制,采用按键输入调节温度,并且可以把某一温度范围内的上下限定值写入EEPROM,控制系统会及时获取当前温度,比较当前温度与上下限值,如果出现过热或者过冷,则会发出警报。
2、子程序:本次设计还编写了多个子程序,用于实现数据处理、按键检测等功能,并在主程序中进行调用,使程序更加规范。
单片机C语言课题设计报告设计题目:温度检测电气系2011级通信技术一班级通信技术一班通才达识,信手拈来通才达识,信手拈来1摘要本课题以51单片机为核心实现智能化温度测量。
利用18B20温度传感器获取温度信号,将需要测量的温度信号自动转化为数字信号,利用单总线和单片机交换数据,最终单片机将信号转换成LCD 可以识别的信息显示输出。
基于STC90C516RD+STC90C516RD+的单片机的智能温度检测系统,的单片机的智能温度检测系统,设计采用18B20温度传感器,其分辨率可编程设计。
本课题设计应用于温度变化缓慢的空间,综合考虑,以降低灵敏度来提高显示精度。
设计使用12位分辨率,因其最高4位代表温度极性,故实际使用为11位半,位半,而温度测量范围为而温度测量范围为而温度测量范围为-55-55-55℃~℃~℃~+125+125+125℃,℃,则其分辨力为0.06250.0625℃。
℃。
设计使用LCD1602显示器,可显示16*2个英文字符,显示器显示实时温度和过温警告信息,和过温警告信息,传感器异常信息设。
传感器异常信息设。
传感器异常信息设。
计使用蜂鸣器做警报发生器,计使用蜂鸣器做警报发生器,计使用蜂鸣器做警报发生器,当温度超过当温度超过设定值时播放《卡农》,当传感器异常时播放嘟嘟音。
单片机C 语言课题设计报告语言课题设计报告电动世界,气定乾坤2目录一、设计功能一、设计功能................................. ................................. 3 二、系统设计二、系统设计................................. .................................3 三、器件选择三、器件选择................................. .................................3 3.1温度信号采集模块 (3)3.1.1 DS18B20 3.1.1 DS18B20 数字式温度传感器数字式温度传感器..................... 4 3.1.2 DS18B20特性 .................................. 4 3.1.3 DS18B20结构 .................................. 5 3.1.4 DS18B20测温原理 .............................. 6 3.1.5 DS18B20的读写功能 ............................ 6 3.2 3.2 液晶显示器液晶显示器1602LCD................................. 9 3.2.1引脚功能说明 ................................. 10 3.2.2 1602LCD 的指令说明及时序 ..................... 10 3.2.3 1602LCD 的一般初始化过程 (10)四、软件设计四、软件设计................................ ................................11 4.1 1602LCD 程序设计流程图 ........................... 11 4.2 DS18B20程序设计流程图 ............................ 12 4.3 4.3 主程序设计流程图主程序设计流程图................................. 13 五、设计总结五、设计总结................................. ................................. 2 六、参考文献六、参考文献................................. ................................. 