结构化学名词解释
- 格式:docx
- 大小:15.00 KB
- 文档页数:2
结构化学第一章第一章:结构化学概述结构化学是化学的一个重要分支,它研究化合物的结构以及这种结构与其性质之间的关系。
通过研究化学键的形成与断裂,利用现代分析仪器和计算方法,结构化学可以揭示物质的微观组织和宏观性质,对于理解化学反应机理、合成新化合物、药物设计等都具有重要的意义。
结构化学是以化学键为基础的。
化学键是由原子之间的相互作用形成的连接,它决定了分子的几何结构以及分子之间的相互作用。
在结构化学中,主要研究化学键的类型、长度、键角以及键的强度等。
在结构化学中,最重要的概念是共价键和离子键。
共价键是由共享电子对形成的,它是化学键中最常见的类型。
离子键是由正负电荷之间的相互作用形成的,它在具有高电负性的元素之间特别常见。
此外,还有极性共价键、金属键等其他类型的化学键。
化学键的长度和强度决定了分子的几何构型和化学性质。
根据分子的几何构型可以预测一些物理和化学性质,如极性、反应活性等。
通过测量不同化合物化学键的长度,可以了解原子之间的距离和键的强度,进而推断物质的性质。
除了化学键,结构化学还研究分子的键角和二面角。
键角是两个相邻的化学键之间的夹角,它决定了分子的三维形状。
通过测量和计算不同化合物的键角,可以了解分子的构型以及它们的稳定性和反应性。
而二面角则是分子内部的键之间的角度,它也对分子的结构和性质有重要的影响。
最后,结构化学利用现代分析仪器和计算方法对物质的结构进行研究。
核磁共振、质谱和X射线晶体学等分析技术可以揭示物质的分子结构。
而量子化学计算方法则可以通过模拟和预测分子的结构和性质,加快新化合物的研发过程。
总之,结构化学是一个非常重要的研究领域,它揭示了物质的微观组织和宏观性质之间的关系。
通过研究化学键的形成和断裂,结构化学可以对于合成新化合物、理解化学反应机理和设计药物等方面提供重要的指导。
结构化学知识点归纳结构化学是研究分子及其化学性质的一门学科,旨在理解和预测化学反应、反应机理和分子结构与性质之间的关系。
下面是对结构化学常见的知识点进行的归纳。
1.分子结构与键-原子和分子的电子排布决定了它们的分子结构。
共价键形成时,原子通过共用电子对来相互结合,并形成分子的骨架。
-单、双、三键分别由1、2、3个电子对共享而成。
-极性键是由两个不同电负性的原子之间形成的键,其中一个原子更具电负性,吸引电子密度,形成部分正电荷;而另一个原子带有部分负电荷。
-非极性键是由两个电负性接近的原子相互作用形成的键。
2.分子构象-分子构象是分子在空间中可采取的不同形状和结构。
分子可以通过旋转化学键和自由旋转的化学键来改变其构象。
-分子内部的官能团之间的键角、键长和孤对电子的位置是决定分子构象的重要因素。
3.同分异构体-同分异构体是化学物质的两个或多个形式,它们有相同的分子式但具有不同的结构和化学性质。
-构造异构体是同分异构体的一种类型,它们在分子结构中的连接方式不同。
-空间异构体是同分异构体的另一种类型,它们的分子结构在空间中三维排列不同。
4.分子间力- Van der Waals力是分子间相互作用的一种类型。
它包括范德华力、氢键和离子-离子相互作用。
-范德华力是分子间由于电子的瞬时分布而产生的吸引力。
-氢键是分子间弱的相互作用力,它包括一个原子的氢原子与另一个原子上的具有独立电子对的原子之间的相互作用。
-离子-离子相互作用是由带正电荷的离子与带负电荷的离子之间的相互作用引起的。
5.分子轨道理论-分子轨道理论描述了分子中电子的行为。
