数学北师大版七年级上册《整式》练习题
- 格式:doc
- 大小:11.50 KB
- 文档页数:1
1.下列整式:―52x 2,21(a+b )c ,3xy ,0,332-a ,―5a 2+a 中,是单项式的有 ,是多项式的有 .2.多项式―35a 3b―7ab―6ab 4+1是 次 项式,它最高项的系数是 . 3.把下列代数式的题号填入相应集合的括号内:A.3-xy, B.-3x 2+12, C.22xy -, D.132, E.1x- F.x 3 , G .18x 3-a 2x 2+x, H.x+y+z I.1003x -. (1)单项式集合{ } (2)多项式集合{ }(3)二次式项式集合{ } (4)三次多项式集合{ }(5)非整式的集合{ }4.一个圆的半径为r, 它是另一个圆的半径的5 倍, 这两个圆的周长之和是 .5. 4a 2+2a 3-13ab 2c+25是_____次_____项式,最高次项是______,最高次项的系数是______,常数项是_____。
6.若(3m-2)x 21n y +是关于x, y 的系数为1 的五次单项式, 则 m= _____, n=______.7.如果单项式的字母因数是a 3b 2c,且a=1,b=2,c=3时,这个单项式的值为4, 则这个单项式为__________.8.关于x 的三次三项式,三次项系数是3,二次项系数是-2,一次项系数是-1, 则这个三次三项式是__________________.9. 一种电脑,买入价a 千元/台,提价10%后出售,这台笔记本售价是_____千元/台, 后又降价5%,降价后的售价为_________千元/台.10.商场中某牌子的电视机有A ,B ,C 三种型号,售价分别为3000元,3500元,4000元,三月份商场出售的这三种型号的电视机数量分别是:A 型的a 台,B 型的b 台,C 型的c 台,则该商场三月份这三种电视的销售额是 元。
11、下列说法正确的是( )A.x 3yz 2没有系数B. 2236x y c ++不是整式 C.42是一次单项式 D.8x-5是一次二项式 12、已知多项式222351662m x y xy x +-+-+是六项四项式,单项式3523n m x y z -的次数与这个多项式的次数相同,求n 的值。
北师大版数学七年级上册第三章第四节整式的加减课时练习一、单选题(共15题)1.化简m-n-(m+n)的结果是()A.0 B.2m C.-2n D.2m-2n答案:C解析:解答:原式=m-n-m-n=-2n.故选C分析: 根据整式的加减运算法则,先去括号,再合并同类项.注意去括号时,括号前是负号,去括号时,括号里各项都要变号;合并同类项时,只把系数相加减,字母和字母的指数不变2.计算:a-2(1-3a)的结果为()A.7a-2 B.-2-5a C.4a-2 D.2a-2答案:A解析:解答:a-2(1-3a)=a-2+6a=7a-2.选A.分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项3.如果m是三次多项式,n是三次多项式,那么m+n一定是()A.六次多项式 B.次数不高于三的整式C.三次多项式 D.次数不低于三的整式答案:B解析:解答:若两个三次多项式中,三次项的系数不相等,这两个三次多项式相减后就仍为三次多项式;若两个三次多项式中,三次项的系数相等,这两个三次多项式相减后三次多项式就会变为低于三次的整式.故选B.分析:根据合并同类项的法则,两个多项式相减后,多项式的次数一定不会升高.但当最高次数项的系数如果相等,相减后最高次数项就会消失,次数就低于34.计算x2-(x-5)+(x+1)的结果,正确的是()A.x2+6 B.x2-4x+5 C.-4x-5 D.x2-4x+5答案:A解析:解答: 原式=x2-x+5+x+1=x2+6.选A.分析:此题只需按照整式加减的运算法则,先去括号,再计算.5.化简x-y-(x+y)的最后结果是()A.0 B.2x C.-2y D.2x-2y答案:C解析:解答:原式=x-y-x-y=-2y.选C.分析:原式去括号合并即可得到结果6.(2a+3b)2=(2a-3b)2+(),括号内的式子是()A.6ab B.24ab C.12ab D.18ab答案:B解析:解答: 由题意得,设括号内的式子为A,则A=(2a+3b)2-(2a-3b)2=24ab.选B.分析:本题考查了整式的加减,比较简单,容易掌握7.如图,漠漠和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,漠漠猜中的结果为y,则y 等于()A.2 B.3 C.6 D.x+2答案:A解析:解答: 根据题意得:(3x+6)÷3-x=y,解得:y=2.选A.分析:根据题意列出关系式,求出y8.如图,把四张形状大小完全相同的小长方形卡片不重叠地放在一个底面为长方形(长为a,宽为b)的盒子底部,盒子底面未被卡片覆盖的部分用阴影表示,则这两块阴影部分小长方形周长的和为()A.a+2b B.4a C.4b D.2a+b答案:C解析:解答: 设小长方形卡片的长为m,宽为n,∴L1周长=2(b-2n)+m,L2周长=2×2n+(b-m),∴两块阴影部分小长方形周长的和=2(b-2n)+m+2×2n+(b-m)=4b,选:C.分析:先设小长方形卡片的长为m,宽为n,再结合图形得出两部分的阴影周长加起来9.计算6a2-5a+3与5a2+2a-1的差,结果正确的是()A.a2-3a+4 B.a2-3a+2 C.a2-7a+2 D.a2-7a+4答案:D解析:解答:(6a2-5a+3 )-(5a2+2a-1)=6a2-5a+3-5a2-2a+1=a2-7a+4.选D.分析: 每个多项式应作为一个整体,用括号括起来,再去掉括号,合并同类项,化简10.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2.此空格的地方被钢笔水弄污了,那么空格中的一项是()A.-7xy B.7xy C.-xy D.xy答案:C解析:解答: 原式=x2+3xy-2x2-4xy=-x2-xy∴空格中是-xy选C.分析: 本题涉及整式的加减运算,解答时用先去括号,再合并同类项就可得出结果11.长方形的一边长等于3x+2y,另一边长比它长x-y,这个长方形的周长是()A.4x+y B.12x+2y C.8x+2y D.14x+6y答案:D解析:解答: 依题意得:周长=2(3x+2y+3x+2y+x-y)=14x+6y.选D分析: 根据题意表示另一边的长,进一步表示周长,化简12.一个多项式与x2-2x+1的和是3x-2,则这个多项式为()A.x2-5x+3 B.-x2+x-1 C.-x2+5x-3 D.x2-5x-13答案:C解析:解答: 由题意得:这个多项式=3x-2-(x2-2x+1),=3x-2-x2+2x-1,=-x2+5x-3.选C.分析: 由题意可得被减式为3x-2,减式为x2-2x+1,根据差=被减式-减式可得出这个多项式13.如果y=3x,z=2(y-1),那么x-y+z等于()A.4x-1 B.4x-2 C.5x-1 D.5x-2答案:B解析:解答: 原式=x-3x+2(3x-1)=4x-2.选B.分析:首先求得z的值(用x表示),再代入x-y+z求解.注意应用去括号得法则:括号前是正号,括号里各项都不变号;括号前是负号,括号里各项都变号14.a-(b+c-d)=(a-c)+()A.d-b B.-b-d C.b-d D.b+d答案:A解析:解答:a-(b+c-d)=(a-c)+(d-b),选A分析:根据去括号与添括号的法则求解即可.注意去添括号时,括号前是负号,括号里的各项都要变号15.下列计算中结果正确的是()A.4+5ab=9ab B.6xy-x=6yC.3a2b-3ba2=0 D.12x3+5x4=17x7答案:C解析:解答:4和5ab不是同类项,不能合并,所以A错误.6xy和x不是同类项,不能合并,所以B错误.3a2b和3ba2是同类项,可以合并,系数相减,字母和各字母的指数不变得:3a2b-3ba2=0,所以C正确.12x3和5x4不是同类项,不能合并,所以D错误.故选C分析:根据合并同类项的法则进行解题,同类项合并时,系数相加减,字母和各字母的指数都不改变.二、填空题(共5题)16.计算 2a-(-1+2a)=___答案:1解析:解答:原式=2a+1-2a=1.答案为:1.分析:本题考查了整式的加减、去括号法则两个考点.先按照去括号法则去掉整式中的小括号,再合并整式中的同类项17.多项式______与m2+m-2的和是m2-2m答案: -3m+2解析:解答: 根据题意得:(m2-2m)-(m2+m-2)=m2-2m- m2-m+2=-3m+2.答案为:-3m+2分析:根据题意列出关系式,去括号合并即可得到结果18.化简:5(x-2y)-4(x-2y)=_________答案:x-2y解析:原式=5x-10y-4x+8y=x-2y,答案为:x-2y.分析:原式去括号合并即可得到结果19.计算:2(a-b)+3b= _________答案:2a+b解析:解答:原式=2a-2b+3b=2a+b.答案为:2a+b.分析: 原式去括号合并即可得到结果20.已知一个多项式与3x2+9x+2的和等于3x2+4x-3,则此多项式是________答案:-5x-5解析:解答: 根据题意得:(3x2+4x-3)-(3x2+9x+2)=3x2+4x-3-3x2-9x-2=-5x-5.答案为:-5x-5分析: 根据和减去一个加数等于另一个加数列出关系式,去括号合并即可得到结果.三、解答题(共5题)21.化简:2(3x2-2xy)-4(2x2-xy-1)答案:-2x2+4解答: 原式=6x2-4xy-8x2+4xy+4=-2x2+4解析:分析: 原式去括号合并即可得到结果22.已知A=3x2-ax+6x-2,B=-3x2+4ax-7,若A+B的值不含x项,求a的值.答案:-2解答: ∵A=3x2-ax+6x-2,B=-3x2+4ax-7,∴A+B=(3x2-ax+6x-2)+(-3x2+4ax-7)=3x2-ax+6x-2-3x2+4ax-7=(3a+6)x-9,由结果不含x项,得到3a+6=0,解得a=-2.解析:分析: 将A与B代入A+B中,去括号合并得到最简结果,由结果不含x项,求出a 的值23.一个多项式加上5x2+3x-2的2倍得1-3x2+x,求这个多项式答案:-13x2-5x+5解答:根据题意得:(1-3x2+x)-2(5x2+3x-2)=1-3x2+x -10x2-6x+4=-13x2-5x+5所以这个多项式为-13x2-5x+5解析:分析: 先列式表示这个多项式,再化简.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.24.把多项式2x2-y2+x-3y写成两个二项式的和答案:(2x2-y2)+(x-3y)解答:由题意得2x2-y2+x-3y =(2x2-y2)+(x-3y)解析:分析:将四项任意分组即可得出答案25.试说明把一个两位数的十位上的数字与个位上的数字互换位置后,所得的新两位数与原两位数的和能被11整除答案:解答:设十位上数字为a,个位上数字为b,则原两位数为10a+b,调换后的两位数为10b+a,则(10a+b)+(10b+a)=10a+b+10b+a=11(a+b),则新两位数与原两位数的和能被11整除解析:分析: 设十位上数字为a,个位上数字为b,表示出原两位数,以及调换后的两位数,列出关系式,去括号合并得到结果,即可做出判断。
一、选择题1. 小明与小亮在操场上练习跑步,小明的速度是 x m/s ,小亮的速度是 y m/s ,小亮比小明跑得快,两人从同一地点同时起跑 a s 后,小明落后小亮 ( ) A . (ax −ay ) m B . (ay −ax ) m C . (ax +ay ) mD . axy m2. 小明用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是 8 时,输出的数据是 ( )输入⋯12345⋯输出⋯3223512310730⋯ A . 839B . 738C . 637D . 5363. 如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是 ( )A .B .C.D.4.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(−1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,⋯,依此规律跳动下去,点P第99次跳动至点P99的坐标是( )A.(26,50)B.(−26,50)C.(25,50)D.(−25,50)5.1883年,康托尔构造的这个分形,称做康托尔集,从长度为1的线段开始,康托尔取走其中间三分之一而达到第一阶段;然后从每人个余下的三分之一线段中取走中间三分之一而达到第二阶段,无限地重复这一过程,余下的无穷点就称做康托尔集,如图是康托尔集的最初几个阶段,当达到第5个阶段时,取走的所有线段的长度之和为( )A.13B.242243C.211243D.322436.如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2,⋯以此类推,第n次平移将长方形A n−1B n−1C n−1D n−1沿A n−1B n−1的方向向右平移5个单位,得到长方形A n B n C n D n(n>2),则AB n长为( )A.5n+6B.5n+1C.5n+4D.5n+37.下列计算正确的是( )A.3a2+a=4a2B.−2(a−b)=−2a+bC.a2b−2a2b=−a2b D.5a−4a=18.下列按照一定规律排列一组图形,其中图形①中共有2个小三角形,图形②中共有6个小“三角形,图形③中共有11个小三角形,图形④中共有17个小三角形,⋯⋯,按此规律,图形⑧中共有n个小三角形,这里的n=( )A.32B.41C.51D.539.为了解决老百姓看病难的问题,卫生部门决定大幅度降低药品价格,某种常用药品降价40%后的价格为a元,则降价前此药品的价格为( )A.52a元B.25a元C.53a元D.35a元10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形,⋯⋯,如此下去,则第2018个图中共有正方形的个数为( )A.2018B.2019C.6052D.6056二、填空题11.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,⋯,则第n−1(n为正整数,n⋯2)个图案由个▲组成.12.下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是.13.有理数a,b,c,d在数轴上的位置如图,则∣a−b∣+∣b−c∣−∣d−a∣=.14.在平面直角坐标系中,正方形ABCD的顶点坐标分别为A(1,1),B(1,−1),C(−1,−1),D(−1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称点P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,⋯⋯,按此操作下去,则P2020的坐标为.15.已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等.小明将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48.若将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0对准乙尺的刻度m,则此时甲尺的刻度n会对准乙尺的刻度为.(用含m,n的式子表示)16.观察下列图形:它们是按一定规律排列的,依照此规律,第10个图形中共有个点.+(b+c)m−m2的值为.17.若a,b互为倒数,b,c互为相反数,m的绝对值为1.则abm三、解答题18.若在运动会颁奖台上面及两侧铺上地毯(如图阴影部分),长为m,宽为n,高为ℎ(单位为:cm).(1) 用m,n,ℎ表示所需地毯的面积;(2) 若m=160,n=60,ℎ=75,求地毯的面积.19.如图所示,一块正方形纸板剪去四个相同的三角形后留下了阴影部分的图形.已知正方形的边长为a,三角形的高为ℎ.(1) 用式子表示阴影部分的面积;(2) 当a=2,ℎ=1时,求阴影部分的面积.220.阅读下面材料:在数轴上5与−2所对的两点之间的距离:∣5−(−2)∣=7;在数轴上−2与3所对的两点之间的距离:∣−2−3∣=5;在数轴上−8与−5所对的两点之间的距离:∣(−8)−(−5)∣=3.在数轴上点A,B分别表示数a,b,则A,B两点之间的距离AB=∣a−b∣=∣b−a∣.回答下列问题:(1) 数轴上表示−2和−5的两点之间的距离是;数轴上表示数x和3的两点之间的距离表示为;数轴上表示数和的两点之间的距离表示为∣x+2∣;(2) 七年级研究性学习小组在数学老师指导下,对式子∣x+2∣+∣x−3∣进行探究:请你在草稿纸上画出数轴,当表示数x的点在−2与3之间移动时,∣x−3∣+∣x+2∣的值总是一个固定的值为:.21.学校操场上的环形跑道长400米,小胖、小杰的速度分别是a米/分,b米/分(其中a>b).两人从同一地点同时出发,求:(1) 如果两人反向而行,则经过多长时间两人第一次相遇?(2) 如果两人同向而行,则经过多长时间两人第一次相遇?22.归纳.人们通过长期观察发现,如果早晨天空中有棉絮状的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学里,我们也常用这样的方法探求规律,例如:三角形有3个顶点,如果在它的内部再画n个点,并以(n+3)个点为顶点画三角形,那么最多以剪得多少个这样的三角形?为了解决这个问题,我们可以从n=1,n=2,n=3等具体的、简单的情形入手,探索最多可以剪得的三角形个数的变化规律.(1) 完成表格信息:,;(2) 通过观察、比较,可以发现:三角形内的点每增加1个,最多可以剪得的三角形增加个.于是,我们可以猜想:当三角形内的点的个数为n时,最多可以剪得个三角形.像这样通过对现象的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.在日常生活中,人们互相交谈时,常常有人在列举了一些现象后,说“这(即列举的现象)说明⋯⋯”其实这就是运用了归纳的方法.用归纳的方法得出的结论不一定正确,是否正确需要加以证实.(3) 请你尝试用归纳的方法探索(用表格呈现,并加以证实):1+3+5+7+⋯+(2n−1)的和是多少?23.探索规律,观察下面由⋇组成的图案和算式,解答问题:1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52.⋯(1) 请猜想1+3+5+7+9+⋯+19=;(2) 请猜想1+3+5+7+9+⋯+(2n−1)+(2n+1)+(2n+3)=;(3) 请计算:101+103+⋯+197+199.24.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”.如图1的“等和格”中,每行、每列及对角线上的3个代数式的和都等于15.(1) 图2是显示部分代数式的“等和格”,可得a=(用含b的代数式表示);(2) 图3是显示部分代数式的“等和格”,可得a=,b=;(3) 图4是显示部分代数式的“等和格”,求b的值(写出具体求解过程).25.A,B两地果园分别有橘子40吨和60吨,C,D两地分别需要橘子30吨和70吨;已知从A,B到C,D的运价如表: 到C地到D地A果园每吨15元每吨12元B果园每吨10元每吨9元(1) 若从A果园运到C地的橘子为x吨,则从A果园运到D地的橘子为吨,从A果园将橘子运往D地的运输费用为元.(2) 用含x的式子表示出总运输费(要求:列式,化简).(3) 求总运输费用的最大值和最小值.(4) 若这批橘子在C地和D地进行再加工,经测算,全部橘子加工完毕后总成本为w元,且w=−(x−25)2+4360.则当x=时,w有最值(填“大”或“小”).这个值是.答案一、选择题 1. 【答案】B【知识点】简单列代数式2. 【答案】D【解析】 ∵ 第 n 个数据的规律是:n+2n (n+1), 故 n =8 时为:8+28×9=1072=536. 【知识点】用代数式表示规律3. 【答案】C【解析】由题意知,原图形中各行、各列中点数之和为 10,符合此要求的只有C . 【知识点】用代数式表示规律4. 【答案】D【知识点】点的平移、用代数式表示规律5. 【答案】C【解析】根据题意知:第一阶段时,余下的线段的长度之和为 23, 第二阶段时,余下的线段的长度之和为 23×23=(23)2, 第三阶段时,余下的线段的长度之和为 23×23×23=(23)3, ⋯, 以此类推,当达到第五个阶段时,余下的线段的长度之和为 (23)5=32243, 取走的线段的长度之和为 1−32243=211243. 【知识点】用代数式表示规律6. 【答案】A【解析】每次平移 5 个单位,n 次平移 5n 个单位,即 BN 的长为 5n ,加上 AB 的长即为 AB n 的长,AB n =5n +AB =5n +6. 【知识点】用代数式表示规律7. 【答案】C【解析】3a2,a不是同类项,不能合并,故A错误;−2(a−b)=−2a+2b,故B错误;a2b−2a2b=−a2b,故C正确;5a−4a=a,故D错误,故选:C.【知识点】合并同类项、去括号8. 【答案】C【解析】设第m个图形中有a m(m为正整数)个小三角形.观察图形,可知:a1=1+1=2,a2=(1+2)+3=6,a3=(1+2+3)+5=11,a4= (1+2+3+4)+7=17,⋯,∴a m=(1+2+⋯+m)+2m−1=m(m+1)2+2m−1=12m2+52m−1(m为正整数),∴n=a8=12×82+52×8−1=51.【知识点】用代数式表示规律9. 【答案】C【知识点】用字母表示数10. 【答案】C【解析】第1个图形有正方形1个,第2个图形有正方形4个,第3个图形有正方形7个,第4个图形有正方形11个,⋯,第n个图形有正方形(3n−2)个,当n=2018时,3×2018−2=6052个正方形.【知识点】用代数式表示规律二、填空题11. 