分式方程教学计划
- 格式:doc
- 大小:42.50 KB
- 文档页数:10
分式方程教学设计第1篇:分式方程教学设计分式方程(1)一、教学目标1.使学生理解分式方程的意义.2.使学生掌握可化为一元一次方程的分式方程的一般解法.3.了解解分式方程解的检验方法.4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.二、教学重点和难点1.教学重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想.2.教学难点:检验分式方程解的原因3.疑点及分析和解决办法:解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.三、教学方法启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.四、教学过程(一)复习及引入新课1.提问:什么叫方程?什么叫方程的解?答:含有未知数的等式叫做方程.使方程两边相等的未知数的值,叫做方程的解.这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要讨论的分式方程.(二)新课板书课题:板书:分式方程的定义.分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.练习:判断下列各式哪个是分式方程.在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.先由同学讨论如何解这个方程.在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母.解:两边同乘以最简公分母2(x+5)得2(x+1)=5+x 2x+2=5+x x=3.如果我们想检验一下这种方法,就需要检验一下所求出的数是不是方程的解.检验:把x=3代入原方程左边=右边∴x=3是原方程的解.例2.一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,则轮船顺流航行的速度为(20+v)千米/时,逆流航行的速度为(20-v)千米/时,顺流航行100千米所用的时间为时。
人教版八年级上册数学《分式方程》(优质教学设计)一. 教材分析人教版八年级上册数学《分式方程》这一节内容,是在学生已经掌握了方程和等式的基本性质的基础上进行教学的。
本节课主要让学生了解分式方程的概念,学会解分式方程的方法,并能够应用分式方程解决实际问题。
教材通过具体的例子,引导学生探究分式方程的解法,并总结解分式方程的一般步骤。
二. 学情分析八年级的学生已经具备了一定的数学基础,对方程和等式有一定的了解。
但是,学生对分式方程的理解和应用还比较薄弱。
因此,在教学过程中,需要通过具体的例子,引导学生理解分式方程的概念,掌握解分式方程的方法,并能够应用分式方程解决实际问题。
三. 教学目标1.让学生了解分式方程的概念,理解分式方程的意义。
2.引导学生掌握解分式方程的方法,并能够熟练运用。
3.通过解决实际问题,培养学生的应用能力。
四. 教学重难点1.重点:分式方程的概念,解分式方程的方法。
2.难点:解分式方程的步骤和技巧。
五. 教学方法采用问题驱动法,通过具体的例子,引导学生探究分式方程的解法,并总结解分式方程的一般步骤。
同时,运用小组合作学习法,让学生在小组内讨论和分享解题经验,提高学生的合作能力和沟通能力。
六. 教学准备1.准备相关的例题和练习题。
2.准备课件,用于展示和解题过程。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入分式方程的概念。
例如,某商店举行打折活动,原价为100元的商品打八折后,顾客实际支付了72元,求打折的力度。
让学生尝试用方程来解决这个问题,从而引出分式方程的概念。
2.呈现(10分钟)展示几个分式方程的例子,让学生观察和分析。
例如:(1)(=2)(2)(=3)引导学生总结解分式方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1。
3.操练(10分钟)让学生独立完成一些分式方程的练习题,检验学生对分式方程的理解和掌握程度。
教师可适时给予提示和指导。
4.巩固(10分钟)学生进行小组讨论,分享解题经验,总结解分式方程的技巧。
最新分式方程教案(优秀3篇)作为一位不辞辛劳的人民教师,很有必要精心设计一份教学设计,借助教学设计可以提高教学效率和教学质量。
那么大家知道规范的教学设计是怎么写的吗?下面是辛苦为朋友们带来的3篇《最新分式方程教案》,希望能为您的思路提供一些参考。
分式方程教案篇一教师准备多媒体课件1.谈话导入。
我们学过了关于方程的哪些知识?(结合学生的回答板书)预设生1:方程的意义。
生2:方程与等式的关系。
生3:解方程的方法。
生4:用方程知识解决实际问题。
……2.揭示课题。
同学们说得很全面,这节课我们就来系统地复习有关方程的知识。
(板书课题:方程) 1.方程。
(1)什么是方程?它与算术式有什么不同?明确:①含有未知数的等式叫作方程。