2 七、硬件原理图及仿真七、硬件原理图及仿真......................... .........................3 7.1系统硬件原理图 ..................................... 3 7.2开机滚动显示界面 ................................... 4 7.3临界温度设置界面 ................................... 4 7.4传感器异常警告界面 (4)电气系2011级通信技术一班级通信技术一班通才达识,信手拈来通才达识,信手拈来3温度温度DS18B20 LCD 显示显示过温函数功能模块能模块传感器异常函数功能模块数功能模块D0D1D2D3D4D5D6D7XT XTAL2AL218XT XTAL1AL119ALE 30EA31PSEN29RST 9P0.0/AD039P0.1/AD138P0.2/AD237P0.3/AD336P0.4/AD435P0.5/AD534P0.6/AD633P0.7/AD732P2.7/A1528P2.0/A821P2.1/A922P2.2/A1023P2.3/A1124P2.4/A1225P2.5/A1326P2.6/A1427P1.01P1.12P1.23P1.34P1.45P1.56P1.67P1.78P3.0/RXD 10P3.1/TXD11P3.2/INT012P3.3/INT113P3.4/T014P3.7/RD17P3.6/WR 16P3.5/T115U180C51X1CRYST CRYSTAL ALC122pFC222pFGNDR110kC31uFVCCGND234567891RP1RESPACK-8VCC0.0DQ 2VCC 3GND 1U2DS18B20R24.7K LCD1LM016LLS2SOUNDERMUC八、程序清单八、程序清单................................. .................................5 一、设计功能·由单片机、温度传感器以及液晶显示器等构成高精度温度监测系统。
基于单片机的温湿度检测系统的设计一、引言温湿度是常见的环境参数,对于很多应用而言,如农业、生物、仓储等,温湿度的监测非常重要。
因此,设计并实现一个基于单片机的温湿度检测系统是非常有实际意义的。
本文将介绍该温湿度检测系统的设计方案,并详细阐述其硬件和软件实现。
二、系统设计方案1.硬件设计(1)传感器选择温湿度传感器的选择非常关键,常用的温湿度传感器包括DHT11、DHT22、SHT11等。
根据不同应用场景的精度和成本要求,选择相应的传感器。
(2)单片机选择单片机是整个系统的核心,需要选择性能稳定、易于编程的单片机。
常用的单片机有51系列、AVR系列等,也可以选择ARM系列的单片机。
(3)电路设计温湿度传感器与单片机的连接电路包括供电电路和数据通信电路。
供电电路通常采用稳压电源,并根据传感器的工作电压进行相应的电压转换。
数据通信电路使用串行通信方式。
2.软件设计(1)数据采集单片机通过串行通信方式从温湿度传感器读取温湿度数据。
根据传感器的通信协议,编写相应的代码实现数据采集功能。
(2)数据处理将采集到的温湿度数据进行处理,可以进行数据滤波、校准等操作,以提高数据的准确性和可靠性。
(3)结果显示设计一个LCD显示屏接口,将处理后的温湿度数据通过串行通信方式发送到LCD显示屏上显示出来。
三、系统实现及测试1.硬件实现按照上述设计方案,进行硬件电路的实现。
连接传感器和单片机,搭建稳定的供电电路,并确保电路连接无误。
2.软件实现根据设计方案,使用相应的开发工具编写单片机的代码。
包括数据采集、数据处理和结果显示等功能的实现。
3.系统测试将温湿度检测系统放置在不同的环境条件下,观察测试结果是否与真实值相符。
同时,进行长时间的测试,以验证系统的稳定性和可靠性。
四、系统优化优化系统的稳定性和功耗,可以采用以下方法:1.优化供电电路,减小电路噪声和干扰,提高电路的稳定性。
2.优化代码,减小程序的存储空间和运行时间,降低功耗。
引言:温度是一个常见的物理量,对于许多领域的应用来说,准确地测量温度非常重要。
单片机作为一种常见的嵌入式系统,具有强大的数据处理和控制能力。
本文将介绍基于单片机的温度测量技术及其应用。
概述:温度测量是一项广泛应用于工业自动化、环境监测、医疗设备等领域的技术。
传统的温度测量方法主要基于热敏电阻、热电偶、红外线等。
而基于单片机的温度测量技术则结合了传感器、单片机和通信等技术,能够实时、精确地监测和控制温度。
