测控系统原理与设计21_输入
- 格式:ppt
- 大小:6.54 MB
- 文档页数:208
测控系统原理及设计测控系统原理及设计是一种将测量和控制过程结合起来的技术系统,它通过采集和处理数据,实时监测和控制被测对象的状态和参数,并根据设定的规则和算法,进行反馈控制,以实现预期的控制目标。
测控系统的原理主要包括传感器、信号采集、信号处理、控制器和执行机构等组成部分。
传感器是测控系统的感知器件,它能将被测对象的状态和参数转化为电信号,如温度、压力、流量等。
信号采集模块将传感器输出的模拟信号进行采样和量化转换,转化为数字信号,以便进行数字信号处理。
信号处理模块对采集到的数字信号进行滤波、增益和滤波等处理,提取出有效信息,并进行参数计算和特征提取。
控制器是测控系统的决策和执行器,根据信号处理模块提供的参数和目标值,生成控制规则和控制算法,并输出控制信号。
执行机构是测控系统的执行器,将控制信号转化为物理作用力,实现对被测对象的控制。
测控系统的设计需要考虑多个因素,包括被测对象的特性,控制目标的要求,系统的可靠性和稳定性等。
首先需要选择合适的传感器,根据被测对象的特性和参数要求,选择适当的传感器类型和规格。
其次,需要设计合理的信号采集和处理电路,确保信号的准确性和稳定性。
在控制器设计中,要根据控制目标的要求,选择合适的控制算法和调节策略,使系统能够快速响应和稳定控制。
此外,系统的可靠性和稳定性是设计中需要重点考虑的因素,需要做好故障检测和容错处理,确保系统在异常情况下能够保持正常工作。
总之,测控系统原理及设计是一门涉及多学科的综合性学科,需要了解传感器原理、信号处理技术和控制理论等方面的知识。
通过合理选取传感器、设计有效的信号采集和处理电路,以及选择合适的控制算法和策略,可以实现对被测对象的准确测量和精确控制,满足各种应用场景的需求。
基于NI实时控制器的六自由度平台测控系统设计与实现王效亮;张芳;曾宪科;栾婷;陈成峰【摘要】六自由度平台测控系统是六自由度平台的电气控制部分,它通过对六路液压缸的实时闭环控制,实现对平台位姿的控制;该测控系统采用NI的计算机,配置多种类型的PXI板卡,实现了对平台的电压、电流、数字IO、CAN总线等多种接口类型的测量和控制,满足了可靠性需求;采用了典型的上下位机控制,分别进行实时计算与任务管理,解决了实时性的控制需求;采用NI的虚拟仪器Labview开发测控软件,完成实时计算平台的正解与反解模块,作动器闭环控制等功能,增强系统的功能和灵活性;目前六自由度平台测控系统的硬件部分和软件部分都已经通过了调试,对系统进行了正弦运动和暂态特性测试,实验结果表明,运行速度快,满足了平台的控制要求.【期刊名称】《计算机测量与控制》【年(卷),期】2019(027)002【总页数】6页(P24-28,33)【关键词】六自由度平台;软件;SIT仿真模型【作者】王效亮;张芳;曾宪科;栾婷;陈成峰【作者单位】北京精密机电控制设备研究所,北京 100081;北京精密机电控制设备研究所,北京 100081;北京精密机电控制设备研究所,北京 100081;北京精密机电控制设备研究所,北京 100081;北京精密机电控制设备研究所,北京 100081【正文语种】中文【中图分类】TP273+.50 引言六自由度平台是一种模拟航天器空间运动姿态的模拟器,在其行程范围内可以模拟任意空间运动。
六自由度是平台具有六个自由运动的维度,即纵向、升降、横向、俯仰、横滚、偏航[1]。
通过对6个液压作动器的精确控制和解藕算法,实现对平台的6个自由度的位姿控制。
其系统示意图如图1所示。
图1 六自由度平台示意图六自由度运动平台可以实现对既定的轨迹的跟踪,作为运动仿真平台有着广泛的应用:1)可以作为航空飞行模拟器;2)可以作为机器人的模拟运动机构;3)在娱乐界可以作为体感模拟娱乐机;4)用作飞机、船舶、潜艇、航天器等运动载体中相关仪器设备的试验。
