A题论文(1)
- 格式:doc
- 大小:357.50 KB
- 文档页数:22
2021年国赛数学建模A题优秀论文本文基于FAST的工作原理,通过机理分析、坐标変换、非线性最小二乘优化等方法,建立了反射面板谟节优化模型・并利用BFGS 算法、蒙特卡洛积分算法等算法,对不同条件下反射光线吸收比率进行了研究。
问题一中,首先基于固定的仰角观测目标S、圆心C和焦点P・利用旋转抛物面的中心对祢性,选取焦距作为自由度控制变量,构建在极坐标系下开口竖直向上的二维抛物线方程.得到不同偏转角度下原点到抛物线的距离.进而导出三维下的旋转掀物面方程。
其次,以焦距为决策变量,将口径300米的拋物面作为积分域•将理想抛物面到原点的距离与基准球面半径差值平方作为被积函数进行积分作为最小化目标函数.建立了确定理想抛物面的优化模型。
最后,使用二分法求得目标函数导函数在定义区间上的零点.得到理想抛物面焦距的精确值为280.854,误差平方积分的最小偵为10.112o此时对应理想抛物面的解析式为z=Q+#)2/561.708300.841,问题二中,首先利用球坐标下不同轴线方向抛物面的旋转不变性.在原坐标系和问题一的坐标系之间建立了双向可逆的变换关系.得到了不同方位角下理想抛物面到原点的距离。
其次.以主索节点的工作坐标和促动器的伸缩长度为决策变量:.以积分域覆盖的主索节点到原点的距离与理想抛物面到原点的距厲之差的平方和为最小化目标函数.分别考虑下拉索长度固定、相邻节点的距离变化幅度不超过0.07%.促动器的伸缩范围在±0.6m为约束条件.建立反射面板调节优化模型。
最后,使用拉格朗日乗子法和BFGS算法进行求解.得到误差平方在抛物面口径上的积分的最小值为5.1353X109.理想抛物线的顶点坐标为(-49.392,-36.943,-294.450).调节后反射面300米口径内的主索节点编号、位置坐标、各促动器的伸缩量等结果见文件result.xlsxe问题三中,首先通过旋转变换.将反肘问题的倾斜入射光线转化为垂直入射光线。
摘要风电场的发电功率预测是保证电网功率平衡和运行安全的重要环节,本文对风电场发电功率建立预测模型。
对问题一,通过对灰色预测、ARIMA以及遗传神经网络预测模型引入预测误差反馈控制,使得预测模型具有自适应调节预测精度的能力,大大提高了三种模型的预测精度,得到了给定日期的发电功率预测值,最终确立了遗传神经网络预测模型为较高精度模型。
对问题二,在三个模型得到的预测结果和误差基础上,比较了单台风电机组功率以及多机总功率预测的相对误差,得到了预测误差存在的普遍规律:预测误差随着预测数据使用量的增多而最终呈增大趋势,并且机组汇聚会减小预测误差。
对问题三,利用动态神经网络的特性, 提出对时间序列进行预测的动态神经网络模型,并用于风电功率的预测中,提高了预测精度和稳定性。
结果表明动态神经网络在风电功率的有效性和实用性。
最后分析论证了阻碍风电功率实时预测精度进一步改善的主要因素。
关键词:风电灰色预测ARIMA 遗传神经网络动态神经网络一、问题的提出1.1问题的背景随着全球气候问题以及能源危机的出现,人类对可再生能源的依赖越显突出。
风能是一种可再生、清洁的能源,风力发电是最具大规模开发技术经济条件的非水电再生能源。
现今风力发电主要利用的是近地风能。
近地风具有波动性、间歇性、低能量密度等特点,因而风电功率也是波动的。
大规模风电场接入电网运行时,大幅度地风电功率波动会对电网的功率平衡和频率调节带来不利影响。
风能作为一种可再生洁净能源的代表,有着广泛的发展前景。
随着大规模风电场的兴起,风能越来越多地被应用到发电行业。
由此也给电力系统带来一系列问题,例如电压问题、电能质量、调度方案等,特别是风电场输出功率的不可预知性,给电网运行带来极大的困难。
对风电场输出功率进行预测不但能提高电网运行水平,保证电网的功率平衡和运行安全。
而且可以降低非可再生能源的消耗,提高电力系统经济性,减少温室气体排放,意义重大。
1.2问题的提出结合对题目的理解及附件中各机组的数据,试建立数学模型,解决以下问题(1)结合附件中各机组的数据对风电功率进行实时预测及误差分析,并检验预测结果是否满足相关预测精度的相关要求。
关于中国人口增长趋势的研究【摘要】本文从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了Logistic、灰色预测、动态模拟等方法进行建模预测。
首先,本文建立了Logistic阻滞增长模型,在最简单的假设下,依照中国人口的历史数据,运用线形最小二乘法对其进行拟合,对2007至2020年的人口数目进行了预测,得出在2015年时,中国人口有13.59亿。
在此模型中,由于并没有考虑人口的年龄、出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理论上很好,实用性不强,有一定的局限性。
然后,为了减少人口的出生和死亡这些随机事件对预测的影响,本文建立了GM(1,1) 灰色预测模型,对2007至2050年的人口数目进行了预测,同时还用1990至2005年的人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测,得出2030年时,中国人口有14.135亿。
与阻滞增长模型相同,本模型也没有考虑年龄一类的因素,只是做出了人口总数的预测,没有进一步深入。
为了对人口结构、男女比例、人口老龄化等作深入研究,本文利用动态模拟的方法建立模型三,并对数据作了如下处理:取平均消除异常值、对死亡率拟合、求出2001年市镇乡男女各年龄人口数目、城镇化水平拟合。
在此基础上,预测出人口的峰值,适婚年龄的男女数量的差值,人口老龄化程度,城镇化水平,人口抚养比以及我国“人口红利”时期。
在模型求解的过程中,还对政府部门提出了一些有针对性的建议。
此模型可以对未来人口做出细致的预测,但是需要处理的数据量较大,并且对初始数据的准确性要求较高。
接着,我们对对模型三进行了改进,考虑人为因素的作用,加入控制因子,使得所预测的结果更具有实际意义。
在灵敏度分析中,首先针对死亡率发展因子θ进行了灵敏度分析,发现人口数量对于θ的灵敏度并不高,然后对男女出生比例进行灵敏度分析得出其灵敏度系数为0.8850,最后对妇女生育率进行了灵敏度分析,发现在生育率在由低到高的变化过程中,其灵敏度在不断增大。
城市表层土壤重金属污染分析摘要土壤作为城市环境的重要组成部分,不仅提供人类生存所需的各种营养物质,而且接受来自工业和生活废水、固体废物、农药化肥、及大气降尘等物质的污染.很容易导致金属元素的蓄积,从而造成土壤重金属的污染.本文讨论了某城市表层土壤重金属污染的空间分布分布状况,地区污染程度,以及污染传播特征,污染源等,建立了相应的几何与数学模型或算法,得到了较好的结果,为防治城市表层重金属污染,保护和提高土壤资源和生态环境,提供参考.对于问题一:通过给定数据的相关分析,不考虑地形高低对污染浓度变化的影响,用Matlab 软件编程绘制个重金属元素污染浓度空间分布三维网格图和二维等高线图,综合研究该城市各功能区的空间分布以及污染程度分布.建立了Muller 地积累指数模分析模型:)]/([log 2Bn C Fn ⨯=ℜ,确定污染程度水平分级标准,通过统计计算,分析了各重金属在不同功能区的污染状况及程度.结论是:主干道路区和工业区的重金属元素的污染最严重,其他次之.对于问题二,为说明重金属元素污染的主要原因,采用单因子指数模型和内梅罗综合指数模型进行综合指标评价分析,结合问题一中统计数据进行综合分析,得到个重金属元素在各功能区及城区的综合污染程度指标.污染最严重的功能区是主干道路区,其次按照污染程度从大小的顺序依次为:工业区、生活区、公园绿地区、山区.主干道路区土壤表层重金属元素含量很高,且种类多.根据地区的差异性和元素的特殊性,分析出重金属污染Hg 和Cu 污染是最严重的污染源,且污染最严重的地区在主干道路区和工业区.这些污染主要由于含铅汽油的燃烧、汽车轮胎磨损产生的含锌粉尘、工业污水的排放、生活废水的排放、化肥农药的多度使用、金属矿山的开采.详细情况见正文.对于问题三,为了找出该城区的污染源,在分析出重金属元素的主要传播特征之后,考虑大气空间传播情况,建立了微分方程模型,通过模型求解分析,用其等效的向内(向污染浓度较高的方向搜索)搜索算法,计算确定了重金属元素主要污染源的位置,其中As 较严重的中心污染源坐标分别为:(5291,7349,10)、(12696,3024,27)、(18134、10046、41)、(17814,10707,64)、(27700,11609,165).这五个污染源主要分布在主干道路区.(5291,5739,10),(12696,3024,27),(17814,10707,64)分布在工业区,其它两种污染源分布在生活区.