②算术式是一个式子,由运算符号和已知数组成。
方程是一个等式,在方程里的未知数可以参与运算,并且只有当未知数为特定的数值时,方程才成立。
(2)什么是方程的解?使方程左右两边相等的未知数的值,叫作方程的解。
(3)什么是解方程?求方程的解的过程叫作解方程。
(4)解方程的依据是什么?①等式的性质。
②加减法和乘除法各部分之间的互逆关系。
(5)课件出示教材80页“回顾与交流”3题。
①组织学生分组讨论解方程的步骤和方法,以及哪些地方需要注意。
②指名到黑板前进行板演。
③全班交流并说一说自己是怎么解的。
2.列方程解决实际问题。
(1)列方程解应用题的步骤。
学生小组交流并集体汇报,然后教师明确:①弄清题意,确定未知数并用x表示;②找出题中数量间的相等关系;③列方程,解方程;④检验并写出答语。
(2)列方程解应用题的关键及找等量关系的方法。
①列方程解应用题的关键是什么?列方程解应用题的关键是找出题中的等量关系,根据等量关系列方程解答。
②你知道哪些找等量关系的方法?预设生1:根据关键性词语找等量关系。
生2:根据常见的四则混合运算的意义及各部分之间的关系找等量关系。
生3:根据常见的数量关系找等量关系。
生4:根据计算公式找等量关系。
16.3.1《分式方程》教学设计一、教学目标:知识技能:1.使学生理解分式方程的意义.2.使学生掌握可化为一元一次方程的分式方程的基本思路和一般解法.3.理解解分式方程时可能无解的原因,并掌握解分式方程的验根方法.数学思考:能将实际问题的相等关系用分式方程表示,体会分式方程的模型作用.解决问题:经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题和解决问题的能力,渗透数学的转化思想,培养学生的应用意识。
情感态度:在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.二、教学重点和难点1.教学重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想.2.教学难点:理解解分式方程时可能无解的原因三、学生分析:初二学生已经具有了一定的类比、分析、归纳能力,但是思维的严谨性仍相对薄弱,虽然他们喜爱学习活泼的内容,并乐于用自己的方式去学习,用自己的头脑去思考,但仍需老师引导其由感性认识到理性认识。
同时学生已经学习了分式的意义,这对理解分式方程可能无解这一教学难点有很大帮助。
四、教材内容分析:本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元二次方程的分式方程打下基础。
通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,进一步发展学生分析问题和解决问题的能力,培养应用意识,渗透类比和转化思想。
五、教学媒体与资源的选择与应用:新课程改革中,教师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。
根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与探索,让学生有发表意见的机会,绝对不能包办代替,使学生不仅能学会,而且能会学。
为此,本节课我将在教学中采用诱思探究式教学法并采用多媒体等现代教学手段,充分发挥网络在课堂教学中的优势,让学生由被动听讲式学习转变为积极主动的探索发现式学习,力争促进学生学习方式的转变。
《分式方程》的课程教学设计第1篇:《分式方程》的课程教学设计教学目标1.经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.2.经历“实际问题-分式方程方程模型”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。
3.在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.教学重点:将实际问题中的等量关系用分式方程表示教学难点:找实际问题中的等量关系教学过程:一、情境导入:有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg和15000kg。
已知第一块试验田每公顷的产量比第二块少3000kg,分别求这两块试验田每公顷的产量。
你能找出这一问题中的所有等量关系吗?(分组交流)如果设第一块试验田每公顷的产量为kg,那么第二块试验田每公顷的产量是________kg。
根据题意,可得方程___________________二、讲授新课从*地到乙地有两条公路:一条是全长600km的普通公路,另一条是全长480km的高速公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从*地到乙地所需的时间是由普通公路从*地到乙地所需时间的一半。
求该客车由高速公路从*地到乙地所需的时间。
这一问题中有哪未完,继续阅读 >第2篇:分式方程的教学设计教学目标1。