【答案】(3n−2)【解析】观察发现:第一个图形有3×2−3+1=4个三角形;第二个图形有3×3−3+1=7个三角形;第一个图形有3×4−3+1=10个三角形;⋯第n−1个图形有3n−3+1=3n−2个三角形.【知识点】用代数式表示规律12. 【答案】82【知识点】用代数式表示规律13. 【答案】c+d−2b【解析】根据数轴右侧的数大于左侧的数,则右侧数减去左侧数为正,去掉绝对值,∵a−b>0,b−c<0,d−a<0,∴∣a−b∣=a−b,∣b−c∣=−(b−c),∣d−a∣=−(d−a),故∣a−b∣+∣b−c∣−∣d−a∣=a−b−(b−c)+(d−a)=a−b−b+c+d−a=c+d−2b.【知识点】整式的加减运算、绝对值的几何意义14. 【答案】(0,2)【解析】∵点P坐标为(0,2),点A坐标为(1,1),∴点P关于点A的对称点P1的坐标为(2,0),点P1关于点B(1,−1)的对称点P2的坐标(0,−2),点P2关于点C(−1,−1)的对称点P3的坐标为(−2,0),点P3关于点D(−1,1)的对称点P4的坐标为(0,2),即点P4与点P重合了;∵2020÷4=505,∴点P2020的坐标与点P4的坐标相同,∴点P2020的坐标为(0,2).【知识点】坐标平面内图形轴对称变换n+m15. 【答案】43【知识点】简单列代数式16. 【答案】165【解析】第一个图形有3=3×1=3个点,第二个图形有3+6=3×(1+2)=9个点(在第一个图形的基础上,外面又包了一个三角形,三个顶点,在三边上多了三个点);第三个图形有3+6+9=3×(1+2+3)=18个点;(在第二个图形基础上,外面又包了一个三角形,在三边上多了三个点,即:在第一图形的基础上多了两个三角形,从里向外,依次多6个点,9个点,包括增加的三角形的顶点)⋯第n个图形有3+6+9+⋯+3n=3×(1+2+3+⋯+n)=3n(n+1)个点;2=165个点,当n=10时,3×10×112故答案为:165.【知识点】用代数式表示规律17. 【答案】0或−2【解析】ab=1,c+d=0.∣m∣=1.−1=0或−2.原式=1m【知识点】简单的代数式求值三、解答题18. 【答案】(1) 地毯的面积为:(mn+2nℎ)cm2.(2) 地毯总长:60×2+160=280(cm),160×60+2×60×75=18600(cm2),答:地毯的面积为18600cm2.【知识点】简单的代数式求值、简单列代数式19. 【答案】aℎ=a2−2aℎ.(1) 阴影部分的面积为:a2−4×12时,(2) 当a=2,ℎ=12原式=a2−2aℎ=22−2×2×12=2.【知识点】简单列代数式、简单的代数式求值20. 【答案】(1) 3;∣x−3∣;x;−2(2) 5【解析】(1) 数轴上表示−2和−5的两点之间的距离=∣−2−(−5)∣=3;数轴上表示数x和3的两点之间的距离=∣x−3∣;数轴上表示数x和−2的两点之间的距离表示为∣x+2∣.(2) 当−2≤x≤3时,∣x+2∣+∣x−3∣=x+2+3−x=5.【知识点】绝对值的几何意义、整式的加减运算、数轴的概念21. 【答案】(1) 400a+b分钟.(2) 400a−b分钟.【知识点】简单列代数式22. 【答案】(1) 5;7(2) 2;(2n+1)(3)加数的个数和1+3221+3+5321+3+5+742⋯⋯1+3+5+7+⋯+(2n−1)n2证明:∵S=1+3+5+7+⋯+(2n−5)+(2n−3)+(2n−1),∴S=(2n−1)+(2n−3)+(2n−5)+⋯+7+5+3+1,∴S+S=2n⋅n=2n2,2S=2n2,S=n2.【解析】(1) 由图形规律可得,答案为5,7.(2) ∵5−3=7−5=2,∴三角形内的点每增加1个,最多可以剪得的三角形增加2个;∵三角形内点的个数为1时,最多剪出的小三角形个数3=2×1+1,三角形内点的个数为2时,最多剪出的小三角形个数5=2×2+1,三角形内点的个数为3时,最多剪出的小三角形个数7=2×3+1,∴三角形内点的个数为n时,最多剪出的小三角形个数2n+1.【知识点】用代数式表示规律、整式的加减运算23. 【答案】(1) 100(2) (n+2)2(3)101+103+⋯+197+199 =(1+1992)2−(1+992)2=10000−2500=7500.【解析】(1) 1+3+5+7+9+⋯+19=(1+192)2=100.(2)1+3+5+7+9+⋯+(2n−1)+(2n+1)+(2n+3) =(1+2n+32)2=(n+2)2.【知识点】用代数式表示规律24. 【答案】(1) −b(2) −2;2(3) 2a2+a+(a−2a2)=a2+2a+(a+3),a2+a=−3,2a2+a+(a+3)=b+3a2+2a+(a2+2a),b=−2a2−2a+3,b=−2(a2+a)+3=6+3=9.【知识点】整式的加减运算25. 【答案】(1) (40−x),12(40−x).(2) 从A果园运到C地x吨,运费为每吨15元;从A果园运到D地的橘子为(40−x)吨,运费为每吨12元;从B果园运到C地(30−x)吨,运费为每吨10元;从B果园运到D地(30+x)吨,运费为每吨9元;所以总运费为:15x+12(40−x)+10(30−x)+9(30+x)=2x+1050.(3) 因为总运费=2x+1050,当x=30时,有最大值2×30+1050=1110元.当x=0时,有最小值2×0+1050=1050元.(4) 25大4360【解析】(1) 因为从A果园运到C地的橘子是x吨,那么从A果园运到D地的橘子为(40−x)吨,从A运到D地的运费是12元每吨,所以A果园将橘子运往D地的运输费用为12(40−x)吨.(4) w=−(x−25)2+4360,因为二次项系数−1<0,所以抛物线开口向下,当x=25时,w有最大值.最大值时4360.【知识点】二次函数的最值、简单的代数式求值、整式加减的应用、简单列代数式。
数学北师大版七年级上册整式的加减练习题整式的加减是代数学习的重要基石,对于七年级的学生来说,理解并掌握整式的加减法则是进一步学习更高级数学课程的关键。
下面,我将提供一些由浅入深的练习题,以帮助学生掌握整式的加减法。
一、单项式的加减例1.1: (-2) + (-3) = ?例1.2: (2/3) + (-1/4) = ?例1.3: (-2/3) + (2/3) = ?二、多项式的加减例2.1: (x + y) + (x - y) = ?例2.2: (-2x + 3y) + (3x - 4y) = ?例2.3: (2x - 3y) + (-4x + 5y) = ?三、合并同类项例3.1: (2x + 3y) + (4x + 5y) = ?例3.2: (-2x - 3y) + (4x + 5y) = ?例3.3: (2x - 3y) + (-4x + 5y) = ?四、去括号例4.1: (2x - 3y) - (4x + 5y) = ?例4.2: (-2x - 3y) - (4x + 5y) = ?例4.3: (2x - 3y) - (-4x + 5y) = ?五、整式的加减应用题例5.1:一个长方形的长是6m,宽是4m。
求这个长方形的周长。
例5.2:一个梯形的上底是7m,下底是3m,高是5m。
求这个梯形的面积。
在解答这些练习题时,学生们应先尝试独立完成,然后再对照答案进行自我评估。
这样,他们不仅能加深对整式的加减运算的理解,还能提升解决实际问题的能力。
老师或家长也可以根据这些练习题的解答情况,了解学生对整式加减法的掌握程度,从而调整教学策略或辅导方法。
七年级上册数学整式的加减》测试题七年级上册数学整式的加减测试题一、填空题(每小题3分,共30分)1、已知一杯茶要放25g奶粉,那么10杯茶需要放奶粉________g.2、已知一次劳务费为a元,按每月5%的比例提取,经过n个月后,总共提取________元.3、若n为整数,则用n的代数式表示偶数为________,奇数为________.4、某商店原来平均每天要用去打印纸500张,最近因扩大业务范围,每天需要用去打印纸________张.5、已知x+y=3,xy=2,则x-y=________.6、一个长方形的长为2a+3b,宽为a,则这个长方形的周长为________.7、若代数式3x-4与代数式x+3的和是10,则x的值是________.8、某市出租车收费标准是:起步价为7元,2千米以后每千米为2.6元,则乘坐出租车走x(x为大于起步路程小于9千米的整数)千米的路程时,需要付________元.9、已知单项式2x^{m}y^{n-1}的次数是5,则m、n的值分别为m=,n=.10、在多项式中,每个单项式叫做多项式的________,多项式中各项的________叫做这个多项式的次数.二、选择题(每小题3分,共30分)11、下列各组数中,不是同类项的是()A. -7与-4 BB.与-2C.与D. -1与−1∣111、下列各式的值等于5的是()A. B. C. D.1111、下列各式的计算中,正确的是()A. B. C. D.下列各式的化简结果为不同的是()A.与B.与C.与D.与下列各式的计算中,正确的是()A B C D下列各式的化简结果为不同的是()A B C D下列各式的计算中,正确的是()A B C D下列各式的化简结果为不同的是()A B C D19下列各式的计算中,正确的是()A B C D 20下列各式的化简结果为不同的是()A B C D三、化简下列各式(每小题5分,共30分) 21 (6a+5b)+(4a-3b) 22 -(2x+3y)+(4x-5y) 23 3(2a-b)-2(a+3b) 24x-[4x-(3x-7)]+[2x-(x+5)] 25 3(-ab+2a)-(3a-b) 26 (6a-7b)-(4a+b) 27 2x-[5x-(3x-1)]+[4x-(x+5)] 28 x+(3x+6)-(4x+2)四、解方程(每小题5分,共10分) 29 x+2=5 30 x-4=6五、应用题(每小题10分,共20分) 31在一块长为40m、宽为22m的矩形地面上要建造一个长为18m、宽为10m的长方形花坛,请你求出这快地面上还剩下的空地面积。
2022-2023学年七年级数学上册第三章《整式及其加减》测试卷一、单选题1.填在下面各正方形中的四个数之间都有一定的规律,按此规律可得到+++a b c d 的值为()A .355B .356C .435D .4362.若单项式25m x y +-与单项式2136n y x -的和仍为单项式,则2m n -的值为()A .6B .1C .3D .1-3.已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是()A .51x --B .51x +C .131x --D .131x +4.下列结论正确的个数是()①2-不是单项式②多项式3527x y xy --是三次三项式③232π3a b c的系数是23,次数是6④233m n -的次数为4A .0个B .1个C .2个D .3个5.多项式23211332x y xy -+的次数为()A .5B .3C .7D .86.已知53x y -=-,则55x y -+的值为()A .0B .2C .5D .87.一本笔记本的原价为a 元,降价后每本比原来便宜了b 元,小明买了4本这样的笔记本,则他一共花费了()A .()44a b -元B .()4a b -元C .()4a b -元D .4b 元8.按如图所示的运算程序,当输入3x =,6y =时,输出的结果为()A .1B .6C .45D .819.若()22m -与3n +互为相反数,则m n 的值是()A .8-B .8C .9-D .910.当=1x -时,3238ax bx -+的值为18,则1282b a -+的值为()A .40B .42C .46D .56二、填空题11.在式子1x,1x y ++,2022,a -,23x y -,13x +中,整式的个数是______个.12.已知520a b ++-=,则27a b -+的值为___________13.a ,b 两数平方的和除以3的商可以表示为______.14.已知有理数a 、b 、c 满足1,2,3a b c ===,且a b c a b c +-=+-,则a b c ++=__________.15.如关于x ,y 的多项式2347514x y mxy y xy +-+化简后不含二次项,则m =______.16.已知关于x 的多项式||2(4)31m m x x ---+是二次三项式,则m =________,当=1x -时,该多项式的值为________.17.对于任何有理数,我们规定符号a b cd的意义是a b ad bc c d =-,如121423234=⨯-⨯=-,当23(1)0x y -++=时,2221x y x --值为______.18.规定:()3f x x =-,()2g y y =+,例如()2235f -=--=,()2220g -=-+=.则式子()()11f x g x -++的最小值是__________.三、解答题19.已知()2230a b -++=,求代数式2222332232a b ab ab a b ab ab ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦的值.20.已知代数式2=2+3+21A x xy y -,22B x xy x -=++.(1)当=1x -,2y =时,求2A B -的值;(2)若2A B -的值与x 的取值无关,求y 的值.21.某超市销售茶壶、茶杯,每只茶壶定价20元,每只茶杯定价4元.今年“双十一”期间开展促销活动,向顾客提供两种优惠方案:方案一:每买一只茶壶就赠一只茶杯;方案二:茶壶和茶杯都按定价的90%付款.某顾客计划到这家超市购买6只茶壶和x 只茶杯茶(杯数多于6只).(1)用含x 的代数式分别表示方案一与方案二各需付款多少元?(2)当25x =时,若规定每位顾客只能在以上两种方案中任选一种,请通过计算说明该顾客选择上面两种购买方案中哪一种更省钱?22.某超市新进了一批百香果,进价为每斤8元,为了合理定价,在前五天试行机动价格,售出时每斤以10元为标准,超出10元的部分记为正,不足10元的部分记为负,超市记录的前五天百香果的销售单价和销售数量如下表所示,第1天第2天第3天第4天第5天销售单价(元)1+2-3+1-2+销售数量(斤)2035103015(1)前5天售卖中,单价最高的是第___________天;单价最高的一天比单价最低的一天多___________元;(2)求前5天售出百香果的总利润;(3)该超市为了促销这种百香果,决定推出一种优惠方案:购买不超过6斤百香果,每斤12元,超出6斤的部分,每斤9.6元.若嘉嘉在该超市买(6)x x >斤百香果,用含x 的式子表示嘉嘉的付款金额.23.为了节约用水,某自来水公司采取以下收费方法:若每户每月用水不超过10吨,则每吨水收费2.6元;若每户每月用水超过10吨,则超过的部分按每吨3元收费.8月份李老师家里用水a 吨(10a >).(1)请用含a 的代数式表示李老师8月份应交的水费.(2)当13a =时,求李老师8月份应交水费多少元?24.已知若a b 、互为相反数,、c d 互为倒数,m 的绝对值为2022.(1)直接写出a b +,cd ,m 的值;(2)求a bm cd m+++的值.25.已知多项式2134331m x y x y x +-+--是五次四项式,单项式333n m x y z -与该多项式的次数相同.(1)求m 、n 的值.(2)若2|1|(2)0x y -+-=,求这个多项式的值.26.阅读下面的材料,完成相关的问题.在学习绝对值时,我们已经知道绝对值的几何含义,如|5-1|表示5,1在数轴上对应的两点之间的距离;|5+1|=|5-(-1)|,所以|5+1|表示5,-1在数轴上对应的两点之间的距离;|5|=|5-0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A 、B 在数轴上分别表示数m ,n ,那么点m ,n 之间的距离等于|m -n |.(1)利用数轴探究:①若点P 表示数2,则在同一数轴上到点P 的距离为5个单位长度的点表示的数是;②|x +3|+|x -2|有最值(填“大”或“小”),此时整数x 的值为;(2)若点M 、N 、P 是数轴上的三点,点M 表示的数为4,点N 表示的数为-2,动点P 表示的数为x .若12PM PN +=,则x 的值为;(3)已知多项式32235x y xy --的常数项是a ,次数是b ,a 、b 两数在数轴上所对应的点分别为A 、B ,若点A ,点B 同时沿数轴正方向运动,点A 的速度是点B 的3倍,且2秒后,使点B 到原点的距离是点A 到原点的距离的2倍,求点B 的速度.27.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如表(注:水费按一个月结算一次):请根据价目表的内容解答下列问题:每月用水量(m 3)单价(元/m 3)不超出26m 3的部分3超出26m 3不超出34m 3的部分4超出34m 3的部分7(1)填空:若该户居民1月份用水20立方米,则应收水费元;若该户2月份用水30立方米,则应收水费元;(2)若该户居民3月份用水x 立方米(其中2634x £<),则应收水费多少元?(结果用含x 的代数式表示)(3)若该户居民3月份用水a 立方米(其中34a >),则应收水费多少元?(结果用含a 的代数式表示)28.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的【探究】.【提出问题】两个不为0的有理数a ,b 满足a ,b 同号,求a a b b+的值.【解决问题】解:由a 、b 同号且都不为0可知a 、b 有两种可能:①a 、b 都是正数:②a 、b 都是负数.①若a 、b 都是正数,即0a >,0b >,有a a =及b b =,则112aa bba b++==+=;②若a 、b 都是负数,即0a <,0b <,有a a =-及b b =-,()()()()112a b a b a b a b--+=+=-+-=-;所以a a bb+的值为2或2-.【探究】请根据上面的解题思路解答下面的问题:(1)已知3a =且7b =,且a b <,求a b +的值.(2)两个不为0的有理数a ,b 满足a ,b 异号,求a a b b+的值.(3)若0abc >,则||||||a b c a b c++的值可能是多少?参考答案:1.D2.D3.A4.B5.A6.D7.A8.A9.D10.B11.512.-513.223a b +14.4-或0或615.2-16.4-4-17.28-18.719.解:2222332232a b ab ab a b ab ab⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦()222232233a b ab ab a b ab ab =--+++222232233a b ab ab a b ab ab =-+--+2ab ab =+,∵()2230a b -++=,()22030a b -≥+≥,,∴()22030a b -=+=,,∴2030a b -=+=,,∴23a b ==-,,∴原式()()2232318612=⨯-+⨯-=-=.20.(1)解:由题意可得,22223212(2)A B x xy y x xy x -=++---++2223212224x xy y x xy x =++--+--5225xy x y =-+-,当=1x -,2y =时,252255(1)22(1)225102459A B xy x y -=-+-=⨯-⨯-⨯-+⨯-=-++-=-;(2)解:由题意可得,2(52)25A B x y y -=-+-,∵2A B -的值与x 的取值无关,∴520y -=,解得:25y =;21.(1)解:某顾客计划到这家超市购买6只茶壶和x 只茶杯(茶杯数多于6只),根据题意可得:方案一:()()62046496x x ⨯+-=+元;方案二:()()620490% 3.6108x x ⨯+⨯=+元;(2)当25x =时,方案一需付款42596196⨯+=(元),方案二需付款3.625108198⨯+=(元),∵196198<,∴选择方案一更省钱.22.、(1)解:∵+3+2+1>1>2>>--,∴前5天售卖中,单价最高的是第3天;∵+3(2)=5--∴价最高的一天比单价最低的一天多5元,故答案为:3,5;(2)解:以10元为标准每斤百香果所获的利润为108=2-(元),前5天售出百香果的总利润为:20(12)35(22)10(32)30(12)15(22)⨯++⨯-++⨯++⨯-++⨯+=203350105301154⨯+⨯+⨯+⨯+⨯=200(元),答:前5天售出百香果的总利润为200元;(3)解:根据题意得,()()1269.669.614.4x x ⨯+-=+元,即嘉嘉在该超市买(6)x x >斤百香果,付款金额为()9.614.4x +元.23.、(1)()26310a +-(2)当13a =时())26310(35a +-=元24.(1)解: a b 、互为相反数,、c d 互为倒数,m 的绝对值为2022,012022a b cd m ∴+===±,,;(2)解:当2022m =时,02022120232022a b m cd m +++=++=,当2022m =-时,02022120212022a b m cd m +++=-++=--,∴a bm cd m+++的值为2023或2021-.25.、解:(1)∵多项式2134331m x y x y x +-+--是五次四项式,∴13m +=,解得2m =,∵单项式333n m x y z -与该多项式的次数相同,∴3315n m +-+=,即33215n +-+=,解得1n =,∴2m =,1n =;(2)∵2|1|(2)0x y -+-=,∴10x -=,20y -=,∴1x =,2y =,由(1)得这个多项式为:2334331x y x y x -+--,∴2334331x y x y x -+--=233431212311-⨯⨯+⨯-⨯-=24231-+--=26-,所以这个多项式的值为26-.26.、解:(1)①设在同一数轴上到点P 的距离为5个单位长度的点表示的数是x ,由题意得:25x -=,∴25x -=±,∴3x =-或7x =,故答案为:-3或7;②当2x >时,3232215x x x x x ++-=++-=+>;当3x <-时,()()3232215x x x x x ++-=-+--=-->;当32x -≤≤时,()32325x x x x ++-=+--=;∴32x x ++-有最小值,此时32x -≤≤;故答案为:小,32x -≤≤;(2)∵点M 、N 、P 是数轴上的三点,点M 表示的数为4,点N 表示的数为-2,动点P 表示的数为x ,∴4PM x =-,2PN x =+,∵12PM PN +=,∴4212x x -++=,当>4x 时,42422212x x x x x -++=-++=-=,解得7x =;当<2x -时,()()42422212x x x x x -++=---+=-+=,解得5x =-;当24x -≤≤时,()()4242612x x x x -++=--++=≠;∴综上所述,5x =-或7x =,故答案为:-5或7;(3)∵多项式32235x y xy --的常数项是a ,次数是b ,∴53a b =-⎧⎨=⎩,设B 的运动速度为v ,则A 的运动速度为3v ,则2s 后A 表示的数为56v -+,B 表示的数为32v +,∴B 到原点的距离32v =+,A 到原点的距离为56v -+,∵2秒后,使点B 到原点的距离是点A 到原点的距离的2倍,∴32=256v v +-+,解得12v =或1310v =.27.(1)∵2026<∴用水20立方米,则应收水费为20360⨯=元;∵263034<<∴用水30立方米,则应收水费为()2633026494⨯+-⨯=元;故答案为:60;94.(2)依题意得:应收水费为326426x ´+´-()426x -=()元.故应收水费426x -()元;(3)依题意得:应收水费为32643426734a ´+´-+-()()7128a -=()元.故应收水费7128a -()元.28.(1)解:∵3a =,7b =,∴3a =或3-,7b =或7-,∵a b <,∴3a =,7b =或3a =-,7b =,当3a =,7b =时3710a b +=+=,当3a =-,7b =时374a b +=-+=,综上,a b +的值10或4;(2)解:由a 、b 异号,可知:①0a >,0b <;②a<0,0b >,当0a >,0b <时,110a ba b +=-=;当a<0,0b >时,110a ba b+=-+=,综上,a ab b+的值为0;(3)解:由题意得:a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数.①当a ,b ,c 都是正数,即0a >,0b >,0c >时,则:||||||1113a b c a b ca b c a b c++=+=++=;②当a ,b ,c 有一个为正数,另两个为负数时,设0a >,0b <,0c <,则:||||||1111a b c a b c a b c a b c --++=++=--=-所以:||||||a b c a b c++的值为3或1-.。