正文:1. 传感器选择1.1 热敏电阻热敏电阻是一种根据温度变化导致电阻值变化的传感器。
它的特点是响应速度快、精度高,但对环境温度和供电电压的稳定性要求较高。
1.2 热电偶热电偶是一种使用两个不同金属的导线连接的传感器。
它的优点是测量范围广,适用于极高或极低温度的测量,但精度较低,受电磁干扰影响较大。
1.3 红外线传感器红外线传感器是一种测量物体表面温度的传感器。
它可以通过接收物体发出的红外辐射来测量温度,适用于无接触测量,但精度受物体表面性质影响较大。
2. 单片机选择2.1 嵌入式系统单片机作为一种常见的嵌入式系统,集成了处理器、存储器和外设接口。
它具有较强的计算和控制能力,适用于温度测量应用中的数据处理和控制任务。
2.2 选择合适的单片机型号选择合适的单片机型号是确保系统稳定运行的关键。
应根据温度测量的要求确定所需要的计算能力、引脚数量、通信接口等因素,选择合适的单片机型号。
3. 温度采集与处理3.1 模拟信号采集通过选定的传感器,将温度信号转换为模拟电压信号。
使用单片机的模拟输入接口,对模拟电压信号进行采集,获取温度数据。
3.2 数字信号处理单片机通过内置的模数转换器(ADC)将模拟信号转换为数字信号。
根据所选单片机型号的计算能力,可以进行进一步的数据处理和算法运算,包括滤波、校正等。
4. 数据存储与通信4.1 存储器选择根据温度测量系统的要求,可以选择合适的存储器类型,如闪存、EEPROM等。
基于51单片机的温度检测系统程序及仿真概要
1. 系统概述
本系统采用51单片机作为控制核心,通过外接温度传感器进行温度检测,并在数码管上显示当前温度值。
同时,当温度超过设定阈值时,通过蜂鸣器进行警示。
2. 系统硬件设计
本系统采用DS18B20温度传感器作为温度检测模块,通过单总线连接到51单片机的
P2.0口,同时将P2.1口连接到蜂鸣器。
数码管采用共阳极数码管,通过P0口进行控制。
系统程序采用C语言编写,在主函数中进行如下操作:
(1) 初始化DS18B20,设置温度传感器工作模式。
(2) 读取温度传感器输出的温度值,进行温度判断。
(3) 将温度值转换为数码管显示的格式并显示在数码管上。
(4) 如果温度超过设定阈值,触发蜂鸣器进行警示。
(5) 循环执行以上操作。
4. 系统仿真
5. 总结
本系统基于51单片机实现了温度检测功能,并且能够进行数码管显示以及蜂鸣器警示,具有一定的实用价值。
本系统的设计和仿真过程对于初学者来说都是一个非常好的练手项目,也有助于掌握单片机的基本编程技能和原理知识。
基于单片机的温度检测系统的设计一、引言随着科技的发展和社会的进步,温度检测在各个领域中起着至关重要的作用。
为了实现对温度变化的准确监测和控制,本文将介绍一种基于单片机的温度检测系统的设计方案。
二、系统概述本系统通过采集环境温度数据,并通过单片机进行处理和控制,实现对温度的实时监测和报警功能。
三、硬件设计3.1传感器选择在温度检测系统中,传感器是获取环境温度信息的关键部件。
本系统选择了精度高、稳定性好的数字温度传感器DS18B20作为温度采集装置。
3.2单片机选择单片机是系统的核心控制部分,负责采集传感器数据、处理数据并输出相应信号。
为了满足系统的实时性和稳定性要求,本系统选择了常用的S T M32系列单片机作为控制器。
3.3电路设计基于上述选择的传感器和单片机,我们设计了相应的电路接口和连接方式,确保传感器能够正常采集数据,并将数据传输给单片机进行处理。
四、软件设计4.1系统架构本系统采用分层架构设计,包括传感器数据采集层、数据处理层和用户界面层。
每一层都有相应的功能模块,实现温度数据的采集、处理和显示。
4.2数据采集和处理系统通过定时中断方式,周期性地读取传感器数据,并通过计算得到温度值。
采集到的数据经过滤波和校正处理后,传递给用户界面层进行显示。
4.3用户界面为了方便用户操作和监测温度变化,系统设计了简洁直观的用户界面。
用户可以通过L CD显示屏上的菜单操作,查看温度数值和设置相关参数,同时系统还具备温度报警功能。
五、系统测试与结果分析5.1硬件测试在硬件实现完毕后,进行了必要的硬件测试。
通过测量不同环境下的温度,并与实际温度进行比对,验证了系统的准确性和可靠性。
5.2软件测试系统软件的测试主要包括功能测试和性能测试。
通过模拟实际使用场景,测试了系统在不同条件下的温度检测和报警功能是否正常。
六、总结与展望本文介绍了基于单片机的温度检测系统的设计方案。