它是通过将原子轨道线性组合来形成分子轨道。
-通过具有不同形状和能量的分子轨道,可以解释分子的化学性质,例如化学键的形成和分子的反应性。
-前线分子轨道是分子中电子占据的能量最低的、决定反应性的分子轨道。
以上是结构化学的一些常见知识点的归纳。
结构化学的学习可以更好地理解化学反应和物质的性质,进而应用于有机合成、药物研发和材料科学等领域。
三生结构学名词解释(共6篇)以下是网友分享的关于三生结构学名词解释的资料6篇,希望对您有所帮助,就爱阅读感谢您的支持。
船舶结构力学名词解释篇一弹性固定端:它受梁端力矩M作用后产生一个等于力矩M 的转角Ɵ即存在如下关系Q0=A0M。
几何不变体系:是指如果不考虑材料应变所产生的变形,体系在受到任何载荷作用后能够保持其固有的几何形状和位置的体系。
不可动节点简单刚架:在实际结构中,大多数刚架受力变形后节点线位移可以不计,于是计算强度时在节点处可加上固定铰支座,故称为不可动节点刚架。
位移法:以杆系结构节点处的位移作为基本未知量的方法。
翘曲:非圆截面杆件扭转变形后,杆件的截面已不再保持为平面,而是变为曲面,这种现象称为翘曲。
用李兹法求结构问题是,要求所选挠度曲线必须满足位移边界线。
(错,还含有其他)薄壁杆件约束扭转时,杆件各横截面上没有正应力,只有扭转引起的剪应力。
(对,杆件上平行于杆轴的直线在变形后长度不变且仍为直线)简述复杂弯曲梁的叠加原理:当梁上同时受到几个不同的横向荷重及一定的轴向力作用时,分别求出在该轴向力作用下的各个横向荷重单独作用于梁时的弯曲要素,然后进行叠加,即得到在该轴向力作用下几个不同的横向荷重同时作用于梁时的弯曲要素。
矩阵位移法中,为什么要进行坐标转移?对哪些量要进行坐标转换?答:建立节点静力平衡方程是在总坐标系中进行的,因此,一般来说在矩阵位移法中有一个坐标转换问题。
要把各杆元在其局部坐标系中的节点位移向量,杆端力向量以及刚度矩阵,转换成坐标系中的节点位移向量,杆端力向量以及刚度矩阵。
杆元固端力向量也要换成坐标系中的杆元固端力向量。
简述薄板弯曲理论中的三条基本假定。
1板变形前垂直于中面的法线在板变形后仍为直线,且是变形后中面的法线,这一假定称为直法线假定。
2垂直于板面的应力分量与其他应力分量相比可以忽略不计,即假定其=0。
3薄板中面内的各点都没有平行于中面的位移,即假定不计因板发生弯曲而产生的中面的变形,从而不计板弯曲产生的中面力。
结构化学知识点汇总化学是一门复杂而有趣的学科,涉及到诸如物质的性质,结构和反应等方面。
其中,结构化学是化学的一个重要分支,它探究分子的构造和性质之间的关系。
在学习结构化学时,有一些重要的知识点需要掌握,本文将对这些知识点进行汇总和介绍。
一、化学键化学键指的是原子之间的相互作用力。
化学键的类型包括离子键、共价键和金属键等。
其中离子键是电子转移形成的化学键,含有正离子和负离子;共价键是电子共享形成的化学键,常见于非金属原子之间;金属键则是金属原子间电子互相离域形成的化学键。
二、价键和离子键价键和离子键是化合物中的两种常见的化学键。
在化合物中,原子之间通过电子来相互结合。
在共价键中,原子共享其中的一个或多个电子,而在离子键中,电子从一个原子转移到另一个原子。
注意:共价键是由共同拥有的电子共享形成的化学键,而离子键是由电子转移产生的化学键。
三、分子的构造分子构造是指分子中原子的排列方式。
在构造中有一些重要的概念需要了解,如电子对几何形状、分子几何构造和氢键等。
其中,电子对几何形状描述了原子中未成对电子的排列方式。
分子的几何构造描述了分子中原子的空间排列方式,影响了分子的性质和反应。