其余元素的中心污染源见正文.对于问题四,需对前面所建立的模型进行分析与评价并进行模型的优化,在详细分析了前三个问题的求解模型及过程之后,评价出所建立模型的优缺点.在问题三中,重金属元素除了在大气中传播以外,还通过水土流动传播.另外,前几个模型都是静态的,但污染物传播的过程与时间有关,是一个动态的过程.最后建立了一个扩算方程模型进行优化,能够为更好的研究城市地理环境的演变模式做贡献.关键词:重金属污染 地积累指数模型 单因子指数模型 内梅罗综合污染指数 微分方程模型一、问题重述1.1 问题背景随着工业发展和城市化进程的加剧,通过交通运输、工业排放、市政建设和大气沉降等造成城市重金属污染越来越严重.对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究城市不同功能区表层土壤重金属污染特征和污染空间分布性,以便更好的研究人类活动影响下城市地质环境的演变模式.本文就如何应用查证获得的海量数据资料展开城市环境质量评价,研究地质环境的演变模式建立数学模型.附录1列出了采样点的位置、海拔高度及其所属功能区等信息,附录2列出了8种列出了8种主要重金属元素在采样点处的浓度,附录3列出了8种主要重金属元素的背景值.1.2 需要解决的问题有(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度.(2) 通过数据分析,说明重金属污染的主要原因.(3) 分析重金属污染物的传播特征,由此建立数学模型,确定污染源的位置.(4) 分析所建立模型的优缺点,为更好的研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?二、问题分析该题目一方面通过GPS记录了该城市大量样本点的位置以及所属功能区,再应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据,通过这两个表的数据就大致可以提取出一些对于解决问题的重要信息,另一方面,题目给出了自然区各样本点的重金属元素的背景值,作为重金属污染情况的指标.对于分析研究各个样本点的污染程度至关重要.利用Matlab软件进行三维网格图和等高线图的制作并结合相关的数据统计分析,可以分析该城区不同区域重金属的污染程度.后面利用地积累指数法和内梅尔综合评价指数对数据进行处理,分析污染严重的功能区和重金属.结合图形的分析以及模型的建立综合分析重金属污染物的传播特征.接着对模型进行一定的优化处理,使得处理的结果更准确.三、模型假设1、假设题目所给的数据合理正确.2、该区域的划分是稳定的,不会出现大的变动.3、不考虑观测误差、随机误差和其他外在因素所产生的误差.4、重金属在大气中无穷空间扩散,不受风的影响,其扩散服从热传导定律.5、重金属污染程度连续变化,大气中重金属元素浓度连续变化.6、界限不明显区域有扩大、缩小、消失的过程,穿过大气进入仪器的重金属含量只有浓度大小之分,浓度大小由仪器灵敏度确定.四、变量与符号说明eo lg地积累指数n ()8,7,6,5,4,3,2,1=n 分别表示As,Cd,Cr,Cu,Hg,Ni,Pb,Zn 元素Fn 污染物重金属元素n 的浓度 Bn第n 种重金属元素的背景值上限P 综综合污染指数 n C重金属n 的实测值(ug/g ) max (/)n n C S 重金属污染物中污染指数最大值 (/)n n wg C S重金属污染物中污染指数平均值 n χ 重金属污染物n 的环境质量指数;n α 重金属污染物n 的实测值 n β 重金属污染物的评价标准. Ω 重金属元素通过的平面t 时间 h 海拔高度 V体积五、模型建立与求解针对问题一,首先想到的是用Matlab 软件编程,进行三维网格图、三维曲面图、等高线图和散点图的制作.5.1 问题(1)的分析、模型建立与求解: 5.1.1 问题(1)的分析对于问题一,首先来分析一下, 要给出8种主要重金属在该城区的空间分布, 就必须确定每个重金属元素与他们所对应的地区之间的联系.刚好题目给出了每个样本点的各元素浓度,那么 是不是可以将每种重金属元素含量浓度含量与该目标点所在的功能区建立联系?由此 想到利用Matlab 软件画出每种元素在该城区的三维曲面和空间曲面图.同时 在分析不同区域重金属的污染程度时,考虑到这个污染程度是否可以量化.并且是否能够建立一种模型将这种指标量化.这道问题还要求考虑每个功能区的污染程度, 知道每个功能区的每种重金属污染程度又是不一样的.那 通过什么指标来判断每个功能区的污染程度大小,这也是 为什么用权重作为评价每个功能区的污染程度的指标.5.1.2 问题(1)的模型建立该城区受这八种重金属元素As 、Cd 、Cr 、Cu 、Hg 、Ni 、Pb 、Zn 污染程度不一样.题目提供了每种重金属元素的背景值,那么 怎么样利用这些背景值和每种元素相关的浓度确定不同区域重金属的污染程度?所以 需要找出一种方法来准确的分析该城区内不同区域重金属的污染程度,并且最好能够量化.建立8种主要重金属元素在该城区的空间分布模型如下:引入了一种用于研究沉积物及其他物质中重金属污染程度的该区内不同地域重金属的污染程度的定量指标——地积累指数又称Muller 指数法,Muller 指数法表达式为:)]/([log 2Bn C Fn ⨯=ℜ式中Fn 表示污染物重金属元素n 的浓度;Bn 表示第n 种重金属元素的背景值上限,C 为考虑各地岩石差异可能会引起背景值的变动而取得一系列系数(一般取值为1.5),用来表征沉积特征、岩石地质及其他影响.Muller 地积累指数评价和分级标准分级标准具体详见表1表1:地积累指数分级标准地积累指数ℜ 分级污染程度105≤ℜ<6及严重污染 54≤ℜ< 5强-及严重污染 43≤ℜ< 4强污染 32≤ℜ< 3中等-强污染 21≤ℜ< 2中等污染 10≤ℜ< 1轻度-中等污染 0≤ℜ 0无污染 该方法指标主要是通过每种重金属元素测得的实际浓度以及他们的相关背景值,计算出每种元素的地积累指数.然后根据上面这张表 就可以判断出每种元素的污染级别,这样就可以对每种元素的污染情况进行分析.然后 再利用Matlab 软件对题目所给数据进行处理,画出相应的网格曲面图和等高线曲线图.这里需要对Matlab 进行编程,首先利用每个样本点的横坐标、纵坐标、海拔高度建立等高线图,程序语句见附录一.通过该图,可以直观的看到该城区各功能区的空间分布.但是这张图不能反映出8种主要元素在城区的污染情况, 需要借助于各种主要元素的浓度.所以 需要再建立一张等高曲线图以及相应的网格曲面图,将主要元素的浓度作为第三坐标,命令语句见附录一.5.1.3 问题(1)的求解过程首先通过Matlab 软件,调用每个样本点的位置相关数据.就是以海拔为第三坐标,并且对每个功能区进行颜色区分,画出该城区每个功能区的二维等高线图.最后把每个样本点显示在图上.得到如下这张图:图一:重金属As空间二维等高线分布图这张图只反映出了该城区各功能区的空间分布,还不能看出每种重金属污染的情况.将每种重金属元素的浓度在图上反应出来,做出该城区重金属污染的二维等高线图.具体程序语句见附录二,得到如下这张图:图二:重金属As分布平面图同时为了对应这张As含量分布平面图,也画出了三维网格曲面图(图三).图三:重金属As含量分布的空间三维图从空间三维图三中可以看到,有一处的波峰很高说明该处污染情况很严重,有二处处于波峰说明污染情况比较严重的主要有二处,还有一处面积比较广且所处高度稍微低一点这表明该处所受污染情况相对严重且污染的范围较广;同样分析二维等高线图二,图中有一处等高线之间的间距越来越密集且颜色很深表明该处受污染情况很严重,有二处等高线比较密集颜色相对较深表明这二处的污染情况相对严重,还有一处等高线间的距离较密集但是所包围的面积较广说明该处的污染也较严重且污染的面积很广.再结合前面的数据他们中心污染源的坐标分别为:(5291,5739),(12696,3024),(17814,10707).都是分布在工业区,还有一处污染级别不是特别严重,但是在该处存在着污染源,此处刚好是山林密集区.通过观察图三,会发现刚好有三个点处于波峰,还有个点波峰稍微偏低,但还是能很直观的看出来.再来看一下,Cd这种重金属的城区各功能区的二维等高线图,分布平面图,空间分布图(图四、图五):图四:重金属Cd空间二维等高线分布图图五:重金属Cd含量空间分布平面图以及相应的三维网格曲面图(图六):图六:重金属Cd含量空间分布图从空间分布图六中可以看到,污染情况比较严重且面积比较广的主要有一处,还有五处污染也相对严重.以及几处小的污染;同样从二维分布图五可以看出等高曲线所谓面积有一处颜色很深,说明该区域污染情况很严重,同时也观察到又五处等高曲线所围的面积颜色比较深,这说明了这五处区域污染情况相对严重,很明显的是有一处等高曲线所围成的面积比较广且颜色较深,表明了该区域有一处污染情况较严重且污染面积比较广,由此可见不管是从二维还是三维图形进行分析的结果是相吻合的.