特别是大体积混凝土工程如水利工程中的混凝土大坝等模板
- 格式:doc
- 大小:148.50 KB
- 文档页数:17
建筑工程大体积混凝土施工问题及技术措施摘要:本文就建筑工程大体积混凝土施工过程中存在的问题进行了总结与分析,并结合这些问题提出了建筑大体积混凝土施工过程中技术措施,以供读者参考。
关键词:建筑工程;大体积混凝土;施工重点;质量控制伴随着我国社会经济的不断发展,超高层建筑的数量不断增多,大体积混凝土的应用得到了广泛的应用。
在温度应力的作用下,大体积混凝土结构容易产生裂缝,严重影响到建筑结构的安全和使用耐久性。
因此,我们需要加强高层建筑基础的大体积混凝土施工质量。
本文结合笔者的工程实践,针对建筑工程大体积混凝土施工难点及质量控制措施进行探讨。
1 建筑工程大体积混凝土概述建筑工程大体积混凝土常出现于高层建筑、水利大坝等工程中,相比普通混凝土工程,其体积较大,表面系数偏小,水泥水化热释放较为集中,在浇筑过程中混凝土内部的温度升温速度较快,容易出现内外温差,如果不加以管控,容易出现温度裂缝,影响混凝土结构质量,造成安全隐患。
因此,在大体积混凝土施工过程中,不仅需控制混凝土的横截面,还需要根据工程建设的实际情况合理设计混凝土的平面尺寸,并据此科学把控其温度,采取有效的温度控制方法,以避免出现过大的温度应力影响最终的施工质量。
2 建筑工程大体积混凝土施工存在的问题当前,建筑工程大体积混凝土施工中存在着一些问题,主要体现在以下方面:首先,在实际施工过程中,施工质量管理模式过于传统,只关注施工过程中的工艺流程及人员的操作情况,忽视了施工前的准备工作,没有根据混凝土施工的实际情况制订适宜的施工方案,以至于后续施工开展较为艰难,施工效率得不到提升,容易出现质量问题,直接影响工程建设的整体效益;在施工阶段没有重视天气因素,未根据天气变化做好施工应急准备,无法保障建筑工程大体积混凝土施工工作的顺利开展。
其次,当前在大体积混凝土施工过程中采用的施工工艺还需优化。
比如,没有根据工程建设的实际情况进行科学配比,导致混凝土质量不达标;忽视温度控制,以至于混凝土容易出现裂缝;在混凝土浇筑施工时出现间断,影响最终的浇筑质量等。
水利工程大体积混凝土施工概论在水利工程中,修建大坝、涵洞和引水道都需要进行大体积混凝土的施工。
在混凝土结构中,如果其所有断面都不小于一米,那么就是大体积混凝土。
大体积混凝土在进行构造时所用的混凝土量大,外部体积也较大,在内部结构上钢筋的分布也很多,在进行具体的水利工程施工时影响其质量的影响因素也特别多。
大体积混凝土的施工关系着整个工程的施工质量,对其施工应给与高度的关注,因为一旦大体积混凝土出现开裂的现象,整个施工项目都会受到影响。
1、大体积混凝土的施工技术1.1优化混凝土的配合比设计(1)在配制混凝土时,要选用合适的水泥和外加剂,在选择水泥时,要以水泥的水化热作为依据,尽量选择具有较小水化热的硅酸盐水泥或者由矿渣和硅酸盐相混合的水泥,选择外掺加时要综合考虑水利工程的实际情况和水泥的适应程度以及实际表现效果,外加剂的选用原则有一条:有减少混凝土水化热的作用。
(2)大体积混凝土的配合比该怎样来设置,对于配合比的设置主要目的是为了使混凝土水化热得到降低、工程施工方便、具有较强的稳定性。
通过各方面的综合考虑最终决定混凝土的配合比设置。
在确定配合比时,我们要注意以下三点:未避免水化热的产生,在大体积混凝土的结构强度允许下,尽量减少水泥的使用量和水与胶的配比;为了使混凝土的形状不易发生改变,在施工和泵送浇筑不受影响的条件下,将含砂量控制在5-40 %范围内;在工程混凝土施工中要尽最大可能减少用水量,使缓解凝固的时间在20小时左右。
(3)关于大体积混凝土的制作和传送。
在使用混凝土之前一定要对其进行严格的检测,使混凝土的强度、倒塌程度、水泥水化热,体积伸缩特性、吐水量、可泵特性等都符合大混凝土施工的条件。
