初三数学经典例题常见例题,九年级上册数学典型题目及答案解析
- 格式:pdf
- 大小:1.73 MB
- 文档页数:35
2初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是:1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。
2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。
3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。
4.能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。
本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。
相似三角形是平面几何的主要内容之一, 在中考试题中时常与四边形、 圆的知识相结合 构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在 10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。
(二)重要知识点介绍: 1.比例线段的有关概念:在比例式 ab c (a : bc :d )中, a 、 d 叫外项,db 、c 叫内项, a 、c 叫前项, b 、d 叫后项, d 叫第四比例项,如果 b=c ,那么 b 叫做 a 、 d 的比例中项。
把线段 AB 分成两条线段 AC 和 BC ,使 AC=AB BC ,叫做把线段 AB 黄金分割, C 叫做线段 AB 的黄金分割点。
2. 比例性质:①基本性质: ac b d②合比性质:acb dad bca b c d bd③等比性质:a c⋯b dm (b d ⋯ nn ≠ 0) a c ⋯ m ab d ⋯ nb3.平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥ l 2∥ l 3 。
AB 则BCDE , ABEF AC DE , BCDF AC EF ,⋯DF②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
九年级数学一元二次方程例题1.当a=1,b=﹣1,c=﹣3时,求的值.2.某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出500kg,销售单价每涨2元,月销售量就减少20kg,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克56元时,计算销售量和月销售利润;(2)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?3.巫溪的黄金密柚在中国重庆首届柚博会上被评为重庆十大名柚之一,黄金密柚的果肉金黄色、多汁柔软、入口即化、不留残渣,是人们喜爱的水果.红心密柚也是巫溪密柚发展的主推品种之一.某水果店老板在2018年11月份用15200元购进了400千克红心密柚和600千克黄金密柚,已知黄金密柚每千克的进价比红心密柚每千克的进价2倍还多4元(1)求11月份这两种水果的进价分别为每千克多少元?(2)时下正值密柚销售旺季,水果店老板决定在12月份继续购进这两种水果.但进入12月份,由于密柚的大量上市,红心密柚和黄金密柚的进价都有大幅下滑,红心密柚每千克的进价在11月份的基础上下降了m%.黃金密柚每千克的进价在11月份的基础上下降了m%.由于红心密柚和黄金密柚都深受巫溪老百姓欢迎,实际水果店老板在12月份购进的红心密柚数量比11月份增加了m%,黄金密柚购进的数量比11月份增加了2m%.结果12月份所购进的这两种密柚的总价与11月份所购进的这两种柑橘的总价相同,求m的值.4.已知关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0(m为实数).(1)若方程有两个不相等的实数根,求m的取值范围;(2)若m是整数,且方程有两个不相等的整数根,求m的值.5.已知关于x的方程x2﹣2x+m=1.(1)若方程有两个不相等的实数根,求m的取值范围;(2)若方程有一个实数根是3,求此方程的另一个根.九年级数学一元二次方程例题答案1.当a=1,b=﹣1,c=﹣3时,求的值.【分析】首先用代入法得出b2﹣4ac,再代入即可.【解答】解:∵b2﹣4ac=1﹣4×1×(﹣3)=13,∴=.【点评】本题主要考查了代数式求值,直接代入是解答此题的关键.2.某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出500kg,销售单价每涨2元,月销售量就减少20kg,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克56元时,计算销售量和月销售利润;(2)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?【分析】(1)根据“销售单价每涨2元,月销售量就减少20千克”,可知:月销售量=500﹣(销售单价﹣50)×.由此可得出售价为55元/千克时的月销售量,然后根据利润=每千克的利润×销售的数量来求出月销售利润;(2)销售成本不超过10000元,即进货不超过10000÷40=250kg.根据利润表达式求出当利润是8000时的售价,从而计算销售量,与进货量比较得结论.【解答】解:(1)当销售单价定为每千克56时,月销售量为:500﹣(56﹣50)×10=44(千克),所以月销售利润为:(56﹣40)×440=7040;(2)由于水产品不超过10000÷40=250kg,定价为x元,则(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=80,x2=60.当x1=80时,进货500﹣10(80﹣50)=200kg<250kg,符合题意,当x2=60时,进货500﹣10(60﹣50)=400kg>250kg,舍去.答:商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为80元.【点评】本题主要考查了一元二次方程的应用,能正确表示出月销售量是解题的关键.3.巫溪的黄金密柚在中国重庆首届柚博会上被评为重庆十大名柚之一,黄金密柚的果肉金黄色、多汁柔软、入口即化、不留残渣,是人们喜爱的水果.红心密柚也是巫溪密柚发展的主推品种之一.某水果店老板在2018年11月份用15200元购进了400千克红心密柚和600千克黄金密柚,已知黄金密柚每千克的进价比红心密柚每千克的进价2倍还多4元(1)求11月份这两种水果的进价分别为每千克多少元?(2)时下正值密柚销售旺季,水果店老板决定在12月份继续购进这两种水果.但进入12月份,由于密柚的大量上市,红心密柚和黄金密柚的进价都有大幅下滑,红心密柚每千克的进价在11月份的基础上下降了m%.黃金密柚每千克的进价在11月份的基础上下降了m%.由于红心密柚和黄金密柚都深受巫溪老百姓欢迎,实际水果店老板在12月份购进的红心密柚数量比11月份增加了m%,黄金密柚购进的数量比11月份增加了2m%.结果12月份所购进的这两种密柚的总价与11月份所购进的这两种柑橘的总价相同,求m的值.【分析】(1)设11月份红心密柚每千克的进价为x元,黄金密柚每千克的进价为y元,根据“某水果店老板在2018年11月份用15200元购进了400千克红心密柚和600千克黄金密柚,且黄金密柚每千克的进价比红心密柚每千克的进价2倍还多4元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量,即可得出关于m的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)设11月份红心密柚每千克的进价为x元,黄金密柚每千克的进价为y 元,依题意,得:,解得:.答:11月份红心密柚每千克的进价为8元,黄金密柚每千克的进价为20元.(2)依题意,得:8(1﹣m%)×400(1+m%)+20(1﹣m%)×600(1+2m%)=15200,整理,得:2.5m2﹣124m=0,解得:m1=0(不合题意,舍去),x2=49.6.答:m的值为49.6.【点评】本题考查了一元二次方程的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元二次方程.4.已知关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0(m为实数).(1)若方程有两个不相等的实数根,求m的取值范围;(2)若m是整数,且方程有两个不相等的整数根,求m的值.【分析】(1)由题意得m﹣1≠0且△>0,解得m≠1且m≠0;(2)解方程(m﹣1)x2+(m﹣2)x﹣1=0,得出x1=﹣1,x2=,由m为m≠0且m≠1的整数,且方程有两个不相等的整数根,得出m=2.【解答】解:(1)由题意得:m﹣1≠0且△>0,m﹣1≠0,解得:m≠1,∵△=(m﹣2)2﹣4(m﹣1)×(﹣1)=m2,∴m2>0,∴m≠0,∴m的取值范围为:m≠0且m≠1;(2)(m﹣1)x2+(m﹣2)x﹣1=0,解得:x=,∴x1=﹣1,x2=,∵m为m≠0且m≠1的整数,且方程有两个不相等的整数根,∴m=2.【点评】本题考查了一元二次方程的解法与根的判别式等知识;熟练掌握根的判别式的解题的关键.5.已知关于x的方程x2﹣2x+m=1.(1)若方程有两个不相等的实数根,求m的取值范围;(2)若方程有一个实数根是3,求此方程的另一个根.【分析】(1)根据根的判别式得出不等式,求出不等式的解集即可;(2)设方程的另一个根为a,根据根与系数的关系得出3+a=2,求出方程的解即可.【解答】解:(1)x2﹣2x+m=1,x2﹣2x+m﹣1=0,∵关于x的方程x2﹣2x+m=1有两个不相等的实数根,∴△=(﹣2)2﹣4(m﹣1)>0,解得:m<2,即m的取值范围是m<2;(2)设方程的另一个根为a,∵关于x的方程x2﹣2x+m=1有一个实数根是3,∴由根与系数的关系得:3+a=2,解得:a=﹣1,即方程的另一个根为﹣1.【点评】本题考查了解一元一次不等式,根的判别式和根与系数的关系,能熟记根的判别式和根与系数的关系的内容是解此题的关键.。
点、直线、圆与圆的位置关系_知识点+例题+练习1.点和圆的位置关系2.(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:3.①点P在圆外⇔d>r4.②点P在圆上⇔d=r5.①点P在圆内⇔d<r6.(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.7.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)(3)概念说明:(4)①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.(5)②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.(6)③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)(1)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.(2)(2)反证法的一般步骤是:(3)①假设命题的结论不成立;(4)②从这个假设出发,经过推理论证,得出矛盾;(5)③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.直线和圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.6.切线的性质(1)切线的性质(2)①圆的切线垂直于经过切点的半径.(3)②经过圆心且垂直于切线的直线必经过切点.(4)③经过切点且垂直于切线的直线必经过圆心.(5)(2)切线的性质可总结如下:(6)如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(7)(3)切线性质的运用(8)由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定8.(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.9.(2)在应用判定定理时注意:10.①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.11.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.12.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(3)常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理(1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)(4)切线长定理包含着一些隐含结论:(5)①垂直关系三处;(6)②全等关系三对;(7)③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便.13.相交两圆的性质(1)相交两圆的性质:(2)相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.(3)注意:在习题中常常通过公共弦在两圆之间建立联系.(4)(2)两圆的公切线性质:(5)两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.(6)两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB 的延长线上,且有∠BAP=∠BDA.求证:AP 是半圆O 的切线.【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例 2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;•当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15B. 30C. 45D. 60O O2O14. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移 个单位长.6. 如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于( )A. 45B. 54C. 43D. 657.⊙O 的半径为6,⊙O 的一条弦AB 长63,以3为半径⊙O 的同心圆与直线AB 的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).9.如图,B 是线段AC 上的一点,且AB :AC=2:5,分别以AB 、AC 为直径画圆,则小圆的面积与大圆的面积之比为_______.10. 如图,从一块直径为a+b 的圆形纸板上挖去直径分别为a 和b 的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm .则大圆的半径是______cm .12.如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为_________.13. 如图,PA 、PB 是⊙O 的两条切线,切点分别为A 、B ,若直径AC=12cm ,∠P=60°.求弦AB 的长. 【中考连接】 一、选择题 1. 正三角形的内切圆半径为1,那么三角形的边长为( )A.2B.32C.3D.3 2.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )A .3B .5C .23D .253. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( )A. 335 B. 635 C. 10 D. 54. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于( )A. 1B. 2C. 23D. 265.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外O D C B ABPA OC 第3题图 第4题图 第5题图 第6题图 第8题图 第9题图 第11题图 第10题图 第12题图切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题 6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________.8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x =图象上,则阴影部分面积等于 .14. Rt △ABC 中,9068C AC BC ∠===°,,.则△ABC的内切圆半径r =______.15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.16.已知:⊙A 、⊙B 、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由. 第3题图 第6题图 第7题图 第8题图 第10题图 第11题图 第12题图 第13题图19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=. (1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S =△△时,求动点M 所经过的弧长.第18题图。
