课时23 一元一次不等式的解法专题
- 格式:ppt
- 大小:1.04 MB
- 文档页数:13
9.3 一元一次不等式组第1课时 一元一次不等式组的解法1.理解一元一次不等式组及其解集的概念; 2.掌握一元一次不等式组的解法;(重点)3.会利用数轴表示一元一次不等式组的解集.(难点)一、情境导入你能列出上面的不等式并将其解集在数轴上表示出来吗? 二、合作探究探究点一:在数轴上表示不等式组的解集不等式组⎩⎪⎨⎪⎧x <3,x ≥1的解集在数轴上表示为( )解析:把不等式组中每个不等式的解集在数轴上表示出来,它们的公共局部是1≤x <3.应选C.方法总结:利用数轴确定不等式组的解集,如果不等式组由两个不等式组成,其公共局部在数轴上方应当是有两根横线穿过.探究点二:解一元一次不等式组解以下不等式组,并把它们的解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2x -3≥1,x +2<2x ; (2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,x 4≥x -13.解析:先求出不等式组中每一个不等式的解集,再求它们的公共局部.解:(1)⎩⎪⎨⎪⎧2x -3≥1,①x +2<2x .②解不等式①,得x ≥2,解不等式②,得x >2.所以这个不等式组的解集为x >2.将不等式组的解集在数轴上表示如下:(2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,①x 4≥x -13.②解不等式①,得x >1,解不等式②,得x ≤4. 所以这个不等式组的解集是1<x ≤4. 将不等式组的解集在数轴上表示如下:方法总结:解一元一次不等式组的一般步骤:先分别求出不等式组中每一个不等式的解集,并把它们的解集在数轴上表示出来,然后利用数轴确定这几个不等式解集的公共局部.也可利用口诀确定不等式组的解集:大大取较大,小小取较小,大小小大中间找,大大小小无处找.探究点三:求不等式组的特殊解求不等式组⎩⎪⎨⎪⎧2-x ≥0,x -12-2x -13<13的整数解.解析:分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的整数值即可.解:⎩⎪⎨⎪⎧2-x ≥0,①x -12-2x -13<13.②解不等式①,得x ≤2,解不等式②,得x >-3.故此不等式组的解集为-3<x ≤2,x 的整数解为-2,-1,0,1,2.方法总结:求不等式组的特殊解时,先解每一个不等式,求出不等式组的解集,然后根据题目要求确定特殊解.确定特殊解时也可以借助数轴.探究点四:根据不等式组的解集求字母的取值范围假设不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,那么实数a 的取值范围是( )A .a ≥-1B .a <-1C .a ≤1D .a ≤-1解析:解第一个不等式得x ≥-a ,解第二个不等式得x <1.因为不等式组无解,所以-a ≥1,解得a ≤-1.应选D.方法总结:根据不等式组的解集求字母的取值范围,可按以下步骤进行:①解每一个不等式,把解集用数字或字母表示;②根据条件即不等式组的解集情况,列出新的不等式.这时一定要注意是否包括边界点,可以进行检验,看有无边界点是否满足题意;③解这个不等式,求出字母的取值范围.三、板书设计一元一次不等式组⎩⎪⎨⎪⎧概念解法不等式组的解集⎩⎪⎨⎪⎧利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的根底之上,解不等式组时,先解每一个不等式,再确定各个不等式的解集的公共局部.教学中可以把利用数轴与利用口诀确定不等式组的解集结合起来,互相验证15.1.2 分式的根本性质1.通过类比分数的根本性质,说出分式的根本性质,并能用字母表示.(重点) 2.理解并掌握分式的根本性质和符号法那么.(难点)3.理解分式的约分、通分的意义,明确分式约分、通分的理论依据.(重点) 4.能正确、熟练地运用分式的根本性质,对分式进行约分和通分.(难点)一、情境导入中国古代的数学论著中就有对“约分〞的记载,如?九章算术?中就曾记载“约分术〞,并给出了详细的约分方法,这节课我们就来学习分式化简的相关知识,下面先来探索分式的根本性质.二、合作探究探究点一:分式的根本性质【类型一】 利用分式的根本性质对分式进行变形以下式子从左到右的变形一定正确的选项是( )A.a +3b +3=a b B.a b =acbcC.3a 3b =a bD.a b =a 2b2 解析:A 中在分式的分子与分母上同时加上3不符合分式的根本性质,故A 错误;B 中当c =0时不成立,故B 错误;C 中分式的分子与分母同时除以3,分式的值不变,故C 正确;D 中分式的分子与分母分别乘方,不符合分式的根本性质,故D 错误;应选C.