基于转速、电流反馈控制直流调速系统的仿真
- 格式:pdf
- 大小:527.42 KB
- 文档页数:10
综合训练项目一题目:转速、电流反馈控制直流调速系统的仿真学期:专业:班级:姓名:学号:指导教师:1 / 14辽宁工程技术大学成绩评定表3 / 14题目:转速、电流反馈控制直流调速系统的仿真目的:通过仿真,学生可以对各模块性能、电路连接情况有所了解并直观地看到仿真结果;通过对仿真参数进行调整,可以使学生了解参数变化对系统性能的影响。
要求:针对知识单元二的转速、电流双闭环直流调速系统的调节器工程设计方法,利用MATLAB/simulink 中的电力系统工具箱搭建系统仿真模型,验证调节器工程设计方法得到的参数并合理调节参数,利用该模型学生可以分析双闭环直流调速系统的启动性能、系统突加减变负载运行工况下的速度、电流及转矩变化情况以及系统抗电网电压等各种扰动下的速度响应。
任务:某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:直流电动机:220V ,136A ,1460r/min ,Ce=0.132V ·min/r,允许过载倍数 1.5λ=;晶闸管装置放大系数40s k =;电枢回路总电阻0.5R =Ω,0.0017s T s =,电磁时间常数0.03l T s =,机电时间常数0.18m T s =,电流反馈滤波时间常数0.002oi T s =,电流反馈系数0.05/V A β=,转速反馈系数0.05min/V r α=•,要求转速无静差,空载起动到额定转速时的转速超调量10%n σ=。
1、采用工程设计方法设计电流调节器和速度调节器,建立各自的动态数学模型;2、用MATLAB/Simulink 仿真软件建立电流环仿真模型;3、分析电流环不同参数下的仿真曲线;4、用MATLAB 建立转速环仿真模型;5、分析转速环空载启动、满载启动、抗扰波形图仿真曲线;6、针对仿真模型进行演示答辩,考查其掌握程度工程设计方法来设计转速、电流双闭环调速系统的两个调节器。
按照设计多环控制系统先内环后外环的一般原则,从内环开始,逐步向外扩展,在双闭环系统中应该先设计电流调节器,然后再把整个电流环看做是转速调节器中的一个环节,在设计转速调节器。
运动控制系统仿真实验报告——转速、电流反馈控制直流调速系统的仿真双闭环直流调速系统仿真对例题3.8设计的双闭环系统进行设计和仿真分析,仿真时间10s 。
具体要求如下: 在一个由三相零式晶闸管供电的转速、电流双闭环调速系统中,已知电动机的额定数据为:60=N P kW , 220=N U V , 308=N I A , 1000=N n r/min , 电动势系数e C =0.196 V·min/r , 主回路总电阻R =0.18Ω,变换器的放大倍数s K =35。
电磁时间常数l T =0.012s,机电时间常数m T =0.12s,电流反馈滤波时间常数i T 0=0.0025s,转速反馈滤波时间常数n T 0=0.015s 。
额定转速时的给定电压(U n *)N =10V,调节器ASR ,ACR 饱和输出电压U im *=8V,U cm =7.2V 。
系统的静、动态指标为:稳态无静差,调速范围D=10,电流超调量i σ≤5% ,空载起动到额定转速时的转速超调量n σ≤10%。
试求:(1)确定电流反馈系数β(假设起动电流限制在1.3N I 以内)和转速反馈系数α。
(2)试设计电流调节器ACR.和转速调节器ASR 。
(3)在matlab/simulink 仿真平台下搭建系统仿真模型。
给出空载起动到额定转速过程中转速调节器积分部分不限幅与限幅时的仿真波形(包括转速、电流、转速调节器输出、转速调节器积分部分输出),指出空载起动时转速波形的区别,并分析原因。
(4)计算电动机带40%额定负载起动到最低转速时的转速超调量σn 。
并与仿真结果进行对比分析。
(5)估算空载起动到额定转速的时间,并与仿真结果进行对比分析。
(6)在5s 突加40%额定负载,给出转速调节器限幅后的仿真波形(包括转速、电流、转速调节器输出、转速调节器积分部分输出),并对波形变化加以分析。
(一)实验参数某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下: • 直流电动机:220V ,136A ,1460r/min ,C e=0.132Vmin/r ,允许过载倍数λ=1.5; • 晶闸管装置放大系数:K s=40; • 电枢回路总电阻:R =0.5Ω ; • 时间常数:T i=0.03s , T m=0.18s ;• 电流反馈系数:β=0.05V/A (≈10V/1.5I N )。