九年级数学上册经典题1、已知方程x 2-5x +5=0的一个根为m ,求m +m5的值. 【正确答案】解:把m =5代入方程x 2-5x +5=0得,m 2-5m +5=0∵m ≠0, ∴两边同时除以m 得,m -5+m5=0∴移项得,m +m5=5.2、解方程:x 2-3x -1=0.解:a =1,b =-3,c =-1.b 2-4ac =(-3)2-4×1×(-1) =13>0.x3、m 的取值范围.解:b 2-4ac =(-2)2-4×m ×1=4-4m∵一元二次方程有两个实数根 ∴4-4m ≥0且m ≠0 解得,m ≤1且m ≠04、阅读材料,回答问题.为了解方程(x 2+2x )2-4(x 2+2x )+3=0,我们可以把x 2+2x 看成一个整体,并设x 2+2x =y ,则原方程可以化为y 2-4 y +3=0①,解得y 1=1,y 2=3; 当y 1=1时,x 2+2x =1,解得x 1=-1+2, x 2=-1-2;当y 2=3时,x 2+2x =3,解得x 3=-3, x 4=1.(1)由原方程转化为方程①,这种方法,我们叫做换元法,换元的目的是__________ (2)利用换元法解方程:(x 2-2x )2+(x 2-2x )-2=0. 【正确答案】 (1)降次(2)解:设x 2-2x =y ,则原方程可以化为y 2+ y -2=0①,解得y 1=1,y 2=-2;当y 1=1时,x 2-2x =1,解得x 1=-1+2, x 2=-1-2; 当y 2=-2时,x 2-2x =-2,b 2-4ac =(-2)2-4×1×2=-4<0,方程没有实数根. 综上所述,原方程的解为x 1=-1+2, x 2=-1-2.5、汽车在行驶过程中由于惯性作用,刹车后还要向前滑动一段距离才能停住.我们称这段距离为刹车距离.在一个限速为35km/h 以内的弯道上,甲、乙两车 相向而行,发现情况不对,同时刹车,但还是相撞了,事后现场测得甲车的刹 车距离为12m ,乙车的刹车距离为10m ,已知甲车的刹车距离满足S 甲与车速 x (km/h)之间的关系是:S 甲=0.1x +0.01x 2 ,乙车的刹车距离满足S 乙与车速 x (km/h)之间的关系是:S 乙=0.05x +0.005x 2,请你帮助分析事故原因. 【正确答案】解:∵甲车的刹车距离为12m∴0.01x 2+0.1x =12解得x 1=30, x 2=-40由于速度不能为负数,∴x 2=-40不符合题意舍去,所以甲车的速度为30 km/h ,不超过限速.∵甲车的刹车距离为10m ∴0.005x 2+0.05x =10 解得x 1=40, x 2=-50由于速度不能为负数,∴x 2=-50不符合题意舍去,所以甲车的速度为40 km/h ,超过限速. 所以导致事故的原因是乙车超速行驶.6、如图5,△ABC 中,∠B =90o ,AB =6cm ,BC =3cm ,点P 从点A 开始沿AB 边向B 点以1cm/s的速度移动,点Q 从点B 开始沿BC 边向C 点以2cm/s 的速度移动,但其中一点到达时,另外一点也随之停止运动,如果P 、Q 分别从A 、B 同时出发,几秒种后,P 、Q 间的距离等于42cm ?【正确答案】解:设x 秒种后,P 、Q 间的距离等于42cm ,则AP =x ,BP =6-x ,BQ =2x ,由题意得,(6-x )2+( 2x )2=( 42)2解得x 1=2, x 2=52当x =2时,BQ =2x =4>BC 不符合题意舍去答:52秒种后,P 、Q 间的距离等于42cm .7、已知二次函数的图象的顶点为A(2,-2) ,并且经过B(1,0)、C(3,0),求这条抛物线的表达式.分析:根据题意,本题可用一般式、顶点式或交点式来解决.解法1:设二次函数表达式为c bx ax y ++=2,将A(2,-2)、B(1,0)、C(3,0)代入,得:⎪⎩⎪⎨⎧=++=++-=++0390224c b a c b a c b a ,解得⎪⎩⎪⎨⎧=-==682c b a .所以.6822+-=x x y解法2:设二次函数表达式为2)2(2--=x a y ,将B(1,0)代入,得2)21(02--=a ,解得2=a .所以2)2(22--=x y ,即.6822+-=x x y解法3:设二次函数表达式为)3)(1(--=x x a y ,将A(2,-2)代入,得:)32)(12(2--=-a ,解得2=a .所以)3)(1(2--=x x y ,即.6822+-=x x y8、某商场每件进价为80无的某种商品,原来按每件100元出售时,一天可售出100件。
九年级数学上册第二十三章旋转经典大题例题单选题1、如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4√2,DE=4,则BC的长是()A.1B.√2C.2D.4答案:C分析:根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.设OD=x,则OE=OA=DE-OD=4-x.∵AB是⊙O的直径,OD垂直于弦AC于点,AC=4√2∴AD=DC=1AC=2√22∴OD是△ABC的中位线∴BC=2OD∵OA2=OD2+AD2∴(4−x)2=x2+(2√2)2,解得x=1∴BC=2OD=2x=2故选:C小提示:本题考查垂径定理、中位线的性质,根据垂径定理结合勾股定理求出OD的长是解题的关键.2、如图,有①~⑤5个条形方格图,每个小方格的边长均为1,则②~⑤中由实线围成的图形与①中由实线围成的图形全等的有()A.②③④B.③④⑤C.②④⑤D.②③⑤答案:C分析:根据旋转变换及全等图形的定义对应边相等,对应角相等的图形是全等图形对个图进行一一分析判断即可解:②以右下角顶点为定点顺时针旋转90°后,两个实线图形刚好重合,③中为平行四边形,而①中为梯形,所以不能和①中图形完全重合,④可上下反转成②的情况,然后旋转可和①中图形完全重合,⑤可旋转180°后可和①中图形完全重合,∴与①中由实线围成的图形全等的有②④⑤.故选择C.小提示:本题考查多边形全等的判定,掌握全等图形的定义,关键是会通过图形的旋转使它们全等.3、在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为()A.﹣4B.4C.12D.﹣12答案:D分析:首先根据关于原点对称的点的坐标特点可得a+2+4=0,2−b=0,可得a,b的值,再代入求解即可得到答案.解:∵点(a+2,2)关于原点的对称点为(4,﹣b),∴a+2+4=0,2−b=0,解得:a=−6,b=2,∴ab=−12,故选D小提示:本题主要考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的横纵坐标都互为相反数.4、如图,△OAB中,∠AOB=60°,OA=4,点B的坐标为(6,0),将△OAB绕点A逆时针旋转得到△CAD,当点O的对应点C落在OB上时,点D的坐标为()A.(7,3√3)B.(7,5)C.(5√3,5)D.(5√3,3√3)答案:A分析:如图,过点D作DE⊥x轴于点E.证明△AOC是等边三角形,解直角三角形求出DE,CE,可得结论.解:如图,过点D作DE⊥x轴于点E.∵B(6,0),∴OB=6,由旋转的性质可知AO=AC=4,OB=CD=6,∠ACD=∠AOB=60°,∵∠AOC=60°,∴△AOC是等边三角形,∴OC=OA=4,∠ACO=60°,∴∠DCE=60°,∴CE=1CD=3,DE=√CD2−CE2=3√3,2∴OE=OC+CE=4+3=7,∴D(7,3√3),故选:A.小提示:本题考查了旋转变换,含30度角的直角三角形的性质,勾股定理,等边三角形的判定和性质等知识,解题的关键是掌握旋转变换的性质.5、如图,在由小正方形组成的网格图中再涂黑一个小正方形,使它与原来涂黑的小正方形组成的新图案为轴对称图形,则涂法有()A.1种B.2种C.3种D.4种答案:C分析:根据轴对称图形的概念,找到对称轴即可得答案.解:如下图,∵图形是轴对称图形,对称轴是直线AB,∴把1、2、3三个正方形涂黑,与原来涂黑的小正方形组成的新图案仍然是轴对称图形,故选:C.小提示:本题考查了轴对称图形的概念,解题的关键是找到对称轴.6、连接正八边形的三个顶点,得到如图所示的图形,下列说法不正确的是()A.四边形ABCH与四边形EFGH的周长相等B.连接HD,则HD平分∠CHEC.整个图形不是中心对称图形D.△CEH是等边三角形答案:D分析:根据正八边形和圆的性质进行解答即可.解:A.∵根据正八边形的性质,四边形ABCH与四边形EFGH能够完全重合,即四边形ABCH与四边形EFGH 全等∴四边形ABCH与四边形EFGH的周长相等,故选项正确,不符合题意;B.连接DH,如图1,∵正八边形是轴对称图形,直线HD是对称轴,∴HD平分∠CHE故选项正确,不符合题意;C.整个图形是轴对称图形,但不是中心对称图形,故选项正确,不符合题意;D.∵八边形ABCDEFGH是正八边形,∴B=BC=CD=DE=EF=FG=GH,CH=EH,设正八边形的中心是O,连接EO、DH,如图2,∠DOE=360°=45°8∵OE=OH∠DOE=22.5°∴∠OEH=∠OHE=12∴∠CHE=2∠OHE=45°∴∠HCE=∠HEC=1(180°-∠CHE)=67.5°2∴△CEH不是等边三角形,故选项错误,符合题意.故选:D.小提示:本题考查了正多边形和圆,熟记正八边形与等腰三角形的性质是解题的关键.7、平面直角坐标系中,O为坐标原点,点A的坐标为(−5,1),将OA绕原点按逆时针方向旋转90°得OB,则点B 的坐标为()A.(−5,1)B.(−1,−5)C.(−5,−1)D.(−1,5)答案:B分析:根据题意证得△AOC≌△OBD,可得结论.解:如图,根据题意得∶∠AOB=90°,∠ACO=∠BDO=90°,OA=OB,∴∠AOC+∠BOD=90°,∠AOC+∠OAC=90°,∴∠BOD=∠OAC,∴△AOC≌△OBD,∴BD=OC,OD=AC,∵点A的坐标为(−5,1),∴BD=OC=1,OD=AC=5,∴B(−1,−5).故选:B.小提示:本题考查坐标与图形变化−旋转,解题的关键是熟练掌握旋转的性质,属于中考常考题型.8、如图,正方形OABC的边长为√2,将正方形OABC绕原点O顺时针旋转45°,则点B的对应点B1的坐标为()A.(−√2,0)B.(−√2,0)C.(0,√2)D.(0,2)答案:D分析:连接OB,由正方形ABCD绕原点O顺时针旋转45°,推出∠A1OB1=45°,得到△A1OB1为等腰直角三角形,点B1在y轴上,利用勾股定理求出O B1即可.解:连接OB,∵正方形ABCD绕原点O顺时针旋转45°,∴∠AOA1=45°,∠AOB=45°,∴∠A1OB1=45°,∴△A1OB1为等腰直角三角形,点B1在y轴上,∵∠B1A1O=90°,A1B1=OA1=√2,∴OB1=√A1B12+OA12=√2+2=2,∴B1(0,2),故选:D.小提示:本题考查了正方形的性质,旋转的性质,特殊三角形的性质.关键是根据旋转角证明点B1在y轴上.9、在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(−3,2)C.(−3,−2)D.(−2,−3)答案:C分析:根据坐标系中对称点与原点的关系判断即可.关于原点对称的一组坐标横纵坐标互为相反数,所以(3,2)关于原点对称的点是(-3,-2),故选C.小提示:本题考查原点对称的性质,关键在于牢记基础知识.10、已知两点M1(x1,y1),M2(x2,y2),若x1+x2=0,y1+y2=0,则点M1与M2()A.关于y轴对称B.关于x轴对称C.关于原点对称D.以上均不对答案:C分析:首先利用等式求出x1=−x2,y1=−y2,然后可以根据横纵坐标的关系得出结果.∵x1+x2=0,y1+y2=0,∴x1=−x2,y1=−y2,∵两点M1(x1,y1),M2(x2,y2),∴点M1与M2关于原点对称,故选:C.小提示:本题主要考查平面直角坐标系中关于原点对称的点,属于基础题,利用等式找到点M1与M2横纵坐标的关系是解题关键.填空题11、如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,AB=5,BC=9,则BD=______.答案:√106分析:连接BE,如图,根据旋转的性质得∠BCE=60°,CB=CE,BD=AE,再判断△BCE为等边三角形得到BE=BC=9,∠CBE=60°,从而有∠ABE=90°,然后利用勾股定理计算出AE即可.解:连接BE,如图,∵△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,∴∠BCE=60°,CB=CE,BD=AE,∴△BCE为等边三角形,∴BE=BC=9,∠CBE=60°,∵∠ABC=30°,∴∠ABE=90°,在Rt△ABE中,AE=√52+92=√106.所以答案是:√106.小提示:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12、以原点为中心,把M(3,4)逆时针旋转90°得到点N,则点N的坐标为______.答案:(−4,3)分析:建立平面直角坐标系,根据旋转的性质得出N点坐标,由此即可得出答案.解:如图:由旋转的性质可得:M点横坐标等于N点纵坐标的值,M点纵坐标的值等于N点横坐标的绝对值,又∵M(3,4),∴N(-4,3),所以答案是:(-4,3).小提示:此题考查有关点的坐标旋转的性质,结合坐标轴和旋转的特点确定坐标即可.13、如图,在平面直角坐标系xOy中,点A的坐标为(0,4),P是x轴上一动点,把线段PA绕点P顺时针旋转60°得到线段PF,连接OF,则线段OF长的最小值是__________.答案:2分析:点F 运动所形成的图象是一条直线,当OF ⊥F 1F 2时,垂线段OF 最短,当点F 1在x 轴上时,由勾股定理得:P 1O =F 1O =4√33,进而得P 1A =P 1F 1=AF 1=8√33,求得点F 1的坐标为(4√33,0),当点F 2在y 轴上时,求得点F 2的坐标为(0,-4),最后根据待定系数法,求得直线F 1F 2的解析式为y =√3x -4,再由线段中垂线性质得出F 1F 2=AF 1=8√33,在Rt △OF 1F 2中,设点O 到F 1F 2的距离为h ,则根据面积法得12×OF 1×OF 2=12×F 1F 2×ℎ,即12×4√33×4=12×8√33×ℎ,解得h =2,根据垂线段最短,即可得到线段OF 的最小值为2.解:∵将线段PA 绕点P 顺时针旋转60°得到线段PF ,∴∠APF =60°,PF =PA ,∴△APF 是等边三角形,∴AP =AF ,如图,当点F 1在x 轴上时,△P 1AF 1为等边三角形,则P 1A =P 1F 1=AF 1,∠AP 1F 1=60°,∵AO ⊥P 1F 1,∴P 1O =F 1O ,∠AOP 1=90°,∴∠P 1AO =30°,且AO =4,由勾股定理得:P 1O =F 1O =4√33, ∴P 1A =P 1F 1=AF 1=8√33, ∴点F 1的坐标为(4√33,0), 如图,当点F 2在y 轴上时,∵△P 2AF 2为等边三角形,AO ⊥P 2O ,∴AO =F 2O =4,∴点F 2的坐标为(0,-4),∵tan∠OF 1F 2=OF 2OF 1=4√33=√3,∴∠OF 1F 2=60°,∴点F 运动所形成的图象是一条直线,∴当OF ⊥F 1F 2时,线段OF 最短,设直线F 1F 2的解析式为y =kx +b , 则{4√33k +b =0b =−4,解得{k =√3b =−4, ∴直线F 1F 2的解析式为y =√3x -4,∵AO =F 2O =4,AO ⊥P 1F 1,∴F 1F 2=AF 1=8√33, 在Rt △OF 1F 2中,OF ⊥F 1F 2,设点O 到F 1F 2的距离为h ,则12×OF 1×OF 2=12×F 1F 2×ℎ,∴12×4√33×4=12×8√33×ℎ,解得h =2,即线段OF的最小值为2,故答案为2.小提示:本题属于三角形的综合题,主要考查了旋转的性质,勾股定理的应用,等边三角形的性质以及待定系数法的运用等,解决问题的关键是作辅助线构造等边三角形以及面积法求最短距离,解题时注意勾股定理、等边三角形三线合一以及方程思想的灵活运用.14、已知点P(m−2,m)关于原点对称的点在第三象限,则m的取值范围是_______.答案:m>2分析:根据关于原点对称的点的性质可得点P在第一象限,进而得出不等式组,再解不等式组即可.解:∵点P(m−2,m)关于原点对称的点在第三象限,∴点P(m−2,m)在第一象限,∴{m−2>0,m>0解得:m>2,所以答案是:m>2.小提示:此题主要考查了关于原点对称的点的坐标特点,解一元一次不等式组,关键是掌握各象限内点的坐标符号.15、如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,将△AOB绕顶点O,按顺时针方向旋转到△AB,则线段B1D的长度为______.A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,OD=12答案:1.5cm##3cm2分析:先在直角△AOB中利用勾股定理求出AB=5cm,再利用直角三角形斜边上的中线等于斜边的一半得出ODAB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,则问题得解.