在对混凝土进行传送方面,运载混凝土的混凝土搅拌运输车一定要可以预防风吹日晒以及雨水和寒冷。
运输车要边运输边搅拌,这样可以避免混凝土的分层现象以及微凝固现象。
为了保证施工的质量,一旦混凝土的坍落度不符合要求,就应该放弃用作大体积混泥土的浇筑,为了防止浪费,可以用到其他施工项目中。
2021国家开放大学电大本科《高层建筑施工》期末试题及答案(试卷号:1192)2021国家开放大学电大本科《高层建筑施工》期末试题及答案(试卷号:1192)一、单项选择题(每题2分,共20分)1.《民用建筑设计通则》将建筑耐久年限分为()。
A.三级B.四级C.五级D.六级2.地下水一般分为()三类。
A.上层滞水、潜水和承压水B.上层滞水、无压水和承压水C.上层滞水、潜水和无压水D.潜水、无压水和承压水3.多级真空井点的降水深度不超过()。
A.6mB.8mC.12mD.15m4.根据《建筑基坑支护技术规程》,基坑侧壁的安全等级分为()。
A.二级B.三级C.四级D.五级5.地下连续墙按其成墙方式分为()。
A.土质墙、混凝土墙、钢筋混凝土墙和组合墙B.桩排式、壁板式、桩壁组合式C.临时挡土墙、防渗墙、用作主体结构兼作临时挡土墙D.挡土的临时围护结构、既是临时围护结构又作为永久结构的边墙、作为永久结构边墙一部分叠合墙和重合墙6.支护工程勘察的勘探点深度一般根据()确定。
A.开挖深度B.设计要求C.工程条件D.地层条件7.土层锚杆的验收试验是为了()。
A.验证设计的锚固长度是否足够安全B.核定锚杆是否已达到设计预定的承载能力C.确认设计荷载的安全性D.取得锚杆变位性状的数据8.关于P4515钢模板说法不正确的是()。
A.平面模板B.模板宽度450mmC.模板长度1500mm.D.模板长度150mm9.埋弧压力焊的焊接工艺是()。
①电弧;②电渣;③顶压过程;④引弧A.①→②→③→④B.④→①→②→③C.②-+①→③→④D.④→②→①→③10.低合金钢的牌号按屈服点大小,分为()等五种。
A.Q195,Q215,Q235、Q275.Q295B.Q215,Q235.Q275.Q295.Q345C.Q235.Q275.Q295.Q345.Q390D.Q295.Q345。
Q390,Q420。
Q460二、多项选择题(每题4分,共40分,错选、多选不得分;少选、漏选,每选对一个,得1分)11.真空井点设备主要由()组成。
温度应力是水利、土木等工程中的一个重要问题。
特别是大致积混凝土工程, 如水利工程中的混凝土大坝等, 由于变温引起的拉应力往往超过荷载引起的拉应力, 其数值可能超过混凝土的抗拉强度, 常常会使混凝土结构产生裂缝, 危及结构的安全。
因此, 细致地分析结构中的温度应力, 相应采取必要的温度控制措施, 是工程技术人员必须考虑的一个问题。
在土木工程领域中会遇到大量作用问题, 因而对它的研究具有十分重要的意思。
例如, 工业建筑的生产车间, 由于外界温度的变化, 直接影响到屋面板混凝土内部的温度分布, 产生不同的温度应力和温度变形; 各类结构温度伸缩缝的设置方法以及大小和间距等的优化设计, 也必须建立在对温度应力和变形的准确计算上; 还有诸如板壳的热应力和热应变, 相应得翘曲和稳定问题; 地基低温变形引起基础的破裂问题; 构件的合理设计问题; 温度变化下断裂问题的分析计算; 热应力下构件的合理设计问题; 浇注大致积混凝土, 例如高层建筑筏板基础的浇捣, 水化热温升和散热阶段的温降引起贯穿裂缝; 对混合结构的房屋, 因屋面温度应力引起开裂渗漏; 浅埋结构土的温度梯度影响等等。
要分析温度应力, 首先要计算温度场。
水利、土木工程中的混凝土结构是弹性-徐变体, 不但具有弹性性质, 而且具有显著的徐变性质。
因此, 分析混凝土结构的温度应力, 必然要涉及徐变应力的分析。
温度应力, 是物体中由于温度改变(即变温)而产生的应力, 与温度本身无关。