3.3 整 式一、选择题1.下列说法中正确的是( )A .单项式x 的系数和次数都是零B .343x 是7次单项式C .25R π的系数是5D .0是单项式2.下列说法中正确的是( )A .12323+-x x 是五次三项式B .nm 232-是二次二项式 C .4232--x x D .3222+-x x 中一次项系数为-23.将多项式a a a -++-132按字母a 升幂排列正确的是( )A .123+--a a aB .132++--a a aC .a a a --+231D .321a a a +--4.下列式子中属于二次三项式的是( )A .2x 2+3;B .-x 2+3x-1;C .x 3+2x 2+3;D .x 4-x 2+1.5.多项式-6y 3+4xy 2-x 2+3x 3y 是按( )排列.A .x 的升幂;B .x 的降幂;C .y 的升幂;D .y 的降幂.6.同时都含有a 、b 、c ,且系数1的7次单项式共有( )A .4个B .12个C .15个D .25个二、填空题1.代数式①13-a ,②0,③n m 1+,④322b a +,⑤23xy ,⑥m 1中单项式有______;多项式有_______(填序号).2.553c ab -是_______次单项式,系数是_______. 3.3333224--+-b ab b a a 是______次_______项式,它的项分别是_______,常数项是______.4.把多项式x x x x 213212324--+-按x 的降幂排列为_______. 5.把多项式n m n n m 223223---按n 的升幂排列为_________.6.关于m 的多项式1611-+--+n n n m am m 是三次三项式,则______=a ,_____=n 7.c b a m 123+是六次单项式,则._____=m三、解答题1.对于多项式24223.1433xy y x x +--,分别回答下列问题: (1)是几项式;(2)写出它的各项;(3)写出它的最高次项;(4)写出最高次项的次数;(5)写出多项式的次数;(6)写出常数项.2.将多项式2244433314y x y y x xy y x -++-先按x 的降幂排列,再按y 的升幂排列,并指出它是几次几项式,常数项和最高次项系数各是多少?3.写出系数是3,均含有字母a 、b 的所有五次单项式.4.补入下列多项式的缺项,并按字母x 降幂排列(1)53-+-x x (3)5322x x x --+5.一个关于a 、b 的多项式,除常数项为1-外,其余各项的次数都是3,系数都为1-,并且各项都不相同,这个多项式最多有几项?请将这个多项式写出来.并先将它按字母a 降幂排列,再把它按字母b 升幂排列.6.下列关于x 、y 的多项式是一个四次三项式,试确定m 、n 的值,并指出这个多项式是按哪一个字母的升幂还是降幂排列的.243221)3(2y x y nx y x m y x m m m m m ----+--++-7.(1)将)(b a -看成一个字母,把代数式)(2)(2)(32b a b a b a -+-----按字母“b a -”降幂排列,若设b a x -=,将上述代数式改写成关于x 的多项式.(2)已知2+=b a ,先求x ,并求出上述代数式的值.参考答案选择题1.D 2.D 3.D 4.B 5.A 6.C 填空题1.②、⑤;①、④; 2.九、51- 3.四、五、4a 、b a 23-、23ab 、3b -、-3、-3 4.121232234--+-x x x x 5.322223n m n n m --- 6.0,2 7.2解答题 1.(1)四项式;(2)2422,3.1,43,3xy y x x -- (3)y x 443- (4)次; (5)5次; (6)-1.32.4422334431y xy y x y x y x +--+, 4433224431xy y y x y x y x +++-,是六次五项式,常数项为0,最高次项系数为1; 3. 53a ,b a 43,233b a ,323b a ,43ab ,53b .4.(1)5023--⋅+x x x ,(2)2002345+⋅++-⋅+-x x x x x5.五项,13223-----b ab b a a ,32231b ab b a a -----; 6.411=+-m ∴4=m 代入多项式为22232y y nx y x y x +--+ 又∵这个多项式为四次三项式∴022=--y nx y x ∴1-=n ,是按y 的升幂排列7.(1)2)(2)()(23--+----b a b a b a ,2223-+--x x x(2)∵2+=b a ∴2=-b a ,即2=x ,原式=102)2(22223-=-+⨯+--。
整式的乘除计算训练(1)1. )2()(b a b a -++-2. (x+2)(y+3)-(x+1)(y-2)3. 22)2)(2(y y x y x ++-4. x(x -2)-(x+5)(x -5)5. ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--y x y x224 6. )94)(32)(23(22x y x y y x +---7. ()()3`122122++-+a a 8. ()()()2112+--+x x x9. (x -3y)(x+3y)-(x -3y)2 10. 23(1)(1)(21)x x x +---11. 22)23()23(y x y x --+ 12. 22)()(y x y x -+13. ×810014. 3022)2(21)x (4554---÷⎪⎭⎫⎝⎛--π-+⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛15. (1211200622332141)()()()-⨯+----16—19题用乘法公式计算×1001 17.1992-18.298 19.2010200820092⨯-20.化简求值:)4)(12()12(2+-+-a a a ,其中2-=a 。
21. 化简求值2(2)2()()2(3)x y x y x y y x y +--++-,其中12,2x y =-=。
22. 5(x -1)(x +3)-2(x -5)(x -2) 23. (a -b )(a 2+ab +b 2)24. (3y+2)(y-4)-3(y-2)(y-3) 25. a(b-c)+b(c-a)+c(a-b)1y2)226. (-2mn2)2-4mn3(mn+1) 27. 3xy(-2x)3·(-428. (-x-2)(x+2) 29. 5×108·(3×102) 30. (x-3y)(x+3y)-(x-3y)2 31. (a+b-c)(a-b-c)答案1. a-2b2. 5x+y+83. 4x2+y24. -2x+255. x2-4y26. 16y4-81x47. 4a2+28. x+39. 6xy-18y2 10. -x2+4x-4 11. 24xy 12. x4-2x2y2+y413. 1 14. 10 15. 161216. 原式=(1000-1)×(1000+1) 17. 原式=(99+1)×(99-1)=1000000-1 =100×98=999999 =980018. 原式=(900-2)2 19. 原式=20092-(2009+1)(2009-1)=10000-400+4 =20092-20092+1=9604 =120.原式=6a2+3a-3,当a=2时,原式=6×(-2)2+3×(-2)-3=1521.原式=-x2+6xy,当x=2,y=12时,原式=-(-2)2+6×(-2)×12=-1022. -3x2+24x-35 23. a3-b3 24. 5y-26 25. 026. -4mn3 27. -3x4y5 28. -x2-4x-4 29. 1.5×1011230. 6xy-18y2 31. a2-2ac+c2-b22014年北师大七年级数学上册《整式及其加减》计算题专项练习一一.解答题(共12小题)1.计算题①12﹣(﹣8)+(﹣7)﹣15;②﹣12+2×(﹣5)﹣(﹣3)3÷;③(2x﹣3y)+(5x+4y);④(5a2+2a﹣1)﹣4(3﹣8a+2a2).2.(1)计算:4+(﹣2)2×2﹣(﹣36)÷4;(2)化简:3(3a﹣2b)﹣2(a﹣3b).3.计算:(1)7x+4(x2﹣2)﹣2(2x2﹣x+3);(2)4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)];(3)(3mn﹣5m2)﹣(3m2﹣5mn);(4)2a+2(a+1)﹣3(a﹣1).4.化简(1)2(2a2+9b)+3(﹣5a2﹣4b)(2)3(x3+2x2﹣1)﹣(3x3+4x2﹣2)5.(2009?柳州)先化简,再求值:3(x﹣1)﹣(x﹣5),其中x=2.6.已知x=5,y=3,求代数式3(x+y)+4(x+y)﹣6(x+y)的值.7.已知A=x2﹣3y2,B=x2﹣y2,求解2A﹣B.8.若已知M=x2+3x﹣5,N=3x2+5,并且6M=2N﹣4,求x.9.已知A=5a2﹣2ab,B=﹣4a2+4ab,求:(1)A+B;(2)2A﹣B;(3)先化简,再求值:3(A+B)﹣2(2A﹣B),其中A=﹣2,B=1.10.设a=14x﹣6,b=﹣7x+3,c=21x﹣1.(1)求a﹣(b﹣c)的值;(2)当x=时,求a﹣(b﹣c)的值.11.化简求值:已知a、b满足:|a﹣2|+(b+1)2=0,求代数式2(2a﹣3b)﹣(a﹣4b)+2(﹣3a+2b)的值.12.已知(x+1)2+|y﹣1|=0,求2(xy﹣5xy2)﹣(3xy2﹣xy)的值.2014年北师大七年级数学上册《整式及其加减》计算题专项练习一参考答案与试题解析一.解答题(共12小题)1.计算题①12﹣(﹣8)+(﹣7)﹣15;②﹣12+2×(﹣5)﹣(﹣3)3÷;③(2x﹣3y)+(5x+4y);④(5a2+2a﹣1)﹣4(3﹣8a+2a2).考点:整式的加减;有理数的混合运算.专题:计算题.分析:(1)直接进行有理数的加减即可得出答案.(2)先进行幂的运算,然后根据先乘除后加减的法则进行计算.(3)先去括号,然后合并同类项即可得出结果.(4)先去括号,然后合并同类项即可得出结果.解答:解:①原式=12+8﹣7﹣15=﹣2;②原式=﹣1﹣10+27÷=﹣11+81=70;③原式=2x﹣3y+5x+4y=7x+y;④原式=5a2+2a﹣1﹣12+32a﹣8a2=﹣3a2+34a﹣13.点评:本题考查了整式的加减及有理数的混合运算,属于基础题,解答本题的关键熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.2.(1)计算:4+(﹣2)2×2﹣(﹣36)÷4;(2)化简:3(3a﹣2b)﹣2(a﹣3b).考点:整式的加减;有理数的混合运算.分析:(1)按照有理数混合运算的顺序,先乘方后乘除最后算加减;(2)运用整式的加减运算顺序计算:先去括号,再合并同类项.解答:解:(1)原式=4+4×2﹣(﹣9)=4+8+9=17;(2)原式=9a﹣6b﹣2a+6b=(9﹣2)a+(﹣6+6)b=7a.点评:在混合运算中要特别注意运算顺序:先三级,后二级,再一级;熟记去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣;及熟练运用合并同类项的法则:字母和字母的指数不变,只把系数相加减.3.计算:(1)7x+4(x2﹣2)﹣2(2x2﹣x+3);(2)4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)];(3)(3mn﹣5m2)﹣(3m2﹣5mn);(4)2a+2(a+1)﹣3(a﹣1).考点:整式的加减.分析:(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可;(3)先去括号,再合并同类项即可;(4)先去括号,再合并同类项即可.解答:解:(1)7x+4(x2﹣2)﹣2(2x2﹣x+3)=7x+4x2﹣8﹣4x2+2x﹣6=9x﹣14;(2)4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)]=4ab﹣3b2﹣[a2+b2﹣a2+b2]=4ab﹣3b2﹣2b2=4ab﹣5b2;(3)(3mn﹣5m2)﹣(3m2﹣5mn)=3mn﹣5m2﹣3m2+5mn=8mn﹣8m2;(4)2a+2(a+1)﹣3(a﹣1)=2a+2a+2﹣3a+3=a+5.点评:本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.4.化简(1)2(2a2+9b)+3(﹣5a2﹣4b)(2)3(x3+2x2﹣1)﹣(3x3+4x2﹣2)考点:整式的加减.专题:计算题.分析:(1)原式利用去括号法则去括号后,合并同类项即可得到结果;(2)原式利用去括号法则去括号后,合并同类项即可得到结果.解答:解:(1)原式=4a2+18b﹣15a2﹣12b=﹣11a2+6b;(2)原式=3x3+6x2﹣3﹣3x3﹣4x2+2=2x2﹣1.点评:此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.5.(2009?柳州)先化简,再求值:3(x﹣1)﹣(x﹣5),其中x=2.考点:整式的加减—化简求值.分析:本题应对方程去括号,合并同类项,将整式化为最简式,然后把x的值代入即可.解答:解:原式=3x﹣3﹣x+5=2x+2,当x=2时,原式=2×2+2=6.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.6.已知x=5,y=3,求代数式3(x+y)+4(x+y)﹣6(x+y)的值.考点:整式的加减—化简求值.分析:先把x+y当作一个整体来合并同类项,再代入求出即可.解答:解:∵x=5,y=3,∴3(x+y)+4(x+y)﹣6(x+y)=x+y=5+3=8.点评:本题考查了整式的加减的应用,主要考查学生的计算能力,用了整体思想.7.已知A=x2﹣3y2,B=x2﹣y2,求解2A﹣B.考点:整式的加减.分析:直接把A、B代入式子,进一步去括号,合并得出答案即可.解答:解:2A﹣B=2(x2﹣3y2)﹣(x2﹣y2)=2x2﹣6y2﹣x2+y2=x2﹣5y2.点评:此题考查整式的加减混合运算,掌握去括号法则和运算的方法是解决问题的关键.8.若已知M=x2+3x﹣5,N=3x2+5,并且6M=2N﹣4,求x.考点:整式的加减;解一元一次方程.专题:计算题.分析:把M与N代入计算即可求出x的值.解答:解:∵M=x2+3x﹣5,N=3x2+5,∴代入得:6x2+18x﹣30=6x2+10﹣4,解得:x=2.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.9.已知A=5a2﹣2ab,B=﹣4a2+4ab,求:(1)A+B;(2)2A﹣B;(3)先化简,再求值:3(A+B)﹣2(2A﹣B),其中A=﹣2,B=1.考点:整式的加减;整式的加减—化简求值.专题:计算题.分析:(1)把A与B代入A+B中计算即可得到结果;(2)把A与B代入2A﹣B中计算即可得到结果;(3)原式去括号合并得到最简结果,把A与B的值代入计算即可求出值.解答:解:(1)∵A=5a2﹣2ab,B=﹣4a2+4ab,∴A+B=5a2﹣2ab﹣4a2+4ab=a2+2ab;(2)∵A=5a2﹣2ab,B=﹣4a2+4ab,∴2A﹣B=10a2﹣4ab+4a2﹣4ab=14a2﹣8ab;(3)原式=3A+3B﹣4A+2B=﹣A+5B,把A=﹣2,B=1代入得:原式=2+5=7.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.10.设a=14x﹣6,b=﹣7x+3,c=21x﹣1.(1)求a﹣(b﹣c)的值;(2)当x=时,求a﹣(b﹣c)的值.考点:整式的加减;代数式求值.专题:计算题.分析:(1)把a,b,c代入a﹣(b﹣c)中计算即可得到结果;(2)把x的值代入(1)的结果计算即可得到结果.解答:解:(1)把a=14x﹣6,b=﹣7x+3,c=21x﹣1代入得:a﹣(b﹣c)=a﹣b+c=14x﹣6+7x﹣3+21x﹣1=42x﹣10;(2)把x=代入得:原式=42×﹣10=﹣10=.点评:此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键.11.化简求值:已知a、b满足:|a﹣2|+(b+1)2=0,求代数式2(2a﹣3b)﹣(a﹣4b)+2(﹣3a+2b)的值.考点:整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.解答:解:原式=4a﹣6b﹣a+4b﹣6a+4b=﹣3a+2b,∵|a﹣2|+(b+1)2=0,∴a=2,b=﹣1,则原式=﹣6﹣2=﹣8.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.12.已知(x+1)2+|y﹣1|=0,求2(xy﹣5xy2)﹣(3xy2﹣xy)的值.考点:整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.分析:因为平方与绝对值都是非负数,且(x+1)2+|y﹣1|=0,所以x+1=0,y﹣1=0,解得x,y的值.再运用整式的加减运算,去括号、合并同类项,然后代入求值即可.解答:解:2(xy﹣5xy2)﹣(3xy2﹣xy)=(2xy﹣10xy2)﹣(3xy2﹣xy)=2xy﹣10xy2﹣3xy2+xy=(2xy+xy)+(﹣3xy2﹣10xy2)=3xy﹣13xy2,∵(x+1)2+|y﹣1|=0∴(x+1)=0,y﹣1=0∴x=﹣1,y=1.∴当x=﹣1,y=1时,3xy﹣13xy2=3×(﹣1)×1﹣13×(﹣1)×12=﹣3+13=10.答:2(xy﹣5xy2)﹣(3xy2﹣xy)的值为10.点评:整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.代入求值时要化简.。