=12∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=√OA2+OB2=5cm,∴OD=1AB=2.5cm,2∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1-OD=1.5cm.所以答案是:1.5cm.小提示:本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握勾股定理是解题的关键.解答题16、如图,在平面直角坐标系中,线段AB的两个端点的坐标分别是A(﹣1,4),B(﹣3,1).(1)画出线段AB向右平移4个单位后的线段A1B1;(2)画出线段AB绕原点O旋转180°后的线段A2B2.答案:(1)画图见解析,(2)画图见解析分析:(1)分别确定A,B向右平移4个单位后的对应点A1,B1,再连接A1B1即可;(2)分别确定A,B绕原点O旋转180°后的对应点A2,B2,再连接A2B2即可.解:(1)如图,线段A1B1即为所求作的线段,(2)如图,线段A2B2即为所求作的线段,小提示:本题考查的是平移的作图,中心对称的作图,掌握平移的性质与中心对称的性质是解题的关键. 17、如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为2的等边三角形.(1)写出△OAB各顶点的坐标;(2)以点O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,写出A′,B′的坐标.答案:(1)A(-2,0),B(-1,√3),C(0,0)(2)A′(−1,√3),B′(1,√3)分析:(1)作高线BC,根据等边三角形的性质和勾股定理求OC和BC的长,写出三点的坐标,注意象限的符号问题;(2)如图2,由旋转可知:A′与B重合,B与B′关于y轴对称,可得:A′,B′的坐标.(1)解:如图1,过B作BC⊥OA于C,∵△AOB是等边三角形,且OA=2,OA=1,∴OC=12由勾股定理得:BC=√22−12=√3,∴A(−2,0),B(−1,√3),O(0,0);(2)解:如图2,∵∠AOB=60°,OA=OB,∴A′与B重合,∴A′(−1,√3),由旋转得:∠BOB′=60°,OB=OB′,∵∠AOD=90°,∴∠BOD=30°,∴∠DOB′=30°,∴BB′⊥OD,DB=DB′,∴B′(1,√3).小提示:本题考查了坐标与图形变换、等边三角形的性质、旋转的性质,熟练掌握旋转和等边三角形的性质是关键,并注意点所在象限的符号问题.18、如图,一伞状图形,已知∠AOB=120°,点P是∠AOB角平分线上一点,且OP=2,∠MPN=60°,PM与OB交于点F,PN与OA交于点E.(1)如图一,当PN与PO重合时,探索PE,PF的数量关系(2)如图二,将∠MPN在(1)的情形下绕点P逆时针旋转α度(0<α<60°),继续探索PE,PF的数量关系,并求四边形OEPF的面积.答案:(1)PE=PF,证明详见解析;(2)PE=PF,√3分析:(1)根据角平分线定义得到∠POF=60°,推出△PEF是等边三角形,得到PE=PF;(2)过点P作PQ⊥OA,PH⊥OB,根据角平分线的性质得到PQ=PH,∠PQO=∠PHO=90°,根据全等三角形的性质得到PE=PF,S四边形OEPF=S四边形OQPH,求得OQ=1,QP=√3,根据三角形的面积公式即可得到结论.解:(1)∵∠AOB=120°,OP平分∠AOB,∴∠POF=60°,∵∠MPN=60°,∴∠MPN=∠FOP=60°,∴ΔPEF是等边三角形,∴PE=PF;(2)过点P作PQ⊥OA,PH⊥OB,∵OP平分∠AOB,∴PQ=PH,∠PQO=∠PHO=90°,∵∠AOB=120°,∴∠QPH=60°,∴∠QPE+∠FPH+∠EPH,∴∠QPE=∠EPF,在ΔQPE与ΔHPF中{∠EQP=∠FHP ∠QPE=∠HPFPQ=PH,∴ΔQPE≌ΔHPF(AAS),∴PE=PF,S四边形OEPF =S四边形OQPH,∵PQ⊥OA,PH⊥OB,OP平分∠AOB,∴∠QPO=30°,∴OQ=1,QP=√22−12=√3,∴SΔOPQ=12×1×√3=√32,∴四边形OEPF的面积=2SΔOPQ=√3小提示:本题考查了旋转的性质,角平分线的性质,全等三角形的判定和性质,三角形的面积,正确的作出辅助线是解题的关键.。
人教版九年级上册数学解答题专题训练50题含答案一、解答题1.解方程:2630x x +-=.2.如图所示,正方形网格中,ABC 为格点三角形(即三角形的顶点都在格点上).(1)把ABC 沿BA 方向平移后,点A 移到点1A ,在网格中画出平移后得到的111A B C △;(2)把111A B C △绕点1A 按逆时针方向旋转90︒,在网格中画出旋转后的22A B C 1△.【答案】(1)见解析(2)见解析【分析】(1)利用平移的性质画图,即对应点都移动相同的距离;(2)利用旋转的性质画图,对应点都旋转相同的角度.【详解】(1)解:如图所示:111A B C △即为所求;(2)如图所示:22A B C 1△即为所求.【点睛】本题主要考查了平移变换、旋转变换作图,做这类题时,理解平移、旋转的性质是关键.3.如图,杠杆绕支点转动撬起重物,杠杆的旋转中心在哪里?旋转角是哪个角?【答案】杠杆的旋转中心是点O ,旋转角是∵BOB ′(或∵AOA ′)【分析】根据旋转的定义即可得到杠杆绕支点转动撬起重物的旋转中心,旋转角.【详解】解:杠杆绕支点转动撬起重物,杠杆绕点O 旋转,所以杠杆的旋转中心是点 O ,旋转角是∵BOB ′(或∵AOA ′).【点睛】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角.4.已知,如图,直线AB 经过点()0,6B ,点()4,0A ,与抛物线22y ax =+在第一象限内相交于点P ,又知AOP 的面积为6.(1)求a 的值;(2)若将抛物线22y ax =+沿y 轴向下平移,则平移多少个单位才能使得平移后的抛物线经过点A .AOP∆的面积∴=,y3y=再把3P所以(2,3)P代入到把(2,3)5.某商店购进一批小玩具,每个成本价为20元,经调查发现售价为32元时,每天可售出20个,若售价每增加5元,每天销售量减少2个;售价每减少5元,每天销售量增加2个,商店同一天内售价保持不变.(1)若售价增加x元,则销售量是(______________)个(用含x的代数式表示);(2)某日商店销售该玩具的利润为384元,求当天的售价是多少元?(利润=售价-进价)6.2022年3月,举世瞩目的北京冬奥会、冬残奥会胜利闭幕.以下是2022年北京冬奥运会会徽—冬梦、冬残奥会会徽—飞跃、冬奥会吉祥物—冰墩墩及冬残奥会吉祥物—雪容融的卡片,四张卡片分别用编号A,B,C,D来表示,这4张卡片背面完全相同,现将这四张卡片背面朝上,洗匀放好.(1)从中任意抽取一个张卡片,恰好是“冬梦”的概率为;(2)将A冬梦和C冰墩墩的组合或B飞跃和D雪容融的组合称为“一套”,小明和小红依次从中随机抽取一张卡片(不放回),请你用列表或画树状图的方法求他们抽到的两张卡片恰好一套的概率.7.今年是中国共产党建党100周年,中华人民共和国成立72周年!在国庆前夕,社区便民超市调查了某种水果的销售情况获得如下信息:信息一:进价是每千克12元;信息二:当销售价为每千克27元时,每天可售出120千克;若每千克售价每降低2元,则每天的销售量将增加80千克.根据以上信息解答问题:该超市每天想要获得3080元的销售利润,又要尽可能让顾客得到实惠,求这种水果的销售单价应为多少元.【答案】这种水果的销售单价为19元【分析】设这种水果的销售单价为x 元,则有销售量为()120040x -千克,然后根据利润=销售量×单个利润即可求解.【详解】解:设这种水果的销售单价为x 元,由题意得:8.已知抛物线23y ax bx =++经过点()3,0A 和点()4,3B .(1)求这条抛物线所对应的二次函数的关系式;(2)直接写出它的开口方向、对称轴、顶点坐标和最大值(或最小值). 【答案】(1)243y x x =-+(2)开口向上,对称轴为直线2x =,顶点坐标为()21-,,最小值为1-【分析】(1)由条件可知点A 和点B 的坐标,代入解析式可得到关于a 和b 的二元一次方程组,解得a 和b ,可写出二次函数解析式;(2)根据a 的值可确定开口方向,并将抛物线的解析式配方后可得对称轴、顶点坐标和二次函数的最值.【详解】(1)解:将点()3,0A 和点()4,3B 代入23y ax bx =++中,得933016433a b a b ++=⎧⎨++=⎩, 解得:14a b =⎧⎨=-⎩, ∵243y x x =-+(2)解:∵243y x x =-+()221x =--,1a =0>, ∵开口向上,对称轴为直线2x =,顶点坐标为()21-,,最小值为1-. 【点睛】本题考查二次函数的性质、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会利用配方法确定二次函数的顶点坐标和对称轴.9.在一个不透明的盒子里装有黑、白两种颜色的球共30只,这些球除颜色外其余完全相同.搅匀后,小明做摸球实验,他从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据.(1)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为(精确到0.1)(2)盒子里白色的球有只;(3)若将m个完全一样的白球放入这个盒子里并摇匀,随机摸出1个球是白球的概率是0.8,求m的值.10.(1)2(1)4x-=;(2)2430-+=;x xx x-=.(3)230x-+=;(4)(6)611.解方程:(用适当的方法解方程)(1)2430x x --=(2)2(1)(1)0x x x ---=(3)2542x x =-(4)2)(35)1x x --=(12.我国快递行业迅速发展,经调查,某快递公司今年2月份投递快递总件数为20万件,4月份投递快递总件数33.8万件,假设该公司每月投递快递总件数的增长率相同.(1)求该公司投递快递总件数的月增长率;(2)若该公司每月投递快递总件数的增长率保持不变,那么5月份投递快递总件数是否达到45万件?答:若该公司每月投递快递总件数的增长率保持不变,那么5月份投递快递总件数不能达到45万件.【点睛】本题主要考查了一元二次方程应用题中的平均增长率问题,如何正确根据题意列出一元二次方程是解题的关键.13.已知关于x的一元二次方程20ax bx c++=(a≠0)的一个根为,则244ac ba-=_____.14.列方程解应用题:口罩是一种卫生用品,正确佩戴口罩能阻挡有害气体、飞沫、病毒等物质,对进入肺部的空气有一定的过滤作用.据调查,2021年1月份某厂家口罩产量为80万只,2月份比1月份增加了25%,4月份口罩产量为196万只.(1)该厂家2月份的口罩产量为______万只;(2)该厂家2月份到4月份口罩产量的月平均增长率是多少?【答案】(1)100(2)40%【分析】(1)用1月份的产量乘以(1+25%)即可求解;(2)设月平均增长率为x,根据题意列出一元二次方程,解方程即可求解.(1)2月份的产量为:80×(1+25%)=100(万只),故答案为:100;(2)设月平均增长率为x,根据题意有:100×(1+x)2=196,解得:x=40%,(负值舍去),故2月份到4月份的平均增长率为40%.【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解答本题的关键.15.“2019淮安清江浦国际半程马拉松赛”的赛事共有三项:A.“半程马拉松2019”、B.“纪念2019”、C.“爱跑2019”.小明和小丽参与了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到“爱跑2019”项目组的概率为____________;(2)用树状图或列表法求小明和小丽被分配到不同项目组的概率.16.如图,∵ABC三个顶点的坐标分别为A(0,1),B(4,2),C(1,3).(1)将∵ABC 向右、向下分别平移1个单位长度和5个单位长度得到∵A 1B 1C 1,请画出∵A 1B 1C 1,并写出点A 1,C 1的坐标;(2)请画出∵ABC 关于原点O 成中心对称的∵A 2B 2C 2.【答案】(1)见解析,点A 1的坐标为(1,﹣4),点C 1的坐标为(2,﹣2);(2)见解析.【分析】(1)利用点平移的坐标变换规律得出对应点的坐标,描点画出图形即可; (2)根据关于原点对称的点的坐标特征得出对应点的坐标,描点画出图形即可. 【详解】(1)如图,∵A 1B 1C 1为所作,点A 1的坐标为(1,﹣4),点C 1的坐标为(2,﹣2);(2)如图,∵A 2B 2C 2为所作.【点睛】本题考查坐标与图形变换-平移、坐标与图形变换-旋转,熟练掌握坐标与图形变换的规律,正确得出对应点的坐标是解答的关键. 17.解方程 (1)2430x x -+= (2)()()2323x x -=- 【答案】(1)11x =,23x =. (2)13x =,25x =.【分析】(1)先把方程左边分解因式化为()()130x x --=,再化为两个一次方程,再解一次方程即可;(2)先移项,把方程左边分解因式化为()()350x x --=,再化为两个一次方程,再解一次方程即可.【详解】(1)解:2430x x -+=, ∵()()130x x --=, ∵10x -=或30x -=, 解得:11x =,23x =. (2)()()2323x x -=-, 移项得:()()23230x x ---=, ∵()()350x x --=, ∵30x -=,50x -=, 解得:13x =,25x =.【点睛】本题考查的是一元二次方程的解法,掌握“利用因式分解的方法解一元二次方程”是解本题的关键.18.某校团委决定从4名学生会干部(小明、小华、小丽和小颖)中抽签确定2名同学去进行宣传活动,抽签规则:将4名同学姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,既然从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小明被抽中的概率.由表可知,共有12种等可能结果,其中小明被抽中的有6种结果,所以小明被抽中的概率为:61 122.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.如图1所示,是一块边长为2的正方形瓷砖,其中瓷砖的阴影部分是半径为1 的扇形.请你用这种瓷砖拼出两种不同的图案,使拼成的图案即是轴对称图形又是中心对称图形,并把它们分别画在下面边长为4的正方形中(要求用圆规画图).图1图2图3【答案】通过对轴对称图形分析作图【详解】试题分析:图形(1)既轴对称(对称轴为正方形对角线所在的直线),又中心对称(对称中心为正方形的中心),根据小正方形的对称性,将小正方形换动不同方向,得出既轴对称图形又中心对称的图形既轴对称图形又中心对称的图形如图所示考点:旋转作图点评:本题考查了运用旋转,轴对称方法设计图案的问题.关键是熟悉有关图形的对称性,利用中心对称性拼图20.如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4)(1)请画出将△ABC 向左平移4个单位长度后得到的图形111A B C ∆,直接写出点1A 的坐标;(2)请画出△ABC 绕原点O 顺时针旋转90∘的图形222A B C ∆,直接写出点2A 的坐标; (3)在x 轴上找一点P ,使PA+PB 的值最小,请直接写出点P 的坐标.【答案】(1)1(3,1)A -,作图见解析,(2)2(1,1)A -,作图见解析,(3)(2,0)P ,作图见解析.【分析】(1)根据网格结构找出点A 、B 、C 平移后的对应点的位置,然后顺次连接即可;(2)找出点A 、B 、C 绕原点O 顺时针旋转90°的对称点的位置,然后顺次连接即可;(3)找出A 的对称点A′,连接BA′,与x 轴交点即为P . 【详解】解:(1)如图所示:点1A 的坐标(-3,1); (2)如图所示:点2A 的坐标(1,-1);(3)找出A 的对称点A′(1,-1), 连接BA′,与x 轴交点即为P ;则',PA PA = ('2,A A 重合),'',PA PB PA PB BA ∴+=+=则P 即为所求作的点,如图所示:点P 坐标为(2,0).【点睛】本题考查了利用平移,旋转变换作图、轴对称-最短路线问题;熟练掌握网格结构准确找出对应点的位置是解题的关键.21.已知关于x 的方程2390x x k --+=的两个实根为1x ,2x .且满足122x x =-,试求这个方程的两个实根及k 的值.22.嘉淇同学用配方法推导一元二次方程ax 2+bx +c =0(a ≠0)的求根公式时,对于b 2﹣4ac >0的情况,她是这样做的:(下页) 解:由于a ≠0,方程ax 2+bx +c =0变形为: x 2+b ax =﹣ca ,…第一步x 2+b ax +(2b a )2=﹣c a +(2ba )2,…第二步(x +2b a )2=2244b ac a -,…第三步x +2b a =(b 2﹣4ac ≥0),…第四步x 1…第五步(1)嘉淇的解法从第 步开始出现错误;事实上,当b 2﹣4ac ≥0时,方程ax 2+bx +c =0(a ≠0)的求根公式是 . (2)用配方法解方程:2x 2﹣4x +1=0.23.如图,AB 是∵O 的直径,点D 在∵O 上,∵DAB=45°,BC∵AD ,CD∵AB .(1)判断直线CD 与∵O 的位置关系,并说明理由;(2)若∵O的半径为1,求图中阴影部分的面积(结果保留π).24.