在某些情况下,分子中的原子之间还存在一种重要的特殊相互作用:氢键。
氢键是指在氢原子与带有电负性的原子(如氧、氮、氟)结合时形成的化学键。
四、反应机理反应机理描述了化学反应中原子如何组合成分子的过程。
在化学反应中,反应速率、分子结构和反应条件都是非常重要的。
反应机理可以通过分子动力学、量化理论和实验方法进行研究。
它们为了解化学反应过程、改进反应方法和开发新的反应技术提供了基础。
五、催化剂催化剂是一种可加速化学反应的物质。
催化剂在反应过程中并不参与反应本身,但它却可以改善反应的速率、选择性和效率。
催化剂在许多重要的工业过程中扮演着关键的角色,比如催化剂可以用于生产汽车排放物降解剂、制备塑料等。
六、应用结构化学知识在人类的生活和工作中起着重要的作用。
结构化学名词解释1.量子效应:(1)粒子可以存在多种状态,它们可由υ1,υ2,···,υn等描述;(2)能量量子化;(3)存在零点能;(4)没有经典运动轨道,只有概率分布;(5)存在节点,节点多,能量高。
上述这些微观粒子的特性,统称量子效应。
2.次级键:强相互作用的化学键和范德华力之间的种种键力统称为次级键。
3.超分子:由两种或两种以上分子依靠分子间相互作用结合在一起,组装成复杂的、有组织的聚集体,并保持一定的完整性,使其具有明确的微观结构和宏观特性。
4.超共轭效应:指C—H等σ键轨道和相邻原子的π键轨道或其他轨道互相叠加,扩大σ电子的活动范围所产生的离域效应。
5.前线轨道:分子中有一系列能及从低到高排列的分子轨道,电子只填充了其中能量较低的一部分,已填电子的能量最高轨道称为最高占据轨道(HOMO),能量最低的空轨道称为最低空轨道(LUMO),这些轨道统称前线轨道。
6.成键轨道、反键轨道、非键轨道:两个能级相近的原子轨道组合成分子轨道时,能级低于原子轨道能级的称为成键轨道,高于原子轨道能级的称为反键轨道,等于原子轨道能级的称为非键轨道。
7.群:群是按照一定规律相互联系的一些元(又称元素)的集合,这些元可以是操作、数字、矩阵或算符等。
8.对称操作:能不改变物体内部任何两点间的距离而使物体复原的操作叫对称操作。
9.对称元素:对称操作所据以进行的旋转轴、镜面和对称中心等几何元素称为对称元素。
10.点阵能/晶格能:指在0 K时,1mol离子化合物中的正负离子,由相互远离的气态,结合成离子晶体时所释放出的能量。
11.化学键:在分子或晶体中两个或多个原子间的强烈相互作用,导致形成相对稳定的分子和晶体。
(广义:化学键是将原子结合成物质世界的作用力。
)12.黑体:一种能全部吸收照射到它上面的各种波长辐射的物体。
13.能量量子化:频率为v的能量,其数值是不连续的,只能为hv的整数倍,称为能量量子化。
化学结构名词解释
化学结构是指化学物质的空间排列或摆放方式。
在化学中,化学结构常用来描述分子、离子或原子之间的相对位置和连接方式。
化学结构可以通过化学式、结构公式、空间构象等形式来表示。
不同的化学结构将具有不同的化学和物理性质。
常见的化学结构名词包括:
1. 分子结构:描述化学物质中原子的相对位置和化学键的连接方式。
2. 离子结构:描述离子化合物中正负离子的排列和连接方式。
3. 构象:描述分子或离子中原子在空间中的排列方式,包括构象异构体和立体异构体。
4. 键长:指连接在一起的原子之间的距离,常用以描述化学键的强度和稳定性。
5. 键角:指三个相连原子之间的夹角,用于描述分子或离子的空间构型。
6. 立体化学:研究空间构型对化学性质和反应的影响。
7. 共价键:指两个原子通过共享电子而连接在一起的化学键。