一、选择题1.计算若3x =-,则5x -的结果是( )A .2-B .8-C .2D .82.下列各式的计算,正确的是( )A .235a b ab +=B .2222y y -=C .1055t t t-+=-D .2232m n mn mn -=3.如果12a x +与21b x y -是同类项,那么a b +=( ) A .2 B .3 C .4 D .5 4.一个正方形的边长减少10%,则它的面积减少( )A .19%B .20%C .1%D .10%5.如图所示,直线,AB CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为1,2,3,4,5,6---….那么标记为“2021”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上6.下列说法中,正确的是( ) A .单项式21πxy 2的系数12B .单项式25x y -的次数为2C .多项式x 2+2xy+18是二次三项式D .多项式12 x 3 -2 3x 2y 2-1次数最高项的系数是127.下列计算正确的是( ) A .3a +2a =5a 2B .﹣2ab +2ab =0C .2a 3+3a 2=5a 5D .3a ﹣a =38.甲、乙、丙三人进行骑自行车比赛,三人的骑行情况如下表: 甲 一半路程速度为6/m s ,一半路程速度为4/m s 乙 全程速度均为5/m s丙 一半时间速度为6/m s ,一半时间速度为4/m s设三人到达终点所用时间分别为t 甲、t 乙、t 丙,则( ) A .t t t <=乙甲丙 B .t t t =<乙甲丙 C .t t t <<乙甲丙D .t t t <<乙甲丙9.边长为1的正方形从如图所示的位置开始在数轴上顺时针滚动,当正方形某个顶点落在数字2023时停止运动,此时与2023重合的点是( )A .点AB .点BC .点CD .点O 10.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( )A .18B .12C .9D .711.小张在做数学题时,发现了下面有趣的结果321-=87654+--=1514131211109++---=242322212019181716+++----=……根据以上规律可知,第20行左起第一个数是( ) A .360B .339C .440D .48312.下列运算正确的是( )A .2347a a a +=B .44a a -=C .32523a a a +=D .10.2504ab ab -+= 二、填空题13.如图,在2020个“□”中依次填入一列数字m 1,m 2,m 3,……,m 2020,使得其中任意四个相邻的“□”中所填的数字之和都等于15.已知32m =,67m =,则12020m m +的值为_________.2 …14.若x ﹣3y =5,则代数式2x ﹣6y+2021的值为_____.15.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a 个座位,后面每一排都比前一排多一个座位,若第n 排有m 个座位,则a 、n 和m 之间的关系为m =______. 16.观察下列等式: 第1个等式:1111(1)1323a ==-⨯;第2个等式:21111()35235a ==-⨯;第3个等式:31111()57257a ==-⨯;第4个等式:41111()79279a ==-⨯; …… ……用含n 的式子表示第n 个等式:n a =_____.17.当21x y ++取最小值时,代数式423x y ++的值是________. 18.当1x =时,代数式32315pxqx -+的值为2020,则当1x =-时,则代数式32315px qx -+的值______.19.用火柴按如图的方式搭六边形组成的图形,如图①搭1个六边形的图形需要6根火柴;如图②搭2个六边形的图形需要11根火柴,如图③搭3个六边形的图形需要16根火柴,…,按此规律,搭2021个六边形的图形需要______根火柴.20.若多项式23352x kxy --与2123xy y -+的和中不含xy 项,则k 的值是______. 三、解答题21.先化简,再求值:2(3a 2b +ab 2)﹣2(ab 2+4a 2b ﹣1),其中a =﹣11,32b =-. 22.(1)化简:2a 2﹣12(ab+a 2)﹣8ab . (2)先化简再求值:﹣(x 2y+3xy ﹣4)+3(x 2y ﹣xy+2),其中|x ﹣2|+(y+1)2=0. 23.()()322322(2)32x yx y x y x -----+,其中2,1x y =-=-.24.对于任意实数a ,b ,定义一种新的运算公式:3a b a b ⊕=-,如()()616319⊕-=-⨯-=.(1)计算:()124⎛⎫-⊕- ⎪⎝⎭;(2)已知()15103a b b a ⎛⎫+⊕-=- ⎪⎝⎭,求+a b 的值. 25.化简求值:2222552252a b ab ab a b ab ab ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦,其中1,33a b =-=. 26.已知22243,22X a ab Y a ab b =+=-+. (1)化简3X Y -(2)当2a =,1b =-时,求3X Y -的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】直接将x=-3,代入求值即可;【详解】∵ x=-3,∴ x-5=-3-5=-8,故选:B.【点睛】本题考查了代数式求值的运算,正确掌握运算方法是解题的关键.2.C解析:C【分析】根据整式的加减法,即可解答.【详解】解:A、2a+3b≠5ab,故错误;B、2y2−y2=y2,故错误;C、−10t+5t=−5t,故正确;D、3m2n−2mn2≠mn,故错误;故选:C.【点睛】本题考查了整式的加减法,解决本题的关键是熟记整式的加减法法则.3.A解析:A【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出a,b的值,再进行计算即可.【详解】解:根据题意得:1210ab+⎧⎨-⎩==,则a=1,b=1,所以,a+b=1+1=2.故选:A.【点睛】考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.4.A解析:A【分析】正方形的面积=边长×边长,设原来正方形的边长为a,则现在的正方形的边长为(1-10%)a,代入公式即可求解.【详解】解:设原来正方形的边长为a,则现在的正方形的边长为(1-10%)a,(1-10%)a×(1-10%)a=0.81a2,(a2-0.81a2)÷a2×100%=0.19 a2÷a2×100%=19%故选:A【点睛】本题主要考查了列代数式和整式的加减运算.通过设原边长为a,根据已知条件求出原面积及边长减少10%后的面积是完成本题的关键.5.A解析:A【分析】由图可观察出奇数项在OA或OB射线上,根据每四条射线为一组,即可得出答案.【详解】解:观察图形的变化可知:奇数项:1、3、5、7,…,2n-1(n为正整数),偶数项:-2、-4、-6、-8,…,-2n(n为正整数),∵2021是奇数项,∴2n-1=2021,∴n=1011,∵每四条射线为一组,始边为OC,∴1011÷4=252...3,∴标记为“2021”的点在射线OA上,故选:A.【点睛】本题考查了规律型图形的变化类,解决本题的关键是观察图形的变化寻找规律.6.C解析:C【分析】利用单项式的系数与次数定义,以及多项式项数定义依次判断各项即可.【详解】解:A. 单项式21πxy 2的系数12π,故此选项不符合题意; B. 单项式25x y -的次数为3,故此选项不符合题意; C. 多项式x 2+2xy+18是二次三项式,故此选项符合题意; D. 多项式12x 3 -23x 2y 2-1次数最高项是-23x 2y 2,此项的的系数是-23,故此选项不符合题意; 故选:C . 【点睛】此题考查了多项式,单项式,熟练掌握多项式和单项式的有关定义是解本题的关键.7.B解析:B 【分析】先分析是否为同类项,再计算判断. 【详解】A 、3a+2a=5a ,故该选项不符合题意;B 、-2ab+2ab=0,故该项符合题意;C 、2a 3与3a 2不是同类项,不能合并,故该项不符合题意;D 、3a-a=2a ,故该项不符合题意; 故选:B . 【点睛】此题考查同类项的定义及合并同类项法则,熟记同类项定义是解题的关键.8.B解析:B 【分析】根据题意可知三人的总路程是相等的,则分别表示出用时,再比较大小即可 【详解】 设总路程为s , 对于甲:5642224甲s s t s =÷+÷=; 对于乙:5乙s t =; 对于丙:6422丙丙t t s ⨯+⨯=,即:5丙s t =;∵s 表示总路程,即0s >, ∴5524s s <, ∴t t t =<乙甲丙,故选:B【点睛】本题考查列代数式,灵活根据题意结合行程问题中基本公式进行计算是解题关键.9.A解析:A【分析】÷=,即可知结果.由图可知规律滚动一圈,4个单位为一个循环.由202345053【详解】由图可知滚动一圈,即4个单位为一个循环.÷=,∵202345053∴与2023点重合的是A.故选:A.【点睛】本题考查数轴和规律探究.根据图形总结出规律是解答本题的关键.10.D解析:D【分析】将x2﹣2x当成一个整体,在第一个代数式中可求得x2﹣2x=1,将其代入后面的代数式即能求得结果.【详解】解:∵3x2﹣6x+6=9,即3(x2﹣2x)=3,∴x2﹣2x=1,∴x2﹣2x+6=1+6=7.故选:D.【点睛】本题考查了代数式求值,解题的关键是将x2﹣2x当成一个整体来对待.11.C解析:C【分析】根据左起第一个数3,8,15,24的变化规律,得出第n行的左起第一个数为2n+-,由此即可求出第20行的左起第一个数.(11)【详解】根据题意可知,每行的左起第一个数依次为:2=-,3212=-,8312=-,15412=-,2451第n 行的左起第一个数为2(11)n +-.∴第20行的左起第一个数为2(201)1440+-=. 故选:C . 【点睛】本题考查数字的变化规律.根据题意找到规律并利用规律解决问题是关键.12.D解析:D 【分析】根据合并同类项得法则计算即可. 【详解】解:A.347a a a +=,故A 选项错误; B.43a a a -=,故B 选项错误;C.3a 与22a 不是同类项,不能合并,故C 选项错误;D.10.2504ab ab -+=,故D 选项正确; 故选:D . 【点睛】本题考查了合并同类项,掌握合并同类项的法则是解题的关键.二、填空题13.6【分析】根据任意四个相邻□中所填数字之和都等于15可以发现题目中数字的变化规律从而可以求得结论【详解】解:∵任意四个相邻□中所填数字之和都等于15∴m1+m2+m3+m4=m2+m3+m4+m5m解析:6 【分析】根据任意四个相邻“□”中,所填数字之和都等于15,可以发现题目中数字的变化规律,从而可以求得结论. 【详解】解:∵任意四个相邻“□”中,所填数字之和都等于15, ∴m 1+m 2+m 3+m 4=m 2+m 3+m 4+m 5, m 2+m 3+m 4+m 5=m 3+m 4+m 5+m 6, m 3+m 4+m 5+m 6=m 4+m 5+m 6+m 7, m 4+m 5+m 6+m 7=m 5+m 6+m 7+m 8, ∴m 1=m 5,m 2=m 6,m 3=m 7,m 4=m 8,同理可得,m 1=m 5=m 9=…,m 2=m 6=m 10=…,m 3=m 7=m 11=…,m 4=m 8=m 12=…, ∵2020÷4=505, ∴m 2020=m 4, 又m 3+m 6=2+7=9∵m 3+m 4+m 5+m 6=15 ∴m 4+m 5=6 ∴12020m m +=6, 故答案为:6. 【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,求出x 的值.14.【分析】整体代入求值即可【详解】解:∵x ﹣3y =5∴2x ﹣6y =102x ﹣6y+2021=10+2021=2031;故答案为:2031【点睛】本题考查了求代数式的值解题关键是把式子的值整体代入求代数解析:【分析】 整体代入求值即可. 【详解】 解:∵x ﹣3y =5, ∴2x ﹣6y =10,2x ﹣6y+2021=10+2021=2031; 故答案为:2031. 【点睛】本题考查了求代数式的值,解题关键是把式子的值整体代入求代数式的值.15.【分析】因为后面每一排都比前一排多一个座位及第一排有a 个座位可得出第n 排的座位数再由第n 排有m 个座位可得出an 和m 之间的关系【详解】解:由题意得:后面每一排都比前一排多一个座位及第一排有a 个座位可得 解析:1a n +-【分析】因为后面每一排都比前一排多一个座位及第一排有a 个座位可得出第n 排的座位数,再由第n 排有m 个座位可得出a 、n 和m 之间的关系. 【详解】解:由题意得:后面每一排都比前一排多一个座位及第一排有a 个座位可得出第n 排的座位数第n 排的座位数:a+(n-1) 又第n 排有m 个座位故a 、n 和m 之间的关系为m=a+n-1. 故答案为:m=a+n-1. 【点睛】本题考查列代数式,关键在于根据题意求出第n 排的座位数.16.【分析】观察可知找第一个等号后面的式子规律是关键:分子不变1;分母是两个连续奇数的乘积它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1的关系即可求解【详解】第n 个式子为:故答案为:【点睛】此解析:111()22121n n --+ 【分析】观察可知,找第一个等号后面的式子规律是关键:分子不变1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1的关系即可求解 【详解】第n 个式子为:()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭,故答案为:11122121n n ⎛⎫- ⎪-+⎝⎭.【点睛】此题考查寻找数字的规律及运用规律计算,寻找规律大致可分为2个步骤:不变的和变化的;变化的部分与序号的关系;17.【分析】根据取最小值时则2x+y=0然后将代数式变形为2(2x+y)+3整体代入即可求解【详解】解:∵∴当取最小值时∴2x+y=0∴=2(2x+y)+3=3故答案为:3【点睛】本题主要考察了绝对值的解析:【分析】根据21x y ++取最小值时,2=0x y +,则2x+y=0,然后将代数式423x y ++变形为2(2x+y)+3,整体代入即可求解. 【详解】 解:∵20x y +≥∴当21x y ++取最小值时,2=0x y +∴2x+y=0 ∴423x y ++ =2(2x+y)+3 =3故答案为:3. 【点睛】本题主要考察了绝对值的性质、用整体代入法求代数式的值,解题的关键是熟练掌握绝对值的性质以及用整体代入法求代数式的值.18.-1990【分析】根据时=2020求出2p-3q=2005将其代入x=-1时添加括号后的中计算即可得到答案【详解】当时=2020∴2p-3q+15=2020∴2p-3q=2005∴当x=-1时=-2解析:-1990 【分析】根据1x =时,32315px qx -+=2020,求出2p-3q=2005,将其代入x=-1时添加括号后的32315px qx -+中,计算即可得到答案.【详解】当1x =时,32315pxqx -+=2020, ∴2p-3q+15=2020, ∴2p-3q=2005,∴当x=-1时,32315pxqx -+=-2p+3q+15=-(2p-3q )+15=-2005+15=-1990, 故答案为:-1990. 【点睛】此题考查已知式子的值求代数式的值,正确掌握整式的添括号法则是解题的关键. 19.10106【分析】根据前3个图形所需火柴的根数归纳类推出一般规律由此即可得出答案【详解】由图可知搭1个六边形的图形所需火柴的根数为搭2个六边形的图形所需火柴的根数为搭3个六边形的图形所需火柴的根数为 解析:10106【分析】根据前3个图形所需火柴的根数归纳类推出一般规律,由此即可得出答案.【详解】由图可知,搭1个六边形的图形所需火柴的根数为6511=⨯+,搭2个六边形的图形所需火柴的根数为11521=⨯+,搭3个六边形的图形所需火柴的根数为16531=⨯+,归纳类推得:搭n 个六边形的图形所需火柴的根数为51+n ,其中n 为正整数, 则搭2021个六边形的图形所需火柴的根数为51101016202⨯+=,故答案为:10106.【点睛】本题考查了用代数式表示图形的规律,正确归纳类推出一般规律是解题关键.20.8【分析】根据题意列出关系式合并后根据结果不含xy 项求出k 的值即可【详解】解:==∵多项式与的和中不含项∴解得:k=8故答案为:8【点睛】此题考查了整式的加减熟练掌握运算法则是解本题的关键解析:8【分析】根据题意列出关系式,合并后根据结果不含xy 项,求出k 的值即可.【详解】 解:223(35)(123)2x kxy xy y --+-+ =223351232x kxy xy y --+-+=2233(12)22x y k xy -+-- ∵多项式23352x kxy --与2123xy y -+的和中不含xy 项, ∴31202k -= 解得:k=8故答案为:8【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.三、解答题21.﹣2a 2b +2,219【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】解:原式=6a 2b +2ab 2﹣2ab 2﹣8a 2b +2=﹣2a 2b +2, 当a =﹣13,b =﹣12时,原式=﹣2×(﹣13)2×(﹣12)+2=219. 【点睛】 本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.22.(1)32 a 2﹣172ab ,(2)2 x 2y-6xy+10,14. 【分析】(1)按照整式加减的法则进行计算即可;(2)先化简,求出x 、y 值,代入即可.【详解】解:(1)2a 2﹣12(ab+a 2)﹣8ab , =2a 2﹣12ab-12a 2﹣8ab , =32a 2﹣172ab , (2)﹣(x 2y+3xy ﹣4)+3(x 2y ﹣xy+2),=﹣x 2y-3xy+4+3x 2y ﹣3xy+6,=2 x 2y-6xy+10.∵|x ﹣2|+(y+1)2=0,∴x=2,y=-1,把x=2,y=-1,代入,原式=2×22×(-1)-6×2×(-1)+10=14.【点睛】本题考查了整式的运算和化简求值,解题关键是熟练进行整式计算和求值.23.化简结果为:222y x y --+,值为1.【分析】先去括号,合并同类项,把整式进行化简,然后把2,1x y =-=-代入计算,即可得到答案.【详解】解:()()322322(2)32x y x y x y x -----+=322324232x y x y x y x --+--+=222y x y --+;当2,1x y =-=-时,则原式=22(2)2((1)111)42-⨯-+⨯-=-+--=-.【点睛】本题考查了整式的混合运算,整式的化简求值,解题的关键是掌握运算法则,正确的进行化简.24.(1)234;(2)-5 【分析】(1)结合题意,根据有理数混合运算的性质计算,即可得到答案;(2)结合题意,通过合并同类项计算,即可得到答案.【详解】(1)()124⎛⎫-⊕- ⎪⎝⎭ ()1324=--⨯- 164=-+ =234; (2)∵()15103a b b a ⎛⎫+⊕-=- ⎪⎝⎭ ∴153103a b b a ⎛⎫+--=- ⎪⎝⎭∴2210a b +=-∴5a b +=-.【点睛】本题考查了有理数运算、合并同类项的知识;解题的关键是熟练掌握有理数混合运算、合并同类项的性质,从而完成求解.25.23+ab ab ,-10【分析】先去括号再代入求解即可;【详解】原式222252255⎡⎤=--+++⎣⎦a b ab ab a b ab ab 222252255a b ab ab a b ab ab =-+--+23=+ab ab , 把13a =-,3b =代入 , 原式21133333⎛⎫⎛⎫=-⨯+⨯-⨯ ⎪ ⎪⎝⎭⎝⎭1910=--=-;【点睛】本题主要考查了整式化简求值,准确计算是解题的关键.26.(1)22266a ab b -+-;(2)-26【分析】(1)将已知代入3X Y -计算即可;(2)将2a =,1b =-代入(1)所求结果即可解答.【详解】解:(1)()()222343322X Y a ab a ab b -=+--+,22243636a ab a ab b =+-+-22266a ab b =-+-;(2)当2,1a b ==-时,()()223226216126X Y -=-⨯+⨯⨯--⨯-=-.【点睛】本题考查了整式的加减-化简求值:先去括号,然后合并同类项,再把满足条件的字母的值代入计算得到对应的整式的值.。
整式的运算测试题一、填空(9×3=27)1.计算:_________)2(55=+-a a a ;)()(b a b b a a --+=_______________.2. ])(2[625a a a -⋅÷=_________________.3.若,3,2==n m a a 则___________,__________23==--n m n m a a .4.若n mx x x x --=-+2)3)(4(,则_________,==n m 5.已知31=+a a ,则221aa +=___________________. 6.长方形的长是cm a )12(+,它的周长是cm a )46(+,面积是________________.7.______________42125.0666=⨯⨯。
8.()222842a a ⋅⋅=. 9.若()682b a b a n m =,那么n m 22-的值是________________.二、选择题(9×3=27)10.下列计算式中,正确的是( )A .22a a a =⋅B .1)2(22+=+a aC .33)(a a -=-D .22)(ab ab = 11.计算)3)(3(b a b a ---等于( )A .2269b ab a --B .2296a ab b --C .229a b -D .229b a -12.第二十届电视剧飞天奖今年有a 部作品参赛,比去年增加了40%还多2部.设去年参赛作品有b 部,则b 是( )A .%4012++aB .2%)401(++aC .%4012+-a D .2%)401(-+a 13.若+-=+22)32()32(b a b a ( )成立,则括号内的式子是( )A .ab 6B .ab 24C .ab 12D .ab 1814.)23)(3(2-+-x mx x 的积中不含x 的二次项,则m 的值是( ) A .0 B .32 C .32- D .23- 15.小华计算其整式减去ac bc ab 32+-时,误把减法看成加法,所得答案是ab ac bc 232+-,那么正确结果应为( )A .ac bc 96+-B .ac bc 96-C .ab ac bc +-64D .ab 316.已知622x y 和-313m n x y 是同类项,则29517m mn --的值是 ( ) A .-1 B.-2 C.-3 D.-417.一个正方形的边长若增加3cm ,它的面积就增加39cm ,这个正方形的边长原来是A 、8cmB 、6cmC 、5cmD 、10cm18.已知,109,53==ba 则=+b a 23 ( ) A 、50- B 、50 C 、500 D 、不知道19.计算题(本题共6个小题,每题4分)(1)]3)[()3(2222ab b a ab b a ++--- (2)ab a b a a +---2)2()(;(3))2()642(23453423b a b a b a b a -÷+-; (4)42332)()()(ab b a ⋅⋅-(5)()()()2112+--+x x x (6)()()532532-+++y x y x20、利用整式的乘法公式计算:(每小题4分,共计8分)(1) 20011999⨯ (2)1992-21、先化简,再求值:(每题5分) (1)()()x x y x x 2122++-+,其中251=x ,25-=y 。