使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;2。
通过列分式方程解应用题,渗透方程的思想方法。
教学重点和难点重点:列分式方程解应用题。
难点:根据题意,找出等量关系,正确列出方程。
教学过程设计一、复习例解方程:(1)2x+xx+3=1;(2)15x=2×15x+12;(3)2(1x+1x+3)+x-2x+3=1。
解(1)方程两边都乘以x(3+3),去分母,得2(x+3)+x2=x2+3x,即2x-3x=-6所以x=6。
《分式方程》教学设计(共5篇)篇:《分式方程》教学设计教材分析本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元一次方程的分式方程打下基础。
通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,进一步发展学生分析问题和解决问题的能力,培养应用意识,渗透类比转化思想。
学情分析《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。
”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。
教师作为教学主导,学生是主体作用我们这学生基础知识较扎实,学生喜欢上数学课,学习数学的兴趣较浓,具有一定探索解决问题的能力,采用的学习方法:1、类比学习的方法。
通过与分数的乘除法运算类比得到分式方程的解法。
2、探究合作学习。
学生互助下进行学习。
教学目标知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。
过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。
情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成就感,树立学好数学的自信心。
教学重点和难点教学重点:解分式方程的基本思路和解法。
教学难点:理解分式方程可能产生增根的原因。
第2篇:《分式方程》教学设计一、教材分析本节课是分式方程的起始课,要求能从实际的生活情境中抽象出分式方程的概念。
学生认知的基础是:已掌握简单的整式方程的解法(一元一次方程及二元一次方程组),学习过分式的四则运算。
分式方程初中数学教案【篇一:初中数学分式教案】【篇二:《分式方程(1)》教学设计】4.分式方程(一)教学目标知识与技能:(1)通过对实际问题的分析,感受分式方程刻画现实世界的有效模型的意义。
(2)通过观察,归纳分式方程的概念。
(3)体会到分式方程作为实际问题的模型,能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义。
过程与方法:采用的是尝试——归纳相结合的方法,根据开始提出的多个实际问题。
教师鼓励学生进行尝试,利用具体情境中的等量关系列出分式方程,归纳出分式方程的定义。
情感与态度:在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力。
教学重点:探索分式方程的概念,分式方程的解法,会解可化为一元一次方程的分式方程,会检验根的合理性教学难点:列方程解应用题教学方法:尝试归纳相结合教学过程本节课设计了6教学环节:乘坐列车问题——高速公路问题——电脑网络培、训问题——捐款问题——管理问题——课时小节。
一.板书课题,揭示目标二.自学指导请同学们认真考虑下列问题:第一环节乘坐列车问题甲、乙两地相距1400 km,乘高铁列车从甲地到乙地比乘特快列车少用9 h,已知高铁列车的平均行驶速度是特快列车的2.8倍。
(1)你能找出这一问题中的所有等量关系吗?(2)如果设特快列车的平均行驶速度为x km/h,那么x 满足怎样的方程?(3)如果设小明乘高铁列车从甲地到乙地需y h,那么y 满足怎样的方程?活动目的为了让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程在解决实际生活问题中作用,关键是引导学生努力寻找问题中的所有等量关系,发展学生分析问题、解决问题的能力。
第二环节高速公路问题从甲地到乙地有两条公路:一条是全长600km的普通公路,另一条是全长450km的高速公路。
某客车在高速公路上行驶的平均速度比在普通公路上快30km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需的时间的一半。