通过合理的硬件选型和软件设计,实现了对温度数据的实时监测和报警功能。
引言:数字温度计是一种基于51单片机的温度测量装置,它通过传感器感知环境的温度,并使用单片机将温度值转换为数字形式,并显示在液晶屏上。
本文将详细介绍数字温度计的设计原理、硬件连接、软件编程以及应用领域。
概述:数字温度计基于51单片机的设计理念,其基本原理是通过传感器将温度转换为电信号,然后通过ADC(模数转换器)将电信号转换为数字信号,最后使用单片机将数字信号转换为温度值。
同时,数字温度计还将温度值显示在液晶屏上,方便用户直观地了解环境温度。
正文内容:1. 硬件连接:1.1 使用温度传感器感知环境温度:常用的温度传感器有NTC热敏电阻和DS18B20数字温度传感器。
通过将传感器连接到51单片机的引脚上,可以实现对环境温度的感知。
1.2 连接ADC进行模数转换:ADC是将模拟信号转换为数字信号的关键部件。
通过将51单片机的引脚连接到ADC芯片的输入端,可以将模拟的温度信号转换为数字信号。
1.3 连接液晶屏显示温度值:通过将51单片机的引脚连接到液晶屏的控制引脚和数据引脚,可以将温度值以数字形式显示在液晶屏上。
2. 软件编程:2.1 初始化引脚和ADC:在软件编程中,需要初始化51单片机的引脚设置和ADC的工作模式。
通过设置引脚为输入或输出,以及设置ADC的参考电压和工作模式,可以确保硬件正常工作。
2.2 温度测量算法:根据传感器的工作原理和电压-温度特性曲线,可以编写相应的算法将ADC测得的电压值转换为温度值。
例如,对于NTC热敏电阻,可以使用Steinhart-Hart公式进行温度计算。
2.3 温度值显示:将温度值以数字形式显示在液晶屏上。
通过设置液晶屏的控制引脚和数据引脚,可以控制液晶屏的显示内容,并将温度值以数字形式显示在屏幕上。
3. 基于51单片机的数字温度计应用:3.1 家庭温度监测:数字温度计可以安装在家庭中的不同区域,实时监测室内温度,并通过数字显示提供直观的温度信息。
这对于家庭的舒适性和节能都有重要意义。
基于51单片机的温度报警器设计引言:温度报警器是一种用来检测环境温度并在温度超过设定阈值时发出警报的装置。
本文将基于51单片机设计一个简单的温度报警器,以帮助读者了解如何利用单片机进行温度监测和报警。
一、硬件设计硬件设计包括传感器选择、电路连接以及报警装置的设计。
1.传感器选择温度传感器的选择非常重要,它决定了监测温度的准确性和稳定性。
常见的温度传感器有热敏电阻(如NTC热敏电阻)、热电偶以及数字温度传感器(如DS18B20)。
在本设计中,我们选择使用DS18B20数字温度传感器,因为它具有高精度和数字输出的优点。
2.电路连接将DS18B20与51单片机连接,可以采用一根三线总线(VCC、GND、DATA)的方式。
具体连接方式如下:-将DS18B20的VCC引脚连接到单片机的VCC引脚(一般为5V);-将DS18B20的GND引脚连接到单片机的GND引脚;-将DS18B20的DATA引脚连接到单片机的任意IO引脚。
3.报警装置设计报警装置可以选择发出声音警报或者显示警报信息。
在本设计中,我们选择使用蜂鸣器发出声音警报。
将蜂鸣器的一个引脚连接到单片机的任意IO引脚,另一个引脚连接到单片机的GND引脚。
二、软件设计软件设计包括温度读取、温度比较和报警控制的实现。
1.温度读取通过51单片机的IO引脚和DS18B20进行通信,读取DS18B20传感器返回的温度数据。
读取温度数据的具体步骤可以参考DS18B20的通信协议和单片机的编程手册。
2.温度比较和报警控制将读取到的温度数据和设定的阈值进行比较,如果温度超过阈值,则触发报警控制。
可以通过控制蜂鸣器的IO引脚输出高电平或低电平来控制蜂鸣器是否发出声音警报。
三、工作原理整个温度报警器的工作原理如下:1.首先,单片机将发出启动信号,要求DS18B20开始温度转换。
2.单片机等待一段时间,等待DS18B20完成温度转换。
3.单片机向DS18B20发送读取信号,并接收DS18B20返回的温度数据。
引言概述:AT89C51单片机是一种常用的单片机型号,广泛应用于各种数字电子设备中。
本文将基于AT89C51单片机,设计一款温度计,用于测量环境温度。
通过该设计,可以实时监测环境温度,并将温度值以数字形式显示在屏幕上,提供给用户参考。
正文内容:1. 硬件设计1.1 传感器选择首先,需要选择适合的传感器来测量环境温度。
常见的温度传感器有热敏电阻、温度传感器模块等。