当物体中发生变温时, 它的每一部分都将由于变温而引起热胀冷缩的变形。
这种变形受到物体内部各部分之间的相互约束和边界上的外部约束的制约, 并不能完全自由地发生, 有约束就产生约束力, 即所谓温度应力。
温度应力是水利、土木、机械、航空等工程中经常遇到的一个重要问题。
温度应力的分析是必须重视的问题。
首先, 温度应力常常超过荷载引起的应力。
例如, 设混凝土的弹性模量为E=2×104MPa, 热胀系数为α=10-5/℃, 若杆件中发生变温T=1℃时, 将发生自由的温度变形ε=αT=10-5。
科目:现代施工技术教师:姚刚(教授)姓名:徐士杰学号:20121613163专业:土木工程类别:建筑与土木工程上课时间:2012年10月- 11月考生成绩:阅卷评语:_________________________________ _________________________________________ 阅卷教师 (签名) _____________重庆大学研究生院制大体积混凝土施工技术及应用徐士杰(重庆大学土木工程学院)【摘要】:近年来,随着建筑行业的迅猛发展,大体积混凝土得到了越来越广泛的应用,如混凝土大坝、高层建筑的地下室混凝土底板都是用大体积混凝土浇筑而成的。
目前由于大面积混凝土自身结构的特点,外载荷引起裂缝的可能性较小,水泥水化过程中释放的水化热造成了温度的变化和水泥土的收缩,其产生的应力是引起裂缝的主要原因。
根据本工程的实践经验我们可以得出结论:大体积混凝土结构设计必须合理,计算方法必须采用一般内力计算方法和有限元分析相结合;施工前必须选择合适的施工工艺,制定合理的施工方案;裂缝控制是大体积混凝土施工质量的控制关键。
通过大量的工程实践调查发现:大体积混凝土在施工期间出现的裂缝数量及危害程度都要远远大于结构使用期间出现的裂缝,因此如何控制和防止大体积混凝土产生的裂缝是本文研究的重点。
特别在施工中混凝土浇筑后水泥的水化热量大且聚集在构件内部,形成较大的内外温差,容易造成混凝土表面产生收缩裂缝等。
因此,在施工各个环节均要做好工作。
本文首先对大体积混凝土裂缝产生的原因进行分析,并在此基础上提出大体积混凝土施工技术措施。
【关键词】:大体积混凝土;裂缝;有限元分析;施工工艺;技术措施Large volume concrete construction technologyand applicationXu Shijie(Faculty of Civil Engineering, Chongqing University)Abstract: in recent years, with the rapid development of the construction industry, mass concrete have been applied more and more, such as concrete dam, high-rise building is the basement of the concrete slabs with mass concrete casting and become. At present due to the characteristics of the structure of large area concrete itself, the load less likely to cause crack, cement hydration processes of the release of the hydration heat caused the change of the temperature and water contraction of the soil, which produces stress is caused by the main