北师大版七年级上学期《第3章整式及其加减》测试卷一.选择题(共8小题)1.下列代数式符合书写要求的是()A .B.ab÷c2C .D.mn •2.代数式m3+n的值为5,则代数式﹣m3﹣n﹣2的值为()A.7B.﹣7C.3D.﹣33.在下列式子中:﹣2x ,,2,3x+1,,其中是整式的有()A.1个B.2个C.3个D.4个4.按一定规律排列的单项式:3b2,5a2b2,7a4b2,9a6b2,11a8b2,…,第8个单项式是()A.17a14b2B.17a8b14C.15a7b14D.152a14b25.如果(m+2)x2y n﹣1是关于x,y的五次单项式,则m,n应满足()A.m=﹣2,n=2B.m是任意实数,n=2C.m≠﹣2,n=4D.m=﹣2,n=46.已知一个单项式的系数为﹣3,次数为4,这个单项式可以是()A.3xy B.3x2y2C.﹣3x2y2D.4x37.如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2022=()A.1B.﹣1C.52022D.﹣520228.下列各式中运算正确的是()A.3m﹣n=2B.a2b﹣ab2=0C.3xy﹣5yx=﹣2xy D.3x+3y=6xy二.填空题(共5小题)9.现有1元纸币a张,5元纸币b张,共元(用含a、b的代数式表示).10.去括号:a﹣(﹣2b+c)=.11.多项式是次项式,其中常数项是.12.若多项式x7y2﹣3x m+2y3+x3y4是按字母x降幂排列的,则m的值是.13.若x|m|﹣1+(3+m)x﹣5是关于x的二次二项式,那么m的值为.三.解答题(共8小题)14.化简:2x2+1﹣3x+7﹣2x2+5x.15.合并同类项:3x2﹣7x3﹣4x2+8x3.16.化简:(1)2xy2﹣3x2y﹣4xy2+7x2y;(2)(2a+3b )﹣(6a﹣12b).17.已知多项式4x2﹣3x m+1y﹣x是一个四次三项式,n是最高次项的系数,求m﹣n的值.18.已知,求的值.19.若多项式mx3﹣2x2+3x﹣2x3+5x2﹣nx+1不含三次项及一次项,请你确定m,n 的值,并求出m n+(m﹣n)2020的值.20.下面是小彬同学进行整式化简的过程,请认真阅读并完成相应的任务.15x2y+4xy2﹣4(xy2+3x2y)=15x2y+4xy2﹣(4xy2+12x2y)…第一步=15x2y+4xy2﹣4xy2+12x2y…第二步=27x2y.…第三步任务1:①以上化简步骤中,第一步的依据是;②以上化简步骤中,第步开始出现错误,这一步错误的原因是.任务2:请写出该整式正确的化简过程,并计算当x=﹣2,y=3时该整式的值.21.观察一下等式:第一个等式:,第二个等式:,第三个等式:,…按照以上规律,解决下列问题:(1);(2)写出第五个式子:;(3)用含n(n为正整数)的式子表示一般规律:;(4)计算(要求写出过程):.北师大新版七年级上学期《第3章整式及其加减》2022年单元测试卷参考答案与试题解析一.选择题(共8小题)1.下列代数式符合书写要求的是()A .B.ab÷c2C .D.mn •【分析】根据代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.对各选项依次进行判断即可解答.【解答】解:A、带分数要写成假分数,原书写错误,故此选项不符合题意;B、应写成分数的形式,原书写错误,故此选项不符合题意;C、符合书写要求,故此选项符合题意;D、系数应写在字母的前面,原书写错误,故此选项不符合题意.故选:C.【点评】本题考查了代数式的书写要求.正确掌握代数式的书写要求是解题的关键.2.代数式m3+n的值为5,则代数式﹣m3﹣n﹣2的值为()A.7B.﹣7C.3D.﹣3【分析】原式前两项提取﹣1变形后,把已知代数式的值代入计算即可求出值.【解答】解:∵m3+n=5,∴原式=﹣(m3+n)﹣2=﹣5﹣2=﹣7.故选:B.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.在下列式子中:﹣2x ,,2,3x+1,,其中是整式的有()A.1个B.2个C.3个D.4个【分析】根据单项式和多项式统称整式,可得答案.【解答】解:﹣2x,2,3x+1是整式,共有3个.故选:C.【点评】本题考查了整式,整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.4.按一定规律排列的单项式:3b2,5a2b2,7a4b2,9a6b2,11a8b2,…,第8个单项式是()A.17a14b2B.17a8b14C.15a7b14D.152a14b2【分析】观察每个单项式的系数和所含字母的指数,总结规律,根据规律解答即可.【解答】解:由题意可知:单项式的系数是从3起的奇数,单项式中a的指数偶数,b的指数不变,所以第8个单项式是:17a14b2.故选:A.【点评】本题考查的是数字的变化规律、单项式的概念,正确找出单项式的系数和次数的变化规律是解题的关键.5.如果(m+2)x2y n﹣1是关于x,y的五次单项式,则m,n应满足()A.m=﹣2,n=2B.m是任意实数,n=2C.m≠﹣2,n=4D.m=﹣2,n=4【分析】根据单项式次数的定义来求解.单项式中所有字母的指数和叫做这个单项式的次数.【解答】解:∵(m+2)x2y n﹣1是关于x,y的五次单项式,∴m+2≠0,2+n﹣1=5,解得:m≠﹣2,n=4.故选:C.【点评】本题考查了单项式.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.6.已知一个单项式的系数为﹣3,次数为4,这个单项式可以是()A.3xy B.3x2y2C.﹣3x2y2D.4x3【分析】直接利用单项式的系数与次数的定义分析得出答案.【解答】解:A、3xy,单项式的系数是3,次数是2,不符合题意;B、3x2y2,单项式的系数是3,次数是4,不符合题意;C、﹣3x2y2,单项式的系数是﹣3,次数是4,符合题意;D、4x3的系数是4,次数是3,不符合题意.故选:C.【点评】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.7.如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2022=()A.1B.﹣1C.52022D.﹣52022【分析】根据同类项的定义可得a﹣2=1,b+1=3,从而可求解a,b的值,再代入所求式子运算即可.【解答】解:∵单项式﹣xy b+1与x a﹣2y3是同类项,∴a﹣2=1,b+1=3,解得:a=3,b=2,∴(a﹣b)2022=(3﹣2)2022=12022=1.故选:A.【点评】本题主要考查同类项,解答的关键是熟记同类项的定义并灵活运用.8.下列各式中运算正确的是()A.3m﹣n=2B.a2b﹣ab2=0C.3xy﹣5yx=﹣2xy D.3x+3y=6xy【分析】根据合并同类项的法则,进行计算逐一判断即可解答.【解答】解:A、3m与﹣n不能合并,故A不符合题意;B、a2b与﹣ab2不能合并,故B符合题意;C、3xy﹣5yx=﹣2xy,故C符合题意;D、3x与3y不能合并,故D不符合题意;故选:C.【点评】本题考查了合并同类项,熟练掌握合并同类项的法则是解题的关键.二.填空题(共5小题)9.现有1元纸币a张,5元纸币b张,共(a+5b)元(用含a、b的代数式表示).【分析】用1元纸币总钱数加上5元纸币总钱数即可.【解答】解:有1元纸币a张共a元,5元纸币b张共5b元,所以一共(a+5b)元.故答案为:(a+5b).【点评】本题考查了列代数式,把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.10.去括号:a﹣(﹣2b+c)=a+2b﹣c.【分析】直接利用如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进而得出答案.【解答】解:a﹣(﹣2b+c)=a+2b﹣c.故答案为:a+2b﹣c.【点评】此题主要考查了去括号法则,正确掌握去括号法则是解题关键.11.多项式是四次三项式,其中常数项是2.【分析】根据多项式的次数和项数以及常数项的定义求解.【解答】解:因为多项式2﹣xy2﹣4x3y的最高次项是﹣4x3y,由三个单项式的和组成,所以多项式2﹣xy2﹣4x3y是四次三项式,其中常数项是2.故答案是:四,三,2.【点评】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.常数项是不含字母的项.12.若多项式x7y2﹣3x m+2y3+x3y4是按字母x降幂排列的,则m的值是5或4或3或2或1.【分析】根据多项式的降幂排列得出不等式组7>m+2>3或m+2=7或m+2=3,再求出整数m即可.【解答】解:∵多项式x7y2﹣3x m+2y3+x3y4是按字母x降幂排列的,∴7>m+2>3或m+2=7或m+2=3,∴5>m>1或m=5或m=1,∴m为5或4或3或2或1,故答案为:5或4或3或2或1.【点评】本题考查了多项式的降幂排列和解一元一次不等式组,能根据题意得出关于m的不等式组或方程是解此题的关键.13.若x|m|﹣1+(3+m)x﹣5是关于x的二次二项式,那么m的值为﹣3.【分析】根据题意可得:|m|﹣1=2且3+m=0,再解即可.【解答】解:由题意得:|m|﹣1=2且3+m=0,解得:m=﹣3,故答案为:﹣3.【点评】此题主要考查了多项式,关键是掌握多项式定义,关键是掌握如果一个多项式含有a个单项式,最高次数是b,那么这个多项式就叫b次a项式.三.解答题(共8小题)14.化简:2x2+1﹣3x+7﹣2x2+5x.【分析】根据合并同类项,系数相加字母及指数不变,可得答案.【解答】解:原式=2x2﹣2x2﹣3x+5x+1+7=2x+8.【点评】本题考查了合并同类项,合并同类项系数相加字母部分不变.15.合并同类项:3x2﹣7x3﹣4x2+8x3.【分析】利用合并同类项法则进行计算,即可得出答案.【解答】解:原式=﹣x2+x3.【点评】本题考查了合并同类项,掌握合并同类项法则是解决问题的关键.16.化简:(1)2xy2﹣3x2y﹣4xy2+7x2y;(2)(2a+3b)﹣(6a﹣12b).【分析】(1)合并同类项即可;(2)先去括号,再合并同类项即可.【解答】解:(1)原式=(2﹣4)xy2+(﹣3+7)x2y=﹣2xy2+4x2y;(2)原式=2a+3b﹣2a+4b=7b.【点评】本题主要考查整式的加减,解题的关键是熟练掌握去括号法则和合并同类项的能力是解题的关键.17.已知多项式4x2﹣3x m+1y﹣x是一个四次三项式,n是最高次项的系数,求m﹣n的值.【分析】根据多项式的次数和最高次项的系数求出m,n的值,代入代数式求值即可.【解答】解:∵多项式4x2﹣3x m+1y﹣x是一个四次三项式,n是最高次项的系数,∴m+1+1=4,n=﹣3,∴m=2,∴m﹣n=2+3=5,答:m﹣n的值为5.【点评】本题考查了多项式的次数,掌握多项式中,次数最高项的次数是多项式的次数是解题的关键.18.已知,求的值.【分析】先用整式加减法则进行计算化为最简,再把x =代入计算即可得出答案.【解答】解:原式==;∵;∴.【点评】本题主要考查了整式加减﹣化简求值,熟练掌握整式的加减﹣化简求值的方法进行求解是解决本题的关键.19.若多项式mx3﹣2x2+3x﹣2x3+5x2﹣nx+1不含三次项及一次项,请你确定m,n的值,并求出m n+(m﹣n)2020的值.【分析】先将关于x的多项式合并同类项.由于其不含三次项及一次项,即系数为0,可以先求得m,n,再求出m n+(m﹣n)2020的值.【解答】解:mx3﹣2x2+3x﹣2x3+5x2﹣nx+1=(m﹣2)x3+3x2+(3﹣n)x+1,∵不含三次项及一次项的多项式,∴m﹣2=0,3﹣n=0,解得m=2,n=3,代入m n+(m﹣n)2020,原式=23+(﹣1)2020=9.【点评】此题考查了多项式的定义,解答本题的关键是掌握合并同类项法则.20.下面是小彬同学进行整式化简的过程,请认真阅读并完成相应的任务.15x2y+4xy2﹣4(xy2+3x2y)=15x2y+4xy2﹣(4xy2+12x2y)…第一步=15x2y+4xy2﹣4xy2+12x2y…第二步=27x2y.…第三步任务1:①以上化简步骤中,第一步的依据是乘法分配律;②以上化简步骤中,第二步开始出现错误,这一步错误的原因是去括号没有变号.任务2:请写出该整式正确的化简过程,并计算当x=﹣2,y=3时该整式的值.【分析】任务1:①找出第一步的依据即可;②找出解答过程中的错误,分析其原因即可;任务2:原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:任务1:①以上化简步骤中,第一步的依据是乘法分配律;②以上化简步骤中,第二步开始出现错误,这一步错误的原因是去括号没变号;故答案为:乘法分配律;二;去括号没有变号;任务2:原式=15x2y+4xy2﹣4(xy2+3x2y)=15x2y+4xy2﹣(4xy2+12x2y)=15x2y+4xy2﹣4xy2﹣12x2y=3x2y.当x=﹣2,y=3时,原式=3×(﹣2)2×3=36.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.观察一下等式:第一个等式:,第二个等式:,第三个等式:,…按照以上规律,解决下列问题:(1);(2)写出第五个式子:+=1﹣;(3)用含n(n 为正整数)的式子表示一般规律:;(4)计算(要求写出过程):.【分析】(1)根据所给的等式的形式进行求解即可;(2)根据所给的等式的形式进行求解即可;(3)分析所给的等式的形式,不难总结出规律;(4)利用(3)中的规律进行求解即可.【解答】解:(1)=1﹣,故答案为:1﹣;(2)第5个式子为:+=1﹣,故答案为:+=1﹣;(3),故答案为:;(4)=3×()=3×(1﹣)=3×=.【点评】本题主要考查数字的变化规律,解答的关键是由所给的等式总结出存在的规律.。
一、选择题1.图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.按这样的方法继续下去,第n 个图形中有( )个三角形(用含n 的代数式表示).A .4nB .41n +C .41n -D .43n -2.任意大于1的正整数m 的三次幂均可“分裂”成m 个连接奇数的和,如:3235=+,337911=++,3413151719=+++,…按此规律,若3m 分裂后,其中一个奇数是2021,则m 的值是( )A .46B .45C .44D .433.下列各式的计算,正确的是( )A .235a b ab +=B .2222y y -=C .1055t t t-+=-D .2232m n mn mn -=4.求23201312222+++++的值,可令220131222S =++++,则23201422222S =++++,因此2014221S S -=-.仿照以上推理,计算出23201315555+++++的值为( )A .201451- B .201351-C .2014514-D .2013514-5.有依次排列的3个数:3,9,6,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,3-,6,这称为第一次操作:做第二次同样的操作后也可产生一个新数串:3,3,6,3.9,12-,3-,9,6,继续依次操作下去,问:从数串3,9,6开始操作第200次以后所产生的那个新数串的所有数之和是( ) A .600 B .618 C .680 D .718 6.一个正方形的边长减少10%,则它的面积减少( )A .19%B .20%C .1%D .10%7.如图所示,直线,AB CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为1,2,3,4,5,6---….那么标记为“2021”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上8.若x≠-1,则把-11x +称为x 的“和1负倒数”,如:2的“和1负倒数”为-13,-3的“和1负倒数”为12,若123x =,2x 是1x 的“和1负倒数”,3x 是2x 的“和1负倒数”,…依此类推,则2020x 的值为( ) A .23B .-35C .75D .-529.如图,用火柴棍分别搭一排三角形组成的图形和一排正方形组成的图形,三角形、正方形的每一边用一根火柴棒.如果搭这两个图案一共用了2030根火柴棒,且正方形的个数比三角形的个数的少4个,则搭成的三角形的个数是( )A .429B .409C .408D .404 10.多项式322341m m n +-的次数是( ) A .2B .3C .4D .711.按如图所示的运算程序,能使输出的结果为32的是( )A .2x =,4y =B .2x =,4y =-C .4x =,2y =D .4x =-,2y =12.小文在做多项式减法运算时,将减去2235a a +-误认为是加上2235a a +-,求得的答案是24a a +-(其他运算无误),那么正确的结果是( ) A .221a a --+ B .234a a -+- C .24a a +-D .2356a a --+二、填空题13.当1x =-时,多项式31mx nx ++的值等于2,那么当1x =时,则该多项式的值为________.14.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a 个座位,后面每一排都比前一排多一个座位,若第n 排有m 个座位,则a 、n 和m 之间的关系为m =______. 15.观察下列等式: 第1个等式:1111(1)1323a ==-⨯;第2个等式:21111()35235a ==-⨯; 第3个等式:31111()57257a ==-⨯;第4个等式:41111()79279a ==-⨯; …… ……用含n 的式子表示第n 个等式:n a =_____.16.用棋子摆成的“T ”形图如图所示.按这样的规律摆下去,摆成第2020个“T ”字需要____枚棋子.17.如图,第1个图形由4枚棋子摆成,第2个图形由9枚棋子摆成,第3个图形由14枚棋子摆成,…,按照此规律,由399枚棋子摆成的是第________图形.18.数轴上三个点表示的数分别为 p 、r 、s .若 p-r =5,s-p =2,则 s-r 等于____. 19.已知m 、n 满足|2m+4|+(n-3)2=0,则(m+n)2020=_______.20.在新冠疫情某隔离区域,张护士负责A ,B ,C ,D 四个区域隔离病人的身体状况的观察与日常生活的联络服务,每天张护士都按照A B C D C B A B C →→→→→→→→→⋅⋅⋅的路线来回巡察,从A 隔离区域开始数连续的正整数1,2,3,…当张护士第()21n -次在C 隔离区域巡察时(n 为正整数),恰好数到的数是______(用含n 的代数式表示).三、解答题21.阅读材料:数轴上A 、B 两点分别对应的实数a 、b ,则a b -表示A 、B 两点之间的距离,若a b ≥,则=a b a b --;若a b <,则a b b a -=-.(1)若数轴上A 点对应的实数1a =-,且=3a b -,则数轴上B 点对应的实数b =__. (2)若数轴上A 、B 两点对应的数分别对应代数式2231x x --,23+24x x -+,且点A 在B 的右边,求A 、B 两点之间的距离.(3)若数轴上A 、B 两点对应的数分别为关于x 的代数式2231x x --,2+24mx x +,且求得,A B 两点之间的距离所得结果不含字母2x ,求m 的值. 22.(1)若a =﹣2,b =﹣1,c =12,先化简再求值:3a 2b ﹣[3a 2b ﹣(2abc ﹣a 2c )﹣4a 2c ]﹣abc .(2)已知(x ﹣3)2+|y +1|=0,先化简再求值:4xy ﹣2(32x 2﹣3xy +2y 2)+3(x 2﹣2xy ). 23.求代数式的值:()()222222122x y xyx y xy -+----,其中2x =-,2y =.24.化简求值:()()22226272m mn n m mn m ----+,其中4m =,1n =-.25.若化简代数式()2232151253x bx x ax x x ⎛⎫ +---⎝-+⎭-⎪的结果中不含2x 和3x 项, (1)试求,a b 的值;(2)在(1)的条件下,求整式223a b ab -的5倍与223ab a b +的差. 26.已知:A =x 3+2x +3,B =2x 3﹣xy +2. (1)求2A ﹣B ;(2)当x =1,y =﹣2,求2A ﹣B 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题意易得第一个图形三角形的个数为1个,第二个图形三角形的个数为5个,第三个图形三角形的个数为9个,第四个图形三角形的个数为13个,由此可得第n 个图形三角形的个数. 