方法总结:考查分式的根本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【类型二】 不改变分式的值,将分式的分子、分母中各项系数化为整数不改变分式0.2x +12+0.5x的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A.2x +12+5xB.x +54+x C.2x +1020+5x D.2x +12+x解析:利用分式的根本性质,把0.2x +12+0.5x 的分子、分母都乘以10得2x +1020+5x .应选C.方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的根本性质让分子和分母同乘以某一个数即可.【类型三】 分式的符号法那么不改变分式的值,使以下分式的分子和分母都不含“-〞号. (1)-3b 2a ;(2)5y -7x 2;(3)-a -2b 2a +b. 解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变.解:(1)原式=-3b 2a ;(2)原式=-5y 7x 2;(3)原式=-a +2b 2a +b.方法总结:这类题目容易出现的错误是把分子的符号,分母的项的符号,特别是首项的符号当成分子或分母的符号.探究点二:最简分式、分式的约分和通分 【类型一】 判定分式是否是最简分式以下分式是最简分式的是( ) A.2a 2+a ab B.6xy 3aC.x 2-1x +1D.x 2+1x +1解析:A 中该分式的分子、分母含有公因式a ,那么它不是最简分式.错误;B 中该分式的分子、分母含有公因数3,那么它不是最简分式.错误;C 中分子为(x +1)(x -1),所以该分式的分子、分母含有公因式(x +1),那么它不是最简分式.错误;D 中该分式符合最简分式的定义.正确.应选D.方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、分母分解因式,并且观察有无公因式.【类型二】 分式的约分约分:(1)-5a 5bc 325a 3bc 4;(2)x 2-2xyx 3-4x 2y +4xy 2. 解析:先找分子、分母的公因式,然后根据分式的根本性质把公因式约去. 解:(1)-5a 5bc 325a 3bc 4=5a 3bc 3〔-a 2〕5a 3bc 3·5c =-a25c; (2)x 2-2xy x 3-4x 2y +4xy 2=x 〔x -2y 〕x 〔x -2y 〕2=1x -2y. 方法总结:约分的步骤:(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.【类型三】 分式的通分通分: (1)b 3a 2c 2,c -2ab ,a5cb 3; (2)1a 2-2a ,a a +2,1a 2-4. 解析:确定最简公分母再通分.解:(1)最简公分母为30a 2b 2c 2,b 3a 2c 2=10b 430a 2b 3c 2,c -2ab =-15ab 3c 330a 2b 3c 2,a 5cb 3=6a 3c30a 2b 3c2;(2)最简公分母为a (a +2)(a -2),1a 2-2a =a 2+2a a 〔a +2〕〔a -2〕,aa +2=a 3-2a 2a 〔a +2〕〔a -2〕,1a 2-4=aa 〔a +2〕〔a -2〕.方法总结:通分的一般步骤:(1)确定分母的最简公分母.(2)用最简公分母分别除以各分母求商.(3)用所得到的商分别乘以分式的分子、分母,化成同分母的分式.三、板书设计分式的根本性质1.分式的根本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法那么:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;假设只改变其中一个的符号或三个全变号,那么分式的值变成原分式值的相反数.本节课的流程比拟顺畅,先探究分式的根本性质,然后顺势探究分式变号法那么.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.。
一元一次不等式是数学中相对基础的概念,它涉及到一个未知数,并且这个未知数的最高次数为1。
解一元一次不等式的过程涉及对不等式进行变形,使其变得更简单,从而找到未知数的解集。