再结合前面的数据它金属Cd中心污染源的坐标为:(22304,10527).分布在主干道路区,还有一处污染级别不是特别严重.再观察图三,会发现刚好有三个点处于波峰.如此,通过同样的方法,都能够得到对其它六种种重金属在该城区的空间分布以及污染情况的了解(参见附录三)通过观察每种元素的三维曲面图以及等高曲线图.很容易观察到,每种重金属对该城区都存在或大或小的污染.其中有些地区是存在多种重金属污染,并且污染很严重,通过观察这8张图会发现这六种元素Cd,Cr,Cu,Hg,Ni,Pb 在横坐标在[3000,4000],纵坐标在[3000,6000]这个区域内含量都非常高,大致可以判定这段区域属于重度污染区.下面将题目中所给的数据用excel进行分类处理,得到样本点的地积累指数.然后运用数学统计法得到各种元素污染程度数据分布表,通过这些表就可以确定该城区内不同区域重金属的污染程度.统计该表时,是通过统计每个功能区的总样本点个数,然后通过地积累指数法分别计算出每种样本点的地积累指数,并判断他们的所在的污染级别.然后统计每种污染级别下,各功能区的污染点数占总点数的百分比也就是说的权重,通过该权重就能够分析出每种重金属元素的污染程度大小,以及污染所波及的范围.从而得到每种重金属元素污染最严重的地区.通过Excel对数据运算,得到重金属元素As 污染情况分布表:表二:As污染程度分布数据表下面通过同样的数据处理,得到Cd污染程度数据分布表:表三:Cd污染程度数据分布表其它六种元素的污染程度数据分布表见附录三.表中数值0的意义是在该污染级别下不存在观测的样本点.这是个大样本事件,可以认为该级别污染很轻微,甚至不存在这种级别的污染.而百分比越大,就说明在该污染级别下涉及的样本点比较多,污染波及范围较广.5.1.4问题(1)的结果分析5.1.4.1 As这种重金属污染情况分析由该表可以看出各个区域受As的污染程度,其中一类区即是生活区31.82%无污染,63.64%轻度—中度污染,4.55%为中等污染,无强污染和及严重污染的情况;二类区即是工业区38.89%不受重金属污染,52.78%受轻度—中度污染,5.56%受中等污染,2.78%受中等—强污染;三类区即是山区大多数不受污染,只有15.15%受轻度—中度污染,1.51%受中等污染;四类区即是主干路区47.83%不受污染,50.00%受轻度—中度污染,0.72%受中等污染,1.45%受中等—强污染;五类区即是公园绿地区大多数受轻度—中度污染,25.71%不受污染,2.86%受中等污染.再结合相应的几何图形,会发现在四区存在三个很明显的污染源,在污染源附近会看到,有很多二区的样本点.有个别一区的点,说明这种元素对一区的影响相对来说轻点.所以由分析可知工业区受污染最严重,污染面积达到了61.11%,其次是生活区、主干道路区,生活区污染面积都达到了50%以上,也就是说这三个区有至少一半的土壤受到该元素的不同程度的污染.其余功能区受污染程度就次之.5.1.4.2 Cd这种重金属污染情况分析由该表可以看出各个区域受Cd的污染程度,其中一类区即是生活区29.55%无污染,54.55%轻度—中度污染,13.64%为中等污染,无强污染和及严重污染的情况;二类区即是工业区16.77%不受重金属污染,44.44%受轻度—中度污染,30.56%受中等污染,8.33%受中等—强污染;三类区即是山区大多数不受污染,只有75.76%受轻度—中度污染,21.21%受中等污染;四类区即是主干路区23.91%不受污染,44.2%受轻度—中度污染,26.09%受中等污染,5.07%受中等—强污染;五类区即是公园绿地区大多数受轻度—中度污染,48.57%不受污染,31.43%受轻度-重度污染,11.43%受中等污染,8.57%受中等-强污染.再结合相应的几何图形,会发现在四区存在三个很明显的污染源,在污染源附近会看到,有很多二区的样本点.有个别一区的点,说明这种元素对一区的影响相对来说轻点.所以由分析可知工业区受污染最严重,污染面积达到了61.11%,其次是生活区、主干道路区,生活区污染面积都达到了50%以上,也就是说这三个区有至少一半的土壤受到该元素的不同程度的污染.其余功能区受污染程度就次之.5.1 这六种重金属Cr、Cu、Hg、Ni、Pb、Zn污染情况分析由于重金属含量越多,说明该地区的重金属污染程度越严重.Cr污染最严重的有一处,该中心污染源的坐标为:(3299,6018),所在地区为主干道路区,一定程度上波及到了生活区.一区和四区存在强-及严重污染,一区波及面积达到了52.27%,四区波及面积达到了41.3%,该元素污染最严重的就是生活区.Cu污染最严重的有一处,该中心污染源的坐标为:(2427,3971),所在地区为生活区,一定程度上波及到了工业区和主干道路区.一区和四区存在及严重污染,一区污染波及范围达到了84.09%,四区污染波及范围达到了84.06%,该元素污染最严重的就是生活区和主干道路区.Hg污染最严重的有一处,中心污染源的坐标为:(3299,6018),所在地区为主干道路区,一定程度上波及到了生活区.一区和四区存在及严重污染,一区污染波及范围达到了54.55%,四区污染波及范围达到了50.74%,该元素污染最严重的就是主干道路区.Ni污染最严重的有一处,中心污染源的坐标为:(3299,6018),所在地区为主干道路区,一定程度上波及到了生活区.一区、二区和四区存在及严重污染,一区污染波及范围达到了90.91%,二区污染波及范围达到了94.44%,四区污染波及范围达到了93.48%,该元素污染最严重的就是主干道路区和生活区.Pb污染最严重的有二处,中心污染源的坐标为:(2383,3692)、(5062,4339),所在地区为生活区和主干道路区,一定程度上波及到了工业区.一区和四区存在及严重污染,一区污染波及范围达到了52.73%,四区污染波及范围达到了80.87%,该元素污染最严重的就是主干道路区.Zn污染最严重的有一处,中心污染源的坐标为:(14065,10987),所在地区为主干道路区,一定程度上波及到了工业区.四区存在及严重污染,四区污染波及范围达到了67.39%,该元素污染最严重的就是主干道路区.所以,该城区不同区域重金属污染最严重的区域是主干道路区和工业区,其次是生活区、公园绿地区、山区.5.2 问题(2)的求解:5.2.1问题(2)的分析通过问题一的分析,可粗劣的判断哪几种元素污染比较大,哪个功能区污染比较严重,但是怎么样才能具体到哪个功能区污染最严重,被污染的功能区的土壤哪种重金属污染最严重?所以,针对问题二给出的数据分析,不能简单的进行数据处理.为了使得所寻找出来的原因更有说服力,用两种方法分别进行说明和验证,还要进行综合指标评价.最后确定了最严重的污染地区以及污染最严重的相关元素,根据地区的差异性和元素的特殊性,才能说明重金属污染的主要原因.5.2.2数据的统计分析首先通过数据的处理,建立每个功能区各重金属元素的污染程度样本所占的百分比表.一功能区的相关百分比数据如下:表四:一功能区各重金属污染程度所占百分比在此功能区从总体来看,重金属污染程度处于中等-强污染,其中主要污染来自重金属元素Ni,另外在该区域有少数地方Cu污染及严重.表五: 二功能区各重金属污染程度所占百分比在该功能区重金属Hg 和重金属Ni 的污染极为严重,尤其是在该区域的某些地方.由此可见,在此功能区照成重金属污染的罪魁祸首为重金属元素Hg 和重金属元素Ni . 通过这两张表, 会发现有些地区之所以污染严重,主要是因为个别元素污染所导致的.所以 要分析重金属污染的原因,就得分析该重金属在该功能区为什么会产生污染.其它三个功能区各重金属污染程度百分比见附录三.通过该附录表 可以看到在该功能区里,重金属污染程度较轻,污染等级集中在轻度污染及以下. 再观察功能区四,重金属污染十分严重,大多数重金属污染元素都集中在在各个功能区,但是在这个功能区,Pb 污染级别比较轻,没有中度甚至以上级别的污染. 再看功能区五,从总体上分析,该地区重金属污染中等、强污染几乎没有,正因如此造成重金属污染的少数种类重金属元素就凸显出来了——Ni 元素和Hg 元素.纵观整体,分析所有的功能区, 很容易发现造成重金属污染的主要重金属元素,他们就是Ni 元素和Hg 元素.知道前面的数据分析理由不充分,只是一个粗劣的判断.为了综合前面处理的数据,准确找出各个功能区污染的主要元素. 需要利用单因子指数法和内梅罗综合污染指数法进行综合评价.5.2.3 单因子指数法和内梅罗综合污染指数法的建立与求解单因子指数法是目前国内土壤重金属的单项污染指数评价方法之一,其计算公式为:n n n βαχ=,式中n χ为重金属污染物n 的环境质量指数;n α为重金属污染物i 的实测值;n β为重金属污染物的评价标准.n χ﹥1表示污染;n χ=1或n χ﹤1表示无污染;且n χ值越大,则污染物越严重.为了更全面的反应各重金属对土壤的不同作用.突出高浓度重金属对环境质量的影响, 采用内梅罗综合污染指数法.其计算公式为:2)/(/22max n wgn n n S C S C P +=)(综,式中max )(n n βα表示重金属污染物种污染指数nn βα的最大值;(/)n n wg C S 表示重金属污染物中污染指数的平均值.土壤污染水平分级标准采用国家土壤环境二级标准.土壤污染综合污染指数分级标准为综合污染指数>3为重污染,2~3为中污染,1~2为轻污染,0.7~1为警戒级,≤ 0.7为安全级.下面为了找到每种元素在该城区的综合污染指数,借助于Matlab 循环计算.编写如下系列命令见附录七.运行程序结果为As 综合污染指数:p=4.0093,分别运行另外几种程序,得到每种重金属元素的综合评价指标,简单结果如下表:。