【详解】 解:由题意得:第一个图形三角形的个数为4×1-3=1个, 第二个图形三角形的个数为4×2-3=5个, 第三个图形三角形的个数为4×3-3=9个, 第四个图形三角形的个数为4×4-3=13个, ……∴第n 个图形三角形的个数为()43n -个; 故选:D . 【点睛】本题主要考查图形规律问题,关键是根据图形得到一般规律即可.2.B解析:B 【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数2021的是从3开始的第1010个数,然后确定出1007所在的范围即可得解. 【详解】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m=(2)(1)2m m +-,∵2n+1=2021,n=1010,∴奇数2021是从3开始的第1010个奇数, ∵(442)(441)(452)(451)989,103422+⨯-+⨯-==,∴第1010个奇数是底数为45的数的立方分裂的奇数的其中一个, 即m=45. 故选:B . 【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.3.C解析:C 【分析】根据整式的加减法,即可解答. 【详解】解:A 、2a+3b≠5ab ,故错误; B 、2y 2−y 2=y 2,故错误; C 、−10t+5t=−5t ,故正确; D 、3m 2n−2mn 2≠mn ,故错误; 故选:C . 【点睛】本题考查了整式的加减法,解决本题的关键是熟记整式的加减法法则.4.C解析:C 【分析】类比题目中所给的解题方法解答即可. 【详解】解:设a=1+5+52+53+ (52013)则5a=5(1+5+52+53+…+52013)=5+52+53+…+52013+52014,∴5a-a=(5+52+53+…+52013+52014)-(1+5+52+53+…+52013)=52014-1,即a=2014514.故选:C.【点睛】本题是阅读理解题,类比题目中所给的解题方法是解决问题的基本思路.5.B解析:B【分析】首先具体地算出每一次操作以后所产生的那个新数串的所有数之和,从中发现规律,进而得出操作第200次以后所产生的那个新数串的所有数之和.【详解】解:设A=3,B=9,C=6,操作第n次以后所产生的那个新数串的所有数之和为S n.n=1时,S1=A+(B-A)+B+(C-B)+C=B+2C=(A+B+C)+1×(C-A),n=2时,S2=A+(B-2A)+(B-A)+A+B+(C-2B)+(C-B)+B+C=-A+B+3C=(A+B+C)+2×(C-A),…故n=200时,S200=(A+B+C)+200×(C-A)=-199A+B+201C=-199×3+9+201×6=618,故选:B.【点睛】本题考查找规律-数字的变化,本题中理解每一次操作的方法是前提,得出每一次操作以后所产生的那个新数串的所有数之和的规律是关键.6.A解析:A【分析】正方形的面积=边长×边长,设原来正方形的边长为a,则现在的正方形的边长为(1-10%)a,代入公式即可求解.【详解】解:设原来正方形的边长为a,则现在的正方形的边长为(1-10%)a,(1-10%)a×(1-10%)a=0.81a2,(a2-0.81a2)÷a2×100%=0.19 a2÷a2×100%=19%故选:A【点睛】本题主要考查了列代数式和整式的加减运算.通过设原边长为a,根据已知条件求出原面积及边长减少10%后的面积是完成本题的关键.7.A解析:A【分析】由图可观察出奇数项在OA或OB射线上,根据每四条射线为一组,即可得出答案.【详解】解:观察图形的变化可知:奇数项:1、3、5、7,…,2n-1(n为正整数),偶数项:-2、-4、-6、-8,…,-2n(n为正整数),∵2021是奇数项,∴2n-1=2021,∴n=1011,∵每四条射线为一组,始边为OC,∴1011÷4=252...3,∴标记为“2021”的点在射线OA上,故选:A.【点睛】本题考查了规律型图形的变化类,解决本题的关键是观察图形的变化寻找规律.8.A解析:A【分析】根据和1负倒数的定义分别计算出x1,x2,x3,x4…,则得到从x1开始每3个值就循环,据此求解可得.【详解】解:∵x1=23,∴x2=132513-=-+,x3=153215-=--,x4=125312-=-,……∴此数列每3个数为一周期循环,∵2020÷3=673…1,∴x2020=x1=23,故选:A.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9.C解析:C 【分析】根据搭建三角形和正方形一共用了2030根火柴,且三角形的个数比正方形的个数多4个,即可得搭建三角形的个数. 【详解】解:∵搭建三角形和正方形一共用了2030根火柴,且三角形的个数比正方形的个数多4个,观察图形的变化可知:搭建n 个三角形需要(2n+1)根火柴棍, n 个正方形需要(3n+1)根火柴棍, 所以2n+1+3(n-4)+1=2030, 解得n=408. 故选:C . 【点睛】本题考查了规律型-图形的变化类,解决本题的关键是根据图形的变化寻找规律.10.C解析:C 【分析】根据多项式的项的定义,多项式的次数的定义即可确定其次数. 【详解】解:由于组成该多项式的单项式(项)共有三个3m 3,4m 2n 2,﹣1, 其中最高次数为2+2=4,所以多项式322341m m n +-的次数分别是4. 故选:C . 【点睛】本题考查了对多项式的项和次数的掌握情况,难度不大.解题的关键是明确多项式的次数是多项式中最高次项的次数.11.A解析:A 【分析】先比较x ,y 的大小,后选择计算途径中的代数式,代入求值即可. 【详解】 ∵x=2,y=4, ∴x <y ,∴2xy =224⨯=32,故A 符合题意; ∵x=2,y= -4, ∴x >y ,∴22()[2(4)]x y ⋅=⨯-=64,故B 不符合题意; ∵x=4,y=2, ∴x >y ,∴22()(42)x y ⋅=⨯=64,故C 不符合题意; ∵x= -4,y=2, ∴x <y ,∴2xy =242-⨯=-16,故D 不符合题意; 故选A. 【点睛】本题考查了代数式的程序型计算,准确理解程序的意义是解题的关键.12.D解析:D 【分析】根据加减互逆运算关系得出这个多项式为:()()224235a a a a +--+-,去括号,合并同类项可得该多项式为:221a a --+,再根据题意列出()()2221235aa a a --+-+-进一步求解即可 【详解】根据题意,这个多项式为:()()224235aa a a +--+-,222423521a a a a a a =+---+=--+ ,则正确的结果为:()()2221235aa a a --+-+-,2221235a a a a =--+--+ , 2356a a =--+ ,故选:D . 【点睛】本题主要考查多项式的运算,解题关键是掌握整式的加减运算顺序和运算法则及加减互逆的运算关系.二、填空题13.0【分析】把代入多项式得出关于mn 的等式再代入计算即可;【详解】把代入中得解得:当时=;故答案是0【点睛】本题主要考查了代数式求值准确计算是解题的关键解析:0 【分析】把1x =-代入多项式得出关于m ,n 的等式,再代入1x =计算即可; 【详解】把1x =-代入31mx nx ++中得,12--+=m n ,解得:1m n +=-, 当1x =时,31mx nx ++=1m n ++110=-+=; 故答案是0. 【点睛】本题主要考查了代数式求值,准确计算是解题的关键.14.【分析】因为后面每一排都比前一排多一个座位及第一排有a 个座位可得出第n 排的座位数再由第n 排有m 个座位可得出an 和m 之间的关系【详解】解:由题意得:后面每一排都比前一排多一个座位及第一排有a 个座位可得 解析:1a n +-【分析】因为后面每一排都比前一排多一个座位及第一排有a 个座位可得出第n 排的座位数,再由第n 排有m 个座位可得出a 、n 和m 之间的关系. 【详解】解:由题意得:后面每一排都比前一排多一个座位及第一排有a 个座位可得出第n 排的座位数第n 排的座位数:a+(n-1) 又第n 排有m 个座位故a 、n 和m 之间的关系为m=a+n-1. 故答案为:m=a+n-1. 【点睛】本题考查列代数式,关键在于根据题意求出第n 排的座位数.15.【分析】观察可知找第一个等号后面的式子规律是关键:分子不变1;分母是两个连续奇数的乘积它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1的关系即可求解【详解】第n 个式子为:故答案为:【点睛】此解析:111()22121n n --+【分析】观察可知,找第一个等号后面的式子规律是关键:分子不变1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1的关系即可求解【详解】第n 个式子为:()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭ , 故答案为:11122121n n ⎛⎫- ⎪-+⎝⎭. 【点睛】 此题考查寻找数字的规律及运用规律计算,寻找规律大致可分为2个步骤:不变的和变化的;变化的部分与序号的关系;16.【分析】把T 分成横向和竖向两个部分去分析规律探索数量与序号的关系即可【详解】列表如下:所以第n 个T 中的棋子数为(3n+2)个当n=2020时原式=2020×3+2=6062【点睛】本题考查了整式中的解析:6062.【分析】把“T”分成横向和竖向两个部分去分析规律,探索数量与序号的关系即可.【详解】列表如下:所以第n 个“T”中的棋子数为(3n+2)个,当n=2020时,原式=2020×3+2=6062.【点睛】本题考查了整式中的规律探究,把图形适当分割,从局部寻找规律,后整体处理是解题的关键.17.80【分析】从图形中可以发现规律第n 个图形需棋子的个数是:5n-1再假设第n 个图形的棋子数为399可列方程即可解得【详解】因为从图中可以看出第1个图形需棋子的个数是:1×4+0=4(枚)第2个图形需解析:80【分析】从图形中可以发现规律,第n 个图形需棋子的个数是:5n-1,再假设第n 个图形的棋子数为399,可列方程,即可解得.【详解】因为从图中可以看出第1个图形需棋子的个数是:1×4+0=4(枚),第2个图形需棋子的个数是:2×4+1=9(枚),第3个图形需棋子的个数是:3×4+2=14(枚),第n 个图形需棋子的个数是:n×4+(n-1)=5n-1,设第399枚棋子摆成的是第n 个图形5n-1=399解得:n=80故答案为:80.【点睛】本题考查图形的变化,具有规律性,解题的关键是,根据图形发现规律.18.7【分析】利用已知将两式相加进而求出答案【详解】∵p−r =5s−p =2∴p−r +s−p =5+2则s−r =7故答案为:7【点睛】此题主要考查了代数式求值正确利用已知条件相加求出是解题关键解析:7【分析】利用已知将两式相加进而求出答案.【详解】∵p−r =5,s−p =2,∴p−r +s−p =5+2,则s−r =7.故答案为:7【点睛】此题主要考查了代数式求值,正确利用已知条件相加求出是解题关键.19.1【分析】由绝对值和平方的非负性先求出mn 的值然后代入计算即可得到答案【详解】解:∴∴∴;故答案为:1【点睛】本题考查了求代数式的值绝对值的非负性乘方的运算解题的关键是正确求出mn 的值解析:1【分析】由绝对值和平方的非负性,先求出m 、n 的值,然后代入计算即可得到答案.【详解】 解:224(3)0m n ++-=,∴ 240m +=,30n -=,∴2m =-,3n =,∴20202020()(23)1m n +=-+=;故答案为:1.【点睛】本题考查了求代数式的值,绝对值的非负性,乘方的运算,解题的关键是正确求出m 、n 的值.20.6n-3【分析】根据题意可以发现六个为一个循环每个循环中字母C 出现两次从而可以解答本题【详解】解:按照A→B→C→D→C→B→A→B→C→…的方式进行每6个字母ABCDCB 一循环每一循环里字母C 出现解析:6n-3【分析】根据题意可以发现六个为一个循环,每个循环中字母C 出现两次,从而可以解答本题.【详解】解:按照A→B→C→D→C→B→A→B→C→…的方式进行,每6个字母ABCDCB 一循环,每一循环里字母C 出现2次,当循环n 次时,字母C 第2n 次出现时(n 为正整数),此时数到最后一个数为6n ,当字母C 第(2n-1)次出现时(n 为正整数),再数3个数恰好一个循环,∴恰好数到的数是6n-3.故答案为:6n-3.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.三、解答题21.(1)2或-4;(2)2555x x --;(3)2m =【分析】(1)根据题意易得3a b -=±,然后问题可求解;(2)根据题意可得A 、B 两点之间的距离为22231324x x x x --+--,然后化简即可得出答案;(3)由题意得()22223124255x x mx x m x x -----=---,然后根据结果不含字母2x 可求解.【详解】解:(1)∵=3a b -,∴3a b -=±,∵1a =-,∴2b =或4b =-;故答案为2或-4;(2)由题意得:A 、B 两点之间的距离为()22222231324231324555x x x x x x x x x x ----++=--+--=--;(3)由题意得:A 、B 两点之间的距离为()22223124255x x mx x m x x -----=---,∵结果不含字母2x ,∴20m -=,∴2m =.【点睛】本题主要考查数轴上的两点距离及整式的加减,熟练掌握数轴上的两点距离及整式的加减是解题的关键.22.(1)abc +3a 2c ,7;(2)﹣4y 2+4xy ,-16【分析】(1)直接去括号合并同类项,再把已知数据代入得出答案;(2)直接去括号合并同类项,再利用非负数的性质得出x ,y 的值,代入得出答案.【详解】解:(1)3a 2b ﹣[3a 2b ﹣(2abc ﹣a 2c )﹣4a 2c ]﹣abc=3a 2b ﹣3a 2b +(2abc ﹣a 2c )+4a 2c ﹣abc=3a 2b ﹣3a 2b +2abc ﹣a 2c +4a 2c ﹣abc=abc +3a 2c ,当a =﹣2,b =﹣1,c =12时, 原式=﹣2×(﹣1)×12+3×(﹣2)2×12=1+6=7; (2)4xy ﹣2(32x 2﹣3xy +2y 2)+3(x 2﹣2xy ) =4xy ﹣3x 2+6xy ﹣4y 2+3x 2﹣6xy=﹣4y 2+4xy ,∵(x ﹣3)2+|y +1|=0,∴x ﹣3=0,y +1=0,解得:x =3,y =﹣1,当x =3,y =﹣1时,原式=﹣4×(﹣1)2+4×3×(﹣1)=﹣4﹣12=﹣16.【点睛】 此题主要考查了整式的加减以及非负数的性质,正确合并同类项是解题关键.23.2244x y xy --;0【分析】首先化简整式 :去括号,合并同类项即可,然后把x 、y 的值代入即可;【详解】解:()()222222122x y xy x y xy -+----2222222222x y xy x y xy =---+--2244x y xy =--,当2x =-,2y =时,原式24(2)24(2)4=-⨯-⨯-⨯-⨯ 0=.【点睛】本题主要考查了整式的化简求值,熟练掌握整式的计算是解题的关键;24.22m n mn -+,11【分析】先去小括号,然后合并同类项进行计算即可,最后将4m =,1n =-代入求值即可;【详解】解:原式22226272m mn n m mn m =---++22m n mn =-+当4m =,1n =-时,原式224(1)4(1)=--+⨯- 1614=--11=【点睛】本题考查了整式的加减运算,属于比较热点一类的题目,要注意去括号时前面是符号时要改变符号;25.(1)=0a ;6b =-;(2)0【分析】(1)先根据整式加减运算,去括号,再合并同类项,根据已知得出2=0a -且1203b +=,求出a 、b 的值即可; (2)根据题意列式,然后根据整式加减的运算法则化简求值.【详解】解:(1)()2232151253x bx x ax x x ⎛⎫ +---⎝-+⎭-⎪ =22321512+53x bx x ax x x +----+=3212(2)643ax b x x -++-+∵结果中不含2x 和3x 项,∴2=0a -且1203b +=,解得:=0a ;6b =-(2)由题意可得: ()()2222533a b ab ab a b --+=22221553a b ab ab a b ---=22126a b ab -当=0a ;6b =-时,原式=()()2212066060⨯⨯--⨯⨯-=.【点睛】本题考查整式的加减运算,掌握运算顺序和计算法则正确计算是解题关键. 26.(1)4x +xy +4;(2)6.【分析】(1)把A 与B 代入2A ﹣B 中,去括号合并即可得到结果;(2)把x 与y 的值代入计算即可求出值.【详解】解:(1)∵A =x 3+2x +3,B =2x 3﹣xy +2,∴2A ﹣B =2(x 3+2x +3)﹣(2x 3﹣xy +2)=2x 3+4x +6﹣2x 3+xy ﹣2=4x +xy +4;(2)当x =1,y =﹣2时,2A ﹣B =4x +xy +4=4﹣2+4=6.【点睛】本题考查整式的加减和代数式求值,掌握运算顺序和计算法则正确计算是解题关键.。
北师大版数学七年级上3.4《整式的加减》测试(含答案)整式的加减测试时间:60分钟总分:100分题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.已知某三角形的第一条边的长为(2a−b)cm,第二条边的长比第一条边的长多(a+b)cm,第三条边的长比第一条边的长的2倍少b(cm),则这个三角形的周长为( )A. (7a−4b)cmB. (7a−3b)cmC. (9a−4b)cmD. (9a−3b)cm2.(m+n)−2(m−n)的计算结果是()A. 3n−2mB. 3n+mC. 3n−mD. 3n+2m3.数x、y在数轴上对应点如图所示,则化简|x+y|−|y−x|的结果是( )A. 0B. 2xC. 2yD. 2x−2y4.一根铁丝正好围成一个长方形,一边长为2a+b,另一边比它长a−b,则长方形的周长为()A. 6aB. 10a+3bC. 10a+ 2bD. 10a+6bA. 少24B. 多24C. 少4D. 多45.若A和B都是4次多项式,则2A+3B一定是()A. 8次多项式B. 4次多项式C. 次数不高于4次的整式D. 次数不低于4的整式二、填空题(本大题共10小题,共30.0分)6.若a、b、c在数轴上的位置如图,则|a|−|b−c|+|c|=______ .7.已知5a+3b=−4,则代数式2a+2b−(4−4b−8a)+2的值为______.8.若a+2b+3c=5,3a+2b+c=7,则7a+7b+7c=______.9.一个长方形的一边长是2a+3b,另一边长是a+b,则这个长方形的周长是______.10.计算2(4a−5b)−(3a−2b)的结果为______.11.化简:a−(a−3b)=______.12.已知a,b,c为有理数,且满足−a>b> |c|,a+b+c=0,则|a+b|+|a−2b|−|a+2b|=______(结果用含a,b的代数式表示)13.七年级一班有2a−b个男生和3a+b个女生,则男生比女生少______ 人.14.计算:2(x−y)+3y=________.15.已知m−n=100,x+y=−1,则代数式(n+x)−(m−y)的值是______ .三、计算题(本大题共4小题,共24.0分)16.已知x+y=1,求代数式3x−2y+1+ 3y−2x−5的值.17.已知a2−1=b,求3(a2−b)+a2−b)的值.2(a2−1218.已知A=2x2−3x+1,B=−3x2+5x−7,(1)求A−2B;(2)求当x=−1时A−2B的值.19.先化简,后求值.2(a2b+ab2)−(2ab2−1+a2b)−2,其中(2b−1)2+|a+2|=0.四、解答题(本大题共2小题,共16.0分)20.已知A=3a2b−4ab2−3,B=−5ab2+2a2b+4,并且A+B+C=0.(1)求多项式C;(2)若a,b满足|a|=2,|b|=3,且a+b< 0,求(1)中多项式C的值.21.第一车间有x人,第二车间比第一车间人少20人,如果从第二车间调出10人数的34到第一车间,那么:(1)两个车间共有多少人?(2)调动后,第一车间的人数比第二车间多多少人?答案和解析【答案】1. C2. C3. C4. C5. C6. D7. A8. C9. A10. C11. b−a12. −1013. 2114. 6a+8b15. 5a−8b16. 3b17. −3a−b18. a+2b19. 2x+y20. −10121. 解:∵x+y=1,∴原式=x+y−4=1−4=−3.22. 解:原式=3a2−3b+a2−2a2+b=2a2−2b,∵a2−1=b,∴a2−b=1,则原式=2(a2−b)=2.23. 解:(1)∵A=2x2−3x+1,B=−3x2+ 5x−7,∴A−2B=2x2−3x+1−2(−3x2+5x−7)=2x 2−3x +1+6x 2+10x −14=8x 2+7x −13;(2)当x =−1时,原式=8−7−13=−12.24.解:∵(2b −1)2+|a +2|=0,∴b =12,a =−2,原式=2a 2b +2ab 2−2ab 2+1−a 2b −2 =a 2b −1,当a =−2,b =12,原式=(−2)2×12−1=2−1=1.25.解:(1)∵A +B +C =0,∴C =−(A +B),∵A =3a 2b −4ab 2−3,B =−5ab 2+2a 2b +4,∴C =−(3a 2b −4ab 2−3−5ab 2+2a 2b+4)=−(5a 2b −9ab 2+1)=−5a 2b +9ab 2−1;(2)∵|a|=2,|b|=3, ∴a =±2,b =±3, ∵a +b <0,∴a =2,b =−3或a =−2,b =−3. 当a =2,b =−3时,C =−5×22×(−3)+9×2×(−3)2−1=221;当a=−2,b=−3时,C=−5×(−2)2×(−3)+9×(−2)×(−3)2−1=−103.26. 