在本设计中,选择了DS18B20温度传感器模块,该传感器具有精度高、体积小等特点,适合本温度计的设计需求。
1.2 电路连接在硬件设计中,需要将DS18B20温度传感器模块与AT89C51单片机相连。
具体步骤如下:1) 将DS18B20传感器的VCC引脚连接至单片机的VCC引脚,将GND引脚连接至单片机的GND引脚,将DQ引脚连接至单片机的P1口,通过电阻和电容设置硬件复位电路。
2) 设置单片机的相应引脚为输入或输出引脚,使其与传感器的引脚相对应,并根据需要设置引脚的电平状态。
3) 根据DS18B20传感器的通信协议,使用单片机的串口通信功能与传感器进行通信,获取温度值。
2. 软件设计2.1 程序框架在软件设计中,需要设计相应的程序框架,以实现温度的测量与显示。
整体的程序框架如下:1) 初始化单片机的串口通信功能,设置波特率等参数。
2) 初始化DS18B20传感器,包括设定分辨率、温度精度等参数。
3) 循环读取传感器的温度数值,并进行必要的温度转换处理。
4) 将处理好的温度数值通过单片机的数码管显示出来。
2.2 温度转换在软件设计中,需要对从传感器获取的温度数值进行转换处理,以得到真实的温度值。
具体的转换公式如下:1) 首先,读取传感器内部存储器中的原始温度数据。
2) 根据DS18B20传感器的配置,进行温度计算。
3) 最后,将计算得到的温度值转换为摄氏度或华氏度,并存储到相应的变量中,以便后续显示。
3. 测试与调试在进行实际应用之前,需要对设计的温度计进行测试与调试,确保其功能正常。
单片机项目开发实例
单片机(Microcontroller)是一种集成了CPU、内存、IO接口等功能的微型计算机芯片,广泛应用于各种嵌入式系统和电子设备中。
以下是一个简单的单片机项目开发实例:项目名称:温度监测器
项目概述:设计一个基于单片机的温度监测器,可以实时测量环境温度,并将温度数据显示在液晶显示屏上。
硬件组件:
1.单片机开发板:选择一款适合的单片机开发板,如Arduino、STM32等。
2.温度传感器:例如LM35温度传感器。
3.液晶显示屏:用于显示温度数据。
软件工具:
1.集成开发环境(IDE):根据所选单片机,选择相应的IDE,如Arduino IDE、Keil uVision 等。
2.编程语言:使用C语言或类似的编程语言编写单片机程序。
实现步骤:
1.连接硬件:将LM35温度传感器和液晶显示屏连接到单片机开发板的GPIO引脚。
2.编写程序:在所选的IDE中,使用C语言编写程序。
程序主要包括以下步骤:
-初始化:初始化单片机和液晶显示屏。
-读取温度:通过LM35传感器读取环境温度数据。
-数据处理:对读取的温度数据进行处理,例如转换为摄氏度或华氏度。
-显示:将处理后的温度数据显示在液晶显示屏上。
3.烧录程序:将编写好的程序通过编程器烧录到单片机开发板中。
4.测试:将温度监测器放置在环境中,观察液晶显示屏上的温度数据是否准确显示。
以上是一个简单的单片机项目开发实例,它涵盖了硬件组件的连接、软件编程和测试等步骤。
在实际项目中,可以根据需求和复杂程度进行更加复杂和全面的单片机应用开发。
课程设计(论文)说明书题目:温度检测器院(系):信息与通信学院专业:电子信息工程学生姓名:学号:指导教师:武小年职称:副教授2012年12月10日摘要温度是我们日常生活关心的问题。
本设计是采用单片机STC89C51作为核心元件,利用数码管作为显示元件;用单片机实现温度数据处理功能,用键盘调控,DS18b20实现温度数据的采集;。
由于单片机的集成度高,功能强,通用性好,特别是它具有体积小,重量轻,能耗低,价格便宜,可靠性好,抗干扰能力强和使用方便等方面的独特的优点,所以此装置不仅轻便、稳定,而且功能非常实用。
关键词:STC89C51;数码管;DS18b20;温度计AbstractThe temperature is our daily life concern. This design is USES the monolithic integrated circuit STC89C51 as the core components, using digital tube as display component; With the single chip microcomputer temperature data processing function, use the keyboard control, DS18b20 realize temperature