靶标圆心像坐标确定与数码相机定位摘要数码相机实现定位功能,需确定靶标圆心的像坐标。
本文就如何确定靶标圆心像坐标展开了讨论,并给出了计算两部相机相对位置的模型。
在问题一中,我们采用坐标变换的方法建立确定靶标圆心像坐标的模型。
根据坐标系之间的关系,分别通过物坐标系的旋转、平移以及相机坐标系的缩放,引入绕物坐标系三坐标轴旋转的角度θξϕ,,以及物坐标系平移的量度321,,t t t 等参数确定出物坐标系到像坐标系变换的方程,由此即可得到求解靶标圆心像坐标的模型。
求解方程里面的参数时,考虑到计算的方便,我们选择两圆内公切线的交点作为标定点。
计算它们的物坐标与像坐标,代入上述方程即可求得参数的值。
对于问题二,根据圆的有关性质,两条内公切线的斜率(或斜率倒数)分别为连接对应两圆上任意两点连线斜率(或斜率倒数)的最大值和最小值。
基于此,容易求得像坐标系里面对应的内公切线的方程,它们的交点即为标定点的像坐标,对应的物坐标容易得到。
然后将这些标定点的坐标分别代入问题一建立的物坐标系到像坐标系变换的方程,求解得到相应的参数θξϕ,,,321,,t t t 的值。
最后再将各园圆心的物坐标代入上述方程,求得各圆圆心像坐标结果为:A(-49.8577,50.6559),B(-24.5423,49.1824),C(32.5168,48.5784),D(18.3139,-30.6194),E(-60.3038,-30.3856)。
在问题三中,我们选取物坐标系里面一条直线上的9个点,对它们对应的像坐标进行一元线性回归分析,对模型的精度进行检验;最终得到这9个点拟合优度为0.9096非常接近1,说明模型精度较高。
对于模型稳定性的分析,我们将各圆圆心的物坐标向左偏移1mm,考查对应的像坐标的变化;得到各圆心像坐标的偏移量的平均值与圆心物坐标的偏移量的相对误差是2.62%,说明模型稳定性较好。
最后我们对问题一、二中模型进行了检验,在A,C,D,E 四个圆上分别选取一些特定的点,利用它们的像坐标分别求出其对应的物坐标,找到这些物坐标与对应圆心物坐标之间的距离,比较这些距离同圆半径的实际值(即12mm)的差值,最终得到它们相对误差的平均值是1.66%,说明模型的可行性是较高的。
垃圾的分类处理与清运方案 1数学建模比赛预选A 题:垃圾分类处理与清运方案设计垃圾分类化收集与处理是有利于减少垃圾的产生,有益于环境保护,同时也有利于资源回收与再利用的城市绿色工程.在发达国家普遍实现了垃圾分类化,随着国民经济发展与城市化进程加快,我国大城市的垃圾分类化已经提到日程上来.2010年5月国家发改委、住房和城乡建设部、环境保护部、农业部联合印发了《关于组织开展城市餐厨废弃物资源化利用和无害化处理试点工作的通知》,并且在北京、上海、重庆和深圳都取得一定成果,但是许多问题仍然是垃圾分类化进程中需要深入研究的.在深圳,垃圾分为四类:橱余垃圾、可回收垃圾、有害垃圾和其他不可回收垃圾,这种分类顾名思义不难理解.其中对于居民垃圾,基本的分类处理流程如下:在垃圾分类收集与处理中,不同类的垃圾有不同的处理方式,简述如下:1)橱余垃圾可以使用脱水干燥处理装置,处理后的干物质运送饲料加工厂做原料.不同处理规模的设备成本和运行成本(分大型和小型)见附录1说明.2)可回收垃圾将收集后分类再利用.3)有害垃圾,运送到固废处理中心集中处理.4)其他不可回收垃圾将运送到填埋场或焚烧场处理.所有垃圾将从小区运送到附近的转运站,再运送到少数几个垃圾处理中心.显然,1)和2)两项中,经过处理,回收和利用,产生经济效益,而3)和4)只有消耗处理费用,不产生经济效益.本项研究课题旨在为深圳市的垃圾分类化进程作出贡献.为此请你们运用数学建模方法对深圳市南山区的分类化垃圾的实现做一些研究,具体的研究目标是:1)假定现有垃圾转运站规模与位置不变条件下,给出大、小型设备(橱余垃圾)的分布设计,同时在目前的运输装备条件下给出清运路线的具体方案.以期达到最佳经济效益和环保效果.2)假设转运站允许重新设计,请为问题1)的目标重新设计.仅仅为了查询方便,在题目附录2所指出的网页中,给出了深圳市南山区所有小区的相关资料,同时给出了现有垃圾处理的数据和转运站的位置.其他所需数据资料自行解决.垃圾的分类处理与清运方案 2垃圾的分类处理与清运方案3论文题目: 垃圾分类处理与清运方案设计姓名1:唐宏庆 学号:09090230 专业: 数学与应用数学 姓名1:赵彩仙 学号:09090248 专业: 数学与应用数学姓名1:邓建华 学号:08190106专业:计算机科学与技术2011 年5月7日目录一.摘要 (5)二问题的提出 (6)三.问题的分析 (6)3.1 问题所要考虑的主要因素 (6)3.2 问题的转化与数学描述 (7)3.3 算法选择及其时间复杂度分析 (8)3.4 考虑转运站重新设计情况 (8)四符号说明和模型假设 (8)4.1 符号说明 (8)4.2 模型假设 (8)五.数学模型的建立与求解 (9)5.1 数学模型的建立 (9)1. 城市生活垃圾产生量窥测方法 (9)2. 垃圾清运路线优化 (9)3. 转运站设置 (11)4. 转运优化 (11)5.2 数学模型的求解 (12)1. 问题的转化与数学刻画 (12)2. 算法的描述与求解 (13)3.复杂度比较分析 (14)4.模型评价 (15)六.进一步的问题分析 (15)6.1 关于算法的思考 (15)6.2 关于“和谐垃圾站节点[7]”的构想 (16)七.参考文献 (17)垃圾的分类处理与清运方案 4一.摘要:城市生活垃圾是人们生活中产生的固体废弃物.在收集、运输和处理处置过程中,垃圾中所含有的和产生的有害成份,会对大气、土壤、水体造成污染,不仅严重影响城市环境质量,而且威胁人民身体健康,成为社会公害之一.如何解决城市垃圾问题,还城市乡居民一个健康洁净的生存环境,已引起全社会的高度重视.现在我们以深圳市南山区垃圾的分类处理与清运为研究对象,根据南山区生活垃圾的特性,设计一个科学合理的垃圾的分类处理与清运方案,因此我们需对垃圾车的收运路线进行合理优化,以降低收运系统成本,减少环境污染和社会影响.本文在参考国内外大量文献的基础上,研究了国内外城市生活垃圾收集与运输路线的优化模型与方法, 通过各种模型与方法的对比,借鉴已有的研究思路与方法, 应用神经网络的理论,找出影响垃圾分类处理与清运的主要因素,采集人工神经网络训练所需的样本并进行数据预处理;设计一套相应的算法并进行计算机实现;分析基于人工神经网络的垃圾的分类处理与清运系统的作用、应用方法与可以推广和改进的地方,从而建立一套有效的垃圾分类处理与清运系统.关健词:生活垃圾人工神经网络模型数据预处理计算机算法收运系统优化模型深圳市南山区垃圾的分类处理与清运方案 5二.问题的提出:面对城市生活垃圾泛滥成灾和围剿城市的现实,我们有必要选择科学合理的方案,以还居民一个洁净舒适的生活环境,但同时我们也面临多条线路的选择问题.现在拟开发一个解决清运线路选则问题的自助查询计算机系统,要解决的核心问题就是线路的选择的模型和算法实现.需要解决的具体问题如下:1)假定现有垃圾转运站规模与位置不变条件下,给出大、小型设备(橱余垃圾)的分布设计,同时在目前的运输装备条件下给出清运路线的具体方案.以期达到最佳经济效益和环保效果.2)假设转运站允许重新设计,请为问题1)的目标重新设计.三.问题的分析:近年来, 随着经济的快速发展, 城市人口的迅猛增加以及人们生活水平的不断提高, 城市生活垃圾问题成为日渐突出的问题, 垃圾的产生量大于清运量, 无害化处理量更小, 垃圾污染事故频出, 严重破坏了城市生态环境系统的平衡.城市生活垃圾已成为制约城市社会经济发展的主要因素之一.