分式方程教案(5篇)分式方程教案(5篇)分式方程教案范文第1篇一、预习导学,呈现问题导入新课思索:你能正确识别分式方程吗?下列关于x的方程,其中是分式方程的有______.(填序号)问题1 什么是分式方程?问题2 为什么方程(4)不是分式方程?它是什么方程?如何看待其分母中的字母?引导同学思索并归纳总结,分式方程的特点是:①含分母;②分母中含有未知数,分母中是否含有未知数是区分分式方程与整式方程的标志.本例中的(4)是关于x的方程,其他字母皆为字母系数,通过本例辨析分式方程与含有字母已知数方程的区分.设计意图在设疑解惑中引导同学关注分式方程形式上的定义,不是简洁让同学重复概念,而是展现一组方程让同学识别,在答疑辨析中调动同学对分式方程概念的理解,加深理解分式方程概念的关键点——分母中含有未知数,设计的方程(3)(4)(6)用意深刻,是对同学思索提出的进展性目标.二、合作探究,问在学问发生处,点拨释疑·你会解分式方程吗?老师出示问题,同学动手解题,探究体验:比较方程(1)(2)的结果有差异吗?为什么?·为什么x=2不是原方程(2)的根?·产生x=2不是原方程(2)的根的缘由是什么?你能用数学语言说明吗? 解(2):方程两边同乘以3(x-2),得3(5x-4)=4x+10-3(x-2),x=2.检验:把x=2代入最简公分母3(x-2)中,3(x-2)=0,x=2称为原方程的增根.·引导同学进一步思索:(1)解分式方程的一般步骤?要求同学自己归纳总结,然后争论沟通.①去分母,方程两边同乘以最简公分母,把分式方程转化为整式方程;②解这个整式方程;③验根.使得最简公分母为0的根为原方程的增根,必需舍去.同学提出问题,小组合作探究争论:验根有几种方法?如何检验?适当的练习加强同学对解分式方程的理解,关心同学深刻理解化分式方程为整式方程的数学思想.(2)呈现错例,分析错误缘由.(组织同学开展纠错争论)①确定最简公分母失误;②去分母时漏乘整式项;③去分母时忽视符号的变化;④遗忘验根.设计意图分解因式是要求同学把握的基本技能,引导同学独立思索,总结归纳解题步骤,对错例进行剖析,加深对学问的理解.纠错是数学解题教学的一种重要学习形式.(3)增根从哪里来?为什么要舍去?(4)下面分式方程的解法是否正确?谈谈你的想法?引导同学议一议,深化思索:你对上述解法有什么看法?还有其他解法吗?通过解题表象再深化思索解分式方程的本质.分式方程的增根是它变形后整式方程的根,但不是原方程的根,产生增根的缘由是在分式方程的左右两边乘以为0的最简公分母造成的,所以使最简公分母为0的未知数的值均有可能为增根.着名教学者李镇西说过:“能让同学自己完成的,老师绝不帮忙.”老师引路设问,创设质疑争论的空间,深化对解分式方程本质的理解,拓宽同学的视野.三、敏捷应用,拓展思维思索“无解”与该分式方程有“增根”的意义一样吗?分析方程两边乘以(x+2)(x-2),可得2(x+2)+ax=3(x-2),(a-1)x=-10.明显a=1时原方程无解.当(x+2)(x-2)=0,即x=2或x=-2时,原方程亦无解,当x=2时,a=-4>:请记住我站域名/设计意图分式方程的增根问题是同学理解的难点,部分同学解题过程中存有怀疑,还会与无解相混淆.本课例设计直击难点,关心同学梳理如何争论增根问题,并能利用其解决方程无解的相关问题.老师运用问题串形式组织同学解分式方程不是表面上培育细心,明确算理,而是像几何推理那样步步有据,启发同学经过自己的独立思索去寻求解决问题方案.本课设计尝试从数学的角度提出问题,理解问题.引导同学理解解分式方程的途径是通过转化为整式方程来求解.在解分式方程的过程中体验增根的由来.总结出解分式方程的一般步骤和验根的方法,通过敏捷应用实例分析把方程的相关学问融会贯穿,在富有挑战性问题的引导下,同学在探究、答疑、辨别中体会到,提出一个有价值的问题有时比解决一个问题更重要,本课例的设计让同学学会质疑,学会思索,真正在思维的层面上学会数学解题.分式方程教案范文第2篇关键词:案例―任务驱动;计算机程序语言;教学模式在高校计算机教育中,老师讲授程序语言类课程时,一般是在课堂上进行学问点的介绍、举例、讲解、分析、总结等,同学被动地听讲并记忆,在上机实践环节中,同学提前不做什么预备,上机就是在集成环境中输入并运行笔记或教材上的例题,或是自己参按例题完成课后练习,有错误也不求甚解。
分式方程课程教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!分式方程课程教案《分式方程》课程教案《分式方程》课程教案学习目标:(一)学习知识点1、用分式方程的数学模型反映现实情境中的实际问题。
八年级数学教案之分式方程一、教学目标:1. 让学生理解分式方程的定义及特点。
2. 培养学生掌握解分式方程的基本方法。
3. 提高学生解决实际问题的能力,培养学生的逻辑思维能力。
二、教学内容:1. 分式方程的定义及例题解析。
2. 分式方程的解法:去分母、去括号、移项、合并同类项、化系数为1。
3. 分式方程的应用:解决实际问题。
三、教学重点与难点:1. 重点:分式方程的解法及应用。
2. 难点:分式方程的解法,特别是如何消去分母和分式中的括号。
四、教学方法:1. 采用案例分析法,让学生通过例题解析,理解分式方程的解法。
2. 采用问题驱动法,引导学生运用所学知识解决实际问题。
3. 利用多媒体辅助教学,提高学生的学习兴趣。
五、教学过程:1. 导入新课:通过引入实际问题,引发学生对分式方程的兴趣。
2. 讲解分式方程的定义及特点,让学生明确分式方程的基本概念。
3. 分析例题,引导学生掌握分式方程的解法。
4. 课堂练习:让学生独立解决一些简单的分式方程问题,巩固所学知识。
5. 应用拓展:让学生运用所学知识解决实际问题,提高学生的应用能力。
教案仅供参考,具体实施时可根据学生实际情况进行调整。