运动控制系统课程设计题目:转速电流双闭环直流调速系统仿真与设计转速电流双闭环直流调速系统仿真与设计1. 设计题目转速电流双闭环直流调速系统仿真与设计2. 设计任务已知某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:1)直流电动机:160V、120A、1000r/min、C e=r,允许过载倍数λ=2)晶闸管装置放大系数:K s=303)电枢回路总电阻:R=Ω4)时间常数:T l=,T m=,转速滤波环节时间常数T on取5)电压调节器和电流调节器的给定电压均为10V试按工程设计方法设计双闭环系统的电流调节器和转速调节器,并用Simulink建立系统模型,给出仿真结果;系统要求:1)稳态指标:无静差2)动态指标:电流超调量σi ≤5%;空载起动到额定转速时超调量σn ≤10%3. 设计要求根据电力拖动自动控制理论,按工程设计方法设计双闭环调速系统的步骤如下:1)设计电流调节器的结构和参数,将电流环校正成典型I型系统;2)在简化电流环的条件下,设计速度调节器的结构和参数,将速度环校正成典型II型系统;3)进行Simulink仿真,验证设计的有效性;4.设计内容1 设计思路:带转速负反馈的单闭环系统,由于它能够随着负载的变化而相应的改变电枢电压,以补偿电枢回路电阻压降的变化,所以相对开环系统它能够有效的减少稳态速降;当反馈控制闭环调速系统使用带比例放大器时,它依靠被调量的偏差进行控制的,因此是有静差率的调速系统,而比例积分控制器可使系统在无静差的情况下保持恒速,实现无静差调速;对电机启动的冲击电流以及电机堵转时的堵转电流,可以用附带电流截止负反馈作限流保护,但这并不能控制电流的动态波形;按反馈的控制规律,采用某个物理量的负反馈就可以保持该基本量基本不变,采用电流负反馈就应该能够得到近似的恒流过程;另外,在单闭环调速系统中,用一个调节器综合多种信号,各参数间相互影响,难于进行调节器的参数调速;例如,在带电流截止负反馈的转速负反馈的单闭环系统中,同一调节器担负着正常负载时的速度调节和过载时的电流调节,调节器的动态参数无法保证两种调节过程均具有良好的动态品质;按照电机理想运行特性,应该在启动过程中只有电流负反馈,达到稳态转速后,又希望只有转速反馈,双闭环调速系统的静特性就在于当负载电流小于最大电流时,转速负反馈起主要作用,当电流达到最大值时,电流负反馈起主要作用,得到电流的自动保护;2双闭环调速系统的组成:a.系统电路原理图图2-1为转速、电流双闭环调速系统的原理图;图中两个调节器ASR和ACR 分别为转速调节器和电流调节器,二者串级连接,即把转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置;电流环在内,称之为内环;转速环在外,称之为外环;两个调节器输出都带有限幅,ASR的输出限幅什U im决定了电流调节器ACR 的给定电压最大值U im,对就电机的最大电流;电流调节器ACR输出限幅电压U cm 限制了整流器输出最大电压值,限最小触发角α;图2-1 双闭环调速系统电路原理图b.系统动态结构图图2-2为双闭环调速系统的动态结构框图,由于电流检测信号中常含有交流分量,须加低通滤波,其滤波时间常数T oi按需要选定;滤波环节可以抑制反馈信号中的交流分量,但同时也给反馈信号带来了延滞;为了平衡这一延滞作用,在给定信号通道中加入一个相同时间常数的惯性环节,称作给定滤波环节;其作用是:让给定信号和反馈信号经过同样的延滞,使二者在时间上得到恰当的配合,从而带来设计上的方便;由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,滤波时间常数用T on表示;根据和电流环一样的道理,在转速给定通道中也配上时间常数为T on的给定滤波环节;T oi—电流反馈滤波时间常数T on—转速反馈滤波时间常数图2-2双闭环调速系统的动态结构图3)按工程设计方法设计双闭环系统的ACR:设计多环控制系统的一般原则是:从内环开始,一环一环地逐步向外扩展;在这里是:先从电流环入手,首先设计好电流调节器,然后把整个电流环看作是转速调节系统中的一个环节,再设计转速调节器;a.确定时间常数整流滤波时间常数T s,三相桥式电路的平均失控时间T s=;电流滤波时间常数T oi,三相桥式电路每个波头的时间是,为了基本虑平波头,应有1~2Toi=,因此取Toi=2ms=;电流环小时间常数T∑i,按小时间常数近似处理,取T∑i=T s+T oi=;b.