城市生活垃圾的运输环节是垃圾处理系统中的重要组成部分, 在垃圾处理成本中, 收集与运输成本占相当大的比例, 如W ilson 指出美国每年的垃圾处理费用总额约在200亿美元左右, 其中收集运输费用已超过100亿美元[ 1] .因而有必要对垃圾车的收运路线进行合理优化, 以降低收运系统成本, 减少环境污染与社会影响.因此, 如何使城市生活垃圾的收运系统快速化、高效化、合理化、经济化是近年来被广泛关注和研究的一个课题.3.1 问题所要考虑的主要因素在研究垃圾分类处理与清运方案和相关算法时,我们有必要考虑问题的主要因素,在保证垃圾能正常合理的转运清运处理下,尽量的节省能源,即里程最短、费用最少、时间尽量少、车队规模尽量小、车辆利用率高等.垃圾的分类处理与清运方案 63.2 问题的转化与数学描述问题的关键是在一定条件下求出任意两站点之间的投资线路.如果将所有站点看作结点,站点之间用同一趟车转运垃圾(当考虑站点间运送时间时)可以到达看作一条有向边,所花费的时间看作边权,则某一时刻的的公共交通状态便形成了一个网络.因为站点与站点之间可能有多种到达方式,所以该网络是一个多重有向图[2].问题就转化为一个图论问题,即在给定的加权网络图中寻找任意两点之间满足一定权值条件(本题表示为路径最短、耗时最少等)的一条通路.3.3 算法选择及其时间复杂度分析在算法的选择上,很自然地想到Dijkstra最短路径算法.因为该算法稳定性好,能适应网络拓扑的变化,同时对系统的内存空间占用少.但在经过试验后,我们发现该算法的数据结构及其实现方法、时间复杂度等方面在本题应用上表现出较大的不足.其一,数据结构复杂.一般而言,无向图可以用邻接矩阵和十字链表表示.但垃圾站节点线路网络拓扑,很难用现有的数据结构加以完整的表示.如果采用该算法分析,其建立的数据结构模型将非常复杂.其二,算法时间长.我们在试验时还只规定最多两次换乘,在大量数据的情况下,计算速度就慢得让人难以忍受,根本达不到实时查询的需要.该算法的时间复杂度为2O m n,其中m表(,)示站点结点数,n表示所有结点数.其三,垃圾站节点转车的特殊性并不一定要求用Dijkstra算法求出一条最短路径.使用Dijkstra算法计算出来的结果可能是需要转乘多次或上十次车才能到达.这样的计算结果是毫无意义的.其次,我们尝试使用了动态规划算法[4]求解.由于数据量大,其运行时间也是很漫长的,中间甚至出现了死机现象.所以也不适宜用来进行实时计算.于是,我们考虑,如果在搜索过程中能够优先考虑靠近终点方向的顶点,即使用启发式搜索,则可以减少算法搜索空间,并大大提高算法搜索效率.目前在关于路径优化问题最流行的启发式搜索算法是弗洛伊德算法.该算法在选择下一个被检查的节点时,对当前节点距离终点的长度(权值)进行估计,评价其处于最优路径上的可能性量度,这样就可以首先搜索可能性大的节点,达到提高搜索效率的目的.考虑到本题特殊情况,我们在搜索过程中考虑了优先级,对弗洛伊垃圾的分类处理与清运方案7垃圾的分类处理与清运方案 8德算法选择具有最小估价函数值的节点改为选择具有最大优先级的节点.这一改进应该能够很好地解决上述其他算法遇到的困难.3.4 考虑转运站重新设计的情况把转运站所管辖的小区做近似处理,以带点的处理方式,根据题目所给的居民数据,利用计算机进行合理分布.四.符号说明和模型假设4.1 符号说明i V 图的顶点,1,2,i = ;ij E 连接顶点i V 和j V 的有向边;),,(ωE V G 由顶点集V 、边集E 和权向量ω构成的有向多重图; N 所查询的始发站至终到站的可行路线方案数;k λ 所查询的始发站至终到站的第k 个可行路线方案的转乘次数;ij d 从顶点i V 到j V 的路程;ki F k 方案总费用.4.2 模型假设H1 为简化问题,只考虑垃圾清运系统正常营运的情况;H2 假设题中所给数据真实可靠;H3 假设居民将垃圾放入垃圾站时,已将垃圾分好类.H4假设任意相邻两个垃圾转运站点之间的距离相同.五.数学模型的建立与求解5.1数学模型的建立城市垃圾收运是由产生垃圾的源头运送至处理处置场的全过程操作,包括3 个阶段:①收集———垃圾从产生源到公共贮存容器的过程;②清运———指清运车沿一定路线清除贮存容器内垃圾并将其转运到垃圾转运站的过程(在一定情况下,清运车可直接将垃圾运送至处理处置场);③中转———指在转运站将垃圾装载至大容量转运车,远途运输至处理处置场.前1 个阶段需要对垃圾产生源分布情况、垃圾产生量及成分等进行调查和预测;后 2 个阶段需要运用最优化技术对清运线路和转运站垃圾分配运输进行优化.5.1.1.城市生活垃圾产生量预测方法城市生活垃圾收运模式的设计是在对生活垃圾产生量作正确预测的条件下进行的,因为设计的收运模式,不仅应满足当前垃圾产生量的需求,而且应该能够应对未来几年的变化.我们运用灰色系统模型分析法进行预测.灰色系统模型()GM包含模型的变量维数m和阶数n,记作()mGM,.在生活垃圾产生量预测中nGM模型.通过对原始的时间序列数据进行累加处理后,数据便会出普遍使用()1,1现明显的指数规律,通过进一步分析,可以进行垃圾产生量预测.在实际应用中,灰色系统模型预测法会产生正误差,而线形回归分析方法的预测结果偏小.因此可以结合2 种预测方法的特点,运用2 种预测值的加权平均值作为垃圾产生量的推荐值〔2〕.5.1.2.垃圾清运路线优化垃圾物流是一种具有“产生源高度分散、处置高度集中、产生量和品质随季节变化”特点的“倒物流”系统,是从分散到集中的过程;而生活物质供应“正物流”垃圾的分类处理与清运方案9垃圾的分类处理与清运方案 10 是商品从集中到分散的过程.虽然2 种物流在表现上有所区别,但也有本质联系.在环卫作业中采用先进的生活垃圾物流管理环境卫生工程EnvironmentalSanitation EngineeringVol .17 No.4August 2009第17 卷第4 期2009 年8 月·43·环境卫生工程第17 卷技术,可以有效提高效率,降低成本.因此垃圾清运车辆选择、路线优化可以参照物流配送系统对运输车辆的优化调度.车辆调度问题一般定义为:对一系列发货点/收货点,组织适当的行车路线,使车辆有序地通过它们,在满足一定的约束条件(如货物需求量、发送量、交发货时间、车辆容量限制、行驶里程限制、时空限制等) 下,达到一定的目标(如路程最短、费用极小、时间尽量少、使用车辆尽量少等)〔3〕.比照物流学中车辆调度问题〔4〕,建立垃圾清运的基本模型.用o 标志垃圾转运站;设有n 个清运点,分别用标志;,,2,1n 完成清运任务需要的车辆数为 m ,每个车辆的载质量为c ;每个清运点的垃圾产生量为)n i g i ,,2,1 =;转运站和各清运点中任意两点之间的运距用()n j n i d ij ,,2,1,0;,,2,1,0 ==表示;第 k 辆车的行车路线称为第k 条子路径,其包含清运点的数目为k p nk ,表示第k 条子路径中nk 个清运点组成的集合,其中的元素()nk i p ki ,,2,1 = 代表第 k 条子路径中顺序为i 的清运点;0k p 、1+knk p 均表示转运站,即010==+knk k p p .ki ki i i k p dp n m Minz 1111-=+==∑∑,n nk ≤≤1,m k ,,2,1 =;(3)n nk mk ==∑1;(4)c gp n k ki ≤=∑1,{};,,2,1,,2,1m k nk i p p ki k ===(5)=⋂21k k p p Φ;.,,2,1;,,2,1,2121m k m k k k ==≠(6)经证明:一般车辆优化调度问题属于组合优化领域的NP-hard 问题,通常采用启发式算法进行求解.例如Eugênio de Oliveira Simonetto 等综合运用启发式算法、拍卖算法和动态惩罚法求解了巴西的阿雷格里港24 辆清运车的调度问题.该问题中包含1 个车库,在清运该市60 t 垃圾的同时,满足8 个垃圾分选场的最小需求〔5〕.AndrzejJaszkiewicz 等用保距重组算子的遗传局部搜索算法解决了1 个固体废物管理公司清运30 000 个垃圾容器的车辆运输问题.该问题包含1 个车库,2个垃圾填埋场〔6〕.该优化问题不仅要总路线最短,而且要实现经济、环境与社会三方共赢.宋薇等提出可将环境与社会因素的信息加至优化模型中,即对实际路线长度进行加权改造.得到综合路线长度公式为〔7〕:Cs C 321ααα=.(7)式中: C 为综合路线长度,km ; Cs 为实际路线长度,km ; 1α为噪声影响权重;2α 为大气影响 权重; 3α为交通状况权重.5.1.3.转运站设置设置垃圾转运站可以更有效地利用人力和物力,充分发挥垃圾清运车的效益,保证载质量较大的垃圾转运车经济而有效地进行长距离运输,从而降低垃圾收运总费用.所以,一般来说,当转运距离超过一定临界值时,需要设置转运站. 