六、教学评估:1. 课堂练习:通过课堂练习,检测学生对分式方程解法的掌握情况。
2. 课后作业:布置与课堂内容相关的课后作业,巩固学生所学知识。
3. 小组讨论:组织学生进行小组讨论,培养学生的合作能力及解决问题的能力。
4. 课堂提问:通过课堂提问,了解学生对分式方程的理解程度。
七、教学资源:1. PowerPoint课件:制作精美的课件,辅助教学。
2. 练习题库:准备一定量的分式方程练习题,供课堂练习及课后作业使用。
3. 教学视频:寻找相关的教学视频,为学生提供更多学习资源。
4. 实际问题案例:收集一些与分式方程相关的实际问题,用于课堂讲解及应用拓展。
八、教学进度安排:1. 第1周:介绍分式方程的定义及特点。
2. 第2周:讲解分式方程的解法,分析例题。
八年级数学下册分式方程教案一、教学目标1. 让学生理解分式方程的定义及其表示方法。
2. 培养学生掌握解分式方程的基本步骤和技巧。
3. 提高学生解决实际问题中涉及分式方程的能力。
二、教学内容1. 分式方程的定义及表示方法。
2. 解分式方程的基本步骤:去分母、去括号、移项、合并同类项、化系数为1。
3. 分式方程的应用举例。
三、教学重点与难点1. 重点:分式方程的定义、表示方法以及解分式方程的步骤。
2. 难点:解分式方程过程中的运算技巧和错误防范。
四、教学方法1. 采用讲解法,讲解分式方程的定义、表示方法和解题步骤。
2. 采用案例分析法,分析实际问题中的分式方程,引导学生学会应用。
3. 采用练习法,让学生在练习中巩固知识,提高解题能力。
五、教学过程1. 导入:回顾八年级上册学习的方程知识,引导学生思考如何解决实际问题中的分式方程。
2. 新课:讲解分式方程的定义、表示方法,并通过示例演示解分式方程的步骤。
3. 案例分析:分析实际问题中的分式方程,引导学生运用所学知识解决实际问题。
4. 练习:布置一些分式方程题目,让学生独立解答,巩固所学知识。
5. 总结:对本节课的内容进行总结,强调解分式方程的注意事项。
6. 作业:布置课后作业,巩固所学知识。
六、教学策略1. 案例引导:通过分析具体案例,让学生理解分式方程在实际问题中的应用。
2. 小组讨论:组织学生进行小组讨论,分享解题心得,互相学习,提高解题能力。
3. 互动提问:教师提问,学生回答,激发学生思考,巩固所学知识。
4. 练习巩固:布置针对性练习题,让学生在练习中掌握解分式方程的技巧。
七、教学评价1. 课堂表现:评价学生在课堂上的参与程度、提问回答等情况。
2. 练习成果:评价学生在课后练习中的解答正确与否,解题思路是否清晰。
3. 小组讨论:评价学生在小组讨论中的表现,包括合作意识、交流能力等。
八、教学拓展1. 介绍分式方程在实际问题中的应用,如工程问题、经济问题等。
分式方程教案分式方程数学教案(精选6篇)解分式方程练习题篇一分式方程的教学设计分式方程的教学设计教学目标1.使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;2.通过列分式方程解应用题,渗透方程的思想方法。
教学重点和难点重点:列分式方程解应用题。
难点:根据题意,找出等量关系,正确列出方程。
教学过程设计一、复习例解方程:(1)2x+xx+3=1; (2)15x=2×15 x+12;(3)2(1x+1x+3)+x-2x+3=1.解(1)方程两边都乘以x(3+3),去分母,得2(x+3)+x2=x2+3x,即2x-3x=-6所以x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。
(2)方程两边都乘以x(x+12),约去分母,得15(x+12)=30x。
解这个整式方程,得x=12.检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。
(3)整理,得2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,即2x+xx+3=1.方程两边都乘以x(x+3),去分母,得2(x+3)+x2=x(x+3),即2x+6+x2=x2+3x,亦即2x-3x=-6.解这个整式方程,得x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。
二、新课例1 一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍。
若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?请同学根据题意,找出题目中的等量关系。
答:骑车行进路程=队伍行进路程=15(千米);骑车的速度=步行速度的2倍;骑车所用的时间=步行的时间-0。
5小时。
请同学依据上述等量关系列出方程。
分式的教案(精选4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!分式的教案(精选4篇)分式方程是方程中的一种,是指分母里含有未知数或含有未知数整式的有理方程。
分式方程教学设计
●教学目标
(一)教学知识点
1.解分式方程的一般步骤.