选择电流调节器结构由设计要求:σi%≤5%,并保证系统稳态电流无误差,因此可按典型I型系统设计,电流调节器选用PI 型,其传递函数为: W ACR s =isis Ki ττ1+ c.校验近似条件电流环截止频率11.135-==s KI ci ω; 晶闸管装置传递函数近似条件为:13ci sw T ≤=,满足近似条件; 忽略反电动势对电流环影响的条件为:ci w ≥满足近似条件; 小时间常数近似条件处理条件为:ci w ≤=, 满足近似条件;d.计算调节器电阻和电容电流调节器原理如图3-1所示,按所用运算放大器取R 0=40kΩ,各电阻和电容值计算如下:,取30k; ,取;-图3-1含给定滤波与反馈滤波的PI 型电流调节器按照上述参数,电流环可以达到的动态指标为:σi %=%<5%,满足设计4按工程设计方法设计双闭环系统的ASR :a.确定时间常数电流环等效时间常数为20.0074i T s ∑=;转速滤波时间常数Ton ,根据所用测速发电机波纹情况,取Ton=; 转速环小时间常数n T ∑ 按小时间常数近似处理,取n T ∑=20.0174i T Ton s ∑+=;b .选择转速调节器结构由于设计要求无静差,转速调节器必须含有积分环节;又根据动态要求,应按典型Ⅱ型系统设计速度环,故ASR 选用PI 调节器,其传递函数为:1()n ASR nn s W s K sττ+= c.计算速度调节器参数按跟随和抗干扰性能较好的原则,取h=5,则ASR 的超前时间常数为:50.01740.087n n hT s τ∑==⨯=,转速环开环增益: 2224.39621-∑=+=s T h h K nN 于是,ASR 的比例系数: =d.校验近似条件由转速截止频率:15.341-===s n KN KNcn τωω; 电流环传递函数简化条件: ,满足简化条件; 转速环小时间常数近似条件为: ,满足近似条件;e.计算调节器电阻和电容转速调节原理图如图3-2所示,取040R k =Ω,则,取550k; ,取;图3-2含给定滤波与反馈滤波的PI 型转速调节器-按照上述参数,电流环可以达到的动态指标为:当h=5时,查表得%,虽然不满足设计要求,而实际上,突加阶跃给定时,ASR 饱和,应按退饱和的情况重新计算超调量,实际%,满足设计要求;5内、外开环对数幅频特性的比较图4-1把电流环和转速环的开环对数幅频特性画在一张图上,其中各转折频率和截止频率依次为:13.2700037.011-==∑s i T ,151.570174.011-==∑s n T , 151.34-=s cn ω,15.11087.011-=s n τ; 以上频率一个比一个小,从计算过程可以看出,这是必然的规律;因此,这样设计的双闭环系统,外环一定比内环慢;一般来说,1150~100-=s ci ω,150~20-=s cn ω;从外环的响应速度受到限制,这是按上述方法设计多环控制系统时的缺点;然而,这样一来,每个环本身都是稳定的,对系统的组成和调试工作非常有利;总之,多环系统的设计思想是:以稳为主,稳中求快;L/dBO1/-s ωiT ∑1ciωnT ∑1cn ωnτ1InI-电流内环 n-转速外环图4-1又闭环系统内环和外环的开环对数幅频特性-20-40-20-406 晶闸管的电压、电流定额计算a.晶闸管额定电压U N晶闸管额定电压必须大于元件在电路中实际承受的最大电压Um ,考虑到电网电压的波动和操作过电压等因素,还要放宽2~3倍的安全系数,即按下式选取U N =2~3Um ,式中系数2~3的取值应视运行条件,元件质量和对可靠性的要求程度而定;b.晶闸管额定电流I N为使晶闸管元件不因过热而损坏,需要按电流的有效值来计算其电流额定值;即必须使元件的额定电流有效值大于流过元件实际电流的最大有效值;可按下式计算:I N =~2K fb I MAX ;式中计算系数K fb =Kf/由整流电路型式而定,Kf 为波形系数,Kb 为共阴极或共阳极电路的支路数;当α=0时,三相全控桥电路K fb =,故计算的晶闸管额定电流为I N =~2K fb I MAX =~2 ××220×=~,取200A;7平波电抗器计算由于电动机电枢和变压器存在漏感,因而计算直流回路附加电抗器的电感量时,要从根据等效电路折算后求得的所需电感量中,扣除上述两种电感量;a.电枢电感量L M 按下式计算)(2103mH I Pn U K L NN N D M ⨯=P —电动机磁极对数,K D —计算系数,对一般无补偿电机:K D =8~12; b.