目前,多目标评价模型〔8〕、整数规划模型〔9〕被广泛应用于转运站的选择决策中.5.1.4.转运优化城市垃圾转运的优化属于运输问题,主要是根据不同处置方式的处置量,以及各转运站至不同处置场所的运输路线及距离来确定各转运站向不同处置场所分配和运输垃圾的量.如设有 m 个转运站,,,2,1Am A A 分别产生的垃圾量为am a a ,,2,1 .另有垃圾处理处置点 n 个,分别为,,,2,1Bn B B 可接收的处置量分别为bn b b ,,2,1 .从i A 到j B 的运输距离(体现运能的经济性) 为ij c ,在产生量与处置量平衡的条件下,∑∑===11j j i i b n a n ,求最经济(运输距离最小) 的调运方案〔10〕.数学模型:设从i A 到j B 的发运量为ij x ,则∑∑⨯==11ij ij j i i c n nm M .(8)i ij j a x n ==∑1,j ij i b x m ==∑1,0≥ij x ,()n j m i ,,2,1;,,2,1 ==.(9)5 结束语在决策中引入定量模型,可以提高决策的质量和水平,但应该注意城市生活垃圾收运系统的规划设计牵涉到许多相互关联、相互制约的因素,涵盖经济、环境、社会多个方面.因此,在建立模型时应该综合考虑各种因素,经过反复比较和权衡,最后获得最佳的生活垃圾清运与处理方案.5.2数学模型的求解垃圾转运站数据模型[3]以垃圾转运路线段为基本单元.转运线路是一系列垃圾转运线路段的有序排列,为转运车辆行驶的一个物理路径,不同的运输线路是由居民生活垃圾站连接的.在垃圾转运过程中,我们关心的是垃圾转运的路径最短、耗时最少等问题,而对转运过程经过的街道并不感兴趣.于是将垃圾站点和转运站点合并,得到适合垃圾转运线路查询的数据模型如图1所示.图1 垃圾转运数据模型5.2.1问题转化与数学刻画垃圾转运与处理站点的布局关键是在一定条件下求出任意两站点A 与B 之间的运行线路上的权重.如果将所有站点看作结点,1,i V i N = ,站点之间投入大型或小型运输车辆(看作一条有向边ij E )运输垃圾所开销的成本看作边权ij ω,则某一时刻的运输交通状态便形成了一个网络.因为站点与站点之间可能有多种到达方式,所以该网络是一个多重有向图[2].问题就转化为一个图论问题,即在给定的加权网络图),,(ωE V G 中寻找任意两点i V 与j V 之间满足一定条件(本题表示为运输成本最少、、投资路程最短、费用最少等)的一条通路j k i V V V →→→→ .根据题目要求以及前面关于投入最少获利最大的分析,由最优化原理[4],问题可以依次描述为下面优化问题:min ,..0k k s t λλ≥ (4.1){1,,}min ()()k i k ki mn ki i T T i N T C g T P f X ∈==⋅+⋅∑∑ (4.2)min ,..0,,kimn mn ki p d s t d m n p >∈∑ (4.3){1,,}min k i k ki F F i N F f ∈==∑ (4.4)其中,()mn g T 表示与ki C 匹配的大,小型运输车辆, ()i f X 表示第i 个下一个节点匹配的相邻站点行驶路径.5.1.2 算法描述与求解在考虑大,小型运输车辆如何投入时,我们知道相距较远且不在相邻区域的垃圾处理点是不可能进行垃圾集中处理的.所以,根据:1)深圳市南山区垃圾转运站垃圾转运量等情况统计表(南山),2)南山区居民数据,3)中转站位置图.采用佛洛依德算法来求解上述优化问题.弗洛伊德算法[5]在选择下一个被检查的节点时,比Dijkstra 算法快速,从而提高效率.考虑到本题特殊情况,在搜索过程中应该考虑到垃圾处理站点的区域性,对佛洛依德算法选择具有最小开销成本的节点,我们按照“设最大值----->做标记”的优先顺序进行估计.下面是佛洛依德算法步骤,其中INFINITY 和enum BOOL {False,True}是引入的两个标记位,INFINITY 为超出区域的两垃圾处理站以及没有可行边的两节点的标记位,enum BOOL {False,True}为存在可行边的且处于同一个最近区域的两节点的标记位.第一步,生成垃圾站点模拟图CreateGraph(Graph &),建立垃圾站点模拟图的邻接矩阵arcs[MAX_NUM][MAX_NUM],初始其权值为INFINITY .依次读入邻接矩阵的值.令INFINITY表示无穷大,不于考虑.第二步,依次循环探视其他节点(若开始节点为由V到W),若存在U节点使得D[v][u]+D[u][w] <D[v][w]存在,则置enum BOOL { False,True}的标志位为True,并将其作为最佳节点BEST.否则,置False,继续探视下个相邻的节点.直止探视完非INFINITY为止.第三步,根据第二步探视的BOOL值,修改邻接矩阵arcs[MAX_NUM][MAX_NUM]的值.第四步,输出节点之间的最小权值,并显示运行路线.5.1.3复杂度比较分析为了说明我们所采用算法的优越性,下面把之前我们尝试过的Dijkstra算法和动态规划算法与之进行形势上的比较.鉴于动态规划算法在试验过程中执行太慢,已经超过了人们的心理承受能力,在此没有必要拿来比较.虽然Dijkstra算法与弗洛伊德算法的时间复杂度也是2O m n,但形式上简(,)单些.弗洛伊德算法仍从图的带权邻接矩阵arcs[MAX_NUM][MAX_NUM]出发,其基本思想是:假设求从顶点Vi到Vj的最短路径.如果从Vi到Vj有弧,则从Vi到Vj存在一条长度为arcs[i][j]的路径,该路径不一定是最短的,尚需进行n次的探试.首先考虑路径(Vi,V0,Vj)是否存在(即判别弧(Vi,V0)( V0 ,Vj)是否存在).如果存在,则比较(Vi,Vj)和(Vi,V0,Vj)的路径长度取较短者为从Vi到Vj的中间顶点的序列不大于0的最短路径.假如在路径上再加入一个顶点V1,也就是说,如果(Vi,……V1)和(Vi,……Vj)分别是当前找到的中间顶点的序列号不大于0的最短路径,那么(Vi,……V1,……Vj)就有可能是从Vi到Vj的中间顶点的序列号不大于1的最短路径.将它和已经得到的从Vi到Vj中间顶点序列号不大于0的最短路径相比较,从中选出中间顶点的序列号不大于1的最短路径之后,再增加一的顶点V2继续进行探试.依次类推.在一般情况下,若(Vi,……Vk)和(Vk,……Vj)分别是从Vi到Vk和Vk到Vj的中间序列号不大于k-1的最短路径,则将(Vi,……Vk,……Vj)和已经得到Vi到Vj且中间顶点序列号不大于K-1的最短路径比较,其长度较短者便是Vi到Vj的中间序列号不大于k的最短路径.这样,经过n次的比较后,最后必然求得Vi到Vj的最短路径.按照此法,可以同时求得各对顶点的最短距离.5.1.4模型评价本模型首先从宏观上给出了一个垃圾站节点数据模型,这对进一步理解整个系统的运行和算法的实现都大有帮助.我们在算法中考虑了优先级搜索,对目前在关于路径优化问题方面最流行的启发式搜索算法——弗洛伊德算法进行了相关改进,使得搜索效率大大提高,基本能够满足实时查询需要.这体现在与其他算法的比较数据中.当同时考虑最短路径和大小型车辆的投入时,我们对问题进行了合理的转化,把大小型车辆的投入看成“特殊的权”,只需在程序中加上几个简单的约束和说明,就很快得到了相应问题的解.但是本模型所采用的改进弗洛伊德算法只是我们目前找到的一种可行算法而已,有无比其更加适合的算法需要进一步分析寻找.题中基本假设H3只是为简化问题而设,与实际情况可能存在一些出入,但这并不影响改进弗洛伊德算法本身的执行.此外,基于投资者满意度最优的优化模型虽然充分考虑了运输的满意度,但是寻找合适的算法就变得更加复杂,这也是一个不容忽视的问题.六.进一步的问题6.1 关于算法的思考我们采用改进的弗洛伊德算法虽然获得了比较满意的结果,但如果对垃圾站节点网络中的节点和边赋予空间信息,那么由几何学原理,两点之间直线最短,若两节点间存在一条边,则该边为两节点间的最短路径;若不存在边相连,则连接两点间的直线段代表了一个路线趋势,顺着连线的方向的某条边是最短路径的可能性较大.从而可在计算最短路径时采用效用优先的路径搜索.所以,如果再加上一张标有路径距离的地图,我们的算法还可以改进,搜索效率还可以提高. 6.2 关于“和谐垃圾站节点[7]”的构想“和谐社会”,“关注民生”,“以人为本”.这已经逐步成为我国社会主义社会的鲜明特征.那么,作为与城市居民息息相关的垃圾站节点系统,理应逐步实现“和谐垃圾站节点”,做到“以人为本”.具体到垃圾站节点查询系统的开发上,。
洗衣机参数优化设计研究与工作方式分析摘要随着经济的发展,人民生活水平不断提高,人们选择衣物的品位和质量也越来越高,传统的手洗方式不能满足人们的需求,因此近年来,洗衣机越来越普遍的出现在各个家庭中。