2.了解解分式方程验根的必要性.
(二)能力训练要求
1.通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤.
2.使学生进一步了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径.
(三)情感与价值观要求
1.培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度.
2.运用“转化”的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信.
●教学重点
1.解分式方程的一般步骤,熟练掌握分式方程的解决.
2.明确解分式方程验根的必要性.
●教学难点
明确分式方程验根的必要性.
●教学方法
探索发现法
学生在教师的引导下,探索分式方程是如何转化为整式方程,并发现解分式方程验根的必要性.
●教学过程
Ⅰ.提出问题,引入新课
[师]在上节课的几个问题,我们根据题意将具体实际的情境,转化成了数学模型——分式方程.但要使问题得到真正的解决,则必须设法解出所列的分式方程.
解方程(3x-1)/2+(5x+2)/3=2-(4x-2)/6
[师生共解](1)去分母,方程两边同乘以分母的最小公倍数6,得
3(3x-1)+2(5x+2)=6×2-(4x-2).
(2)去括号,得9x-3+10x+4=12-4x+2,
(3)移项,得9x+10x+4x=12+2+3-4,
(4)合并同类项(5)使x的系数化为1
Ⅱ.讲解新课,探索分式方程的解法
[师]刚才我们一同回忆了一元一次方程的解法步骤.下面我们来看一个分式方程.(出示投影片§3.4.2 A)
[例1]解方程:1/(x-2)
= 3/x
(1)
[生]解这个方程,能不能也像解含有分母的一元一次方程一样去分母呢?
[师]同学们说他的想法可取吗?
[生]可取.
[师]同学们可以接着讨论,方程两边同乘以什么样的整式(或数),可以去掉分母呢?
[生]乘以分式方程中所有分母的公分母.
[生]解一元一次方程,去分母时,方程两边同乘以分母的最小公倍数,比较简单.解分式方程时,我认为方程两边同乘以分母的最简公分母,去分母也比较简单.
[师]我觉得这两位同学的想法都非常好.那么这个分式方程的最简公分母是什么呢?
[生]x(x-2).
[师生共析]方程两边同乘以x(x-2),得x(x-2)· =x(x-2)· ,化简,得x=3(x-
2).
(2)
我们可以发现,采用去分母的方法把分式方程转化为整式方程,而且是我们曾学过的一元一次方程.
[生]再往下解,我们就可以像解一元一次方程一样,解出x.即x=3x-6(去括号)
2x=6(移项,合并同类项).
x=3(x的系数化为1).
[师]x=3是方程(2)的解吗?是方程(1)的解吗?为什么?同学们可以在小组内讨论.
[生]x=3是由一元一次方程x=3(x-2)(2)解出来的,x=3一定是方程(2)的解.但是不是原分式方程(1)的解,需要检验.把x=3代入方程(1)的左边= =1,右边= =1,左边=右边,所以x=3是方程(1)的解. [师]同学们表现得都很棒!相信同学们也能用同样的方法解出例2. [例2]解方程:300/x-480/2x=4
(由学生在练习本上试着完成,然后再共同解答)
解:方程两边同乘以2x,得
600-480=8x
解这个方程,得x=15
检验:将x=15代入原方程,得
左边=4,右边=4,左边=右边,所以x=15是原方程的根.