cause of cracks. We can include that massconcrete structure designing must be reasonable we must use the general method of calculating internal forces and finite element analysis as same when we calculating. A suitable construction technology must be choose and a reasonable construction plan must be draw up before construction,crack control for quality of mass concrete is the key of construction. Through the survey for the practice of engineering, we found that the number of mass concrete cracks and its damaged during on construction is far greater than the structure usage Period, therefore how to control and prevent the mass concrete cracks is the focus of the study in this paper. In particular the cement hydration heat in construction of concrete after pouring is large and gathered in components in-house,the difference of temperature of inside and outside is greatly it is easily lead to shrinkage cracks in the concrete surface .Therefore,in all aspects of construction are need to do a good job. Analysis of mass concrete crack firstly in this paper, and proposed the construction technology of mass concrete measures on this basis.Key words:mass concrete; crack; finite element analysis;construction plan;construction technology1大体积混凝土在应用中存在的问题1.1大体积混凝土在施工实践中易发生的问题大体积混凝土基础的特点是混凝土浇筑面和浇筑量大,当混凝土浇筑完毕,由于水泥水化热影响,使混凝土内部最高温度3-5天达到峰值,此时若混凝土内部最高温度与外界气温之差超过25℃,在升温阶段和降温阶段,容易发生表面裂缝和收缩裂缝。
浅谈大体积混凝土施工质量控制摘要:介绍大体积混凝土在现代建筑工程建设中占有重要地位,但因大体积混凝土施工期受外界与自身温度变化的影响,往往会引起各种形式的裂缝,破坏其整体性,危及建筑物的安全,因此大体积混凝土防裂问题一直受到人们的普遍关注。
随着人们的重视,大体积混凝土裂缝带来的质量因素是可以预防的。
关键词:大体积混凝土;质量通病;裂缝;控制近年来,随着建筑行业的迅猛发展,大体积混凝土得到了越来越广泛的应用,如混凝土大坝、高层建筑的地下室混凝土底板都是用大体积混凝土浇筑而成的。