data collection; In the design of the smallest system based on single chip microcomputer based on circuit connected to the matrix. Due to the high level of integration of single chip, the function is strong, general good, especially it has small volume, light weight, low energy consumption, low price and good reliability, strong anti-interference ability and easy to use, and other aspects of the unique advantage, so this device is not only light, stability, and the function is very practical.Keywords: STC89C51;;DS18b20;thermometer;nixie tube目录1. 引言 (4)1.1 数字温度计的应用 (4)2. 整体设计方案 (5)2.1 单片机部分 (5)2.2 晶振部分 (5)2.3 复位电路部分 (5)2.3.1 复位电路简介 (5)2.3.2 单片机复位电路分类 (6)3 温度计的硬件设计 (6)3.1 最小系统设计 (6)3.2 晶振电路 (6)3.3 显示电路 (7)3.4 复位电路 (7)3.5 PCB图 (7)3.6 整体图 (8)4 软件设计 (8)5 系统的调试和结果 (9)5.1 最小系统调试 (10)5.2 故障点分析 (10)5.3 软件调试问题及解决 (10)6 总结: (11)谢辞 (12)参考文献: (13)附录:仿真图和程序 (14)1.引言大学本科学生动手能力的培养和提高是大学本科教育的一个重要内容。
如何让学生在学好基础知识的同时,迅速掌握应用技术,实验与课程设计环节起着非常重要的作用。
单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。
目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。
导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录像机、摄像机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。
更不用说自动控制领域的机器人、智能仪表、医疗器械以及各种智能机械了。
因此,单片机的学习、开发与应用将造就一批计算机应用与智能化控制的科学家、工程师。
基于单片机的强大功能和重要作用,也为了提高我们的动手能力,使我们能把理论学习和实践操作结合起来,加深对理论学习的理解。
课设的具体内容是通过DS18B20这个一总线数字传感器,用C51控制实现对温度的实时监测,并且超过设定的最高或最低温度时可以自动报警,这个最高和最低温度可以通过对单片机的控制来随意设置。
数字温度计的应用及原理数字温度计有精度准确,易操作和能控制报警限度等特点,在生活中已经得到广泛的应。
现在人们的生活节奏越来越快。
特别是出门前经常是很匆促的。
这就容易造成对外界天气的错误的预判。
温度计不仅能显示当前温度,还能设定自己想设定的上限和下限。
在出门前只需看上一眼,就可以知道当前的温度,指定适合自己的穿衣计划。
可以保证了身体的健康,又能节约查看天气预报的时间。
给快节奏的生活带来了方面和舒适。
本次单片机应用的课程设计要求是运用STC89C51,DS18B20和四个开关以及若干导线、电阻、三极管设计并制作一个数字温度的控制检测的电路板产品其具体实现的功能如下:1.能过实现运用DS18B20这一温度传感器可以实时准确的检测出当前的温度,并将检测的温度清楚准确的显示在四位集成数码管上。
2.能够运用STC89C51可以控制DS18B20的检测的过程,在数码管上可以初始化显示。
3.能够设置最高温度和最低温度,并且通过开关控制STC89C51可以把最高温度和最高温度可以显示在数码管上。
4.能够通过开关控制STC89C51,可以调整最高温度和最低温度。
5.能过实现当检测的实际温度高于最高温度或低于最低温度时都能够报警提示。