如图,∵O是△ABC的外接圆,AB是∵O的直径,延长AB到点E,连接EC,使得∵BCE=∵BAC(1)求证:EC是∵O的切线;(2)过点A作AD∵EC的延长线于点D,若AD=5,DE=12,求∵O的半径.25.如图O 是ABD △的外接圆,AB 为直径,点C 是AD 的中点,连结,OC BC 分别交AD 于点F ,E .(1)求证:2ABD C ∠=∠.(2)若10,8AB BC ==,求BD 的长. 【答案】(1)见解析;(2)2.8【分析】(1)由圆周角定理得出ABC CBD ∠=∠,由等腰三角形的性质得出ABC C ∠=∠,则可得出结论;(2)连接AC ,由勾股定理求出6AC =,得出222256(5)OF OF -=--,求出 1.4OF =,则可得出答案.【详解】解:(1)证明:C 是AD 的中点, ∴AC DC =,ABC CBD ∴∠=∠,OB OC =, ABC C ∴∠=∠,ABC CBD C ∴∠=∠=∠,2ABD ABC CBD C ∴∠=∠+=∠;(2)连接AC ,AB 为O 的直径,C 是AD OC ∴⊥2OA OF ∴-25OF ∴- 1.4OF ∴=又O 是AB 2BD OF ==【点睛】本题考查了圆周角定理,垂径定理,圆心角、弧、弦的关系定理,勾股定理,以及三角形的外接圆与圆心,熟练掌握性质及定理是解决本题的关键.26.用公式法解方程:210x x --=.【答案】x =27.疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现学生到校的累计人数y (单位:人)随时间x (单位:分钟)的变化情况如图所示,当010x ≤≤时,y 可看作是x 的二次函数,其图象经过原点,且顶点坐标为(10,500);当1012x <≤时,累计人数保持不变.(1)求y 与x 之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测棚,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在8分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?【答案】(1)25100(010),500(1012)y x x x y x =-+≤≤=<≤;(2)排队人数最多时有180人,全部考生都完成体温检测需要12.5分钟;(3)2个【分析】(1)当010x ≤≤时,y 可看作是x 的二次函数,由于抛物线的顶点为(10,500),设y 与x 之间的函数解析式为:y =a (x -10)2+500,把O 点的坐标(0,0)代入即可求得a ;当1012x <≤时,累计人数保持不变,问题即可解决;(2)设第x 分钟时的排队人数为w 人,到校人数减去检测人生,即可得到w 与x 的函数解析式,根据二次函数解析式可求得其最大值=180;要全部学生都完成体温检测,根据题意得500400x -=,求解即可;(3)设从一开始就应该增加m 个检测点,由“在8分钟内让全部考生完成体温检测”,列出不等式,可求解.【详解】解:(1)当010x ≤≤时,设y 与x 之间的函数关系式为:2(10)500y a x =-+,把(0,0)代入上式得:20(010)500a =-+,解得:5a =-,故函数关系式为:25(10)500(010)y x x =--+≤≤当1012x <≤时,累计人数保持不变,即y =500.∵25100(010),500(1012)y x x x y x =-+≤≤=<≤(2)设第x 分钟时的排队等待人数为w 人,由题意可得:40w y x =-∵010x ≤≤时,2225100405605(6)180w x x x x x x =-+-=-+=--+,∵当6x =时,w 的最大值180=,∵当1012x <≤时,50040,w w x =-随x 的增大而减小,20100w ∴≤<,∵排队人数最多时是180人,要全部学生都完成体温检测,根据题意得:500400x -=解得:12.5x =答:排队人数最多时有180人,全部考生都完成体温检测需要12.5分钟;(3)设从一开始就应该增加m 个检测点,28.已知:如图.∵ABC和∵DEC都是等边角形.D是BC延长线上一点,AD与BE 相交于点P.AC、BE相交于点M,AD、CE相交于点N.(1)在图∵中,求证:AD=BE;(2)当∵CDE绕点C沿逆时针方向旋转到图∵时,∵APB=.【答案】(1)见解析(2)60°【分析】(1)根据等边三角形性质得出AC=BC,CE=CD,∵ACB=∵ECD=60°,求出∵BCE=∵ACD,根据SAS推出两三角形全等即可;(2)证明∵ACD∵∵BCE(SAS),得到AD=BE,∵DAC=∵EBC,根据三角形的内角和定理,即可解答.【详解】(1)证明:∵∵ABC和∵CDE为等边三角形,∵AC=BC,CD=CE,∵BCA=∵DCE=60°,∵∵ACD=∵BCE,在∵ACD和∵BCE中,AC=BC,∵ACD=∵BCE,CD=CE,∵∵ACD∵∵BCE(SAS),∵AD=BE;(2)解:∵∵ABC和∵CDE都是等边三角形,∵AC=BC,CD=CE,∵ACB=∵DCE=60°,∵∵ACB +∵BCD =∵DCE +∵BCD ,即∵ACD =∵BCE ,在∵ACD 和∵BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∵∵ACD ∵∵BCE (SAS ),∵∵DAC =∵EBC , ∵∵AMP =∵BMC ,∵∵APB =∵ACB =60°.故答案为:60°.【点睛】本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.29.图1,图2是小明家厨房的效果图和装修平面图(长方形),设计师将厨房按使用功能分为三个区域,区域∵摆放冰箱,区域∵为活动区,区域∵为台面区,其中区域∵、区域∵为长方形.现测得FG 与墙面BC 之间的距离等于HG 与墙面CD 之间的距离,比EF 与墙面AB 之间的距离少0.1m .设AE 为x (m ),回答下列问题:(1)用含x 的代数式表示FG ,则FG = m .(2)当AE 为何值时,区域∵的面积能达到2.34m 2?(3)测得JF =0.35m ,在(2)的条件下,在下列几款冰箱中选择安装,要求机身左右和背面与墙面之间的距离至少预留20mm 的散热空间,则选择购买 款冰箱更合适.【答案】(1)3.2-2x(2)0.7(3)B【分析】(1)用含x 的代数式表示出DH 的长,根据FG =AD -AE -DH ,代入化简,可表示出FG 的长.(2)用含x的代数式表示出GH的长,再根据长方形的面积=长×宽,可得到关于x的方程,解方程求出x的值.(3)将x的值代入计算求出EF,EJ的长,根据要求机身左右和背面与墙面之间的距离至少预留20mm的散热空间,利用A,B,C三款冰箱的尺寸,可得答案.【详解】(1)3100mm=3.1m,1900mm=1.9m∵AE=xm,DH=(x-0.1)m,∵FG=AD-AE-DH=3.1-x-(x-0.1)=3.2-2x故答案为:3.2-2x(2)解:GH=1.9-(x-0.1)=(2-x)m,∵(3.2-2x)(2-x)=2.34解之:x1=0.7,x2=2.9(舍去)∵x=0.7,∵当AE=0.7时,区域∵的面积能达到2.34m2.(3)由(2)得EF=GH=2-x=2-0.7=1.3mEJ=EF-JF=1.3-0.35=0.95m,EJ=950mm,AE=0.7=700mm,950-2×20=910mm,∵910>908且700-20>677,∵应该选择B冰箱更合适.故答案为:B.【点睛】一元二次方程的实际应用-几何问题,解题的关键是读懂题意,看清图形,根据题意设未知数,根据等量关系列一元二次方程.30.我们把能二等分多边形面积的直线称为多边形的“好线”.请用无刻度的直尺画出图(1)、图(2)的“好线”.其中图(1)是一个平行四边形,图(2)由一个平行四边形和一个矩形组成(保留画图痕迹,不写画法)【答案】见解析【分析】图(1)过平行四边形的中心O画直线MN即可,图(2)过平行四边形和矩形的中心O,O′画直线MN即可.【详解】解:如图(1),直线MN即为所求(答案不唯一).如图(2),直线MN即为所求.【点睛】本题考查了利用中心对称图形的性质进行作图及平行四边形和矩形的性质,掌握中心对称图形的性质是解题的关键.31.幻方是一种将数字排在正方形格子中,使每行、每列和每条对角线上的数字和都相等的模型.数学课上,老师在黑板上画出一个幻方如图所示,并设计游戏:一人将一颗能粘在黑板上的磁铁豆随机投入幻方内,另一人猜数,若所猜数字与投出的数字相符,则猜数的人获胜,否则投磁铁豆的人获胜.猜想的方法从以下两种中选一种:()1猜“是大于5的数”或“不是大于5的数”;()2猜“是3的倍数”或“不是3的倍数”;如果轮到你猜想,那么为了尽可能获胜,你将选择哪--种猜数方法?怎么猜?为什么?254>>399∵为了尽可能获胜,我会选猜法(【点睛】本题主要考查等可能事件的概率,掌握概率公式,是解题的关键.32.已知关于x的一元二次方程2x2﹣3mx+m2+m﹣3=0(m为常数).(1)求证:无论m为何值,方程总有两个不相等的实数根:(2)若x=2是方程的根,则m的值为_____.33.在平面直角坐标系xOy中,已知抛物线22=-+-+-(m是常数).y x mx m m22(1)求该抛物线的顶点坐标(用含m 代数式表示);(2)如果该抛物线上有且只有两个点到直线1y =的距离为1,直接写出m 的取值范围;(3)如果点1(,)A a y ,2(2,)B a y +都在该抛物线上,当它的顶点在第四象限运动时,总有12y y >,求a 的取值范围. 【答案】(1)抛物线的顶点坐标(m ,m -2);(2)2<m <4;(3)a ≥1.【分析】(1)将二次函数解析式化为顶点式求解.(2)由抛物线上有且只有两个点到直线1y =的距离为1,及抛物线开口向下可得顶点在直线y =0和直线y =2之间,进而求解.(3)由顶点在第四象限可得m 的取值范围,由y 1<y 2可得点B 到对称轴距离大于点A 到对称轴距离,进而求解.(1)∵22222()2y x mx m m x m m =-+-+-=--+-,∵抛物线的顶点坐标(m ,m -2);(2)∵抛物线开口向下,顶点坐标为(m ,m -2),∵0<m -2<2,解得2<m <4;(3)∵抛物线顶点在第四象限,∵020m m ⎧⎨-⎩><,解得0<m <2,∵抛物线开口向下,对称轴为直线x =m 且y 1>y 2,∵2(2,)B a y +在对称轴右侧,∵a +2-m >|a -m |,即a +2-m >a -m 或a +2-m >m -a ,解得a >m -1,∵0<m <2,∵a ≥1.【点睛】本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.34.解方程.21122x x --=-35.如图,半圆O 的直径AB=18,将半圆O 绕点B 顺针旋转45°得到半圆O′,与AB 交于点P .(1)求AP 的长.(2)求图中阴影部分的面积(结果保留π)36.某校为了解七年级学生课外学习情况,随机抽取了部分学生作调查,通过调查将获得的数据按性别绘制成如下的女生频数分布表和如图所示的男生频数分布直方图:根据图表解答下列问题:(1)在女生的频数分布表中,m= ,n= ;(2)此次调查共抽取了多少名学生?(3)从学习时间在120~150分钟的5名学生中依次抽取两名学生调查学习效率,恰好抽到男女生各一名的概率是多少?12337.操作发现:(1)数学活动课上,小明将已知△ABO(如图1)绕点O旋转180°得到△CDO(如图2).小明发现线段AB与CD有特殊的关系,请你写出:线段AB与CD的关系是.(2)连结AD(如图3),观察图形,试说明AB+AD>2AO.(3)连结BC(如图4),观察图形,直接写出图中全等的三角形:(写出三对即可).【答案】(1)AB=CD,AB//CD;(2)证明见解析;(3)ΔABO≅ΔCDO,ΔADO≅ΔCBO,ΔABC≅ΔCDA,ΔABD≅ΔCDB【详解】分析:(1)根据图形旋转的性质即可得出结论;(2)根据三角形三边不等关系得AD+CD>AC,再由旋转的性质得AC=2AO,从而得出结论;(3)根据三角形全等的判定条件可得出结论.详解:(1)根据旋转的性质可得:ΔABO≅ΔCDO,∵AB=CD,∵ABO=∵CDO,∵AB//CD,故线段AB与CD的关系是:AB=CD,AB//CD;(2)在ΔACD中,AD+CD>AC又因为AB=CD,AO=OC所以AB+AD>2AO(3)ΔABO≅ΔCDO,ΔADO≅ΔCBO,ΔABC≅ΔCDA,ΔABD≅ΔCDB.点睛:本题考查了旋转的性质,全等三角形的判定和性质等知识点.旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.38.某学校为了解学生的体能情况,组织了体育测试,测试项目有A “立定跳远”、B “掷实心球”、C “耐久跑”、D“快速跑”四个.规定:每名学生测试三项,其中A、B为必测项目,第三项C、D中随机抽取,每项10分,满分30分.(1)请用列表或树状图,求甲、乙两同学测试的三个项目完全相同的概率;(2)据统计,九(1)班有8名女生抽到了C“耐久跑”项目,她们的成绩如下:7,6,8,9,10,5,8,7∵这组成绩的中位数是_________,平均数是________;∵该班女生丙因病错过了测试,补测抽到了C “耐久跑”项目,加上丙同学的成绩后,发现这组成绩的众数与中位数相等,但平均数比∵中的平均数大,则丙同学“耐久跑”的成绩为________;(3)九(1)班有50名学生,下表是单项目成绩统计,请计算出该班此次体能测试的平均成绩39.如图,AC是∵O的弦,过点O作OP∵OC交AC于点P,在OP的延长线上取点B,使得BA=BP.(1)求证:AB是∵O的切线;(2)若∵O的半径为4,PC=AB的长.AB=.对称的点为B.(1)求点B的坐标;∠度数.(2)求AOB41.如图,在平面直角坐标系中,Rt∵ABC的顶点分别是A(﹣3,2)B(0,4)C (0,2).(1)将∵ABC以点C为旋转中心旋转180°,画出旋转后对应的∵A1B1C1;(2)分别连接AB1,BA1后,求四边形AB1A1B的面积.42.某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售单价每涨价1元,月销售量就减少10千克.(1)∵求出月销售量y(千克)与销售单价x(元/千克)之间的函数关系式;∵求出月销售利润w(元)与销售单价x(元/千克)之间的函数关系式;(2)在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少元?(3)当销售单价定为多少元时,能获得最大利润?最大利润是多少元?【答案】(1)∵y=﹣10x+1000;∵w=﹣10x2+1400x﹣40000;(2)不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)售价定为70元时会获得最大利润,最大利润是9000元【分析】(1)根据题意可以得到月销售利润w (单位:元) 与售价x (单位:元/千克)之间的函数解析式;(2)根据题意可以得到方程和相应的不等式,从而可以解答本题; (3)根据(1)中的关系式化为顶点式即可解答本题.【详解】解:(1)∵由题意可得:y =500﹣(x ﹣50)×10=﹣10x +1000; ∵w =(x ﹣40)[﹣10x +1000]=﹣10x 2+1400x ﹣40000; (2)设销售单价为a 元,210140040000800040(101000)10000a a x ⎧-+-=⎨-+≤⎩, 解得,a =80,答:商店想在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)∵y =﹣10x 2+1400x ﹣40000=﹣10(x ﹣70)2+9000, ∵当x =70时,y 取得最大值,此时y =9000,答:当售价定为70元时会获得最大利润,最大利润是9000元;【点睛】本题考查了二次函数的实际应用,掌握解二次函数的方法、二次函数的性质是解题的关键.43.如图所示,直角梯形ABCD 中,ABDC ,7cm AB =,4cm BC CD ==,以AB所在直线为轴旋转一周,得到一个几何体,求它的全面积.【答案】68π【分析】所得几何体为圆锥和圆柱的组合图形,表面积为底面半径为4,母线长的平方等于42+32的圆锥的侧面积和底面半径为4,高为4的圆柱的侧面积和下底面积之和.【详解】解:∵Rt∵AOD 中,AO =7-4=3cm ,OD =4cm , ∵AD 2=42+32=25 ∵AD =5cm ,∵所得到的几何体的表面积为π×4×5+π×4×2×4+π×4×4=68πcm2.故它的全面积为68πcm2.【点睛】本题考查圆锥的计算和圆柱的计算,得到几何体的形状是解决本题的突破点,需掌握圆锥、圆柱侧面积的计算公式.44.某批乒乓球的质量检验结果如下:(1)画出这批乒乓球“优等品”频率的折线统计图;(2)这批乒乓球“优等品”的概率的估计值是多少?(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.∵求从袋中摸出一个球是黄球的概率;∵现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于13,问至少取出了多少个黑球?。
九年级上册数学难题及其解答一、一元二次方程相关(5题)1. 已知关于x的一元二次方程x^2-(2k + 1)x + k^2+k = 0。
- 求证:方程有两个不相等的实数根。