8. 伦敦力:分子之间由于电子云的运动而引起的短暂偶极矩相互作用力。
9. 极性:指分子或化学键中正负电荷分布的不平衡状态,导致分子在电场中具有偶极矩。
10. 拉曼光谱:利用分子和化学结构的振动和转动引起的光散射现象来研究物质的方法。
以上仅为部分化学结构名词的解释,化学领域涉及的名词众多且复杂,需要具体情境来进一步解释。
《结构化学》第四章第四章:结构化学结构化学是化学中的一个重要概念,是关于物质结构的研究。
在化学中,物质的性质与其分子或原子的结构紧密相关。
因此,理解和研究物质的结构对于进一步探索其性质、制备新材料和开发新药具有重要意义。
结构化学的研究主要涉及化学键、分子空间排列、晶体结构等方面。
在化学键中,主要包括共价键和离子键。
共价键是通过共享电子对来连接原子的,离子键是由带正电荷的阳离子和带负电荷的阴离子之间的静电力相互作用形成的。
共价键通常具有较强的稳定性,而离子键较易解离。
分子空间排列是指分子中各原子之间的相对位置关系。
这是由于原子之间的相互作用力所决定的,包括库仑引力、范德华力、氢键等。
这些相互作用力会导致分子在空间中呈现出不同的三维结构,如线性、平面、立体等。
这些结构决定了分子的性质,如极性、非极性、溶解度等。
晶体结构是指晶体中各原子或分子之间的空间排列模式。
晶体可以看作是由大量重复排列的单元结构单元组成的周期性结构。
晶体结构的研究为合成新材料和功能材料提供了重要依据。
例如,金刚石的硬度和光学性质与其密排的晶格结构有关。
此外,有机化学中的分子结构也是结构化学的重要内容之一、有机化合物中的碳原子可以通过共价键连接在一起,形成不同的碳骨架结构,如直链、支链、环和螺旋等。
这些结构决定了有机物的化学性质和反应性,如稳定性、活性、亲核性和电荷云的分布等。
总之,结构化学是化学中一个重要的研究领域,它关注物质的结构与性质之间的关系。
通过研究物质的结构,可以深入理解和解释其性质,为新材料和新药的设计和开发提供理论指导。
因此,结构化学在化学学科中具有重要的地位和作用。
中学教师进修高等师范本科教材:结构化学
结构化学是一门紧密联系实际的学科,在专业知识的深入学习中受到了普遍的重视。
对中学教师来说,学习结构化学对其对物质结构和性质的认识都有着很大的帮助。
结构化学是以物质形态、分子的构型等为研究对象的学科,是物理化学以及其他诸多学科的基础学科,特别是常见的一些电子配置习惯,电子强度和化学稳定性,物质间电性相互
作用等等,都是在结构化学中我们要探究的内容。
通过分析物质的构型和构成,可以准确
判断出物质跟随其他物质构成反应物质的反应机理和性质,从而更全面地了解物质的化学
特性,以及物质组成的基本原理。
结构化学的学习能帮助中学教师有一定的知识的武器,使他们的认识更加清晰、更加准确,从而更彻底地系统地把握化学学科的基本知识,从而更好地开展教学工作。
同时,在教学实践中,结构化学知识也能帮助我们更准确地去理解和分析一些化学现象,甚至更系统地实验研究,从而拓宽我们的教学思路。
此外,学习结构化学还能挖掘物质的更深层次的内容,如其原子团结构的联系,分子的构型等,有助于中学教师分析物质性质的变化,并给
出解释依据。
从以上讲述推断,中学教师进修结构化学,是在探究更加深入的科学知识,系统学习该学科,不仅可以更好地开展教学工作,而且也可以拓宽教学思路,挖掘物质更新的知识,从
而更好地解释物质性质的变化。
1. 量子效应:(1)粒子可以存在多种状态,它们可由υ1 ,υ2,···,υn 等描述;(2)能量量子化;(3)存在零点能;(4)没有经典运动轨道,只有概率分布;(5)存在节点,节点多,能量高。