解:(1)∵第一车间有x人,第二车间比第一车间人数的34少20人,∴第二车间的人数是(34x−20)人,∴x+(34x−20)=(74x−20)人.答:两个车间共有(74x−20)人;(2)∵从第二车间调出10人到第一车间,∴第一车间有(x+10)人,第二车间的人数是(34x−30)人,∴(x+10)−(34x−30)=x+10−34x+30=(14x+40)人.答:调动后,第一车间的人数比第二车间多(14x+40)人.【解析】1. 解:根据题意得:(2a−b)+(2a−b+a+b)+2(2a−b)−b=2a−b+2a−b+a+b+4a−2b−b =(9a−4b)cm,则这个三角形的周长为(9a−4b)cm.故选C根据题意表示出第二条边与第三条边,进而表示出周长即可.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.2. 解:原式=m+n−2m+2n=−m+3n,故选C.先去括号再合并同类项即可.本题考查了整式的加减,掌握去括号与合并同类项是解题的关键.3. 解:∵由图可知,y<0<x,x>|y|,∴原式=x+y−(x−y)=x+y−x+y=2y.故选C.先根据x、y在数轴上的位置判断出x、y的符号及绝对值的大小,再去括号,合并同类项即可.本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.4. 解:∵一根铁丝正好围成一个长方形,一边长为2a+b,另一边比它长a−b,∴此长方形的周长是:(2a+b+a−b+2a+ b)×2=(5a+b)×2=10a+2b,选C.根据长方形的周长等于(长+宽)×2可以解答本题.本题考查整式的加减,解答本题的关键是明确整式的加减的计算方法.5. 解:设图③中小长方形的长为x,宽为y,大长方形的宽为b,根据题意得:x+2y=a,x=2y,即y=14a,图①中阴影部分的周长为2(b−2y+a)=2b−4y+2a,图②中阴影部分的周长2b+ x+2y+a−x=a+2b+2y,则图①阴影部分周长与图②阴影部分周长之差为2b−4y+2a−a−2b−2y=a−6y=a−32a=−12a.故选C.设图③中小长方形的长为x,宽为y,表示出两图形中阴影部分的周长,求出之差即可.此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.6. 解:根据题意得:12⋅6m −(m +n)=3m −m −n =2m −n ,故选D由长方形周长=2(长+宽),求出另一边长即可.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.7. 解:|a +b +c|−|a −b −c|−|a −b +c|−|a +b −c|=(a +b +c)−(b +c −a)−(a −b +c)−(a +b −c)=a +b +c −b −c +a −a +b −c −a −b +c=0故选:A .首先根据:三角形两边之和大于第三边,去掉绝对值号,然后根据整式的加减法的运算方法,求出结果是多少即可.此题主要考查了三角形的三边的关系,以及整式加减法的运算方法,要熟练掌握,解答此题的关键是要明确:三角形两边之和大于第三边.8. 解:4(2x−1)−2(−1+10x)=8x−4+2−20x=−12x−2,故选C.由4(2x−1)−2(−1+10x),根据去括号和合并同类项的方法可以对原式进行化简,从而本题得以解决.本题考查整式的加减,解题的关键是对原式的化简要化到最简.9. 解:正确结果为4(x+8)=4x+32,则将代数式4(x+8)写成了4x+8,则结果比原来少24,故选A求出正确的结果,比较即可.此题考查了整式的加减,熟练掌握去括号法则是解本题的关键.10. 解:若A和B都是4次多项式,则A+B的结果的次数一定是次数不高于4次的整式.故选C.若A和B都是4次多项式,通过合并同类项求和时,结果的次数定小于或等于原多项式的最高次数.本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.11. 解:根据数轴上点的位置得:a<b<0< c,∴b−c<0,则原式=−a+b−c+c=b−a,故答案为:b−a根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.此题考查了整式的加减,数轴,以及绝对值,熟练掌握去括号法则与合并同类项法则是解本题的关键.12. 解:原式=2a+2b−4+4b+8a+2= 10a+6b−2=2(5a+3b)−2=−10,故答案为:−10.把5a+3b=−4,代入代数式进行计算即可.此题考查了整式的加减−化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.13. 解:由题意得:(a+2b+3c)+(3a+2b+c)=5+7,得:4a+4b+4c=12,即a+b+c=3,则7a+7b+7c=7×3=21,故答案为:21发现系数间的关系,把两个等式相加,便可求出a+b+c的值,代入原式计算即可求出值.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.14. 解:根据题意列得:2[(2a+3b)+(a+b)]=2(3a+4b)=6a+8b,则这个长方形的周长为6a+8b.故答案为:6a+8b.长方形的周长等于两邻边之和的2倍,表示出周长,去括号合并即可得到结果.此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.15. 解:原式=8a−10b−3a+2b=5a−8b,故答案为:5a−8b原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.16. 解:原式=a−a+3b=3b故答案为:3b根据整式的运算法则即可求出答案.本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.17. 解:∵−a>b>|c|,a+b+c=0,∴a<0,b>c>0,|a|>|b|>|c|,∴a+b<0,a−2b<0,a+2b>0,∴|a+b|+|a−2b|−|a+2b|=−a−b+ 2b−a−a−2b=−3a−b,故答案为:−3a−b.根据题意判断出绝对值里边式子的正负,利用绝对值的代数意义计算即可得到结果.本题考查了整式的加减求值,绝对值的性质,解答本题的关键是掌握绝对值的性质,进行绝对值的化简.18. 解:∵年级一班有2a−b个男生和3a+b个女生,∴3a+b−(2a−b)=(a+2b)人.故答案为:a+2b,用女生的人数减去男生的人数即可得出结论.本题考查的是整式的加减,根据题意列出关于a、b的式子是解答此题的关键.19. 解:原式=2x−2y+3y=2x+y,故答案为:2x+y原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.20. 解:∵m−n=100,x+y=−1,∴原式=n+x−m+y=−(m−n)+(x+ y)=−100−1=−101,故答案为:−101原式去括号整理后,将已知等式代入计算即可求出值.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.21. 原式合并同类项得到最简结果,把已知等式代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.22. 原式去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.23. (1)把A与B代入A−2B中,去括号合并即可得到结果;(2)把x=−1代入结果中计算即可得到结果.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.24. 先利用非负数的性质求出a和b的值,再去括号、合并得到原式=a2b−1,然后把a和b的值代入计算即可.本题考查了整式的加减−化简求值:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.25. (1)先由A+B+C=0可得C=−(A+B),再将A=3a2b−4ab2−3,B=−5ab2+2a2b+4代入计算即可;(2)先由|a|=2,|b|=3,且a+b<0确定a,b的值,再代入(1)中多项式C,计算即可求解.本题考查了整式的加减、去括号法则、绝对值的定义以及代数式求值.解题的关键是熟记去括号法则,熟练运用合并同类项的法则.26. (1)用x表示出第二车间的人数,再把两式相加即可;(2)用x表示出调动后两车间的人数,再作差即可.本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.。
数学北师大版七年级上册整式的加减练习题整式的加减练题(含答案)一、选择题(每小题3分,共24分)1、下列各组中,不是同类项的是()A。
5ab与3abB、2xy与2xyC、5与D、2x与3x2、若七个连续整数中间的一个数为n,则这七个数的和为()A、B、7nC、-7nD、无法确定3、若3a与2a5互为相反数,则a等于()A、5B、-1C、1D、-54、下列去括号错误的共有()①a(b c)ab c;②a(b c d)a b c d;③a2(b c)a2b c;④a[(a b)]a a b a a bA、1个B、2个C、3个D、4个5、计算:m[n2m(m n)]等于()A、2nB、2mC、4m2nD、2n2m6、式子3a2b2与a2b2的差是()A、2a2B、2a22b2C、4a2D、4a22b27、a b c的相反数是()A、a b cB、a b cC、a b cD、a b c8、减去3m等于5m23m5的式子是()A、5(m1)B、5m26m5C、5(m1)D、(5m6m5)2二、填空题(每小题3分,共24分)1、若3ab与4ab是同类项,则m=7,n=2.2、在7x24x1x226x中,7x2与x2同类项,6x与4x是同类项,-2与1是同类项。
3、单项式3ab,2ab,3ab,4ab,3ab的和为1ab。
4、把多项式5xy3xy5xy按字母x的指数从大到小排列是:5xy xy3xy 5.5、若(a3a1)A a a4,则A=6a 3.6、化简:7x5x2x,a22/3=3a/3-22/3=3a-22/3,7a=36,a=36/7,7a2b7ba27ab(a b)。
7、去括号:x2(y2)x2y4,2a3(b c d)2a3b3c3d。
8、已知:a c2,b c3,则a b2c a c b c 5.三、解答题(52分)1、去括号并合并同类项①a(2a2)=a-2a+2=-a+2②(5x y)3(2x3y)=-5x-y-6x+9y=-11x+8y③2a(a b)2(a b)=2a+a+b-2a-2b=a-b④1(3xy x)[2(2x3yz)]=1-3xy+x+2(2x+3yz)=5x-3xy+6yz2、计算①3xy2xy3xy2xy=02(a+2a)+3(2a-3b)-4(3a-2b) = 2a+4a+6a-9b-12a+8b = -2a-b3a-(5a-ab+b)-(7ab-7b-3a) = 3a-5a+ab-b-7ab+7b+3a = -4a-6ab+6b4x-x+5)+(5x-x-4) = 8xxy-3223y)-(x-xy+1) = xy-3223y-x+xy-1 = -x-3223y-1阴影面积可以分成一个正方形和两个直角梯形,正方形面积为x^2,两个直角梯形面积分别为2x和x,所以阴影部分的面积为3x^2.A+B+C=2a+3b+2c,所以C=-(A+B)+2a+3b+2c=-a-b+c。
北师大版七年级数学上册整式计算题专项练习(附答案)1.将表达式化简:$-a-b+2a-b=-b+a$2.将表达式化简:$(x+2)(y+3)-(x+1)(y-2)=xy+3x+2y+6-xy+x-2y+2=x+3x+2+6+x-2y+2=4x-2y+10$3.将表达式化简:$(2x-y)(2x+y)+2y2=4x2-y2+2y2=4x2$4.将表达式化简:$\frac{x(x-y)}{x-2}+\frac{2y}{x-2}=\frac{x(x-y)+2y}{x-2}=\frac{x^{2}-xy+2y}{x-2}$6.将表达式化简:$(2a+1)^{2}-2(2a+1)+3=4a^{2}+8a+4-4a-2+3=4a^{2}+4a+5$8.将表达式化简:$-(x-5)(x+5)-\frac{(3x-2y)(-2y-3x)}{x+1}=\frac{-(x^{2}-25)(x+1)+(9x^{2}-12xy+4y^{2})}{x+1}=\frac{-x^{3}-10x^{2}-21x+4y^{2}}{x+1}$10.将表达式化简:$3(x+1)(x-1)-(2x-1)(x+y)2(x-y)2=3(x^{2}-1)-2x^{3}+x^{2}y+xy^{2}-2xy^{2}+2y^{3}=3x^{2}-3-2x^{3}+x^{2}y-y^{2}$15.将表达式化简:$-\frac{1}{2}-(-1)^{2006}+\frac{2^{11}\times(-3)^{432}}{2}= -\frac{1}{2}-1+2^{10}\times3^{432}=2^{10}\times3^{432}-\frac{3}{2}$20.将表达式化简:$(2a-1)^{2}+(2a-1)(a+4)=4a^{2}-4a+1+2a^{2}+7a-4=6a^{2}+3a-3$21.将表达式化简:$(x+2y)^{2}-2(x-y)(x+y)+2y(x-3y)=x^{2}+4xy+4y^{2}-2(x^{2}-y^{2})+2xy-6y^{2}=x^{2}+6xy-8y^{2}$22.将表达式化简:$5(x-1)(x+3)-2(x-5)(x-2)=5(x^{2}+2x-3)-2(x^{2}-3x+10)=3x^{2}+16x-40$23.将表达式化简:$(a-b)(a^{2}+ab+b^{2})=a^{3}-b^{3}$24.将表达式化简:$(3y+2)(y-4)-3(y-2)(y-3)=3y^{2}-5y-18$25.将表达式化简:$a(b-c)+b(c-a)+c(a-b)=ab-ac+bc-bc+ac-ab=0$26.将表达式化简:$(-2mn^{2})^{2}-4mn^{3}(mn+1)=4m^{2}n^{4}-4m^{2}n^{4}-4mn^{3}= -4mn^{3}$28.将表达式化简:$-(x+2)(x-2)=-(x^{2}-4)=-x^{2}+4$30.将表达式化简:$(x-3y)(x+3y)-(x-3y)=x^{2}-9y^{2}-x+3y$1.原式=2.原式=-400+4=9604;原式=-+1=13.原式=900×219;原式=-(2009+1)(2009-1)=2xxxxxxxxxxxx=-xxxxxxx4.原式=6a^2+3a-3,当a=2时,原式=6×(-2)^2+3×(-2)-3=24-6-3=155.原式=-x^2+6xy,当x=2,y=2时,原式=-(-2)^2+6×(-2)×2=-4-24=-286.原式=-3x^2+24x-357.原式=a^3-b3=(a-b)(a^2+ab+b^2)8.原式=5y-269.原式=6xy-18y210.原式=(a-c+b)^2-b^2=a^2-2ac+2bc+c^2-b^211.原式=15×10^912.原式=2a+2解答题:1.①原式=12-(-8)+(-7)-15=38②原式=-1+2×(-5)-(-3)÷(-1)=-1+(-10)-3=-14③原式=2x-3y+5x+4y=7x+y④原式=5a+2a^-1-4(3-8a+2a)=5a+2a^-1-12+32a-8a=34a+2a^-1-122.1) 原式=4-2×2-(-36)÷4=4-4+9=92) 原式=9a-6b-2a+6b=7a3.①原式=7x+4(x-2)-2(2x-x+3)=7x+4x-8-2x+2=9x-6②原式=4ab-3b-[(a+b)-(a-b)]=4ab-3b-a-b+a+b=4ab-3b-a③原式=3mn-5m-3m+5mn=8mn-8m④原式=2a+2(a+1)-3(a-1)=2a+2a+2-3a+3=4a+54.①原式=4a+18b-15a-12b=4a-15a+18b-12b=-11a+6b②原式=3x+6x^-1-3x-4x^-1=2x+2x^-15.原式=3(x-1)-(x-5)=3x-3-x+5=2x+26.原式=3(x+y)+4(x+y)-6(x+y)=7(x+y)=7(5+3)=567.原式=2(x-3y)-(x-y)=2x-6y-x+y=x-5y8.由6M=2N-4得M=N/3-2/3,代入M=x+3x-5和N=3x+5中得到:x+3x-5=N/3-2/3+3x-5解得x=7/69.原式=A+B=5a-2ab-4a+4ab=a先化简,再求值:3(A+B)﹣2(2A﹣B),其中A=﹣2,B=1.分析:先代入数值,再按照整式的加减运算顺序进行计算.解答:代入A=﹣2,B=1得:3(A+B)﹣2(2A﹣B)=3(﹣2+1)﹣2(2(﹣2)﹣1)=3﹣4﹣(﹣5)=9.点评:本题考查了整式的加减及代数式的化简,解答本题的关键在于熟练掌握整式的加减运算顺序及代入数值的方法.10.设a=14x﹣6,b=﹣7x+3,c=21x﹣1.1)求a﹣(b﹣c)的值;2)当x=时,求a﹣(b﹣c)的值.分析:先代入数值,再按照整式的加减运算顺序进行计算.解答:代入a=14x﹣6,b=﹣7x+3,c=21x﹣1得:1)a﹣(b﹣c)=14x﹣6﹣(﹣7x+3﹣21x+1)=14x﹣6﹣﹣7x+3﹣21x﹣1=6x﹣4;2)当x=时,a﹣(b﹣c)=6×﹣4﹣4=﹣28.点评:本题考查了整式的加减及代数式的化简,解答本题的关键在于熟练掌握整式的加减运算顺序及代入数值的方法.11.化简求值:已知a、b满足:|a﹣2|+(b+1)=0,求代数式2(2a﹣3b)﹣(a﹣4b)+2(﹣3a+2b)的值.分析:先化简|a﹣2|+(b+1)=0得a=2,b=﹣1,再代入求值.解答:代入a=2,b=﹣1得:2(2a﹣3b)﹣(a﹣4b)+2(﹣3a+2b)=2(2×2﹣3(﹣1))﹣(2﹣4(﹣1))+2(﹣3×2+2(﹣1))=4+9+6=19.点评:本题考查了整式的加减及代数式的化简,解答本题的关键在于熟练掌握绝对值的性质及代入求值的方法.12.已知(x+1)+|y﹣1|=0,求2(xy﹣5xy)﹣(3xy﹣xy)的值.分析:先解方程|x﹣1|+(y+1)=0,得x=﹣1,y=﹣2,再代入求值.解答:解方程得x=﹣1,y=﹣2,代入得:2(xy﹣5xy)﹣(3xy﹣xy)=2(﹣1×﹣2﹣5﹣1×﹣2)﹣(3﹣1×﹣2)=4﹣(3+2)=﹣1.点评:本题考查了整式的加减及代数式的化简,解答本题的关键在于熟练掌握绝对值的性质及代入求值的方法.解答:将3(x+y)+4(x+y)﹣6(x+y)化简得:(3+4-6)(x+y)=x+y=-2代入x=5,y=3,得到3(5+3)+4(5+3)﹣6(5+3)=24 所以,代数式3(x+y)+4(x+y)﹣6(x+y)的值为24.点评:本题考查了整式的加减、化简和求值,需要熟练掌握去括号、合并同类项和代入数值的方法。
一、填空题1.单项式32013xy2的次数是.2.如果mx n y是关于x,y的一个单项式,且系数是9,次数是4,则m= ,n= .3.有一组多项式:a+b2,a2-b4,a3+b6,a4-b8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为.二、选择题1.下列说法正确的是( )A.2a不是单项式B.是单项式C.的一次项系数是1D.1是单项式2.单项式-的系数与次数分别是( )A.-3,3B.-,3C.-,4D.-,33.多项式(a-1)x3+(b-1)x是关于x的一次式,则a,b的值可以为( )A.0,3B.0,1C.1,2D.1,1三、解答题1.把下列代数式按单项式、多项式、整式进行分类.x2y,a-b,x+y2-5,-,-29,2ax+9b-5,600xz,axy,xyz-1,.2.关于x,y的多项式(3a+2)x2+(9a+10b)xy-x+2y+7不含二次项,求3a-5b.3.已知多项式a4+(m+2)a n b-ab+3.(1)当m, n满足什么条件时,它是五次四项式?(2)当m,n满足什么条件时,它是四次三项式?一、1.3 2. 9,3 3. a10-b20二、1.D 2. D 3. C三、1.单项式有x2y,-,-29,600xz,axy.多项式有a-b,x+y2-5,2ax+9b-5,xyz-1.整式有x2y,a-b,x+y2-5,-,-29,2ax+9b-5,600xz,axy,xyz-1.2. -53. (1) 当m≠-2,n=4时,多项式是五次四项式.(2) ①m+2=0,m=-2.与n的值无关,即m=-2,n为任意数时,它是四次三项式.②m+2-1≠0,且n=1,即m≠-1,n=1时它是四次三项式.。