整流变压器漏电感折算到次级绕组每相的漏电感L B 按下式计算)(100%2mH I U U K L dK BB •= U 2—变压器次级相电压有效值,I d —晶闸管装置直流侧的额定负载电流,K B —与整流主电路形式有关的系数;c.变流器在最小输出电流I dmin 时仍能维持电流连续时电抗器电感量L 按下式计算min2d I U K L •=, K 是与整流主电路形式有关的系数,三相全控桥K 取则L =mH.6)进行Simulink 仿真,验证设计的有效性a. 电流闭环的仿真如下图:为了研究系统的参数对动态性能的影响,分别取K I T ∑i =、、、,此时K I 的值也会随之变化,运行仿真,即可得不同K I 值的阶跃响应曲线:图6-1 KT=的阶跃响应曲线图6-2KT=的阶跃响应曲线图6-3 KT=的阶跃响应曲线图6-4 KT=的阶跃响应曲线由曲线可以看出如果要求动态响应快,可取KT=;如果要求系统超调小,则应把KT 的值取小些,可取KT<;无特殊要求,取折中值KT=,,称为最佳二阶系统;图6-1~图6-4反映了PI 调节器的参数对系统品质的影响趋势,在工程设计中,可以根据工艺的要求,直接修改PI 调节器的参数,找到一个在超调量和动态响应快慢上都较满意的电流环调节器;b. 转速环的仿真设计在增加转速环调节后,转速环开环传递函数如下: )1()1()(n 2n N n ++=∑s T s s K s W τ 校正后的调速系统动态结构框图如下所示:其中me n n N T C R K K βτα=;在matlab中搭建好系统的模型,如下图:转速环的仿真设计为满足系统在不同需求下的跟随性与抗扰行能要求,取h的之分别为:3、5、7、9. 用matlab仿真结果如下:图7-1h=3时的阶跃响应曲线图7-2h=5时的阶跃响应曲线图7-3h=7时的阶跃响应曲线图7-4h=9时的阶跃响应曲线由图可以看出:h值越小,动态降落也越小,恢复时间、调节时间也短,抗扰性能也越好,但是,从h<5以后,由于震荡剧烈h越小,恢复时间反而延长,综合起来看,h=5是最佳选择,也即最佳三阶系统;对电流环与转速环都是根据实际需要调节参数的,对比Ⅰ型、Ⅱ型系统可以发现:Ⅰ型系统可以在跟随性上做到超调小,但抗扰性能差;而Ⅱ型系统超调却相对较大,抗扰性能较好;5.设计心得a.通过该次设计,更加熟悉掌握了电流转速双闭环直流调速系统的结构组成以及它的工作原理,加深了对开环、闭环有静差、无静差调速的理解---闭环结构保证系统的稳定性与抗干扰能力;无静差调速则保证系统有较低的稳态误差;b.由此也初步掌握双闭环调节器的整个设计过程,其基本思想是先内环再外环;在结构框图的处理过程中有多处近似处理,简化了传递函数,从而使问题得到简化,因此称为被称为“工程设计方法”,这意味着在实际的应用中,在可以大大简化分析过程却很小影响分析结果的方法是很有价值的;从开环到闭环、从闭环无静差到有静差、从单环到双环着一些列的变化显示人们人知的渐进性;仿真是自己临时捡起matlab课本重新回顾才完成的,仿真的直观的证明了最佳二阶、三阶系统的参数,并再一次体现了matlab在控制中的重要作用,的确是一个很强大的仿真工具;整个仿真过程也加深了自己对电力拖动控制相关知识理解程度,相当于也许经过证明的才是最可靠的;d.由于水平有限,设计中肯定有许多错误和不足的地方,敬请老师指正;6.参考文献【1】陈伯时,电力拖动自动控制系统;机械工业出版社;【2】李荣生,电气传动控制设计指导;;。
文章编号:xxxx-xxxx-(xxxx) xx―xxxx―xx转速反馈控制直流调速系统的仿真XXX1,XXX(XXXXXXXXXXX ,XXXXXXX)摘要:积分控制可以是系统在无静差的情况下保持恒速运行,实现无静差调速。
比例调节器的输出只取决与输入偏差量的现状,而积分环节调节器的输出则包含了输入偏差量的全部历史。
将两者结合起来,即比例积分环节,可以实现稳态精度高,动态响应快的目标。
以比例积分控制的无静差直流调速系统为例,更形象的掌握比例积分控制的效果,并学习SIMULINK软件的仿真方法。
同时也可根据需要将这种仿真方法推广到其他类型的控制系统的仿真中。
关键词:SIMULINK仿真;转速反馈;直流调速利用MATLAB下的SIMULINK软件进行系统仿真是十分简单和直观的,SIMULINK提供了使用系统模型框图进行组态的仿真平台,使用SIMULINK 进行仿真和分析可以像在纸上绘图一样简单。
用户可以用图形化的方法直接建立起仿真系统的模型,并通过SIMULINK也实现了与MATLAB、C或者FORTRAN之间的数据传递。