- 若ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5。
当ABC是等腰三角形时,求k的值。
- 解答:- 对于一元二次方程ax^2+bx + c = 0(a≠0),判别式Δ=b^2-4ac。
在方程x^2-(2k + 1)x + k^2+k = 0中,a = 1,b=-(2k + 1),c=k^2+k。
- Δ=(2k + 1)^2-4(k^2+k)- =4k^2+4k + 1-4k^2-4k- =1>0,所以方程有两个不相等的实数根。
- 由一元二次方程x^2-(2k + 1)x + k^2+k = 0,根据韦达定理x_1+x_2=-(b)/(a),x_1x_2=(c)/(a),可得x_1+x_2=2k + 1,x_1x_2=k^2+k。
- 因为ABC是等腰三角形,BC = 5,设AB=x_1,AC = x_2。
- 当AB=BC = 5或AC = BC = 5时,把x = 5代入方程x^2-(2k + 1)x +k^2+k = 0得:- 25-5(2k + 1)+k^2+k = 0- 25-10k - 5+k^2+k = 0- k^2-9k + 20 = 0- (k - 4)(k - 5)=0- 解得k = 4或k = 5。
- 当k = 4时,原方程为x^2-9x+20 = 0,解得x_1=5,x_2=4,三角形三边为5,5,4,满足三角形三边关系。
- 当k = 5时,原方程为x^2-11x + 30 = 0,解得x_1=5,x_2=6,三角形三边为5,5,6,满足三角形三边关系。
2. 若关于x的一元二次方程mx^2-(3m - 1)x+2m - 1 = 0,其根的判别式的值为1,求m的值及该方程的根。
- 解答:- 对于一元二次方程ax^2+bx + c = 0(a≠0),判别式Δ=b^2-4ac。
初三上册数学重点题型复习及答案解析一.解答题(共30小题)1.如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15°,将沿弦CE翻折,交CD于点F,求图中阴影部分的面积.2.如图,⊙O是△ABC的外接圆,AC为直径,弦BD=BA,BE⊥DC交DC的延长线于点E.(1)求证:∠1=∠BAD;(2)求证:BE是⊙O的切线.3.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD 的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.4.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.5.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF ⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.6.如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A,与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.(1)试判断BC所在直线与小圆的位置关系,并说明理由;(2)试判断线段AC、AD、BC之间的数量关系,并说明理由.(3)若AB=8,BC=10,求大圆与小圆围成的圆环的面积.7.如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作⊙O的切线AE交CD 的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.8.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(Ⅰ)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(Ⅱ)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,求∠ODC的度数.9.如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M为⊙O上一点,并且∠BMC=60°.(1)求证:AB是⊙O的切线;(2)若E,F分别是边AB,AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问BE+CF 的值是否为定值?若是,求出这个定值;若不是,请说明理由.10.如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD于点D.(1)求证:AE平分∠DAC;(2)若AB=3,∠ABE=60°.①求AD的长;②求出图中阴影部分的面积.11.如图1,已知抛物线l1:y=﹣x2+x+3与y轴交于点A,过点A的直线l2:y=kx+b与抛物线l1交于另一点B,点A,B到直线x=2的距离相等.(1)求直线l2的表达式;(2)将直线l2向下平移个单位,平移后的直线l3与抛物线l1交于点C,D(如图2),判断直线x=2是否平分线段CD,并说明理由;(3)已知抛物线y=ax2+bx+c(a,b,c为常数)和直线y=3x+m有两个交点M,N,对于任意满足条件的m,线段MN都能被直线x=h平分,请直接写出h与a,b之间的数量关系.12.如图,点A(﹣2,0)、B(4,0)、C(3,3)在抛物线y=ax2+bx+c上,点D在y轴上,且DC⊥BC,∠BCD绕点C顺时针旋转后两边与x轴、y轴分别相交于点E、F.(1)求抛物线的解析式;(2)CF能否经过抛物线的顶点?若能,求出此时点E的坐标;若不能,说明理由;(3)若△FDC是等腰三角形,求点F的坐标.13.已知,一条抛物线的顶点为E(﹣1,4),且过点A(﹣3,0),与y轴交于点C,点D 是这条抛物线上一点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK⊥x轴,垂足为K,DK分别交线段AE、AC于点G、H.(1)求这条抛物线的解析式;(2)求证:GH=HK;(3)当△CGH是等腰三角形时,求m的值.14.已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上的三个点,且OA=1,OB=3,OC=4,(1)求经过A、B、C三点的抛物线的解析式;(2)在平面直角坐标系xOy中是否存在一点P,使得以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.15.在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.16.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.17.如图,抛物线y=﹣与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A、点B、点C的坐标;(2)求直线BD的解析式;(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD 是平行四边形;(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.18.如图,已知抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A、B两点,点A在点B的左边,与y轴交于点C,顶点为D,若以BD为直径的⊙M经过点C.(1)请直接写出C、D两点的坐标(用含a的代数式表示);(2)求抛物线的函数表达式;(3)在抛物线上是否存在点E,使∠EDB=∠CBD?若存在,请求出所有满足条件的点E 的坐标;若不存在,请说明理由.19.如图,已知抛物线y=﹣(x2﹣7x+6)的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C.(1)用配方法将抛物线的解析式化为顶点式:y=a(x﹣h)2+k(a≠0),并指出顶点M的坐标;(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N 的切线.20.如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P 过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.(1)求抛物线的解析式;(2)求证:ED是⊙P的切线;(3)若将△ADE绕点D逆时针旋转90°,E点的对应点E′会落在抛物线y=ax2+bx+c上吗?请说明理由;(4)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.21.如图所示,在平面直角坐标系中,以点M(2,3)为圆心,5为半径的圆交x轴于A,B两点,过点M作x轴的垂线,垂足为D;过点B作⊙M的切线,与直线MD交于N点.(1)求点B、点N的坐标以及直线BN的解析式;(2)求过A、N、B、三点(对称轴与y轴平行)的抛物线的解析式;(3)设(2)中的抛物线与y轴交于点P,以点D,B,P三点为顶点作平行四边形,请你求出第四个顶点Q的坐标,并判断Q是否在(2)中的抛物线上.22.如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣6,0)、B(0,﹣8)两点.(1)求出直线AB的函数解析式;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S若存在,请求出点P的坐标;若不存在,请说明理由.△ABC23.如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B 的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.24.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0,2).(1)求a,b,c的值;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.25.如图,直线与y轴交于A点,过点A的抛物线与直线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)求B点坐标以及抛物线的函数解析式.(2)动点P在线段OC上,从原点O出发以每秒一个单位的速度向C运动,过点P作x轴的垂线交直线AB于点M,交抛物线于点N.设点P运动的时间为t秒,求线段MN的长与t的函数关系式,当t为何值时,MN的长最大,最大值是多少?(3)在(2)的条件下(不考虑点P与点O、点C重合的情况),连接CM、BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t的值,平行四边形BCMN是否为菱形?说明理由.26.当﹣2≤x≤2时,求函数y=x2﹣2x﹣3的最大值和最小值.27.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?28.为备战2016年里约奥运会,中国女排的姑娘们刻苦训练,为国争光,如图,已知排球场的长度OD为18米,位于球场中线处球网的高度AB为2.43米,一队员站在点O处发球,排球从点O的正上方1.8米的C点向正前方飞出,当排球运行至离点O的水平距离OE为7米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.2米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式.(不要求写自变量x的取值范围).(2)在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(3)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)29.九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x 为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).时间x(天) 1 30 60 90每天销售量p(件)198 140 80 20(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.30.关于x的一元二次方程4x2+4(m﹣1)x+m2=0(1)当m在什么范围取值时,方程有两个实数根?(2)设方程有两个实数根x1,x2,问m为何值时,x12+x22=17?(3)若方程有两个实数根x1,x2,问x1和x2能否同号?若能同号,请求出相应m的取值范围;若不能同号,请说明理由.2016年11月26日1302729921的初中数学组卷参考答案与试题解析一.解答题(共30小题)1.(2016•天门)如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15°,将沿弦CE翻折,交CD于点F,求图中阴影部分的面积.【分析】(1)根据AB⊥CD,垂足为G,OG:OC=3:5,AB=8,可以求得⊙O的半径;(2)要求阴影部分的面积只要做出合适的辅助线,然后利用锐角三角函数、扇形的面积和三角形的面积即可解答本题.【解答】解:(1)连接AO,如右图1所示,∵CD为⊙O的直径,AB⊥CD,AB=8,∴AG==4,∵OG:OC=3:5,AB⊥CD,垂足为G,∴设⊙O的半径为5k,则OG=3k,∴(3k)2+42=(5k)2,解得,k=1或k=﹣1(舍去),∴5k=5,即⊙O的半径是5;(2)如图2所示,将阴影部分沿CE翻折,点F的对应点为M,∵∠ECD=15°,由对称性可知,∠DCM=30°,S阴影=S弓形CBM,连接OM,则∠MOD=60°,∴∠MOC=120°,过点M作MN⊥CD于点N,∴MN=MO•sin60°=5×,∴S阴影=S扇形OMC﹣S△OMC==,即图中阴影部分的面积是:.【点评】本题考查垂径定理、扇形的面积、翻折变换,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.2.(2016•自贡)如图,⊙O是△ABC的外接圆,AC为直径,弦BD=BA,BE⊥DC交DC 的延长线于点E.(1)求证:∠1=∠BAD;(2)求证:BE是⊙O的切线.【分析】(1)根据等腰三角形的性质和圆周角定理得出即可;(2)连接BO,求出OB∥DE,推出EB⊥OB,根据切线的判定得出即可;【解答】证明:(1)∵BD=BA,∴∠BDA=∠BAD,∵∠1=∠BDA,∴∠1=∠BAD;(2)连接BO,∵∠ABC=90°,又∵∠BAD+∠BCD=180°,∴∠BCO+∠BCD=180°,∵OB=OC,∴∠BCO=∠CBO,∴∠CBO+∠BCD=180°,∴OB∥DE,∵BE⊥DE,∴EB⊥OB,∵OB是⊙O的半径,∴BE是⊙O的切线.【点评】本题考查了三角形的外接圆与外心,等腰三角形的性质,切线的判定,熟练掌握切线的判定定理是解题的关键.3.(2016•三明)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB 于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.【分析】(1)直线DE与圆O相切,理由如下:连接OD,由OD=OA,利用等边对等角得到一对角相等,等量代换得到∠ODE为直角,即可得证;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,在直角三角形OCE中,利用勾股定理列出关于x的方程,求出方程的得到x的值,即可确定出DE的长.【解答】解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.【点评】此题考查了直线与圆的位置关系,以及线段垂直平分线定理,熟练掌握直线与圆相切的性质是解本题的关键.4.(2016•宁波)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.【分析】(1)连接OD,欲证明DE是⊙O的切线,只要证明OD⊥DE即可.(2)过点O作OF⊥AC于点F,只要证明四边形OFED是矩形即可得到DE=OF,在RT△AOF中利用勾股定理求出OF即可.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF===4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.【点评】本题考查切线的判定、矩形的判定和性质、垂径定理、勾股定理等知识,解题的关键是记住切线的判定方法,学会添加常用辅助线,属于基础题,中考常考题型.5.(2016•本溪二模)已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.【分析】(1)连接OD,证∠ODF=90°即可.(2)利用△ADF是30°的直角三角形可求得AF长,同理可利用△FHC中的60°的三角函数值可求得FG长.【解答】(1)证明:连接OD,∵以等边三角形ABC的边AB为直径的半圆与BC边交于点D,∴∠B=∠C=∠ODB=60°,∴OD∥AC,∵DF⊥AC,∴∠CFD=∠ODF=90°,即OD⊥DF,∵OD是以边AB为直径的半圆的半径,∴DF是圆O的切线;(2)∵OB=OD=AB=6,且∠B=60°,∴BD=OB=OD=6,∴CD=BC﹣BD=AB﹣BD=12﹣6=6,∵在Rt△CFD中,∠C=60°,∴∠CDF=30°,∴CF=CD=×6=3,∴AF=AC﹣CF=12﹣3=9,∵FG⊥AB,∴∠FGA=90°,∵∠FAG=60°,∴FG=AFsin60°=.