上述这些微观粒子的特性,统称量子效应。
2. 次级键:强相互作用的化学键和范德华力之间的种种键力统称为次级键。
3. 超分子:由两种或两种以上分子依靠分子间相互作用结合在一起,组装成复杂的、有组织的聚集体,并保持一定的完整性,使其具有明确的微观结构和宏观特性。
4. 超共轭效应:指C—H等σ键轨道和相邻原子的π键轨道或其他轨道互相叠加,扩大σ电子的活动范围所产生的离域效应。
5. 前线轨道:分子中有一系列能及从低到高排列的分子轨道,电子只填充了其中能量较低的一部分,已填电子的能量最高轨道称为最高占据轨道(HOMO),能量最低的空轨道称为最低空轨道(LUMO),这些轨道统称前线轨道。
6. 成键轨道、反键轨道、非键轨道:两个能级相近的原子轨道组合成分子轨道时,能级低于原子轨道能级的称为成键轨道,高于原子轨道能级的称为反键轨道,等于原子轨道能级的称为非键轨道。
7. 群:群是按照一定规律相互联系的一些元(又称元素)的集合,这些元可以是操作、数字、矩阵或算符等。
8. 对称操作:能不改变物体内部任何两点间的距离而使物体复原的操作叫对称操作。
9. 对称元素:对称操作所据以进行的旋转轴、镜面和对称中心等几何元素称为对称元素。
10. 点阵能/晶格能:指在0 K时,1mol离子化合物中的正负离子,由相互远离的气态,结合成离子晶体时所释放出的能量。
11. 化学键:在分子或晶体中两个或多个原子间的强烈相互作用,导致形成相对稳定的分子和晶体。
(广义:化学键是将原子结合成物质世界的作用力。
)12. 黑体:一种能全部吸收照射到它上面的各种波长辐射的物体。
13. 能量量子化:频率为v的能量,其数值是不连续的,只能为hv的整数倍,称为能量量子化。
结构化学点群结构化学点群1.什么是结构化学点群结构化学点群是指一组不同的结构化的化学点,这些点组成的 a molecular structure 被用来表示特定的化学过程。
结构化学点群一般是指一组不同类型的结构化的化学点,它们可以表示各种物理特性和化学反应。
例如,氢原子、氧原子,甚至是氮原子都可以作为结构化学点群的一部分。
2.结构化学点群的作用结构化学点群可以用来模拟反应的行为,例如确定反应的速度、方向、活化能和动力学。
它也可以用来分析物理参数和定量结构化指标。
而且,通过使用结构化学点群,可以准确地表示特殊原子环境或反应梯度,从而可以获得准确的结果。
3. 结构化学点群的类型结构化学点群可以分为三种类型:球形网格结构、非球形结构与混合结构。
球形结构网格类型是最常见的结构化学点群类型,它是由一组原子的坐标按照球形的分布排列而成的。
非球形类型的结构化学点群是由一组原子的坐标按照非球形的分布排列而成的。
混合类型的结构化学点群是由球形网格类型和非球形类型结构结合起来而成的。
4. 结构化学点群的应用结构化学点群主要应用于以下几个领域:有机化学、生物化学、分子动力学、金属配体化学等。
它可以用来模拟反应过程,预测分子结构和物性,以及量化反应的动力学和能量学。
此外,结构化学点群还可以用于分子对接文献挖掘和定量药物发现研究。
5.结构化学点群的分析通常,在分析结构化学点群之前,需要首先使用计算软件将化学点群转换为可以进行计算的网格结构。
然后,通过叠加场模拟技术,可以用来表示反应和动力学的关键参数,如活化能、动力学方程系数、电荷分布等。
最后,可以使用不同的算法和程序来分析结构化学点群,确定特定原子位置以及交互作用的性质和强度。
选修三结构化学知识点归纳结构化学是在原子- 分子水平上研究物质分子构型与组成的相互关系以及结构和各种运动的相互影响的化学分支学科。