1 转速负反馈闭环调速系统仿真框图及参数直流电动机:额定电压U N=220V,额定电流I dN=55A,额定转速n N=1000r/min,电动机电动式系数C e=0.192V∙min/r。
假定晶体管整流装置输出电流可逆,装置的放大系数K s=44,滞后时间常数T s=0.00167s。
电枢回路总电阻R=1.0Ω,电枢回路时间常数T l=0.00167s,电力拖动系统机电时间常数T m=0.075s。
转速反馈系数α=0.01V∙min/r。
对应额定转速时的给定电压U n∗=10V。
图1 比例积分控制的直流调速系统的仿真框图2 仿真模型的建立进入MATLAB,单击MATLAB命令窗口工具栏中的SIMULINK图标,或直接键SIMULINK命令,打1收稿日期:开SIMULINK模块浏览器窗口。
综合训练项目一题目:转速、电流反馈控制直流调速系统的仿真学期:专业:班级:姓名:学号:指导教师:辽宁工程技术大学成绩评定表评定标准评定指标标准评定合格不合格调节器设计方案正确性仿真模型搭建参数选择仿真结果设计报告\答辩内容充实图表清晰答辩效果总成绩日期年月日综合训练项目一题目:转速、电流反馈控制直流调速系统的仿真目的:通过仿真,学生可以对各模块性能、电路连接情况有所了解并直观地看到仿真结果;通过对仿真参数进行调整,可以使学生了解参数变化对系统性能的影响。
要求:针对知识单元二的转速、电流双闭环直流调速系统的调节器工程设计方法,利用MATLAB/simulink 中的电力系统工具箱搭建系统仿真模型,验证调节器工程设计方法得到的参数并合理调节参数,利用该模型学生可以分析双闭环直流调速系统的启动性能、系统突加减变负载运行工况下的速度、电流及转矩变化情况以及系统抗电网电压等各种扰动下的速度响应。
任务:某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:直流电动机:220V ,136A ,1460r/min ,Ce=0.132V ·min/r,允许过载倍数 1.5λ=;晶闸管装置放大系数40s k =;电枢回路总电阻0.5R =Ω,0.0017s T s =,电磁时间常数0.03l T s =,机电时间常数0.18m T s =,电流反馈滤波时间常数0.002oi T s =,电流反馈系数0.05/V A β=,转速反馈系数0.05min/V r α=∙,要求转速无静差,空载起动到额定转速时的转速超调量10%n σ=。
1、采用工程设计方法设计电流调节器和速度调节器,建立各自的动态数学模型;2、用MATLAB/Simulink 仿真软件建立电流环仿真模型;3、分析电流环不同参数下的仿真曲线;4、用MATLAB 建立转速环仿真模型;5、分析转速环空载启动、满载启动、抗扰波形图仿真曲线;转速、电流反馈控制直流调速系统的仿真46、针对仿真模型进行演示答辩,考查其掌握程度工程设计方法来设计转速、电流双闭环调速系统的两个调节器。
转速反馈控制直流调速系统的仿真姓名:楚昕学号:201523050224 班级:轨道1502班一、实验内容(1)仿真模型的建立:复制选择相关模块:双击所需子模块库图标,鼠标左键选中,拖入模型编辑窗口。
修改模块参数:双击模块图案,通过修改对话框内容设定参数。
其中Gain中K=0.56,Gain3中K=11.43,Gain1中K=5.208,Gain2中K=0.01,参数的选取是根据课本50页的给的系统参数制定,制定规则根据课本51页的图2-45.模块链接:鼠标左键单击起点模块输出端,拖动鼠标至终点模块输入端处。
(2)仿真模型的运行为了清晰地观测仿真结果,对示波器的格式做一个修改,打开configuration parameters菜单,把默认的结束时间从10.0s改为0.6s。
调节器是为了改善系统的动态和静态性能,在采用了PI调节器后,构成的是无静差调速系统,利用上述仿真模型,改变比例系数和积分系数,得到震荡,有静差,无静差,超调量大或启动快等不同的转速曲线,上图中的仿真曲线反映了给定输入信号的跟随性能指标。
(3)调节器参数的调整把积分部分取消,改变比例系数,可以得到不同静差率的响应曲线直至震荡区线,如果改变PI调节器的参数,可以得到转速响应的超调量不一样,调节时间也不一样的响应曲线。
1.调节参数KP=0.25,I/t=32.调节参数KP=0.8,I/t=153.结果比较当调节参数修改为KP=0.25,I/t=3时,系统转速的响应无超调,但调节时间长。
当调节参数修改为KP=0.8,I/t=15时,系统转速的响应超调大,但快速性好。
PID调节器相对于PI和P调节有着超调量小,快速性好的特点。