第三章整式及其加减第4节整式的加减课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a﹣1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是()A.2cm2B.2acm2 C.4acm2D.(a2﹣1)cm2 2.已知622x y和313m nx y-是同类项,则2m n+的值是()A.6B.5C.4D.23.下列说法正确的是().A.23xyz与23xy是同类项B.1x与2x是同类项C.320.5x y-与232x y是同类项D.25m n与22nm-是同类项4.一个两位数x,个位上的数字是a,十位上的数字是b,交换个位与十位上的数字得到一个新的两位数y,则下列各数一定能整除x y-的是()A.11B.9C.5D.25.一个多项式减去x2﹣2y2等于x2+y2,则这个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣x2+2y2 6.下列去括号与添括号变形中,正确的是()A.2a-(3a-c)=2a-3b-c B.3a+2(2b-1)=3a+4b-1C.a+2b-3c=a+(2b-3c)D.m-n+a-b=m-(n+a-b)7.多项式3x3+2mx2-5x+3与多项式8x2-3x+5相加后,不含二次项,则m等于()A.2B.-2C.-4D.-88.萱萱的妈妈下岗了,在国家政策的扶持下开了一家商店,全家每个人都要出一份力,妈妈告诉萱萱说,她第一次进货时以每件a元的价格购进了35件牛奶;每件b元的价格购进了50件洗发水,萱萱建议将这两种商品都以2a b+元的价格出售,则按萱萱的建议商品卖出后,商店( ) A .赚钱 B .赔钱C .不嫌不赔D .无法确定赚与赔9.有两桶水,甲桶装有a 升水,乙桶中的水比甲桶中的水多3升.现将甲桶中倒一半到乙桶中,然后再将此时乙桶中总水量的13倒给甲桶,假定桶足够大,水不会溢出.我们将上述两个步骤称为一次操作,进行重复操作,则( )A .每操作一次,甲桶中的水量都会减小,最后甲桶中的水会全部倒入乙桶B .每操作一次,甲桶中的水量都会减小,但永远倒不完C .每操作一次,甲桶中的水量都会增加,反复操作,最后甲桶中的水会比乙桶多D .每操作一次,甲桶中的水量都会增加,但永远比乙桶中的水量要少10.整式25m 6m 3-+和整式25m 7m 5-+的值分别为M 、N ,则M 、N 之间的大小关系是( ) A .M>N B .M<NC .M=ND .无法确定评卷人得分二、填空题 11.当k=________时,多项式21383x kxy xy -++中不含xy 项.12.在计算:A ﹣(5x 2﹣3x ﹣6)时,小明同学将括号前面的“﹣”号抄成了“+”号,得到的运算结果是﹣2x 2+3x ﹣4,则多项式A 是______________________. 13.若|1||2|0a b -+-=,则3333232a b a b ++-的值为________.14.如图是王明家的楼梯示意图,其水平距离(即AB 的长度)为(2a +b )米,一只蚂蚁从A 点沿着楼梯爬到C 点,共爬了(3a -b )米,则王明家楼梯的竖直高度(即BC 的长度)为________米.15.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b|-|c +b|+|b -a|=________.16.如图,将一个正方形分割成11个大小不同的正方形,记图中最大正方形的周长是1C,最小正方形的周长是2C,则12CC_____.17.如图1,小长方形纸片的长为2,宽为1,将4张这样的小长方形纸片按图2所示的方式不重叠的放在大长方形内,未被覆盖的部分恰好被分割为两个长方形Ⅰ和Ⅰ,设长方形Ⅰ和Ⅰ的周长分别为C1和C2,则C1_____C2(填“>”、“=”或“<”).18.把四张形状大小完全相同的小长方形卡片(如图Ⅰ)不重叠无缝隙地放在一个底面为矩形(长为15cm,宽为12cm)的盒子底部(如图Ⅰ),盒子底面未被卡片覆盖的部分用阴影表示,则图Ⅰ中两块阴影部分的周长和是_____.19.甲、乙、丙三人分别拿出相同数量的钱,合伙购买某种商品若干件.商品买来后,乙比甲少拿了2件,丙比甲多拿了11件,最后结算时,三人要求按所得商品的实际数量付钱,进行多退少补.已知丙付给甲30元,那么丙应付给乙_____元.评卷人得分三、解答题20.(1)﹣12a2bc+12cba2 (2)7ab﹣3a2b2+7+8ab2+3a2b2﹣3﹣7ab(3)(﹣x+2x2+5)+(4x2﹣3﹣6x ) (4)(2x2﹣12+3x )﹣4(x ﹣x2+12)21.合并同类项:(1)2232231x x x x -+-+-+; (2)222213134222x y xy xy x y xy xy -++--;22.先化简,再求值:3x3﹣[x3+(6x2﹣7x )]﹣2(x3﹣3x2﹣4x ),其中x=13.23.某地电话拨号入网有两种收费方式,用户可以任选其一. 计时制:0.05元/分;包月制:50元/月(限一部个人住宅电话上网). 此外,每一种上网方式都得加收通信费0.02元/分.(1)某用户某月上网的时间为x 小时,请你分别写出两种收费方式下该用户应该支付的费用.(2)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?24.阅读理解:李华是一个勤奋好学的学生,他常常通过书籍、网络等渠道主动学习各种知识.下面是他从网络搜到的两位数乘11的速算法,其口诀是:“头尾一拉,中间相加,满十进一”.例如:Ⅰ2411264⨯=.计算过程:24两数拉开,中间相加,即246+=,最后结果264;Ⅰ6811748⨯=.计算过程:68两数分开,中间相加,即6814+=,满十进一,最后结果748.(1)计算:Ⅰ3211⨯= , Ⅰ7811⨯=_____ ;(2)若某一个两位数十位数字是a ,个位数字是()10b a b +<,将这个两位数乘11,得到一个三位数,则根据上述的方法可得,该三位数百位数字是____,十位数字是_____, 个位数字是_____ ; ( 用含a b 、的化数式表示) (3)请你结合(2)利用所学的知识解释其中原理.25.某同学做一道数学题:两个多项式A 、B ,B =2x 2﹣4x ﹣6,试求A ﹣2B .这位同学把“A ﹣2B ”看成“A +2B ”,结果求出的答案是7x 2﹣8x ﹣11,那么,A ﹣2B 的正确答案是多少?参考答案:1.C 【解析】 【详解】根据题意得出矩形的面积是(a+1)2﹣(a ﹣1)2,求出即可:矩形的面积是(a+1)2﹣(a ﹣1)2=a 2+2a+1﹣(a 2﹣2a+1)=4a (cm 2).故选C . 2.A 【解析】 【分析】由622x y 和313m nx y -是同类项,可知相同字母的指数相同,据此列式求出m 和n 的值,然后代入计算即可. 【详解】 由题意得, 3m =6,n =2, Ⅰm =2,Ⅰ22226m n +=⨯+= 故选A. 【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可. 3.D 【解析】 【分析】根据同类项的定义,一看字母是否相同,二看相同字母指数是否相同,依次进行判断即可. 【详解】解:选项A .前面的单项式含有z ,后面的单项式不含有,所以不是同类项,不符合题意;选项B.1x不是整式,2x是整式,所以不是同类项,不符合题意;选项C.两个单项式,所含字母相同,但相同字母的指数不一样,所以不是同类项,不符合题意;选项D.两个单项式,所含字母相同,相同字母的指数也相同,所以是同类项,符合题意.故选D.【点睛】本题考查同类项的定义,解题的关键是熟练掌握同类项定义中的两个“相同”.4.B【解析】【分析】先分别求出交换位置前后的两位数,再求出其差即可.【详解】Ⅰ一个两位数,个位上的数是a,十位上的数是b,Ⅰ这个两位数是10b+a,Ⅰ交换个位与十位上的数字得到一个新两位数,则这两个数为10a+b,交换前后两位数的差为:10b+a−10a−b=10(b−a)−(b−a)=9(b−a),Ⅰ这两个数的差一定能被9整除.故选B【点睛】此题考查整式的加减,解题关键在于分别求出交换位置前后的两位数5.B【解析】【分析】根据:被减式=减式+差,列式计算即可得出答案.【详解】解:这个多项式为:x2﹣2y2+(x2+y2),=(1+1)x2+(﹣2+1)y2,=2x2﹣y2,故选B.【点睛】本题主要考查整式的加减.熟练应用整式加减法计算法则进行计算是解题的关键.6.C【解析】【分析】去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.结合各选项进行判断即可.【详解】A选项:2a-(3a-c)=2a-3a-c,故本选项错误;B选项:3a+2(2b-1)=3a+4b-2,故本选项错误;C选项:a+2b-3c=a+(2b-3c),故本选项正确;D选项:m-n+a-b=m-(n-a+b),故本选项错误.故选C.【点睛】考查了去括号及添括号的知识,熟练掌握去括号及添括号的法则是关键.7.C【解析】【详解】(3x3+2mx2-5x+3)+(8x2-3x+5)=3x3+2mx2-5x+8x2-3x+5=3x3+(2m+8)x2-8x+8,因为不含二次项,所以2m+8=0,解得,m=-4,故选C.【点睛】本题考查了整式的加减,能正确计算并且能根据题意确定出二次项系数为0是解题的关键.8.D【解析】【分析】此题可以先列出商品的总进价的代数式,再列出按萱萱建议卖出后的销售额,然后利用销售额减去总进价即可判断出该商店是否盈利. 【详解】由题意得,商品的总进价为3050a b +, 商品卖出后的销售额为(3550)2a b+⨯+, 则15(3550)(3550)()22a b a b a b +⨯+-+=-, 因此,当a b >时,该商店赚钱:当a b <时,该商店赔钱;当a b =时,该商店不赔不赚. 故答案为D. 【点睛】本题主要考查列代数式及整数的加减,分类讨论的思想是解题的关键. 9.D 【解析】 【分析】由题意可知甲桶装有a 升水,乙桶装有a+3升水,然后根据题意的操作进行计算,发现规律即可. 【详解】解:由题意可知甲桶装有a 升水,乙桶装有a+3升水, 进行1次操作后:甲桶装有a+1升水,乙桶装有a+2升水;进行2次操作后:甲桶装有a+86升水,乙桶装有a+106升水;进行3次操作后:甲桶装有a+2618升水,乙桶装有a+2818升水; ······综上可以发现,每操作一次,甲桶中的水量都会增加,但永远比乙桶中的水量要少. 故选D. 【点睛】本题考查整式的应用,解此题的关键在于准确按照题意进行操作,然后发现规律. 10.D 【解析】 【详解】25m 6m 3-+-(25m 7m 5-+)=2 5m 6m 3-+-25m 7m 5+-=m-2,当m-2>0时,M>N ;当m-2<0时,M<N ;当m-2=0时,M=N.故选D.点睛:比较两个式子的大小时:用一个式子的值减另一个式子的值,若差为正数,则前一个式子的值大于后一个式子的值;若差为负数、则前一个式子的值小于后一个式子的值;若差为0,则这两个式子的值相等. 11.19【解析】 【分析】先合并同类项得到21(3)83x k xy +-+,再根据题意计算即可得到答案.【详解】21383x kxy xy -++=21(3)83x k xy +-+,要使得多项式21383x kxy xy -++中不含xy 项,则1303k -=,则19k =. 【点睛】本题考查合并同类项,解题的关键是掌握合并同类项的方法. 12.﹣7x 2+6x+2. 【解析】 【详解】试题解析:根据题意得:22222(234)(536)234536762A x x x x x x x x x x =-+----=-+--++=-++, 故答案为276 2.x x -++ 13.-3 【解析】 【分析】先根据绝对值的性质得出a,b 的值,再把a,b 代入即可解答 【详解】Ⅰ|1||2|0a b -+-= Ⅰ|1|=0|2|0a b --=,Ⅰ1-a=0,b-2=0 Ⅰa=1,b=2将a=1,b=2,代入3333232a b a b ++-得5×13 -23=-3【点睛】此题考查绝对值的性质,合并同类项,解题关键在于求出a,b 的值14.(a ﹣2b )【解析】【详解】解:根据平移可得蚂蚁所爬的距离=AB +BC ,即3a -b =2a +b +BC ,ⅠBC =(a ﹣2b )米.故答案为:(a ﹣2b ).15.a -b +c【解析】【详解】先根据各点在数轴上的位置判断出其符号,再去绝对值符号,合并同类项即可,即可由图可知,c <b <0<a ,可求c+b <0,b-a <0,因此原式=-b+c+b+a-b=a+c-b. 故答案为a+c-b.点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.16.432【解析】【分析】如图(见解析),设,AB x BC y ==,根据正方形的定义可得最小正方形的边长为1411x y -,而且x 和y 满足等式:8101411y x x y -=-,再根据正方形的周长公式12,C C 即可得.【详解】如图,设,AB x BC y ==,最大正方形标记为0号,被分割成的11个正方形标记为1-11号,其中最小正方形标记为11号,各个正方形的边长求解过程如下:0号:1号+2号得x y +,5号:1号-2号得y x -,3号:2号-5号得()2x y x x y --=-,4号:0号-2号-3号得(2)22x y x x y y x +---=-,7号:3号-4号得2(22)43x y y x x y ---=-,6号:4号-7号得22(43)56y x x y y x ---=-,10号:0号-1号得x ,9号:0号-4号-6号-10号得(22)(56)86x y y x y x x x y +-----=-,8号:10号-9号得(86)67x x y y x --=-,11号:6号-7号得56(43)810y x x y y x ---=-,或9号-6号得86(56)1411x y y x x y ---=-,因此x 和y 满足等式:8101411y x x y -=-,整理得:1924x y =, 所以最大正方形(0号)的周长1434()6C x y y =+=, 最小正方形(11号)的周长214(1411)3C x y y =-=, 则12432C C =. 【点睛】本题考查了用代数式表示几何图形的周长,设定未知数,利用正方形的性质将最大正方形的周长和最小正方形的周长求出是解题关键.17.=【解析】【分析】设图2中大长方形长为x ,宽为y ,再表示出长方形Ⅰ和Ⅰ的长和宽,进而可得周长,然后可得答案.【详解】解:设图2中大长方形长为x ,宽为y ,则长方形Ⅰ的长为x ﹣1,宽为y ﹣3,周长C 1=2(x ﹣1+y ﹣3)=2x +2y ﹣8,长方形Ⅰ的长为x ﹣2,宽为y ﹣2,周长C 2=2(x ﹣2+y ﹣2)=2x +2y ﹣8,则C 1=C 2,故填:=.【点睛】本题主要考查整式合并同类项的应用问题,巧妙设出组成的大长方形的边长,再利用已知条件分别表示出长方形Ⅰ和Ⅰ的长和宽,是本题的解题突破点。
北师大版数学初一上册同步练习:整式(有答案)3.3 整式学校:___________姓名:___________班级:___________一.选择题(共10小题)1.在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式共有()A.7个 B.6个 C.5个 D.4个2.下列说法中正确的是()A.不是整式B.﹣3x3y的次数是4C.4ab与4xy是同类项 D.是单项式3.单项式2πr3的系数是()A.3 B.πC.2 D.2π4.单项式2a3b的次数是()A.2 B.3 C.4 D.55.在下列各式中,二次单项式是()A.x2+1 B.xy2C.2xy D.(﹣)26.一组按纪律排列的式子:a2,,,,…,则第2019个式子是()A.B.C.D.7.敷衍式子:,,,3x2+5x﹣2,abc,0,,m,下列说法正确的是()A.有5个单项式,1个多项式B.有3个单项式,2个多项式C.有4个单项式,2个多项式D.有7个整式8.下列说法正确的是()A.的系数是﹣3 B.2m2n的次数是2次C.是多项式D.x2﹣x﹣1的常数项是19.下列关于多项式2a2b+ab﹣1的说法中,正确的是()A.次数是5 B.二次项系数是0C.最高次项是2a2b D.常数项是110.要是整式x n﹣3﹣5x2+2是关于x的三次三项式,那么n即是()A.3 B.4 C.5 D.6二.填空题(共9小题)11.单项式5mn2的次数.12.单项式2ab2的系数是13.多项式2a2b﹣ab2﹣ab的次数是.14.下面是按一定纪律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是.15.将多项式5x2y+y3﹣3xy2﹣x3按x的升幂排列为.16.若单项式﹣2x3y n与4x m y5合并后的终于还是单项式,则m﹣n=.17.查看下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发觉的纪律,第n个单项式为.18.已知多项式(m﹣1)x4﹣x n+2x﹣5是三次三项式,则(m+1)n=.19.把多项式2x3y﹣4y2+5x2﹣3重新排列:(1)按x降幂排列,得.(2)按y升幂排列,得.三.解答题(共4小题)20.指出下列多项式的项和次数:(1);(2);(3).21.要是多项式3x m﹣(n﹣1)x+1是关于x的二次二项式,试求m,n的值.22.指出下列多项式的项和次数,并说明它们是频频几项式,(1)x4﹣x2﹣1;(2)﹣3a2﹣3b2+1;(3)﹣2x6+xy﹣x2y5﹣2xy3+1.23.已知代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与字母x的取值无关,求a3﹣2b2﹣a3+3b2的值.参考答案一.选择题(共10小题)1.B.2.B.3.D.4.C.5.C.6.C.7.C.8.C.9.C.10.D.二.填空题(共9小题)11.3.12.2.13.3.14.15a16.15.y3﹣3xy2+5x2y﹣x3.16.﹣2.17.(﹣1)n+1•2n•x n.18.819.多项式2x3y﹣4y2+5x2﹣3的各项是2x3y,4y2,5x2,﹣3,(1)按x降幂排列,得2x3y+5x2﹣4y2﹣3;(2)按y升幂排列,得5x2﹣3+2x3y﹣4y2.三.解答题(共4小题)20.(1)多项式的项为:3x,﹣1,3x2;次数为2;(2)多项式的项为:4x3,2x,﹣2y2;次数为3;(3)多项式的项为:x,﹣by3;次数为4;21.解:∵多项式是关于x的二次二项式,∴m=2,(n﹣1)=0,即n=1,综上所述,m=2,n=1.22.解:(1)x4﹣x2﹣1的项是x4,﹣x2,﹣1,次数是4,是四次三项式;(2)﹣3a2﹣3b2+1的项是﹣3a2,﹣3b2,1,次数是2,是二次三项式;(3)﹣2x6+x5y2﹣x2y5﹣2xy3+1的项是﹣2x6,x5y2,﹣x2y5,﹣2xy3,1,次数是7,是七次五项式.23.解:2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1=(2﹣2b)x2+(a+3)x﹣6y+5∵代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与字母x的取值无关,∴2﹣2b=0,a+3=0,∴a=﹣3,b=1,∴a3﹣2b2﹣a3+3b2=a3+b2=×(﹣3)3+12=﹣.。
北师大版七年级数学上册《整式》同步讲练【知识要点】1、单项式的定义:2、在一个单项式中,所有字母 ,叫做这个单项式的 次数3、几个单项式的,叫做.4、和统称整式.5、注意:1) 单独一个字母或者数也是单项式 2) 非零常数是零次单项式【典例精析】例1.把下列代数式,分别填在相应的集合中:-5a 2,-ab,-3xy ,a 2-2ab,23n m -,1-22x ,13+m ,x 2,πy x -; 单项式集合:{ …} 多项式集合:{…}整 式集合:{…}例2.在多项式-x 4+2x 2y 2-y 4+3xy 2-3x 2y 中填括号,要求把三次项相结合放在前面带有正号的括号里.例3.把多项式5x 3y-y 4-3xy 3+2x 2y 2-7.A.按y 的升幂排列;B.按x 的降幂排列.例4.指出下列多项式的项和系数: 1、多项式-2a 3+21b 3-61ab+a-2b 有 项,分别是: ,最高次项的系数是,这个多项式是次项式.例5、如图,求阴影部分的面积.【基础巩固】一.填空题:1、单项式-2πxy 2的系数是,次数是 . 2、多项式:5x 3-3x 2+2x+8是次项式.3、一辆汽车以x 千米/小时行驶d 千米路程,若速度加快10千米/小时,则可少用 小时4、把多项式-5x 2-6x 4+2x-31x 3+5按字母x 的升幂排列为:5、下列代数式中,是单项式的有.①-15; ②32a ; ③π1x 2y; ④ a bc 32; ⑤3a+2b; ⑥0; ⑦ 7m6、单项式22ab 2c 的系数是 ,次数是 .7、πR 2是次单项式,-32是 次单项式.8、某次旅游分甲、乙两组,已知甲组有a 名队员,平均门票m元,乙组有b 名队员,平均门票n 元,则一共要付门票___元. 9、某公司职员,月工资a 元,增加10%后达到________元. 10、如果一个两位数,十位上数字为x ,个位上数字为y ,则这个两位数为________.11、________和________统称整式. 12、单项式21xy 2z 是________次单项式.13、多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是____ 14、整式21,3x-y 2,23x 2y ,a ,πx +21y ,522a π,x +1中________是单项式,________是多项式. 15、x +2xy +y 是________次 项式.16、含盐20%的盐水x 千克,其中含盐_______千克,含水________千克.17、甲车的速度为每小时x 千米,乙车的速度为每小时y 千米.若甲、乙两车由两地同时出发,相向而行,t 小时后相遇,则两地距离为________千米.若两车同时分别从两地出发,同向。
3.2整式练习题
1.下列说法中正确的是()
A.单项式x的系数和次数都是零
B.34x3是7次单项式
C.5πR2的系数是5
D.0是单项式
2.下列说法中正确的是()
A.3x3﹣2x2+1是五次三项式B.3m2﹣是二次二项式
C.x2﹣x﹣34是四次三项式D.2x2﹣2x+3中一次项系数为﹣2
3.将多项式﹣a2+a3+1﹣a按字母a升幂排列正确的是()
A.a3﹣a2﹣a+1 B.﹣a﹣a2+a3+1 C.1+a3﹣a2﹣a D.1﹣a﹣a2+a3
4.下列式子中属于二次三项式的是()
A.2x2+3 B.﹣x2+3x﹣1 C.x3+2x2+3 D.x4﹣x2+1
5.多项式﹣6y3+4xy2﹣x2+3x3y是按()排列.
A.x的升幂B.x的降幂C.y的升幂D.y的降幂
6.同时都含有字母a、b、c,且系数为1的7次单项式共有()
A.4个B.12个C.15个D.25个
二、填空题
7.代数式①a3﹣1,②0,③m+ ,④,⑤,⑥中单项式有;多项式有(填序号).8.是次单项式,系数是.
9.a4﹣3a2b+3ab2﹣b3﹣3是次项式,它的项分别是,常数项是.
10.把多项式2x4﹣1+2x2﹣3x3﹣x按x的降幂排列为.
11.把多项式3﹣m2n3﹣2n2﹣m2n按n的升幂排列为.
12.关于m的多项式6mn+1﹣amn+mn﹣1﹣1是三次三项式,则a=,n=.。