【点评】本题主要考查了直线与圆的位置关系、等边三角形的性质、垂径定理等知识,判断直线和圆的位置关系,一般要猜想是相切,那么证直线和半径的夹角为90°即可;注意利用特殊的三角形和三角函数来求得相应的线段长.6.(2016•深圳模拟)如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A,与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.(1)试判断BC所在直线与小圆的位置关系,并说明理由;(2)试判断线段AC、AD、BC之间的数量关系,并说明理由.(3)若AB=8,BC=10,求大圆与小圆围成的圆环的面积.【分析】(1)只要证明OE垂直BC即可得出BC是小圆的切线,即与小圆的关系是相切.(2)利用全等三角形的判定得出Rt△OAD≌Rt△OEB,从而得出EB=AD,从而得到三者的关系是前两者的和等于第三者.(3)根据大圆的面积减去小圆的面积即可得到圆环的面积.【解答】解:(1)BC所在直线与小圆相切.理由如下:过圆心O作OE⊥BC,垂足为E;∵AC是小圆的切线,AB经过圆心O,∴OA⊥AC;又∵CO平分∠ACB,OE⊥BC,∴OE=OA,∴BC所在直线是小圆的切线.(2)AC+AD=BC.理由如下:连接OD.∵AC切小圆O于点A,BC切小圆O于点E,∴CE=CA;∵在Rt△OAD与Rt△OEB中,,∴Rt△OAD≌Rt△OEB(HL),∴EB=AD;∵BC=CE+EB,∴BC=AC+AD.(3)∵∠BAC=90°,AB=8cm,BC=10cm,∴AC=6cm;∵BC=AC+AD,∴AD=BC﹣AC=4cm,∵圆环的面积为:S=π(OD)2﹣π(OA)2=π(OD2﹣OA2),又∵OD2﹣OA2=AD2,∴S=42π=16π(cm2).【点评】本题考查了切线的判定,全等三角形的判定等知识点.要证某线是圆的切线,①已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可,②所证切线与圆的交点不明确,可以过圆心作该直线的垂线段,证明垂线段的长等于半径.7.(2016•滨湖区模拟)如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作⊙O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.【分析】(1)欲证明AE⊥CD,只要证明∠EAD+∠ADE=90°即可;(2)过点O作OF⊥CD,垂足为点F.从而证得四边形AOFE是矩形,得出OF=AE,根据垂径定理得出DF=CD,在Rt△ODF中,根据勾股定理即可求得⊙O的半径.【解答】(1)证明:连接OA.∵AE是⊙O切线,∴OA⊥AE,∴∠OAE=90°,∴∠EAD+∠OAD=90°,∵∠ADO=∠ADE,OA=OD,∴∠OAD=∠ODA=∠ADE,∴∠EAD+∠ADE=90°,∴∠AED=90°,∴AE⊥CD;(2)解:过点O作OF⊥CD,垂足为点F.∵∠OAE=∠AED=∠OFD=90°,∴四边形AOFE是矩形.∴OF=AE=4cm.又∵OF⊥CD,∴DF=CD=3cm.在Rt△ODF中,OD==5cm,即⊙O的半径为5cm.【点评】本题考查了等腰三角形的性质,垂径定理,平行线的判定和性质,切线的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.8.(2016•河西区一模)已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(Ⅰ)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(Ⅱ)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,求∠ODC的度数.【分析】(1)连接OC,因为CD是⊙O的切线,得出∠OCD=90°,由OC=CD,得出∠ODC=∠COD,即可求得.(2)连接OE,利用等腰三角形及平行线的性质,可求得∠ODC的度数.【解答】解:(1)如图①,连接OC,∵OC=OA,CD=OA,∴OC=CD,∴∠ODC=∠COD,∵CD是⊙O的切线,∴∠OCD=90°,∴∠ODC=45°;(2)如图②,连接OE.∵CD=OA,∴CD=OC=OE=OA,∴∠1=∠2,∠3=∠4.∵AE∥OC,∴∠2=∠3.设∠ODC=∠1=x,则∠2=∠3=∠4=x.∴∠AOE=∠OCD=180°﹣2x.∵∠6=∠1+∠2=2x.∵OE=OC,∴∠5=∠6=2x.∵AE∥OC,∴∠4+∠5+∠6=180°,即:x+2x+2x=180°,∴x=36°.∴∠ODC=36°.【点评】本题考查了切线性质,全等三角形,等腰三角形的性质以及平行线的性质等,作出辅助线是解题的关键.9.(2015•德阳)如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M为⊙O上一点,并且∠BMC=60°.(1)求证:AB是⊙O的切线;(2)若E,F分别是边AB,AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问BE+CF 的值是否为定值?若是,求出这个定值;若不是,请说明理由.【分析】(1)连结OB、OD、OC,如图1,由于D为BC的中点,根据垂径定理的推理得OD⊥BC,∠BOD=∠COD,再根据圆周角定理得∠BOD=∠M=60°,则∠OBD=30°,所以∠ABO=90°,于是根据切线的判定定理得AB是⊙O的切线;(2)作DM⊥AB于M,DN⊥AC于N,连结AD,如图2,根据等边三角形三角形的性质得AD平分∠BAC,∠BAC=60°,则利用角平分线性质得DM=DN,根据四边形内角和得∠MDN=120°,由于∠EDF=120°,所以∠MDE=∠NDF,接着证明△DME≌△DNF得到ME=NF,于是BE+CF=BM+CN,再计算出BM=BD,CN=OC,则BE+CF=BC,于是可判断BE+CF的值是定值,为等边△ABC边长的一半,再计算BC的长即可.【解答】(1)证明:连结OB、OD、OC,如图1,∵D为BC的中点,∴OD⊥BC,∠BOD=∠COD,∴∠ODB=90°,∵∠BMC=∠BOC,∴∠BOD=∠M=60°,∴∠OBD=30°,∵△ABC为正三角形,∴∠ABC=60°∴∠ABO=60°+30°=90°,∴AB⊥OB,∴AB是⊙O的切线;(2)解:BE+CF的值是为定值.作DH⊥AB于H,DN⊥AC于N,连结AD,如图2,∵△ABC为正三角形,D为BC的中点,∴AD平分∠BAC,∠BAC=60°,∴DH=DN,∠HDN=120°,∵∠EDF=120°,∴∠HDE=∠NDF,在△DHE和△DNF中,,∴△DHE≌△DNF,∴HE=NF,∴BE+CF=BH﹣EH+CN+NF=BH+CN,在Rt△DHB中,∵∠DBH=60°,∴BH=BD,同理可得CN=OC,∴BE+CF=OB+OC=BC,∵BD=OB•cos30°=,∴BC=2,∴BE+CF的值是定值,为.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的性质.10.(2012•广元)如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD于点D.(1)求证:AE平分∠DAC;(2)若AB=3,∠ABE=60°.①求AD的长;②求出图中阴影部分的面积.【分析】(1)连接OE,由切线的性质可知,OE⊥CD,再根据AD⊥CD可知AD∥OE,故∠DAE=∠AEO,再由OA=OE可知∠EAO=∠AEO,故∠DAE=∠EAO,故可得出结论;(2)①先根据∠ABE=60°求出∠EAO的度数,进而得出∠DAE的度数,再根据锐角三角函数的定义求出AE及BE的长,在Rt△ADE中利用锐角三角函数的定义即可得出AD的长;②由三角形内角和定理求出∠AOE的度数,再根据OA=OB可知S△AOE=S△BOE=S△ABE求出△AOE的面积,由S阴影=S扇形AOE﹣S△AOE即可得出结论.【解答】解:(1)连接OE.∵CD是⊙O的切线,∴OE⊥CD,∵AD⊥CD,∴AD∥OE,∴∠DAE=∠AEO,∵OA=OE,∴∠EAO=∠AEO,∴∠DAE=∠EAO,∴AE平分∠DAC;(2)①∵AB是⊙O的直径,∴∠AEB=90°,∵∠ABE=60°,∴∠EAO=30°,∴∠DAE=∠EAO=30°,∵AB=3,∴AE=AB•cos30°=3×=,BE=AB=,在Rt△ADE中,∵∠DAE=30°,AE=,∴AD=AE•cos30°=×=;②∵∠EAO=∠AEO=30°,∴∠AOE=180°﹣∠EAO﹣∠AEO=180°﹣30°﹣30°=120°,∵OA=OB,∴S△AOE=S△BOE=S△ABE,∴S阴影=S扇形OAE﹣S△AOE=S扇形OAE﹣S△ABE═﹣×××=﹣=.【点评】本题考查的是切线的性质及扇形面积的计算,根据题意作出辅助线,构造出直角三角形,利用直角三角形的性质求解是解答此题的关键.11.(2016•宁德)如图1,已知抛物线l1:y=﹣x2+x+3与y轴交于点A,过点A的直线l2:y=kx+b与抛物线l1交于另一点B,点A,B到直线x=2的距离相等.(1)求直线l2的表达式;(2)将直线l2向下平移个单位,平移后的直线l3与抛物线l1交于点C,D(如图2),判断直线x=2是否平分线段CD,并说明理由;(3)已知抛物线y=ax2+bx+c(a,b,c为常数)和直线y=3x+m有两个交点M,N,对于任意满足条件的m,线段MN都能被直线x=h平分,请直接写出h与a,b之间的数量关系.【分析】(1)先根据抛物线的解析式求出抛物线与y轴的交点A的坐标,再根据点A,B到直线x=2的距离相等,求出点B的横坐标为4,因为B也在抛物线上,当x=4代入抛物线的解析式求出y的值,即是点B的坐标,再利用待定系数法求直线l2的表达式;(2)根据平移规律写出直线l3表达式,计算出直线l3与直线x=2的交点坐标(2,﹣1.5),根据二次函数和直线l3的解析式列方程组求出C、D两点的坐标,由中点坐标公式计算CD 的中点坐标,恰好与直线l3与直线x=2的交点重合,所以直线x=2平分线段CD;(3)先设M(x1,y1),N(x2,y2),根据M、N是抛物线和直线y=3x+m的交点,列方程组得:x1+x2=﹣,由中点坐标公式列式可得结论.【解答】解:(1)当x=0时,y=3,∴A(0,3),∴A到直线x=2的距离为2,∵点A,B到直线x=2的距离相等,∴B到直线x=2的距离为2,∴B的横坐标为4,当x=4时,y=﹣×42+4+3=﹣1,∴B(4,﹣1),把A(0,3)和B(4,﹣1)代入y=kx+b中得:,解得:,∴直线l2的表达式为:y=﹣x+3;(2)直线x=2平分线段CD,理由是:直线l3表达式为:y=﹣x+3﹣=﹣x+0.5,当x=2时,y=﹣2+0.5=﹣1.5,,解得:或,∴C(﹣1,1.5)、D(5,﹣4.5),∴线段CD的中点坐标为:x==2,y==﹣1.5,则直线x=2平分线段CD;(3),ax2+(b﹣3)x+c﹣m=0,则x1、x2是此方程的两个根,x1+x2=﹣,∵线段MN都能被直线x=h平分,设线段MN的中点为P,则P的横坐标为h,根据中点坐标公式得:h==﹣.【点评】本题是二次函数的综合题,考查了二次函数与一次函数的交点问题,与方程组相结合,理解上有难度;要熟知中点坐标公式:若A(a,b),B(m,n),则AB的中点坐标x=,y=;两函数图象的交点就是两函数解析式所列方程组的解.12.(2016•东丽区二模)如图,点A(﹣2,0)、B(4,0)、C(3,3)在抛物线y=ax2+bx+c 上,点D在y轴上,且DC⊥BC,∠BCD绕点C顺时针旋转后两边与x轴、y轴分别相交于点E、F.(1)求抛物线的解析式;(2)CF能否经过抛物线的顶点?若能,求出此时点E的坐标;若不能,说明理由;(3)若△FDC是等腰三角形,求点F的坐标.【分析】(1)由抛物线与X轴的两个交点A、B的坐标,可以由两根式设抛物线解析式为:y=a(x+2)(x﹣4),求出a的值即可;(2)由C、B两点坐标利用待定系数法可以求得CB直线方程为:y=﹣3x+12,设CD直线方程可以设为:y=x+m,求出m的值,进而求出D点的值,由抛物线解析式可以顶点公式或对称轴x=1解得顶点M坐标,由C、M两点坐标可以求得CM即CF直线方程,CE直线方程可以设为:y=x+n,求出n的值,进而求出E点的坐标;(3)由C、D两点坐标可以求得CD=,△FDC是等腰△可以有三种情形:①当FD=CD;②FC=CD;③FD=FC,分别求出F点的坐标即可;【解答】解:(1)由抛物线与X轴的两个交点A、B的坐标,可以由两根式设抛物线解析式为:y=a(x+2)(x﹣4),然后将C点坐标代入得:a(3+2)(3﹣4)=3,解得:a=﹣,故抛物线解析式是:y=﹣(x+2)(x﹣4);(2)由C、B两点坐标利用待定系数法可以求得CB直线方程为:y=﹣3x+12,∵CD⊥CB,∴CD直线方程可以设为:y=x+m,将C点坐标代入得:m=2,∴CD直线方程为:y=x+2,∴D点坐标为:D(0,2),由抛物线解析式可以顶点公式或对称轴x=1解得顶点M坐标为M(1,),∴由C、M两点坐标可以求得CM即CF直线方程为:y=﹣x+,∴F点坐标为:F(0,),∴CE直线方程可以设为:y=x+n,将C点坐标代入得:n=,∴CE直线方程为:y=x+,令y=0,解得:x=﹣,∴E点坐标为E(﹣,0),∴能;(3)由C、D两点坐标可以求得CD=,则△FDC是等腰△可以有三种情形:①FD=CD=,则F点坐标为F(0,2+),②FC=CD=,过C点作y轴垂线,垂足为H点,则DH=1,则FH=1,则F点坐标为F(0,4),③FD=FC,作DC的中垂线FG,交y轴于F点,交DC于G点,由中点公式得G点坐标为G(,),由DC两点可以求得DC直线方程为:y=x+2,则FG直线方程可以设为:y=﹣3x+p,将G点坐标代入解得:p=7,故F点坐标为(0,7).【点评】本题主要考查二次函数的综合题的知识点,解答本题的关键是熟练掌握二次函数的性质及其解析式的求法,特别是(3)问需要分类讨论,此题难度较大,希望同学们仔细作答.13.(2016•崇明县二模)已知,一条抛物线的顶点为E(﹣1,4),且过点A(﹣3,0),与y轴交于点C,点D是这条抛物线上一点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK⊥x轴,垂足为K,DK分别交线段AE、AC于点G、H.(1)求这条抛物线的解析式;(2)求证:GH=HK;(3)当△CGH是等腰三角形时,求m的值.【分析】(1)设抛物线的解析式为y=a(x+1)2+4 (a≠0),将点A的坐标代入求得a的值即可求得抛物线的解析式;(2)先求得直线AE、AC的解析式,由点D的横坐标为m,可求得KG、KH的长(用含m的式子),从而可证明GH=HK;(3)可分为CG=CH,GH=GC,HG=HC三种情况,接下来依据两点间的距离公式列方程求解即可.【解答】(1)解:∵抛物线的顶点为E(﹣1,4),∴设抛物线的解析式为y=a(x+1)2+4 (a≠0).又∵抛物线过点A(﹣3,0),∴4a+4=0,解得:a=﹣1.∴这条抛物线的解析式为y=﹣(x+1)2+4.(2)设直线AE的解析式为y=kx+b.∵将A(﹣3,0),E(﹣1,4),代入得:,解得:k=2,b=6,∴直线AE的解析式为y=2x+6.设直线AC的解析式为y=k1x+b1.∵将A(﹣3,0),C(0,3)代入得:,解得:k=1,b=3,∴直线AC的解析式为y=x+3.∵D的横坐标为m,DK⊥x轴∴G(m,2m+6),H(m,m+3).∵K(m,0)∴GH=m+3,HK=m+3.∴GH=HK.(3)由(2)可知:C(0,3),G(m,2m+6),H(m,m+3)。