[师]很好!同学们现在不仅解出了分式方程的解,还有了检验结果的好习惯.
议一议
解方程 (2-x)/x-3=1/3-x-2
[师]我们来看小亮同学的解法
解:方程两边同乘以x-3,得2-x=-1-2(x-3)
解这个方程,得x=3.
[生]小亮解完没检验x=3是不是原方程的解.
[师]检验的结果如何呢?
[生]把x=3代入原方程中,使方程的分母x-3和3-x都为零,即x=3时,方程中的分式无意义,因此x=3不是原方程的根.
[师]它是去分母后得到的整式方程的根吗?
[生]x=3是去分母后的整式方程的根.
[师]为什么x=3是整式方程的根,它使得最简公分母为零,而不是原分式方程的根呢?同学们可在小组内讨论.
(教师可参与到学生的讨论中,倾听同学们的想法)
[生]在解分式方程时,我们在分式方程两边都乘以最简公分母才得到整式方程.如果整式方程的根使得最简公分母的值为零,那么它就相当于分式方程两边都乘以零,不符合等式变形时的两个基本性质,得到的整式方程的解必将使分式方程中有的分式分母为零,也就不适合原方程了.
[师]很好!分析得很透彻,我们把这样的不适合原方程的整式方程的根,叫原方程的增根.
在把分式方程转化为整式方程的过程中会产生增根.那么,是不是就不要这样解?或采用什么方法补救?
[生]还是要把分式方程转化成整式方程来解.解出整式方程的解后可用检验的方法看是不是原方程的解.
[师]怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗?
[生]不用,产生增根的原因是这个根使去分母时的最简公分母为零造成的.因此最简单的检验方法是:把整式方程的根代入最简公分母.若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根.是增根,必舍去.
[师]在解一元一次方程时每一步的变形都符合等式的性质,解出的根都应是原方程的根.但在解分式方程时,解出的整式方程的根一定要代入最简公分母检验.小亮就犯了没有检验的错误.
Ⅲ.应用,升华
1.解方程:
[分析]先总结解分式方程的几个步骤,然后解题.
解:1 3/x-1=4/x
去分母,方程两边同乘以x(x-1),得
3x=4(x-1)
解这个方程,得x=4
检验:把x=4代入x(x-1)=4×3=12≠0,
所以原方程的根为x=4.
(2) 10/2x-1+5/1-2x=2
去分母,方程两边同乘以(2x-1),得
10-5=2(2x-1)
解这个方程,得x=7/4
检验:把x= 代入原方程分母2x-1=2× -1= ≠0.所以原方程的根为x= 7/4.
2.回顾,总结
想一想
解分式方程一般需要经过哪几个步骤?
[师]同学们可根据例题和练习题的步骤,讨论总结.
[生]解分式方程分三大步骤:(1)方程两边都乘以最简公分母,约去分母,化分式方程为整式方程;
(2)解这个整式方程;
(3)把整式方程的根代入最简公分母,看结果是否为零,使最简公分母为零的根是原方程的增根,应舍去.使最简公分母不为零的根才是原方程的根.
Ⅳ.课时小结
[师]同学们这节课的表现很活跃,一定收获不小.
[生]我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可. [生]我明白了分式方程转化为整式方程为什么会产生增根.
[生]我又一次体验到了“转化”在学习数学中的重要作用,但又进一步认识到每一步转化并不一定都那么“完美”,必须经过检验,反思“转化”过程.
……
Ⅴ.课后作业
习题3.7
Ⅵ.活动与探究
若关于x-1/x-3=m2/3x-9的方程 = 有增根,则m的值是____________. [过程]首先增根是分式方程转化为整式方程时整式方程的根,但却使最简公分母为零.
[结果]关于x的方程 = 有增根,则此增根必使3x-9=3(x-3)=0,所以增根为x=3.去分母,方程两边同乘以3(x-3),得3(x-1)=m2. 根据题意,得x=3是上面整式方程的根,
所以3(3-1)=m2,则m=±根号6 .。