但在建造和使用过程中,有关因出现裂缝而影响工程的质量甚至导致结构垮塌的事故也时有发生,各种形式的裂缝,破坏其整体性,危及建筑物以及人生的安全;关系到千家万户的生命财产安全,因此大体积的混凝土防裂问题受到重视。
大体积混凝土:指浇筑的混凝土体积大,一般实体最小尺寸大于或等于0.8立方米的混凝土,它经常用于高层建筑的基础、大型设备基础、水利大坝、核反应堆外壳等工程的施工中,如果在施工过程中控制不好将会产生裂缝,破坏结构的整体性和稳定性,其后果不堪设想。
大体积混凝土具有结构体积大、承受荷载大、水泥水化热大、内部受力相对复杂等结构特点。
在施工上,结构整体性要求高,一般要求整体浇筑,不留施工缝。
这些特点的存在,导致在工程实践中,大体积混凝土出现其特有的质量通病,常有以下几种类型:(1)施工冷缝:因大体积混凝土的混凝土浇筑量大,在分层浇筑中,前后分层没有控制在混凝土的初凝之前;混凝土供应不足或遇到停水、停电及其它恶劣气候等因素的影响,致使混凝土不能连续浇筑而出现冷缝。
(2)泌水现象:上、下浇筑层施工间隔时间较长,各分层之间产生泌水层,它将导致混凝土强度降低、脱皮、起砂等不良后果。
混凝土表面水泥浆过厚。
因大体积混凝土的量大,且多数是用泵送,因此在混凝土表面的水泥浆会产生过厚现象。
早期温度裂缝。
在混凝土浇筑后由于早期内外温度差过大(25℃以上)的影响,大体积混凝土会产生两种温度裂缝:(1)表面裂缝:大体积混凝土浇筑后水泥的水化热量大,由于体积大,水化热聚集在内部不易散发,混凝土内部温度显着升高,而表面散热较快,这样形成较大的内外温差,内部产生压应力,表面产生拉应力,而砼的早期抗拉强度很低,因而出现裂缝。
大体积混凝土施工应该注意哪些地方大体积混凝土施工应该注意哪些地方一、大体积混凝土简述:现代建筑中时常涉及到大体积混凝土施工,如高层楼房基础、大型设备基础、水利大坝等。
它主要的特点就是体积大,一般实体最小尺寸大于或等于1m。
它的表面系数比较小,水泥水化热释放比较集中,内部温升比较快。
混凝土内外温差较大时,会使混凝土产生温度裂缝,影响结构安全和正常使用。
所以必须从根本上分析它,来保证施工的质量。
二、大体积混凝土的裂缝大体积混凝土内出现的裂缝按深度的不同,分为贯穿裂缝、深层裂缝及表面裂缝三种。
贯穿裂缝是由混凝土表面裂缝发展为深层裂缝,最终形成贯穿裂缝。
它切断了结构的断面,可能破坏结构的整体性和稳定性,其危害性是较严重的;而深层裂缝部分地切断了结构断面,也有一定危害性;表面裂缝一般危害性较小。
但出现裂缝并不是绝对地影响结构安全,它都有一个最大允许值。
处于室内正常环境的一般构件最大裂缝宽度≤0.3mm;处于露天或室内高湿度环境的构件最大裂缝宽度≤0.2mm。
对于地下或半地下结构,混凝土的裂缝主要影响其防水性能。
一般当裂缝宽度在0.1~0.2mm时,虽然早期有轻微渗水,但经过一段时间后,裂缝可以自愈。
如超过0.2~0.3mm,则渗漏水量将随着裂缝宽度的增加而迅速加大。
所以,在地下工程中应尽量避免超过0.3mm贯穿全断面的裂缝。
如出现这种裂缝,将大大影响结构的使用,必须进行化学灌浆加固处理。
大体积混凝土施工阶段所产生的温度裂缝,一方面是混凝土内部因素:由于内外温差而产生的;另一方面是混凝土的外部因素:结构的外部约束和混凝土各质点间的约束,阻止混凝土收缩变形,混凝土抗压强度较大,但受拉力却很小,所以温度应力一旦超过混凝土能承受的抗拉强度时,即会出现裂缝。
这种裂缝的宽度在允许限值内,一般不会影响结构的强度,但却对结构的耐久性有所影响,因此必须予以重视和加以控制。
产生裂缝的主要原因有以下几方面:1、水泥水化热水泥在水化过程中要释放出一定的热量,而大体积混凝土结构断面较厚,表面系数相对较小,所以水泥发生的热量聚集在结构内部不易散失。