初三数学一元二次方程例题1.解下列方程:(1)x2﹣2x+1=0(2)9x2﹣(x﹣1)2=02.如图,某工地在直角墙角处,用可建60米长围墙的建筑材料围成一个矩形堆物场地,中间用同样的材料分隔为两间,要使所围成的矩形ABFE和矩形CDEF的面积分别是300m2和150m2,求BF的长.3.解下列一元二次方程:(1)(2x﹣1)2=(x﹣3)2;(2)x2﹣2x﹣1=0.4.每年九月是开学季,大多数学生会购买若干笔记本满足日常学习需要,校外某文具店老板开学前某日去批发市场进货,购进甲乙丙三种不同款式的笔记本共950本,已知甲款笔记本的进价为2元/本,乙款笔记本的进价是4元/本,丙款笔记本的进价是6元/本.(1)本次进货共花费3300元,并且甲款的笔记本数量是乙款笔记本数量的2倍,请问本次购进丙款笔记本多少本?(2)经过调研发现,甲款笔记本、乙款笔记本和丙款笔记本的零售价分别定为4元/本、6元/本和10元/本时,每天可分别售出甲款笔记本30本,乙款笔记本50本和丙款笔记本20本.如果将乙款笔记本的零售价提高元(a>25),甲款笔记本和丙款笔记本的零售价均保持不变,那么乙款笔记本每天的销售量将下降a%,丙款笔记本每天的销售量将上升a%,甲款笔记本每天的销量仍保持不变;若调价后每天销售三款笔记本共可获利260元,求a的值.5.已知关于x的一元二次方程(a﹣1)x2﹣2x+a2+1=0.(1)若方程的一个根是1,求实数a的值.(2)当a=﹣2时,用配方法解方程.初三数学一元二次方程例题答案1.解下列方程:(1)x2﹣2x+1=0(2)9x2﹣(x﹣1)2=0【分析】(1)先变形,再开方,即可得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣2x+1=0,(x﹣1)2=0,开方得:x﹣1=0,即x1=x2=1;(2)9x2﹣(x﹣1)2=0,[3x+(x﹣1)][3x﹣(x﹣1)]=0,3x+(x﹣1)=0,3x﹣(x﹣1)=0,解得:x1=,x2=﹣.【点评】本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键.2.如图,某工地在直角墙角处,用可建60米长围墙的建筑材料围成一个矩形堆物场地,中间用同样的材料分隔为两间,要使所围成的矩形ABFE和矩形CDEF的面积分别是300m2和150m2,求BF的长.【分析】设CD的长为xm,则BC的长为(60﹣2x)m,根据矩形的面积公式及矩形ABCD 的面积为450m2,即可得出关于x的一元二次方程,解之即可得出x的值,再利用矩形的面积公式结合矩形ABFE的面积为300m2,即可求出BF的长.【解答】解:设CD的长为xm,则BC的长为(60﹣2x)m,依题意,得:x(60﹣2x)=300+150,整理,得:x2﹣30x+225=0,解得:x1=x2=15.∴EF=DC=15.∵EF×BF=300,∴BF=20(m).答:BF的长是20m.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.3.解下列一元二次方程:(1)(2x﹣1)2=(x﹣3)2;(2)x2﹣2x﹣1=0.【分析】(1)利用直接开平方法求解可得;(2)利用配方法求解可得.【解答】解:(1)∵(2x﹣1)2=(x﹣3)2,∴2x﹣1=x﹣3或2x﹣1=3﹣x,解得x=﹣2或x=;(2)∵x2﹣2x=1,∴x2﹣2x+2=1+2,即(x+)2=3,则x+=,∴x1=﹣+,x2=﹣﹣.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.4.每年九月是开学季,大多数学生会购买若干笔记本满足日常学习需要,校外某文具店老板开学前某日去批发市场进货,购进甲乙丙三种不同款式的笔记本共950本,已知甲款笔记本的进价为2元/本,乙款笔记本的进价是4元/本,丙款笔记本的进价是6元/本.(1)本次进货共花费3300元,并且甲款的笔记本数量是乙款笔记本数量的2倍,请问本次购进丙款笔记本多少本?(2)经过调研发现,甲款笔记本、乙款笔记本和丙款笔记本的零售价分别定为4元/本、6元/本和10元/本时,每天可分别售出甲款笔记本30本,乙款笔记本50本和丙款笔记本20本.如果将乙款笔记本的零售价提高元(a>25),甲款笔记本和丙款笔记本的零售价均保持不变,那么乙款笔记本每天的销售量将下降a%,丙款笔记本每天的销售量将上升a%,甲款笔记本每天的销量仍保持不变;若调价后每天销售三款笔记本共可获利260元,求a的值.【分析】(1)根据甲乙丙三款笔记本的进价与数量的乘积等于总花费即可列方程求解;(2)根据售价﹣进价=利润即可列方程求解.【解答】解:(1)设乙款笔记本的数量为x本,则甲款2x本,丙款(950﹣3x)本,根据题意,得2×2x+4x+6(950﹣3x)=3300解得x=240,∴950﹣3x=230.答:本次购进丙款笔记本230本.(2)根据题意,得(4﹣2)×30+(6+﹣4)×50(1﹣a%)+(10﹣6)[20(1+a%)]=260整理得a2﹣70a+1000=0解得a1=50,a2=20(不符合题意,舍去)答:a的值为50.【点评】本题考查了一元一次方程应用、一元二次方程的应用,解决本题的关键是根据题意找好等量关系.5.已知关于x的一元二次方程(a﹣1)x2﹣2x+a2+1=0.(1)若方程的一个根是1,求实数a的值.(2)当a=﹣2时,用配方法解方程.【分析】(1)将x=1代入原方程即可求出答案;(2)将a=﹣2代入方程即可求出答案.【解答】解:(1)将x=1代入原方程可得:(a﹣1)﹣2+a2+1=0,解得:a=1或a=﹣2,由于a﹣1≠0,∴a=﹣2;(2)将a=﹣2代入方程可得:﹣3x2﹣2x+5=0,∴x2+x=,∴(x+)2=,∴x=±,∴x=1或x=;【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.。
初三数学试题答案及解析1.如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于另一点Q,如果QP=QO,则∠OCP=___________.【答案】 40【解析】略2.在△ABC中,∠C=120°,AC=BC,AB=4,半圆的圆心O在AB上,且与AC,BC分别相切于点D,E.【1】(1)求半圆O的半径;【答案】解:(1)解:连结OD,OC,∵半圆与AC,BC分别相切于点D,E.∴,且.…………………1分∵,∴且O是AB的中点.∴.∵,∴.∴.∴在中,.即半圆的半径为1.【2】(2)求图中阴影部分的面积.【答案】(2)设CO=x,则在中,因为,所以AC=2x,由勾股定理得:即解得(舍去)∴. …………………….4分∵半圆的半径为1,∴半圆的面积为,∴.3.如图,直线与轴、轴分别相交于两点,圆心的坐标为,圆与轴相切于点.若将圆沿轴向左移动,当圆与该直线相交时,横坐标为整数的点的个数是()A. 2B. 3C. 4D. 5【答案】B【解析】略4.如图,已知OB是⊙O的半径,点C、D在⊙O上,∠DCB=40°,则∠OBD=▲度.【答案】50【解析】略5.【答案】30【解析】略6.顺次连接任意四边形各边中点的连线所成的四边形是 .【答案】矩形【解析】略7.如图,已知AB是⊙O的一条直径,延长AB至C点,使得AC=3BC,CD与⊙O相切,切点为D.若CD=,则线段BC的长度等于.【答案】【解析】略8.(11·西宁)西宁中心广场有各种音乐喷泉,其中一个喷水管的最大高度为3米,此时距喷水管的水平距离为米,在如图3所示的坐标系中,这个喷泉的函数关系式是A.y=-(x-)x2+3B.y=-3(x+)x2+3C.y=-12(x-)x2+3D.y=-12(x+)x2+3【答案】C【解析】略9.(1)计算:(2)先化简,再求值(3)如图,平行四边形ABCD的对角线AC、BD交于点O,E、F在AC上,G、H在BD上,且AF=CE,BH=DG,求证:AG∥HE【答案】(1)解:原式=3´1–(2–)+(–1)(4分)= (5分)(2 )解:– = – (2分)= = (4分)当x = 时,∴原式= = (5分)(3)证明:∵平行四边形ABCD中,OA=OC, (1分)由已知:AF=CEAF–OA= CE–OC∴OF=OE (3分)同理得:OG=OH∴四边形EGFH是平行四边形 (4分)∴GF∥HE (5分)【解析】略10.已知,则的值为()A.B.C.D.【答案】A【解析】略11.若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有()A.5桶B.6桶C.9桶D.12桶【答案】B【解析】略12.如图,在等腰梯形ABCD中,AB∥CD,对角线AC⊥BC,∠B=60º,BC=2cm,则梯形ABCD的面积为(▲)A.cm2B.6 cm2C.cm2D.12 cm2【答案】A【解析】略13.如图,△ABC∽△ADE,∠ADE=∠B,则下列比例式正确的是()A.B.C.D.【答案】D【解析】此题中的DE与BC不平行,且已知∠ADE=∠B,所以AE与AC,AD与AB,DE与BC是对应边,准确找到对应边是解题的关键.14.如图,在△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边上的点F处,并且FD∥BC,则CD的长是( )A.B.C.D.【答案】A【解析】由折叠知CD=FD,设CD=FD=x.因为FD∥BC,所以△AFD∽△ABC,所以.又,所以,解得.故.故选A15.如图,在Rt△AOB中,OA=OB=,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为.【答案】【解析】连接OP、OQ,∵PQ是⊙O的切线,∴OQ⊥PQ.根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短.此时,∵在Rt△AOB中,OA=OB=,∴AB=,OA=6.∴OP=AB=3.∴PQ===.【考点】1.切线的性质;2.勾股定理.16.(7分)(1)如图,在矩形ABCD中,BF=CE,求证:AE=DF;(2)如图,在圆内接四边形ABCD中,O为圆心,∠BOD=160°,求∠BCD的度数.【答案】(1)见解析;(2)100°.【解析】(1)根据矩形的性质得出AB=CD,∠B=∠C=90°,求出BE=CF,根据SAS推出△ABE≌△DCF即可;(2)根据圆周角定理求出∠BAD,根据圆内接四边形性质得出∠BCD+∠BAD=180°,即可求出答案.试题解析:(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠B=∠C=90°,∵BF=CE,∴BE=CF,在△ABE和△DCF中∴△ABE≌△DCF,∴AE=DF;(2)解:∵∠BOD=160°,∴∠BAD= ∠BOD=80°,∵A、B、C、D四点共圆,∴∠BCD+∠BAD=180°,∴∠BCD=100°.【考点】1.矩形的性质;2.全等三角形的判定与性质;3.圆周角定理;4.圆内接四边形的性质.17.(2分)已知关于x的一元二次方程的一个根是﹣1,则m= .【答案】1.【解析】∵关于x的一元二次方程的一个根是﹣1,∴,解得m=1.故答案为:1.【考点】一元二次方程的解.18.(3分)如图,将矩形ABCD沿对角线BD折叠,使点C与C′重合.若AB=3,则C′D的长为.【答案】3.【解析】在矩形ABCD中,CD=AB,∵矩形ABCD沿对角线BD折叠后点C和点C′重合,∴C′D=CD,∴C′D=AB,∵AB=3,∴C′D=3.故答案为:3.【考点】翻折变换(折叠问题).19.(8分)如图,在边长为1的小正方形网格中,三角形的三个顶点均落在格点上.(1)以三角形的其中两边为边画一个平行四边形,并在顶点处标上字母A,B,C,D;(2)证明四边形ABCD是平行四边形.【答案】(1)答案见试题解析;(2)证明见试题解析.【解析】(1)过A点作AB∥CD,AB=CD,即可得到平行四边形ABCD,如图;(2)由AB∥CD,AB=CD,即可得到结论.试题解析:(1)如图,四边形ABCD为平行四边形;(2)∵AB=CD,AB∥CD,∴四边形ABCD为平行四边形.【考点】1.平行四边形的判定;2.勾股定理;3.作图题.20.从左到右的变形,是因式分解的为()A.(3-x)(3+x)=9-x2B.(a-b)(a2+ab+b2)=a3-b3C.a2-4ab+4b2-1=a(a-4b)+(2b+1)(2b-1)D.4x2-25y2=(2x+5y)(2x-5y)【答案】D.【解析】(3-x)(3+x)=9-x2不是因式分解,A不正确;(a-b)(a2+ab+b2)=a3-b3不是因式分解,B不正确;a2-4ab+4b2-1=a(a-4b)+(2b+1)(2b-1)不是因式分解,C不正确;4x2-25y2=(2x+5y)(2x-5y)是因式分解,D正确,故选D.【考点】因式分解的意义.21.下列几何体中,主视图相同的是()A.①②B.①③C.①④D.②④【答案】B.【解析】主视图是从物体上面看,所得到的图形.试题解析:圆柱的主视图是长方形,圆锥的主视图是三角形,长方体的主视图是长方形,球的主视图是圆,故选B.【考点】简单几何体的三视图.22.的绝对值的相反数是()A.B.C.2D.﹣2【答案】B【解析】﹣的绝对值为:|﹣|=,的相反数为﹣,故选B.【考点】1.绝对值;2.相反数.23.计算:【答案】0.【解析】根据二次根式的性质,负数的绝对值等于它的相反数,任何非0数的0次幂等于1,有理数的负整数指数次幂等于正整数指数次幂的倒数进行计算即可得解.试题解析:=2-1+1-2,=0.【考点】1.实数的运算;2.零指数幂;3.负整数指数幂.24.二次函数的图象在轴上截得的线段长为_________.【答案】【解析】令y=0,则-2x-1=0,解方程得,所以图象在轴上截得的线段长为.【考点】二次函数的图象与方程.25.如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线相交于点E,∠ADC=60°.(1)求证:△ADE是等腰三角形;(2)若AD=2,求BE的长.【答案】(1)见解析;(2) 2【解析】(1)连接OD,利用切线的性质得出∠ODC=90°,然后根据条件可求出∠OAD=∠ODA=30°,再利用三角形的外角性质求出∠E=∠A即可;(2)由(1)知,DE=DA=2,然后利用特殊角的三角函数值可求出OD,OE的长.试题解析:(1)证明:连接OD,∵CD是⊙O的切线,∴OD⊥CD,即∠ODC=90°,∵∠ADC=60°,∴∠ODA=30°,在⊙O中OA=OD,∴∠OAD=∠ODA=30°,∴∠E=∠ADC-∠EAD=60°-30°=30°=∠EAD,∴DA=DE,即△ADE是等腰三角形.(2)解:由(1)知,DE=DA=,在Rt△ODE中,,OE=2OD=4,∴BE=OE-OB=OE-OD=4-2=2,答:BE的长是2.【考点】1.切线的性质、2.等腰三角形的判定与性质、3.解直角三角形.26.如果一组数据5,-2,0,6,4,的平均数是3,那么等于.【答案】5【解析】由题意知,5,-2,0,6,4,x的平均数为6,则利用平均数的定义,列出方程(5-2+0+6+4+x)=3,解得x=18-5+2-6-4=5.故选C.【考点】平均数27.若关于x的方程x2-3x+a=0有一个解是2,则2а+1的值是.【答案】5.【解析】关于的方程有一个解是2,则【考点】一元二次方程的根.28.下列电视台的台标,是中心对称图形的是()A.B.C.D.【答案】D【解析】中心对称图形是指将图形围绕某一点旋转180°之后能与原图形重合.【考点】中心对称图形29.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为元.【答案】25.【解析】设最大利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案为:25.【考点】1.二次函数的应用;2.销售问题.30.若关于的一元二次方程有两个相等的实数根,则的值是.【答案】1.【解析】∵关于x的一元二次方程有两个相等的实数根,∴△=0,∴△=,∴m=1.故答案为:1.【考点】根的判别式.31.下列方程中,关于的一元二次方程是().A.B.C.D.【答案】C【解析】因为方程整理后为2x+1=0,是一元一次方程,所以A错误;因为方程,当a=0时不是一元二次方程,所以B错误;因为方程整理后为,是一元二次方程,所以C正确;因为方程是分式方程,所以D错误;故选:C.【考点】一元二次方程32.(2015秋•济宁校级期末)抛物线y=2(x﹣3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)【答案】A【解析】已知抛物线的顶点式,可直接写出顶点坐标.解:由y=2(x﹣3)2+1,根据顶点式的坐标特点可知,顶点坐标为(3,1).故选:A.【考点】二次函数的性质.33.(2015秋•深圳校级月考)如图1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒.(1)当t=2时,求线段PQ的长度;(2)当t为何值时,△PCQ的面积等于5cm2?(3)在P、Q运动过程中,在某一时刻,若将△PQC翻折,得到△EPQ,如图2,PE与AB能否垂直?若能,求出相应的t值;若不能,请说明理由.【答案】(1)厘米;(2)当t=1秒时,△PCQ的面积等于5cm2;(3)当t=时,PE⊥AB.【解析】(1)当t=2时,可求出CP,CQ的长,根据勾股定理即可求出线段即斜边PQ的长;(2)由三角形面积公式可建立关于t的方程,解方程求出t的值即可;(3)延长QE交AC于点D,若PE⊥AB,则QD∥AB,所以可得△CQD∽△CBA,由相似三角形的性质:对应边的比值相等可求出DE=0.5t,易证△ABC∽△DPE,再由相似三角形的性质可得,把已知数据代入即可求出t的值.解:(1)当t=2时,∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动,∴AP=2厘米,QC=4厘米,∴PC=4,在Rt△PQC中PQ==厘米;(2)∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动,∴PC=AC﹣AP=6﹣t,CQ=2t,∴S△CPQ=CP•CQ=,∴t2﹣6t+5=0解得t1=1,t2=5(不合题意,舍去)∴当t=1秒时,△PCQ的面积等于5cm2;(3)能垂直,理由如下:延长QE交AC于点D,∵将△PQC翻折,得到△EPQ,∴△QCP≌△QEP,∴∠C=∠QEP=90°,若PE⊥AB,则QD∥AB,∴△CQD∽△CBA,∴,∴,∴QD=2.5t,∵QC=QE=2t∴DE=0.5t易证△ABC∽△DPE,∴∴,解得:t=(0≤t≤4),综上可知:当t=时,PE⊥AB.【考点】相似形综合题.34.如图,等边△ABC的边长为2,以BC边上的高AB1为边作等边△AB1C1,B1C1交AC于点B2,△AB1B2的面积记做S1;再以AB2为边作等边△AB2C2,B2C2交AC1于点B3,△AB2B3的面积记做S2;…,以此类推,则Sn= .【答案】.【解析】试题解析:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=,∴第一个等边三角形AB1C1的面积为:;∵等边三角形AB1C1的边长为,AB2⊥B1C1,∴B1B2=,AB1=,根据勾股定理得:AB2=,∴第二个等边三角形AB2C2的面积为;依此类推,第n个等边三角形ABn Cn的面积为.