转速反馈控制直流调速系统的仿真一、不带电流负反馈的转速反馈控制直流调速系统仿真根据课本的操作步骤可得到如下的仿真框图:根据课本的操作步骤可得到如下的仿真框图:图1.仿真框图运行仿真模型结果如下:运行仿真模型结果如下:图2.电枢电流随时间变化的规律由图可知电流的最大值为230A左右,显然不满足实际要求,故后面需对此进行处理,采用带电流截止负反馈环节的直流调速系统。
采用带电流截止负反馈环节的直流调速系统。
图3. 电机转速随时间变化的规律二、带电流负反馈的转速反馈控制直流调速系统仿真采用以下结构实现电流截止负反馈环节中的二极管功能:当输入小于0时,输出为0;当输入大于0时,输出等于输入。
时,输出等于输入。
图4. 原理图根据电机的额定参数:A 55IN =。
取。
取.57155*.31.3I1INdcr === 9955*.81I*.81IN 1db ===又根据又根据s com*N 1db R U U I +»s dcr com R *I U =同时V 10U *N =,可解得:364.0R s =,26U com =仿真框图如下所示:仿真框图如下所示:图5.仿真框图运行仿真模型结果如下:运行仿真模型结果如下:图6.电枢电流随时间变化的规律图7.电机转速随时间变化的规律。
三、结论将不带电流负反馈的模型与带电流负反馈的模型进行比较,我们看到,前后两个scope1中的曲线的最大值相差很大。
第一个scope1中最大值达到了250左右,而第二个只有100左右。
而前后两个scope 中,曲线都在1000左右稳定,而第一个scope 是在0.1秒左右就开始进入稳态,而第二个是在0.2秒左右才开始进入稳态。
秒左右才开始进入稳态。
可知,引入电流负反馈,可以解决转速反馈闭环调速系统起动时电流过大的问题,可以解决转速反馈闭环调速系统起动时电流过大的问题,而且而且这种作用只在起动时存在,这种作用只在起动时存在,在正常的稳速运行时又取消了,在正常的稳速运行时又取消了,在正常的稳速运行时又取消了,电流随着负荷的增减而变化,电流随着负荷的增减而变化,电流随着负荷的增减而变化,只只有当电流大到一定程度时才开始起作用。
电力拖动自动控制系统运动控制系统许军泉201321724113一、实验目的1、进一步学习利用MA TLAB下的SIMULINK来对控制系统进行仿真。
2、掌握转速、电流反馈控制直流调速系统的原理。
3、学会利用工程的方法设计ACR、ASR调节器的方法。
二、实验原理对SIMULINK的简介:Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。
Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。
同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。
功能Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。
Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。
为了创建动态系统模型,Simulink提供了一个建立模型方块图的图形用户接口(GUI) ,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。
Simulink®是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。
对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。
.构架在Simulink基础之上的其他产品扩展了Simulink多领域建模功能,也提供了用于设计、执行、验证和确认任务的相应工具。
控制系统课程设计--转速反馈控制直流调速系统的仿真控制系统课程设计设计内容:转速反馈控制直流调速系统的仿真院系: 信息科学与技术部专业: 电气工程及其自动化班级 : 11Q电气7 班目录一.仿真软件的选用 ..................................................................... .. (1)1.1 MATLAB简介 ..................................................................... . (1)1.2 对SIMULINK的简介 ..................................................................... ................................. 