接下来店铺为你整理了选修三结构化学知识点总结,一起来看看吧。
原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。
2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。
原子轨道的能量关系是:ns<(n-2)f < (n-1)d(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
1. 量子效应:(1)粒子可以存在多种状态,它们可由υ1 ,υ2,···,υn 等描述;(2)能量量子化;(3)存在零点能;(4)没有经典运动轨道,只有概率分布;(5)存在节点,节点多,能量高。
上述这些微观粒子的特性,统称量子效应。
2. 次级键:强相互作用的化学键和范德华力之间的种种键力统称为次级键。
3. 超分子:由两种或两种以上分子依靠分子间相互作用结合在一起,组装成复杂的、有组织的聚集体,并保持一定的完整性,使其具有明确的微观结构和宏观特性。
4. 超共轭效应:指C—H等σ键轨道和相邻原子的π键轨道或其他轨道互相叠加,扩大σ电子的活动范围所产生的离域效应。
5. 前线轨道:分子中有一系列能及从低到高排列的分子轨道,电子只填充了其中能量较低的一部分,已填电子的能量最高轨道称为最高占据轨道(HOMO),能量最低的空轨道称为最低空轨道(LUMO),这些轨道统称前线轨道。
6. 成键轨道、反键轨道、非键轨道:两个能级相近的原子轨道组合成分子轨道时,能级低于原子轨道能级的称为成键轨道,高于原子轨道能级的称为反键轨道,等于原子轨道能级的称为非键轨道。
7. 群:群是按照一定规律相互联系的一些元(又称元素)的集合,这些元可以是操作、数字、矩阵或算符等。
8. 对称操作:能不改变物体内部任何两点间的距离而使物体复原的操作叫对称操作。
9. 对称元素:对称操作所据以进行的旋转轴、镜面和对称中心等几何元素称为对称元素。
10. 点阵能/晶格能:指在0 K时,1mol离子化合物中的正负离子,由相互远离的气态,结合成离子晶体时所释放出的能量。
11. 化学键:在分子或晶体中两个或多个原子间的强烈相互作用,导致形成相对稳定的分子和晶体。
(广义:化学键是将原子结合成物质世界的作用力。
)
12. 黑体:一种能全部吸收照射到它上面的各种波长辐射的物体。
13. 能量量子化:频率为v的能量,其数值是不连续的,只能为hv的整数倍,称为能量量子化。
14. 光电效应:光照射在金属表面上,使金属发射出电子的现象。
15. 临阈频率:当照射光的频率ν超过某个最小频率ν0时,金属才能发射光电子,这个频率称为临阈频率。
16. 屏蔽效应:指核外某个电子i感受到核电荷的减少,使能级升高的效应。
17. 钻穿效应:指电子i避开其余电子的屏蔽,其电子云钻到近核区而感受到较大核电荷作用,使能级降低的效应。
18. 电子结合能:假定中性原子中从某个原子轨道上电离掉一个电子而其余的原子轨道上的电子的排布不因此而发生变化,这个电离能的负值即该轨道的电子结合能。
19. 共价键:当原子互相接近时,它们的原子轨道互相同号叠加,组成成键分子轨道。
当电子进入成键轨道,体系能量降低,形成稳定的分子,此时分子间形成的键称为共价键。
20. 电子亲和能:气态原子获得一个电子成为一价负离子时所放出的能量称为电子亲和能。
21. 电离能:从气态基态原子移去一个电子成为一价气态正离子所需的最低能量称为第一电离能。
22. 电负性:原子对成键电子吸引能力的相对大小的度量。
?