【考点】1.规律型:图形变化类;2.等边三角形的性质.35.如图,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,点B 在第一象限,直线y=与边AB、BC分别交于点D、E,若点B的坐标为(m,1),则m的值可能是()A.-1 B.1 C.2 D.4【答案】C.【解析】试题解析:∵B、E两点的纵坐标相同,B点的纵坐标为1,∴点E的纵坐标为1,∵点E在y=上,∴点E的坐标(,1),∵直线y=与x轴的交点为(3,0),∴由图象可知点B的横坐标<m<3,∴m=2.故选C.【考点】一次函数图象上点的坐标特征.36.达州市图书馆今年4月23日开放以来,受到市民的广泛关注.5月底,八年级(1)班学生小颖对全班同学这一个多月来去新图书馆的次数做了调查统计,并制成了如图不完整的统计图表.八年级(1)班学生去新图书馆的次数统计表去图书馆的次数0次1次2次3次4次及以上请你根据统计图表中的信息,解答下列问题:(1)填空:a= ,b= ;(2)求扇形统计图中“0次”的扇形所占圆心角的度数;(3)从全班去过该图书馆的同学中随机抽取1人,谈谈对新图书馆的印象和感受.求恰好抽中去过“4次及以上”的同学的概率.【答案】(1)16,20;(2)57.6°;(3).【解析】(1)根据去图书馆“1次”的学生数÷其占全班人数的百分比可得总人数,将总人数减去其余各次数的人数可得“2次”的人数,即a的值,将“3次”的人数除以总人数可得b的值;(2)将360°乘以“0次”人数占总人数比例可得;(3)直接根据概率公式可得.试题解析:(1)该班学生总数为:12÷24%=50(人),则a=50﹣8﹣12﹣10﹣4=16,b=×100=20;(2)扇形统计图中“0次”的扇形所占圆心角的度数为:360°×=57.6°;(3)从全班去过该图书馆的同学中随机抽取1人,有50种等可能结果,其中恰好抽中去过“4次及以上”的同学有4种结果,所以恰好抽中去过“4次及以上”的同学的概率为=.【考点】扇形统计图;概率.37.一根圆锥的主视图是等边三角形,边长为2,则这个圆锥的表面积为()A.2πB.3πC.πD.)π【答案】B【解析】解:一个圆锥的轴截面(过旋转轴的截面)是边长为2的等边三角形,所以圆锥的母线为:2;底面半径为:1;圆锥的底面周长为:2π.所以圆锥的表面积为:×2π×2+π12=3π故选B.38.下列说法中正确的是()A.化简后的结果是B.9的平方根为3C.是最简二次根式D.﹣27没有立方根【答案】A.【解析】A.=,故正确.B.9的平方根为±3,故错误.C.=,不是最简二次根式,故错误.D.﹣27的立方根为﹣3,故错误.故选A.【考点】最简二次根式;平方根;立方根;分母有理化.39.如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线;(2)当OE=10时,求BC的长.【答案】(1)见解析(2)20【解析】(1)如图,连接OD.通过证明△AOE≌△DOE得到∠OAE=∠ODE=90°,易证得结论;(2)利用圆周角定理和垂径定理推知OE∥BC,所以根据平行线分线段成比例求得BC的长度即可.(1)证明:如图,连接OD.∵AC⊥AB,∴∠BAC=90°,即∠OAE=90°.在△AOE与△DOE中,,∴△AOE≌△DOE(SSS),∴∠OAE=∠ODE=90°,即OD⊥ED.又∵OD是⊙O的半径,∴ED是⊙O的切线;(2)解:如图,∵OE=10.∵AB是直径,∴∠ADB=90°,即AD⊥BC.又∵由(1)知,△AOE≌△DOE,∴∠AEO=∠DEO,又∵AE=DE,∴OE⊥AD,∴OE∥BC,∴=,∴BC=2OE=20,即BC 的长是20.【点评】本题考查了切线的判定与性质.解答(2)题时,也可以根据三角形中位线定理来求线段BC 的长度.40. 如图,抛物线y=与x 轴交于A ,B 两点,与y 轴交于点C .若点P 是线段AC上方的抛物线上一动点,当△ACP 的面积取得最大值时,点P 的坐标是( )A .(4,3)B .(5,)C .(4,) D .(5,3)【答案】B.【解析】连接PC 、PO 、PA ,设点P 坐标(m ,)令x=0,则y=,点C 坐标(0,), 令y=0则=0,解得x=﹣2或10,∴点A 坐标(10,0),点B 坐标(﹣2,0), ∴S △PAC =S △PCO +S △POA ﹣S △AOC =××m+×10×()﹣××10=﹣(m ﹣5)2+,∴x=5时,△PAC 面积最大值为,此时点P 坐标(5,).故选B .【考点】抛物线与x 轴的交点;二次函数的最值.41. 下列四个几何体中,主视图为圆的是( ) A .B .C .D .【答案】C .【解析】A .主视图是正方形,B .主视图是三角形,C .主视图为圆,D .主视图是矩形,故选C .【考点】简单几何体的三视图.42.小明在家中利用物理知识称量某个品牌纯牛奶的净含量,称得六盒纯牛奶的含量分别为:248mL,250mL,249mL,251mL,249mL,253mL,对于这组数据,下列说法正确的是(). A.平均数为251mL B.中位数为249mLC.众数为250mL D.方差为【答案】D.【解析】中位数是一组数据按大小顺序排列,中间一个数或两个数的平均数,即为中位数;出现次数最多的数即为众数;方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可,所以计算方差前要先算出平均数,然后再利用方差公式计算.A、这组数据平均数为:(248+250+249+251+249+253)÷6=250,故此选项错误;B、数据重新排列为:248,249,249,250,251,253,其中位数是(249+250)÷2=249.5,故此选项错误;C、这组数据出现次数最多的是249,则众数为249,故此选项错误;D、这组数据的平均数250,根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],则其方差为:×[(248﹣250)2+(250﹣250)2+(249﹣250)2+(251﹣250)2+(249﹣250)2+(253﹣250)2]=,故此选项正确;故选:D.【考点】平均数、中位数、众数、方差的定义.43.在正三角形、正方形、正五边、正六边形中不能单独镶嵌平面的是().A.正三角形B.正方形C.正五边形D.正六边形【答案】C.【解析】分别求出各个正多边形的每个内角的度数,再利用镶嵌应符合一个内角度数能整除360即可作出判断.A.正三角形的每个内角是60°,能整除360°,能密铺;B.正方形的每个内角是90°,4个能密铺;C.正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺;D.正六边形的每个内角是120°,A,B,D,3个能密铺,故选C.【考点】平面镶嵌(密铺).44.方程的解是()A.x="3"B.x=﹣2C.x="2"D.x=5【答案】C.【解析】方程两边都乘以3(5﹣x),得3x=2(5﹣x).解得x=2.检验:x=2时,3(5﹣x)≠0,∴x=2时原分式方程的解,故选:C.【考点】解分式方程.45.李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.【答案】(1)12cm和28cm;(2)正确【解析】(1)设剪成的较短的这段为xcm,较长的这段就为(40﹣x)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58cm2建立方程求出其解即可;(2)设剪成的较短的这段为mcm,较长的这段就为(40﹣m)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48cm2建立方程,如果方程有解就说明李明的说法错误,否则正确.试题解析:(1)设剪成的较短的这段为xcm,较长的这段就为(40﹣x)cm,由题意,得()2+()2=58,解得:x1=12,x2=28,当x=12时,较长的为40﹣12=28cm,当x=28时,较长的为40﹣28=12<28(舍去).答:李明应该把铁丝剪成12cm和28cm的两段;(2)李明的说法正确.理由如下:设剪成的较短的这段为mcm,较长的这段就为(40﹣m)cm,由题意,得()2+()2=48,变形为:m2﹣40m+416=0,∵△=(﹣40)2﹣4×416=﹣64<0,∴原方程无实数根,∴李明的说法正确,这两个正方形的面积之和不可能等于48cm2.【考点】列一元二次方程解实际问题的运用46.已知一组数据:1,3,5,5,6,则这组数据的方差是()A.16B.5C.4D.3.2【答案】D.【解析】∵这组数据的平均值为(1+3+5+5+6)÷5="4." ∴这组数据的方差是.【考点】方差的计算.47.下列方程一定是一元二次方程的是()A.x2+﹣1=0B.2x2﹣y﹣3=0C.ax2﹣x+2=0D.3x2﹣2x﹣1=0【答案】D【解析】一元二次方程是指只含有一个未知数,且未知数最高次数为2次的整式方程.A不是整式;B含有两个未知数;C中二次项系数有可能为零;D是一元二次方程.【考点】一元二次方程的定义48.在下列运算中,计算正确的是()A.B.C.D.【答案】C【解析】A、同底数幂的乘法,底数不变,指数相加,原式=;B、同底数幂除法,底数不变,指数相减,原式=;C、幂的乘方法则,底数不变,指数相乘;D、合并同类项计算,原式=2.【考点】同底数幂的计算49.如图,矩形ABCD中,点O在BC上,OB=2OC=2,以O为圆心OB的长半径画弧,这条弧恰好经过点D,则图中阴影部分的面积为.【答案】【解析】作OP⊥AD于P,根据矩形的性质得到△ODE为等边三角形,根据三角形的面积公式得△ODE的面积为、扇形的面积公式计算阴影部分的面积为:﹣=﹣.【考点】1、扇形面积的计算;2、矩形的性质50.化简:.【答案】0.【解析】原式第二项约分后,去括号合并即可得到结果.试题解析:==a+b﹣(a+b)=a+b﹣a﹣b=0.【考点】分式的加减法.51.已知:如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,且EF=6,求EC的长.【答案】3.【解析】由四边形ABCD是平行四边形,可得AD∥BC,即可证得△AFE∽△DCE,然后由相似三角形的对应边成比例,求得答案.试题解析:∵四边形ABCD是平行四边形,∴AB∥CD,∴△AFE∽△DCE,∴EF:EC=AE:ED,∵AE=2ED,∴EF:EC=2:1,∴EC=EF=3.【考点】平行四边形的性质.52.如图,AB是⊙O的直径,点C、D在⊙O上,且AC平分∠BAD,点E为AB的延长线上一点,且∠ECB=∠CAD.(1)①填空:∠ACB= ,理由是;②求证:CE与⊙O相切;(2)若AB=6,CE=4,求AD的长.【答案】(1)①90°;直径所对的圆周角是直角;②证明详见解析;(2)2.【解析】(1)①根据圆周角定理即可求得;②连接OC.欲证明CE是⊙O的切线,只需证明CE⊥OC即可;(2)根据弦切角定理求得BE,进一步求得AC=4,得出△ACE和△BCE是等腰三角形,得出BC=BE=2,进一步证得∠DAB=∠ABC,从而证得AD=BC=2.试题解析:①∵AB为⊙O的直径,∴∠ACB=90°,故答案为:90°;直径所对的圆周角是直角;②连接OC,则∠CAO=∠ACO,∵AC平分∠BAB,∴∠BAC=∠CAD,∵∠ECB=∠CAD.∴∠BAC=∠ECB.∴∠ECB=∠ACO,∵∠ACO+∠OCB=90°,∴∠ECB+∠OCB=90°,即CE⊥OC.∴CE与⊙O相切;(2)∵CE与⊙O相切,∴=BE•AE,∵AB=6,CE=4,∴=BE(BE+6),∴BE=2,∴AE=6+2=8,∵△ACE∽△CBE,∴,即,∴AC=4,∴AC=CE=4,∴∠CAB=∠E,∴∠ECB=∠E,∴∠ABC=2∠ECB=2∠BAC,BC=BE=2,∴∠DAB=∠ABC,∴AD=BC=2.【考点】切线的判定.53.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【答案】C【解析】由h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,=×2×6π×10=60π,圆锥侧面展开图的面积为:S侧所以圆锥的侧面积为60πcm2.故选:C.【考点】圆锥的计算54.某学校九年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰,设置一、二、三等奖各进步奖共四个奖项,赛后将九年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)九年级(1)班共有名学生;(2)将条形图补充完整:在扇形统计图中,“二等奖”对应的扇形的圆心角度数是;(3)如果该九年级共有1250名学生,请估计荣获一、二、三等奖的学生共有多少名.【答案】(1)50(2)57.6°(3)575【解析】(1)根据“不得奖”人数及其百分比可得总人数;(2)总人数乘以一等奖所占百分比可得其人数,补全图形,根据各项目百分比之和等于1求得二等奖所占百分比,再乘以360°即可得;(3)用总人数乘以荣获一、二、三等奖的学生占总人数的百分比即可.试题解析:(1)九年级(1)班共有=50(人),(2)获一等奖人数为:50×10%=5(人),补全图形如下:∵获“二等奖”人数所长百分比为1﹣50%﹣10%﹣20%﹣4%=16%,“二等奖”对应的扇形的圆心角度数是360°×16%=57.6°,(3)1250×(10%+16%+20%)=575(名),答:估计荣获一、二、三等奖的学生共有575名.【考点】1、条形统计图;2、用样本估计总体;3、扇形统计图55.请写出一个开口向上,并且与y轴交于点(0,﹣1)的抛物线的解析式.【答案】y=x2﹣1(答案不唯一).【解析】抛物线开口向上,二次项系数大于0,然后写出即可.抛物线的解析式为y=x2﹣1.【考点】二次函数的性质.56.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是()尺码(cm)23.52424.52525.5【答案】D【解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.从小到大排列此数据为:23.5、24、24、24.5、24.5、25、25、25、25、25、26,数据25出现了五次最多为众数. 25处在第6位为中位数.所以中位数是25,众数是25.【考点】(1)、众数;(2)、中位数.57.用适当的方法解方程:﹣5x﹣14=0.【答案】=7,=﹣2.【解析】根据题目中的方程的特点,可以发现利用因式分解法可以解答.试题解析:﹣5x﹣14=0,(x﹣7)(x+2)=0,∴x﹣7=0,x+2=0,解得,=7,=﹣2.【考点】解一元二次方程——因式分解法.58.如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【答案】C.【解析】∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选C.【考点】解直角三角形的应用.59.为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C (湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请解答下列问题:(1)本次调查的样本容量是;(2)补全条形统计图;(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.【答案】(1)60;(2)作图见解析;(3)1380.【解析】(1)由A的人数及其人数占被调查人数的百分比可得;(2)根据各项目人数之和等于总数可得C选项的人数;(3)用样本中最想去湿地公园的学生人数占被调查人数的比例乘总人数即可.试题解析:(1)本次调查的样本容量是15÷25%=60;(2)选择C的人数为:60﹣15﹣10﹣12=23(人),补全条形图如图:(3)×3600=1380(人).答:估计该校最想去湿地公园的学生人数约由1380人.【考点】1.条形统计图;2.扇形统计图60.不透明的袋子中装有6个球,其中有2个红球、3个绿球和1个蓝球,这些球除颜色外无其它差别.从袋子中随机取出1个球,则它是红球的概率为 ____________.【答案】【解析】从袋子中随机取出1个球,则它是红球的概率为=.故答案为:.61.一元二次方程的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定【答案】A【解析】在一元二次方程中,∵∴∴此一元二次方程没有实数根故选A.62. 2016年国家惠农补贴力度将会继续加大,投资者顺应国家政策申报项目,最多能获得1000万元的补贴,用科学记数法表示为( )A.1.0×105元B.1.0×106元C.1.0×107元D.1.0×108元【答案】C【解析】 .故选C.63.圆心角是且半径为2的扇形面积为_____________.(结果保留)【答案】【解析】 =.故答案为:.64.如图,正方形ABCD的边长是,点P是对角线AC上的一个点(不与A,C两点重合),连接BP,并将线段BP绕点B顺时针旋转90°得到线段BP′,连接PP′,CP′,PP′与BC相交于点E.(1)求证:△BAP≌△BCP′;(2)探究:线段PA,PC,PB之间满足什么数量关系,请写出结论并证明;(3)若PA<PC,当PB=时,求BE的长.【答案】(1)证明见解析;(2)结论:PA2+PC2=2PB2,证明见解析;(3).【解析】利用垂直关系寻找等量关系,证明三角形全等。