大体积混凝土施工工艺及裂缝控制2008-7-18 14:32随着建筑施工技术飞速发展,现代建筑中经常涉及到大体积混凝土施工,如高层楼房基础、大型设备基础、水利大坝等,其主要特点是体积大,表面小,水泥水化热释放较集中,内部温升较快。
当混凝土内外温差较大时,会产生温度裂缝,影响结构安全和正常使用,所以必须从根本上加以分析,来保证施工的质量。
大体积混凝土内出现的裂缝按深度的不同,分为贯穿裂缝、深层裂缝及表面裂缝3种。
贯穿裂缝是由混凝土表面裂缝发展为深层裂缝,最终形成贯穿裂缝。
它切断了结构的断面,可能破坏结构的整体性和稳定性,其危害性较严重。
而深层裂缝部分地切断了结构断面,也有一定危害性。
表面裂缝一般危害性较小,但也影响外观质量。
出现裂缝并不是绝对地影响结构安全,它有一个最大允许值。
处于室内正常环境的一般构件最大裂缝宽度≤0.3毫米;处于露天或室内高湿度环境的构件最大裂缝宽度≤0.2毫米。
对于地下或半地下结构,混凝土的裂缝主要影响其防水性能。
一般当裂缝宽度在0.1~0.2毫米时,虽然早期有轻微渗水,但经过一段时间后,裂缝可以自愈。
如超过0.2~0.3毫米,则渗漏水量将随着裂缝宽度的增加而迅速加大。
所以,在地下工程中应尽量避免超过0.3毫米贯穿全断面的裂缝。
如出现这种裂缝,将大大影响结构的使用,必须进行化学灌浆加固处理。
大体积混凝土施工阶段所产生的温度裂缝,一方面是混凝土内部因素:由内外温差而产生的;另一方面是混凝土的外部因素:结构的外部约束和混凝土各质点间的约束,阻止混凝土收缩变形,混凝土抗压强度较大,但抗拉能力却很小,所以温度应力一旦超过混凝土能承受的抗拉强度时,即会出现裂缝。
这种裂缝的宽度在允许限值内,一般不会影响结构的强度,但却对结构的耐久性有所影响,因此必须予以重视和加以控制。
而产生裂缝的主要原因有水泥水化热、外界气温变化和混凝土的收缩等造成。
如何控制这几方面对结构耐久性的影响呢?一、大体积混凝土的配合比设计1.水泥的选用:应尽量选用水化热低、凝结时间长的水泥,优先采用中热硅酸盐水泥、低热矿渣硅酸盐水泥、大坝水泥、矿渣硅酸盐水泥、粉煤灰硅酸盐水泥、火山灰质硅酸盐水泥等。
大体积混凝土结构裂缝成因及预防措施1. 大体积混凝土简述现代建筑中时常涉及到大体积混凝土施工,如高层楼房基础、大型设备基础、水利大坝等。
它主要的特点就是体积大:混凝土浇注量大于100平方米;长、宽、高任意一边不小于1米。
大体积混凝土水泥水化热释放比较集中,内部温升比较快。
混凝土内外温差较大时,会使混凝土产生温度裂缝。
其他因素也会导致大体积混凝土出现裂缝,影响结构安全和正常使用。
所以必须从根本上分析它,来保证施工的质量。
2. 大体积混凝土结构裂缝的概念混凝土结构在建设和使用过程中出现不同程度、不同形式的裂缝,这是一个相当普遍的现象。
大体积混凝土结构出现裂缝更普遍。
在全国调查的高层建筑地下结构中,底板出现裂缝的现象占调查总数的20%左右,地下室的外墙混凝土出现裂缝的现象占调查总数的80%左右。
所以,混凝土结构的裂缝是建筑工程长期困扰的一个技术难题,一直未能很好地解决。
国内外工程技术界都认为,规定钢筋混凝土结构的最大裂缝宽度主要是为了保证钢筋不产生锈蚀。
不同的规范中有关允许最大裂缝宽度的规定虽不完全一致,但基本相同。
如在正常的空气环境中裂缝允许宽度为0.3~0.4mm;在轻微腐蚀介质中,裂缝允许宽度为0.2~0.3mm;在严重腐蚀介质中,裂缝允许宽度为0.1~0.2mm。
但对建筑物的抗裂缝要求过严,必将付出巨大的经济代价。
科学的要求是将其有害程度控制在允许范围之内。
根据国内外的调查资料,工程实践中结构物的裂缝原因,属于由变形变化(温度、湿度、地基变形)引起的约占80%以上,属于荷载引起的约占20%左右。
在大体积混凝土工程施上中,由于水泥水化热引起混凝土浇筑内部温度和温度应力剧烈变化,从而导致混凝土发生裂缝。
因此,控制混凝土浇筑块体因水化热引起的温升、混凝土浇筑块体的内外温差及降温速度,防止混凝土出现有害的温度裂缝(包括混凝土收缩)是其施工技术的关键问题。