23. 红外活性:分子的红外光谱起源于分子的振动基态υa与振动激发态υb之间的跃迁。
只有在跃迁的过程中有偶极矩变化的振动,即∫υaμυbdτ不为0的振动才会出现红外光谱,这称为红外活性。
24. 点群:一个有限分子的对称操作群称为点群。
25. 偶极矩:表示分子中电荷分布情况的物理量。
26. 旋光异构体:一对等同而非全同的分子,构成一对对映体,称为旋光异构体。
27. 杂化轨道:在一个原子中不同原子轨道的线性组合,称为原子轨道的杂化,杂化后的原子轨道称为杂化轨道。
28. 离域π键:由多个原子形成的π型化学键称作离域π键。
29. 共轭效应:一般包含双键和单键相互交错排列的分子形成离域π键,这时不能把分子的物理和化学性质看作各个双键和单键的简单加和,分子会表现出特有的性能,称为共轭效应或离域效应。
30. 配位化合物:配位化合物简称配合物,又称络合物,是一类含有中心金属原子(M)和若干配位体(L)的化合物(MLn)。
31. 配位场稳定化能(LFSE):配位化合物中d电子填入未分裂的d轨道后,若不考虑成对能,能级降低的总值称为配位场稳定化能。
32. Jahn-Teller效应:t2g或eg﹡中各个轨道上电子数不同时,就会出现简并态,当遇到简并态时,配位化合物会发生变形,使一个轨道能级降低,消除简并态。
33. 结构基元:点阵结构中每个点阵点所代表的具体内容,即包括原子或分子的种类、数量及其在空间按一定方式排列的结构单元。
34. 晶胞:在晶体的三位周期结构中,按照晶体内部结构的周期性,划分出一个个大小和形状完全相同的平行六面体,作为晶体结构的基本重复单位,称为晶胞。
35. 素晶胞:能用一个点阵点代表晶胞中全部的内容者称为素晶胞,它即为一个结构基元。
36. 复晶胞:含两个或两个以上结构基元的晶胞称为复晶胞。
37. 系统消光:许多衍射有规律地、系统地不出现,衍射强度为零。
38. 金属键:在三维空间中运动、离域范围很大的电子,与正离子吸引胶合在一起,形成金属晶体,金属的这种结合力称为金属键。
?
39. 原子化焓:指1mol金属变成气态原子所吸收的能量。
40. 离子化合物:指由正负离子结合在一起形成的化合物,它一般由电负性较小的金属元素与电负性较大的非金属元素生成。
41. 离子键:正负离子之间由静电作用力结合在一起,所形成的化学键称为离子键。
42. 离子的极化:指离子本身带有电荷,形成一个电场,离子在相互电场的作用下,电子分布的中心偏离原子核,而发生电子云变形,这种变形称为离子的极化。
43. 分子识别:分子识别是由于不同分子间的一种特殊的、专一的相互作用,它既满足相互结合的分子间的空间要求,也满足分子间各种次级键力的匹配。
44. 超分子自组装:指一种或多种分子,依靠分子间相互作用,自发地结合起来,形成分立的或延伸的超分子。
45. σ-π配键:分子一方面提供孤对电子给予中心金属原子的空轨道形成σ配键,另一方面又有空的反键π﹡轨道可以和金属原子的d轨道形成π键,这种π键由金属原子单方面提供电子,也称反馈π键,这两方面的键合称为σ-π配键。
46. 八偶律:指一个由主族元素(H和He除外)组成的分子,其中每个原子都倾向于达到稳定的8个电子的电子组态。
这8个电子由原子本身的价电子和与它成键的其他原子提供,使分子中成键分子轨道和非键轨道都填满电子,而HOMO和LUMO间的能级差较大。
47. 点阵参数\晶胞参数:矢量a,b,c的长度a,b,c及其相互间的夹角α,β,γ称为点阵参数或晶胞参数。
48. 价电子对:价电子是理论上可以参与成键的电子。
49. 成对能:指自旋平行分占两个轨道的电子被挤到同一轨道上自旋相反,这两种状态间的能量差。
)
50. 螯合效应:指由螯合配位体形成的配位化合物,一般要比相同配位数和相同配位原子的单啮配位体形成的配位化合物稳定的效应。
51. 密置双层:由两层密堆积球紧密堆积形成的双层,称为密置双层。