用户总是希望洗衣机能尽量提高净衣效能,而且能够尽量减小洗涤过程对衣物的机械损伤。
本文通过通过建立指标,将洗衣机的净衣效能用洗净率和洗净均匀度来衡量,对织物的损伤程度用磨损率和缠绕率来衡量。
同时充分考虑了指标的影响因子,即洗衣机的转速、内筒壁形状、波轮外形,旋转方式、洗涤水量、洗涤用水硬度和洗涤时间。
并将这些因素当量化为不同的参数值,查阅相关实验数据,使用SAS对各个因素进行线性回归分析,得出了单一变量下净衣性能和衣物损伤程度随各影响因子的变化趋势。
利用此趋势,我们对洗衣机性能进行量化分析,找出相应的设计最优值,为洗衣机进行优化设计提供依据。
对于洗衣机脱水阶段优化,由于时间有限,我们只对滚筒式洗衣机参数自动设置的优化设计,通过查阅文献对模糊控制算法的研究,分别建立衣物重量隶属函数、油度隶属函数、水温隶属函数、主洗时间隶属函数以及加热温度等隶属函数。
最后利用模糊推理的方法,进行规则的匹配搜索,进行模糊推理,反模糊化,最终自动确定水位的高低、洗涤时间、脱水时间和漂洗次数等。
还有对于滚筒式洗衣机脱水过程中高速脱水阶段,进行了洗衣机的振动问题优化设计,针对某型号滚筒洗衣机工作状态时的工况,建立其动力学理论模型,箱体结构进行改进设计,并运用ADAMS动力学仿真分析软件建立滚筒洗衣机的虚拟样机模型,基于此来进行动力学仿真分析及悬挂系统的结构参数优化最后,我们对所建立的模型和求解方法的优缺点给出了中肯的评价,并指出了改进的方向,还对所建立的模型进行了推广。
关键字:线性回归分析模糊控制算法动力学模型虚拟样机模型一、问题重述近些年来,洗衣机以其优良的性能,极大的便利,得到消费者的喜爱,逐渐普及到各个家庭。
目前我国洗衣机制造业主要生产波轮式和滚筒式两种机型的洗衣机,关于波轮式洗衣机和滚桶洗衣机的净衣效能和对衣物的损伤程度是广大消费者在选择洗衣机时所关心的话题。
食物分类问题的研究摘要人们的生活离不开食物。
一个人想要健康长寿,就要做到营养全面。
每一种食物有不同的营养,但我们不能吃所有的食物,因此对食物分类的探讨具有重要意义。
本文对食物进行量化,根据食物的38项指标得出的差别度量矩阵来分类。
针对问题一,借助MATLAB工具对数据进行挖掘与分析,建立聚类分析模型,运用绝对值减数法求解模糊矩阵,再通过聚类得到食物合理的分类,最终将题中的45种食物分成7类。
对于问题二及问题三,在基于问题一的基础上,对用MATLAB分析得到的食物分类与人们习惯的食物分类比较,并给人们提出建议。
最后,我们对模型的优缺点进行了评价,讨论了其推广应用的价值,并给广大人民提出合理摄取食物营养的建议。
关键词:食物分类聚类分析模型模糊相似矩阵 MATLAB工具The study of food classification problems. AbstractThe life of people can’t do without food. Everyone who wants to live a longhealthy life must achieve comprehensive nutrition. Each food has its ownnutrients, but we are impossible to eat all food.So it is of great significanceto explore the food category.This article quantifies the food,and classifies food according to thedifference between 38 indicators measure the results of the food matrix.Forquestion one, with the aid of MATLAB tools for the excavation and analysis ofdata, establishment of clustering analysis model, reduction method for solvingfuzzy matrix using the absolute value of food, then a reasonable classificationobtained by clustering, finally 45 kinds of food in the title is divided into7 categories.The second and third problems are based on the first problem and require usto give out advice on the food according to the classification we obtainpreviously.Finally, we valuate the advantage and disadvantages of the model, discussits application value and put forward reasonable food intake of nutritionaladvice to people.Keywords:the classification of food ; clustering analysis model;Fuzzy similar matrix; MATLAB tool一、问题重述民以食为天。
城市表层土壤重金属污染分析的数学模型摘要为研究城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式。
本文通过处理和分析已给数据,给出金属的空间分布说明污染程度和主要原因;建立数学模型确定污染源位置;最后收集其他信息讨论城市地质环境的演变模式。
问题一,利用matlab软件作出位置坐标x、y与八种总金属元素浓度的空间分布图;分析采集的重金属元素浓度所在区域的大致情形。
对采集的重金属元素浓度的数据进行分析,并计算单因子和多因子污染指数,根据土壤污染分级标准判断出不同重金属元素在各功能区的污染程度和各功能区的综合污染程度,其中工业区中铜是所有元素在不同功能区中污染程度最严重的,而工业区和交通区的综合污染程度是最严重的。
问题二,首先利用SAS软件对八种重金属元素在五个城区的含量进行主成分分析,得到八种重金属对各功能区的贡献率,可初步推断出工业生产、交通设施和生活垃圾造成重金属污染。
再利用SAS软件对各城区的重金属进行因子分析,进一步判断八种不同重金属污染的原因,如汞污染的原因为工业生产中三废的排放、交通运输业中汽油的燃烧和汽车轮胎磨损产生的粉尘等。
问题三,根据所给数据,分析重金属污染传播特征,即分别是介质的迁移运动、污染物的分散运动、污染物的累积与转化、污染物被环境介质吸收或吸附、污染物的沉淀,然后利用Matlab软件,采用多元纯二次二项式回归分析方法,分别得到每种重金属元素浓度与坐标的回归方程,并根据该方程利用多元函数求极值的方法确定出污染源的可能位置分别为:As(1878.2634,6003.7263,4.5846),Cd(970.5835,3946.7518,6.5891),Cr(1235.1956,2658.3427,8.5402),Cu(138.4682,6223.4521,3.2461),Hg (1231.5782,2561.5483,5.2478),Ni(12234.2587,5865.1656,23.2461),Pb (2310.68914145.2674,3.2651),Zn(3015.43418642.2365 5.0543);问题四,基于前三问,分析所建模型的优缺点。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):天津农学院参赛队员(打印并签名):1. 姜洋2. 周兆3. 邹丹指导教师或指导教师组负责人(打印并签名):日期:2013年8月30日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):计划生育政策的调整摘要当人口总抚养比(Gross Dependency Ratio,GDR)小于或等于50%的时候被称为人口机会窗口期,也可称为人口红利期。
与之对应则是人口负债,即人口总抚养比大于或等于50%的时候。
对于第一问,我们从全国人口总抚养比的角度出发,预测我国未来一段时间的人口总抚养比,查资料可知当50%GDR≥时,人口机会窗将会关闭。
我们对1995年—2012年全国的人口总抚养比做了三次多项式回归分析,得出拟合式32=-++,并由此预测出了2013年—2041年的0.00130.02550.882750.5500y x x x总抚养比,得出我国人口总抚养比会在2031年和2032年之间突破50%,也就是说我国的人口机会窗将会在2032年关闭,即人口红利转为人口负债。