1 二.仿真框图及说明 ..................................................................... .. (2)2.1比例积分控制的直流调速系统的仿真框图 .....................................................................22.2仿真参数要求 ..................................................................... ................................................ 2 三.仿真模型图及参数设置 ..................................................................... ......................................... 2 四.仿真结果 ..................................................................... .. (4)4.1 仿真过程 ..................................................................... . (4)4.2调节器参数的调整 ..................................................................... ........................................ 6 五. 总结...................................................................... . (8)六.参考文献 ..................................................................... ................................................................. 9 七.致谢...................................................................... ........................................................................9一.仿真软件的选用1.1 MATLAB简介MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
基于转速、电流反馈控制直流调速系
统的matlab仿真
08电气师2班肖伟涛
一、设计思路
设计转速、电流反馈控制直流调速系统的原则是先内环后外环。
1、从电流环(内环)开始,对其进行必要的变换和近似处理,然后根据电流环的控制要求确定把它校正成哪一类典型系统。
2、再按照控制对象确定电流调节器的类型,按动态性能指标要求确定电流调节器的参数。
3、电流环设计完成后,把电流环等效成转速环(外环)中的一个环节,再用同样的方法设计转速环。
总体来说:matlab仿真主要做:(1)电流调节器(内环)
(2)把电流环等效成转速环(外环)
三、双闭环直流调速系统,整流装置采用三相桥式电路的参数
1、直流电动机:220V ,136A ,1460r/min ,Ce=0.132Vmin/r ,允许过载倍数λ=1.5;
2、晶闸管装置放大系数:Ks=40;
3、电枢回路总电阻:R=0.5Ω;
4、时间常数:Ti=0.03s , Tm=0.18s ;
5、电流反馈系数:β=0.05V/A (≈10V/1.5IN )、α=0.07Vmin/r (≈10V/nN )
5%
i σ≤设计要求:设计电流调节器,要求电流超调量 四、matlab 的电流环的仿真模型
这就是ACR 模块
(一)电流环各个模块的参数设置
1、确定时间常数
1)整流装置滞后的时间Ts 。
按表2-2 晶闸管整流器的失控时间(f=50Hz )来设置,表如下:
三相桥式电路的平均失控时间为Ts=0.00167s 。
2)电流滤波时间常数Toi 。
由上表知道Tsmax=3.33,为了基本滤平波头,应有(1~2)Toi=3.33ms,因此我们取Toi=2ms=0.002s.