2. 整体设计方案主要技术要求:基本范围-50℃-110℃精度误差小于0.5℃LED数码直读显示2.1 单片机部分单片机最小系统起振电容C2、C3一般采用15~33pF,并且电容离晶振越近越好,晶振离单片机越近越好4.P0口为开漏输出,作为输出口时需加上拉电阻,阻值一般为10k。
设置为定时器模式时,加1计数器是对内部机器周期计数(1个机器周期等于12个振荡周期,即计数频率为晶振频率的1/12)。
计数值N乘以机器周期Tcy就是定时时间t。
设置为计数器模式时,外部事件计数脉冲由T0或T1引脚输入到计数器。
在每个机器周期的S5P2期间采样T0、T1引脚电平。
当某周期采样到一高电平输入,而下一周期又采样到一低电平时,则计数器加1,更新的计数值在下一个机器周期的S3P1期间装入计数器。
由于检测一个从1到0的下降沿需要2个机器周期,因此要求被采样的电平至少要维持一个机器周期。
当晶振频率为12MHz时,最高计数频率不超过1/2MHz,即计数脉冲的周期要大于2 ms。
2.2 晶振部分振荡器特性XTAL1和XTAL2分别为反向放大器的输入和输出。
该反向放大器可以配置为片内振荡器。
石晶振荡和陶瓷振荡均可采用。
如采用外部时钟源驱动器件,XTAL2应不接。
有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。
2.3 复位电路部分2.3.1 复位电路简介为确保微机系统中电路稳定可靠工作,复位电路是必不可少的一部分,复位电路的第一功能是上电复位。
一般微机电路正常工作需要供电电源为5V±5%,即4.75~5.25V。
由于微机电路是时序数字电路,它需要稳定的时钟信号,因此在电源上电时,只有当VCC超过4.75V低于5.25V以及晶体振荡器稳定工作时,复位信号才被撤除,微机电路开始正常工作。
2.3.2 单片机复位电路分类单片机复位电路主要有四种类型:(1)微分型复位;(2)积分型复位电路;(3)比较器型复位电路;(4)看门狗型复位电路。
ISA总线的复位信号到南桥之间会有一个非门,跟随器或电子开关,常态时为低电平,复位时为高电平。
IDE的复位和ISA总线正好相反,通常两者之间会有一个非门或是一个反向电子开关,也就是说IDE常态时为高电平,复位时为低电平,这里的高电平为5V或3.3V,低电平为0.5V以下的电位。
3 温度计的硬件设计3.1 最小系统设计图1 单片机最小系统设计3.2 晶振电路图 2 晶振电路3.3 显示电路图3 电路3.4 复位电路图4 复位电路3.5 PCB图3.6 整体图按照单片机系统扩展与系统配置状况,单片机应用系统可分为最小系统、最小功耗系统及典型系统等。
STC89C51单片机是美国ATMEL公司生产的低电压、高性能CMOS 8位单片机,具有丰富的内部资源:4kB闪存、128BRAM、32根I/O口线、2个16位定时/计数器、5个向量两级中断结构、2个全双工的串行口,具有4.25~5.50V的电压工作范围和0~24MHz工作频率,使用STC89C51单片机时无须外扩存储器。
因此,本流水灯实际上就是一个带有八个发光二极管的单片机最小应用系统,即为由液晶LED、晶振、复位、电源等电路和必要的软件组成的单个单片机。
其具体硬件组成如图6所示。
图6 数字温度计原理图4 软件设计软件编程单片机的应用系统由硬件和软件组成,上述硬件原理图搭建完成上电之后,我们还不能看到温度显示的现象,我们还需要告诉单片机怎么来进行工作,即编写程序控制单片机管脚电平的高低变化,来实现温度计的实现功能。
软件编程是单片机应用系统中的一个重要的组成部分,是单片机学习的重点和难点。
下面我们以最简单的数字温度计显示功能来介绍实现温度计控制的软件编程方法。
首先启动系统,然后初始化DS18B20,初始化的目的是检测单片机的外部连接的DS18B20和单片机的连接状态是否良好并且检测DS18B20是否处于正常工作状态。
DS18B20处于正常工作的状态并且单片机得到DS18B20的应答,那么接这就跳过ROM,跳过对ROM操作的命令是在总线上只有一个器件时,为节省时间而简化的操作,若总线上不止一个器件,那么跳过ROM操作命令将会使几器件同时响应,这样就会出现数据冲突。
接着单片机发出温度转换命令,DS18B20开始进行温度的检测和转换,将检测的结果显示在数码管上,这时单片机根据DS18B20传来的数据进行判断,如果检测的温度大于设定的最高温度或低于设定的最低温度,此时进行报警,报警后返回初始化。