因为现在的人口政策的影响具有滞后性,即一个人出生15后年才具有工作能力;于是我们将时间向后推15年42.1554GDR=%,所以在2028年时人口机会窗仍未关闭,所以目前没有必要开放二胎政策。
对于第二问,我们在第一问的基础上由2031年向前推15年,即在2017年开始开放二胎政策可避免2013年时人口总抚养比大于等于50%;接着我们有用灰色模型预测了老年抚养比和少儿抚养比,可知老年抚养比随着时间在不断的增大,在2031年时为16.4%,可见我国到时候的人口老龄化程度已经非常严重了;而少儿抚养比在不断的减小,但是人口总抚养比却在不断的增大,所以我国的人口老龄化速度比是非常迅速的。
因此我们建议国家在适时的时候改变人口政策。
对于第三问,考虑到我国不同区域的人口抚养比不同,实施二胎政策的时间也理应不同,所以我们采用分区的方法来分析。
首先,在不考虑港、澳、台的情况下,我们将其他31个省市以及自治区分为中部、西北部、西南部、东部以及东北三省等五部分地区。
然后,根据全国各省市1995年—2011年人口总抚养比的数据,分别计算出各个区域在每一年内的平均人口抚养比,以此作为该地区在该年份总的人口抚养比。
再用该系列数据,结合多项式拟合的方法来预测2012—2047年的人口抚养比,根据其变化趋势,判断某个地区是否放开以及何时放开二胎政策。
最后分析得出:中部地区和东部地区应在2030年放开二胎政策,东北三省地区应该在2020年放开二胎政策,西北部地区应在2045年放开二胎政策,西南部地区应在2015年放开二胎政策。
关键词:人口机会窗、人口总抚养比、多项式回归、灰色预测模型、人口老龄化分地区分时段开放一、问题重述1.1 问题背景自推行计划生育以来,中国人口数量控制取得了令世人瞩目的巨大成就。
然而,硬币也有另外一面,在实行严厉生育政策已长达四分之一世纪之久,并早在20世纪90年代初就进入低生育水平时代的今天,中国人口的结构性矛盾不仅日益突出,更在于严格控制人口增长与优化人口结构、降低出生性别比相互冲突,这三个目标不可能同时实现。
如果政策定位于严格控制人口数量,将不得不付出人口快速老龄化与加剧出生性别比例失调的代价。
中国人口正处在又一个十字路口,其人口发展战略因此而面临新的考验和抉择。
我们注意到,人们对未来生育政策的走向存在两种截然不同的观点:一种观点认为生育政策应该放宽;另一种看法是要维持现行生育政策的稳定不变。
毕竟,我们曾经在人口控制问题上犯过严重的错误,因而对生育政策调整的讨论自然格外引人注目,更何况中国人口发展形势已经不容许我们在人口控制问题上再有任何的闪失,因为生育政策调整是事关中国人口、经济、社会、资源与环境可持续发展的重大问题。
人口问题是一个复杂的问题,我国的很多研究者在人口预测、人口年龄分布、人口政策调整等多方面进行了大量的研究,而且也取得了相当不错的成果。
1.2 需要解决的问题20世纪70年代初,中国政府开始大力推行计划生育;1978年以后计划生育成为中国的一项基本国策。
20多年来,计划生育政策对建设中国特色社会主义、实现国家富强和民族振兴产生了巨大影响,为促进世界人口与发展发挥了重大作用。
但是,在经历了迅速从高生育率到低生育率的转变之后,我国人口的主要矛盾已经不再是增长过快,而是人口红利消失、临近超低生育率水平、人口老龄化、出生性别比失调等问题。
生育政策如何调整才可以缓解20年之后的高度老龄化局面,使总人口变化更加平稳,并再次获得人口红利成为目前讨论的一个热门话题。
2012年,国内20多位顶尖人口学者历经两年的研究指出,我国的人口政策亟待转向,尤其是生育政策应该调整——2015年全面放开二胎政策。
专家指出,我国应实施“生育自主、倡导节制、素质优先、全面发展”的新人口政策。
但是倘若国家采纳“2015年全面放开二胎政策”这个建议,带来的后果到底是“人口红利”还是“人口灾难”,目前估计没谁敢打包票。
问题1.搜集相关的资料,选择合适的角度,建立数学模型,评估我国目前有没有必要放开二胎政策?问题2. 建立数学模型,回答何时放开二胎政策比较合适。
问题3.建立数学模型,分析如何合理放开二胎政策才可以避免同时全部放开二胎带来的人口大起大落式的剧烈变动,也可避免放开“单独”(即夫妻双方一方是独生子的可生二胎)带来的花费时间较长、贻误时机等问题。
二、问题分析2.1 问题一的分析我们首先在中国统计局的官网上搜集了我国1995年至2011年的人口总抚养比及老年抚养比和少儿抚养比,然后用人口总抚养比的数据来做拟合图,发现曲线的斜率有减小的趋势,所以我们决定用多项式回归来分析人口总抚养比与时间的关系。
由于现在的人口政策的影响有滞后性,所以由现在即2013年往后推15年,即在2028年时看一下GDR是否大于50%。
若大于50%,则现在必须调整人口政策,即开放二胎政策;否则,则不调整。
2.2问题二的分析在第一问的基础上,我们我们确定出在未来的某一年GDR大于50%,然后由那一年向前推15年,则可知在哪一年开放二胎政策。
接着我们有利用灰色模型预测了未来30年即到2041年的老年抚养比和少儿抚养比,还有未来的人口出生率和死亡率,分析研究它们的发展趋势,为人口政策的调整提供支持。
2.3 问题三的分析对于第三问,因为我国每个地区的人口状况不同,人口抚养比不同,所以我们考虑用分区的方法来处理该问题。
首先,在不考虑港、澳、台的情况下,我们将其他31个省市以及自治区分为中部、西北部、西南部、东部以及东北三省等五部分地区。
然后根据全国各省市1995年—2011年人口总抚养比的数据,用求平均值的方法计算出每个区域在每一年内的的人口抚养比,再用所得到的数据,使用多项式拟合的方法来分别预测每个地区在2012年—2045年的人口抚养比,根据其变化趋势,判断某个地区是否放开以及何时放开二胎政策。
三、基本假设3.1 问题一的假设假设一:劳动人口可以充分就业;假设二:劳动力可以自由的流动;3.2 问题二的假设假设一:数据真实,参考性强;假设二:未来没有重大因素造成人口的突增和突减;四、符号说明注:其余符号会在论文中加以说明,此处不再一一解释五、模型的建立和求解5.1模型一的建立5.1.1 模型一建立的相关知识(1)人口抚养比是指总人口中非劳动年龄人数与劳动年龄人数之比,以百分数表示。
一般以15岁至64岁为劳动年龄人口,14岁以下和65岁以上为非劳动年龄人口。
(2)人口机会窗是指在人口转变的过程中,会逐渐形成一个有利于经济发展的人口年龄结构,也就是人口负担系数比较低的局面,总人口“中间大、两头小”的结构,使得劳动力供给充足,而且人口的社会负担相对较轻,对社会经济发展十分有利,人口学家称这段时期为“人口机会窗口”,也叫“人口红利期”。
(3)老年抚养比是指总人口中65岁及以上年龄的人数与劳动年龄人数之比,以百分数表示。
(4)少儿抚养比是指总人口中14岁及以下年龄的人数与劳动年龄人数之比,以百分数表示。
(5)回归分析法(regression analysis)是通过研究两个或两个以上变量之间的相关关系对未来进行预测的一种数学方法,它既提供了建立变量之间相关关系的数学表达式(通常称为经验公式)的一般途径,又可以对所建立的经验公式的适用性进行分析,使之能有效地用于预测和控制。
5.1.2模型一的建立过程首先我们对1995—2011年的人口总抚养比做散点图并拟合,如图1所示:19952000200520102015图1我们发现曲线的斜率有减小的趋势,所以我们利用多项式11m m m y a x a x a +=+++ (一般2,3m =)来拟合曲线。
这里我们经试验利用321234y a x a x a x a =+++来做回归分析相对平均误差很小。
此过程经MATLAB 编程实现。
5.1.3 模型一的求解我们求得多项式为320.00130.02550.882750.5500y x x x =--+;实际值与拟合值的比较见表1计算可得相对平均误差为1.89%,这是非常小的值,所以拟合效果很好。
接着我们预测了到2041年我国的人口总抚养比,见表2由现在2013年向后推15年,即2018年,此时42.1554%50%GDR =<,所以,现在还没有必要实施开放二胎政策。
5.2 模型二的建立与求解(1)我们利用1995至2011年老年抚养比和少儿抚养比的原始数据分别建立GM (1,1来进行预测。
GM(1,1)模型的检验包括残差检验、关联度检验、后验差检验三种形式。
后验差检验,包括均方差比值c 和小误差概率p 检验。
经计算得 1.00,0.011l l p c ==,参考表3可知模型的优度等级为:好;1.000,0.009s s p c ==,参考表3可知模型的优度等级为:好。