3)电流环小时间常数之和T Σi 。
按小时间常数近似处理,取T Σi =Ts+Toi=0.00367s 。
2、各模块的设置(除ACR 模块) 1)1/(T oi s+1)=1/(0.002s+1); 2)Ks/(T s s+1)=40/(0.00167s+1);
3)(1/R)/(T l s+1)=(1/0.5)/(0.03s+1)=2/(0.03s+1); 4)R/T m s=0.5/0.18s;
5)β/(T oi s+1)=0.05/(0.002s+1) 3、ACR 参数设置
1)电流调节器超前时间常数为:τi=Tl=0.03s 。
2)电流环开环增益:要求σi≦5%时,按表3-1
1.1350037
.05.05.0===∑i I
T K 应取KT=0.5;
013
.105
.0405
.003.01.135=×××==
β
τs i I i K R K K 那么ACR 的比例关系为:
4、ACR 的传递函数式: s
s K s W i i i ACR )1()(ττ+=
化简:W ACR (S )=Ki+Ki/τis
5、ACR 模块的matlab 参数为 1)Ki=1.013;
2)Ki/τi s=1.013/0.03s=33.767/s
(二)电流环的matlab 仿真模块(我以matlab6.5为例)
模块 地方
数目 Step(阶跃输入模块)
Source 组 1个 Sum (加法器模块) Math Operations 组 3个 Gain(增益模块) Math Operations 组 2个 Transfer Fcn(控制器模块) Continuous 组 5个 Integrator(积分模块) Continuous 组 1个 Scope(示波器模块) Sinks 组
1个 Saturation(非线性模块) Discontinuities 组
1个
(三)仿真参考图
1、要求设置的结果σ≦5%
KT=0.5
1.013+33.767/s
2、无超调的参考结果
σ≦0%
KT=0.25
0.5067+16.89/s
3、的参考结果
σ≦16.3%
KT=1.0
2.027+67.567/s
(四)实验比较
1、要求设置的结果
2、无超调的参考结果
3、超调量较大的参考结果
五、matlab 转速环的仿真模型
4框
3框
2框
1框 如图可知,除了红色框的是不同,其他的跟上面的电流环一模一样 我把它们编辑成四个框
(一)转速环的参数设置(主要是四个框的模块参数设置,其他模块跟电流环参数一样)
1、确定时间常数
1)电流环的等效时间常数1/K I 。
由上面可知取K I T Σi =0.5,则 1/K I =2T Σi =0.0074s 2)转速滤波时间常数Ton=0.01s
3)转速环小时间常数T Σn =1/K I +Ton=0.0174s 2、2和4框的模块设置
1)2框函数式为α/(T on s+1)=0.007/(0.01s+1) 2)4框的函数式1/Ce=1/0.132=7.576 3、ASR 的模块其传递函数为 s s K s W n n n ASR ττ)
1()(+=
化简的W ASR (S)=Kn+Kn/τn s 4、ASR 参数设置
1)取h=5,则ASR 的超前时间常数为
s hT n n 087.00174.05=×==∑τ
2)转速环开环增益:
2
22224.3960174.052621−Σ=××=
+=s T h h K n N
3)ASR 的比例系数为 7.110174
.05.0007.05218
.0132.005.062)1(=×××××××=+=∑n m e n RT h T C h K αβ
5、ASR 模块的matlab 参数为 1)Kn=11.7
2)Kn/τn s=134.5/s
(二)转速环的matlab 仿真模块(我以matlab6.5为例)
模块 地方
数目 Step(阶跃输入模块) Source 组 2个 Sum (加法器模块) Math Operations 组 6个 Gain(增益模块) Math Operations 组 5个 Transfer Fcn(控制器模块) Continuous 组 6个 Integrator(积分模块) Continuous 组 2个 Scope(示波器模块) Sinks 组
1个 Saturation(非线性模块) Discontinuities 组 2个
(三)仿真参考图
1、转速环空载高速起动参考图KT=0.5
11.7+134.5/s
2、转速环满载高速起动参考图
把负载电流设置为136,满载起动
3、转速环的抗扰参考图
利用转速环仿真模型同样
可以对转速环抗扰过程进
行仿真,它是在负载电流
IdL(s)的输入端加上负载
电流
(四)实验比较
1、转速环空载高速起动参考结果
2、转速环满载高速起动参考结果
3、转速环的抗扰参考结果。