下面将详细介绍一元一次不等式的解法。
### 一元一次不等式的基本形式一元一次不等式的基本形式为 `ax + b > 0`(或 `< 0`,`>= 0`,`<= 0`),其中 `a` 和 `b` 是已知数,且`a ≠ 0`,`x` 是未知数。
### 解一元一次不等式的步骤1. **去分母**:如果不等式的两边都有分母,应首先找到两个分母的最小公倍数,然后两边同时乘以这个数,以消除分母。
2. **去括号**:如果不等式的一侧或两侧有括号,应使用分配律去掉括号。
3. **移项**:将所有包含未知数的项移到不等式的一侧,常数项移到另一侧。
4. **合并同类项**:将不等式两侧的同类项(即未知数x的相同次数项)合并。
5. **系数化为1**:如果未知数`x` 的系数不是1,应通过两边同时除以这个系数(注意保持不等号方向不变)来使`x` 的系数为1。
这一步时要注意,如果除以的数是负数,则不等号的方向会发生变化。
6. **检验解**:最后,得到的解应该代入原不等式进行验证,确保解是正确的。
### 解一元一次不等式时的注意事项* 当两边同时乘以或除以负数时,不等号的方向需要反转。
* 解集通常表示为区间形式,如 `(x > a)` 或 `[x >= a]`,其中 `a` 是某个常数。
* 要注意解集的边界是否包含在内,这取决于不等式中“=”是否存在。
### 示例解不等式 `3x - 7 > 5`。
1. 去括号和合并同类项:`3x - 7 > 5` 无需去括号,因为不存在括号。
2. 移项:`3x > 5 + 7`3. 合并同类项:`3x > 12`4. 系数化为1:`x > 4`(由于除以正数3,不等号方向不变)因此,该不等式的解集为 `x > 4`。
一元一次不等式的解法专题训练一元一次不等式(组)的解法专题训练专题一:解一元一次不等式例题1:解:将不等式化简得:5x-3≤2x+3 或者 5x-3≥3x+5化简得:3x≥-6 或者2x≥8化XXX:x≥-2 或者x≥4因此,解集为x≥4.练题:1、-2x+6≥7x化XXX:9x≤6因此,解集为x≤2/3. 2、2x/3-2x+1/6≥1化简得:2x/3-2x≥5/6化简得:-4x/3≥5/6因此,解集为x≤-5/8.3、40-5(3x-7)≤-4(x+17) 化简得:55-15x≤-4x-68 化简得:11x≥123因此,解集为x≥11.4、x-10x-6/3≤4化简得:-7x-6/3≤4化XXX:-7x≤10因此,解集为x≥-10/7.5、(2x/3-2x+1/6)/6≥1/4化简得:2x/3-2x+1/6≥6/4化简得:2x/3-2x≥11/6化简得:-4x/3≥11/6因此,解集为x≤-11/8.6、3x/5+5x/4≤4化简得:12x/20+25x/20≤4化XXX:37x/20≤4因此,解集为x≤80/37.7、5-3x^3+5x^2≤6化简得:-3x^3+5x^2-1≤0因此,解集为-1≤x≤1.8、2x/6-1/6-5x/8+1/8≥1化简得:4x/24-3x/24-15/24+3/24≥1化XXX:x/24≥4/24因此,解集为x≥16.9、5-3x^3-5x^2≥6化简得:-3x^3-5x^2+1≥0因此,解集为x≤-1或者x≥1.10、x+2/2x-3/4-6≤1/4化简得:8x+16-6(2x-3)/8x-3≤1化简得:8x+16-12x+18/8x-3≤1化简得:-4x+34/8x-3≤1化简得:-4x+34≤8x-3化简得:12x≥37因此,解集为x≥37/12.11、x^2+xy+173y-7≤0因为不等式左边是关于x的二次函数,所以可以使用配方法将其化简为(x+y)^2+(172y-7)≤0,因此,解集为y≤7/172.专题二:解一元一次不等式组例题:解:将不等式组化XXX:x-3x+4≤0 或者 x-3x+4>0,且x+1≥0 或者 x+1<0.化简得:-2x+4≤0 或者 -2x+4>0,且x≥-1 或者 x<-1.因此,解集为x≤2且x≥-1/2.练题:1、x-3x+4<0,x+1≥0化XXX:-2x+4<0,x≥-1 因此,解集为-1<x<2. 2、x+2x-5≤0,3x-2≥0化简得:3x≤5,x≥2/3因此,解集为2/3≤x≤5/3.3、x+2x-5>0,3x-2<0化XXX:3x>5,x<2/3 因此,解集为x5/3.4、x+8m化XXX:3x>9,x>m因此,解集为x>m。