1、微机化测控系统分拿几类?微机化检测系统、微机化控制系统、微机化测控系统 2、模拟量输入通道由那几部分组成?以及各部分的作用? 传感器:将非电量转换为电量 调理电路:放大、滤波采集电路:将模拟信号转换为数字信号 3、模拟量输出通道由哪几部分组成?输出数据寄存器、D/A 转换器、调理电路(模拟显示器、模拟记录器、模拟执行机构) 4、前置放大器:判断信号大小准则?所放位置前后的判断?放大倍数如何确定? 判断信号大小准则输出噪声: 电路在没有信号输入时,输出端输出一定幅度的波动电压.等效输入噪声: 把电路输出端测得的噪声有效值VON 折算到该电路的输入端KV V ON IN=判断依据:是否被淹没?如果加在某电路输入端的信号幅度小到比该电路的等效输入噪声还要低.IS V <KV V ON IN =前置放大器的作用:总输出噪声:2200')()(K V K K V V IN IN ON+=总的等效增效输入噪声:2020'')(K V V K K V V IN IN ON IN+==为使:IN INV V <'须满足以下条件:20011K V V IN IN -<位置上,在滤波器的前面 OR 后面在测控领域,被测信号的频率通常比较低,滤波器大多采用RC 有源滤波器。
由于电阻元件是电路噪声的主要根源,因此RC 滤波器产生的电路噪声比较大。
如果把放大器放在滤波器后面,滤波器的噪声将会被放大器放大,使电路输出信噪比降低.21202021')()(IN IN IN IN IN V V KK V K V V +=+=滤波器1、隔直电容的作用――使调理电路的零漂电压不会随被测信号一起送到采集电路。
2、高通滤波器――滤除低频干扰3、陷波器――抑制交流电干扰。
4、低通滤波器――滤除高频干扰,“去混淆”5、采集电路的四种方案?PGA S\H的作用?采集电路的设计(实现模拟信号到数字信号的电路、AD芯片的选择是核心)测模拟信号恒定或变化缓慢的场合被测模拟信号随时间变化的场合6、前置与主放大器的区别以及适用情况?主放大器为了避免弱信号采样电压在A/D转换时达不到要求的转换精度,将MUX输出的子样电压放大到接近A/D满量程,使数字转换精度提高K倍。
测控系统原理与设计1. 引言测控系统是指用于测量和控制各种物理量和工艺过程的系统。
它在工业自动化、科学研究、医学诊断、环境监测等领域起着重要的作用。
本文将介绍测控系统的原理和设计过程,并探讨一些常用的技术和方法。
2. 测控系统的基本原理测控系统的基本原理可以概括为测量、采样、处理和控制四个过程。
2.1 测量测量是测控系统的核心过程,它用于获取被测量的物理量或工艺参数。
常用的测量方法包括传感器测量、光学测量、电磁测量等。
传感器是测控系统中最常见的测量设备,它能够将被测量的物理量转化为电信号,供后续的采样和处理。
2.2 采样采样是将连续的模拟信号转化为离散的数字信号的过程。
采样过程中需要确定采样频率和采样精度。
采样频率应根据被测量物理量的变化情况进行选择,采样精度则取决于采样器的分辨率和噪声水平。
2.3 处理采样得到的数字信号需要经过处理才能得到有用的信息。
处理过程可以包括滤波、放大、数字化等操作。
滤波可以去除噪声和杂散信号,放大可以增强信号的强度,数字化可以将模拟信号转化为数字形式,方便存储和处理。
2.4 控制控制是根据测量得到的信息对被控对象进行调节和控制的过程。
控制可以分为开环控制和闭环控制两种。
开环控制是在没有反馈信号的情况下进行的控制,而闭环控制则通过测量系统输出与期望值的差异进行调节。
3. 测控系统的设计过程测控系统的设计过程可以分为需求分析、系统设计、硬件设计、软件设计和系统测试等环节。
3.1 需求分析需求分析是测控系统设计的第一步,它需要明确系统的功能需求、性能要求和运行环境等。
在需求分析过程中,需要对被测量的物理量、测量范围、系统响应时间等进行详细的分析和规定。
3.2 系统设计在系统设计阶段,需要确定系统的整体架构和各个组件之间的关系。
系统设计需要综合考虑硬件和软件两方面的因素,选择合适的传感器、采样器、控制器等设备,并设计合理的数据传输和处理流程。
3.3 硬件设计硬件设计是测控系统设计的核心环节,它包括电路设计、布线设计和硬件模块的选型和搭建等。