第九章不等式与不等式组专题18不等式的概念、性质及一元一次不等式的解法知识要点1.不等式及其解集:2.不等式的性质(1)不等式的性质1:如果a>b,那么;(2)不等式的性质2:如果a>b,c>0,那么ac>bc或;(3)不等式的性质3:如果a>b,c<0,那么ac<bc或.由不等式和等式的性质可知,可以用求差法比较大小,当两数同号时,还可以用求商法比较大小3.一元一次不等式:只含有一个未知数,并且未知数的次数是1的不等式.4.解一元一次不等式即根据不等式的性质,将不等式化为x>a或x<a的形式,其一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.典例精析例1(1)不等式x<3的正整数解有;(2)关于x的不等式-x≥a的解集为x≤-1,则a的值是;(3)已知x>a的解集中最小整数为-2,则a的最小值是.【分析】在数轴上表示出不等式的解集,结合数轴解决与整数解相关的问题.【解】(1)依题意,如图18-1所示,可知正整数解有1,2.(2)依题意,x≤-a∴,.(3)依题意,如图18-2所示,可知a的最小值是-3.a cb c±>±a bc c>a bc c<0,0,0a b a b a b a b a b a b>⇔->=⇔--<⇔-<1a-=-1a=【点评】与不等式解集有关的问题特别是有整数解的问题要注意结合数轴,数形结合,同时要注意等号能否取到,可将取等的值代入原题中检验是否要取.拓展与变式1 (1)不等式的解集中的非负整数解为;(2)已知x≥a的解集中最小整数为-2,则a的最大值为.拓展与变式2关于x的不等式3m-2x<5的解集如图18-3所示,求m的值.拓展与变式3关于x的不等式解集是,则m的取值范围是.【反思】和不等式解集有关的问题注意结合数轴,利用数轴既直观又准确,同时注意等号能否取到.例2已知a<b,用“<”或“>”填空:(1);(2);(3);(4).【分析】利用不等式的性质即可【解】(1)>;(2)<;(3)<;4)>.【点评】理解和掌握不等式的性质,才能熟练自如地应用拓展与变式4用拓展与变式4 用“<”或“>”填空:(1)若,则a b;(2)若-4a>-4b,则a b;(3)若,那么x y.拓展与变式5 若m,n为常数,则关于x的不等式的解集为.拓展与变式6 根据等式和不等式的基本性质,我们可以得到比较两数(式)大小的方法:(1)若A-B>0,则A>B;(2)若A-B=0,则A=B;(3)若A-B<0.则A<B.这种比较大小的方法称为“求差法比较大小”,请运用这种方法比较与的大小.【反思】不等式的性质和等式的性质类似,在利用性质3时注意不等号方向要改变.5x≤34mx x<+63xm>-7a-7b-3a-3b-52a+52b+ 21a--21b--22a b->-()()2211a x a y+>+()21m x n-->22336a b-+ 22242a b-+例3 解不等式,并把它的解集在数轴上表示出来. 【分析】为便于运算,首先去分母(不等式的两边同乘分母的最小公倍数“6”),然后移项(利用不等式的性质1将未知数项放在左边,常数项放在右边),再把系数化为1(利用不等式的性质2或3,将不等式化为x >a 或x <a 的形式).【解】,,,..这个不等式的解集在数轴上的表示如图18-4所示.【点评】解一元一次不等式的步骤类似于解一元一次方程的步骤,不同的是前者利用不等式的性质,后者利用等式的性质.拓展与变式7 解不等式,并求出其正整数解.拓展与变式8 x 取什么值时,式子的值不小于的值.拓展与变式9 已知不等式6(x +1)-4x>3(5x +2)+5,化简:.【点评】熟练掌握解一元一次不等式的解法,同时要注意易错点,如:去分母要注意每一项都要乘以分母的最小公倍数;去括号要注意是否漏乘和变号;系数化为1时若利用不等式的性质3时要注意不等号方向要改变. 2151132x x -+-≤()()2213516x x --+≤421536x x ---≤415623x x -≤++1111x -≤1x ≥-325164x x +->+134x --()3128x ++3113x x +--专题突破1.不等式4-3x ≥2x -6的非负整数解有( ).A. 1个B. 2个C. 3个D. 4个·2.已知,用“<”,“>”填空:(1) ;(2) ;(3) ;(4) ;(5) .3.已知关于x 的不等式的解集是,试化简.4.解下列不等式:(1); (2).5.若关于x 的不等式的解集是,试求关于x 的不等式的解集.0a b c <<<ac bc 21a m +21b m +21a m --21b m --2a -2b -2ac 2bc ()12a x ->21x a <-12a a -++()21038137y y y ---≤+0.40.90.030.0250.50.032x x x ++-->0mx n ->14x <()n m x m n ->+。