3. 大体积混凝土裂缝的原因大体积混凝土结构裂缝的发生是由多种因素引起的。
大体积混凝土工程ppt课件•大体积混凝土工程概述•大体积混凝土材料性能•大体积混凝土施工技术•大体积混凝土温度控制与防裂措施目•大体积混凝土质量检查与验收标准•大体积混凝土工程案例分析录01大体积混凝土工程概述定义与特点定义大体积混凝土工程是指结构断面最小尺寸在80cm以上,水化热引起混凝土内的最高温度与外界气温之差预计超过25℃的混凝土工程。
特点结构厚实,混凝土量大,工程条件复杂,施工技术要求高,水泥水化热使结构产生温度和收缩变形等。
工程应用背景应用领域大体积混凝土工程广泛应用于建筑、水利、交通等基础设施建设领域,如高层建筑基础、大坝、桥梁等。
工程背景随着现代工程技术的不断发展,大体积混凝土工程规模越来越大,对混凝土性能的要求也越来越高。
发展趋势与挑战发展趋势大体积混凝土工程正向更高性能、更环保、更智能的方向发展,如高性能混凝土、绿色混凝土、智能混凝土等。
挑战大体积混凝土工程面临着施工难度大、质量控制难、裂缝控制难等挑战,需要不断研究和探索新的技术方法和材料。
02大体积混凝土材料性能水泥骨料外加剂掺合料原材料选择与要求01020304选用低热水泥,减少水化热,降低温度应力。
选用级配良好、粒径较大的粗骨料,减少用水量,降低收缩。
使用减水剂、缓凝剂等,改善混凝土和易性,减少水泥用量。
适量掺入粉煤灰、矿渣等活性掺合料,提高混凝土后期强度,减少收缩。
配合比设计原理根据工程要求,设计合适的强度等级。
降低水灰比,减少收缩和开裂风险。
通过试验确定最佳骨料级配,提高混凝土密实度。
确保混凝土具有良好的和易性、流动性和保水性。
满足强度要求控制水灰比优化骨料级配考虑施工性能抗压强度抗裂性能耐久性变形性能力学性能与耐久性大体积混凝土具有较高的抗压强度,能够承受较大的荷载。
大体积混凝土具有良好的耐久性,能够抵抗环境侵蚀和破坏。
通过优化配合比和采取温控措施,提高混凝土的抗裂性能。
在荷载作用下,大体积混凝土能够产生一定的变形,但不会发生破坏。
大体积混凝土设置测温点的要求大体积混凝土设置测温点的要求背景介绍大体积混凝土常用于桥梁、水利工程、核电站等重要建筑,因其具有强度高、耐久性好等特点。
在大体积混凝土浇注过程中,由于其体积较大、硬化过程较缓慢,可能会产生温度应力引起的开裂问题。
为了有效监控混凝土温度变化,并采取适当的措施防止开裂,设置测温点是十分必要的。
相关要求1.位置选择:测温点的位置应尽可能靠近混凝土内部,且在预估的最大温度应力区域范围内。
通常选择混凝土矩形截面的中心位置或者距离边界一定距离的位置。
例如,在桥梁混凝土梁的测温点设置中,可以选择梁截面中心位置或者离底部一定深度的位置。
2.数量要求:测温点应根据混凝土的体积和结构特点合理确定,一般建议设置多个测温点进行监测。
例如,在混凝土大坝的测温点设置中,可以根据大坝的长度和高度,设置若干个测温点,以实现全面的温度监测。
3.测量方法:测温点应选取适当的测量方法进行监测,常见的方法包括钻孔式测温、电缆测温、光纤测温等。
例如,在核电站厂房混凝土浇筑过程中,可以采用埋设电缆进行连续测温,对混凝土的温度进行实时监测。
4.数据记录:测温点应有有效的数据记录和管理系统,方便对温度变化进行分析和评估,并及时采取措施以防止温度应力引起的开裂。
例如,在高速公路桥梁混凝土浇筑过程中,可以使用数据记录仪和远程传输系统,将测温点获取的数据发送至监测中心,实现对温度变化的实时监控和预警处理。
结论大体积混凝土设置测温点是确保混凝土结构安全可靠的重要手段。
通过合理选择位置、数量、测量方法和数据记录系统,可以及时获得混凝土的温度信息,提前预警并采取措施以防止开裂问题的发生。
这对于保证工程质量和延长混凝土结构的使用寿命都具有重要意义。
5.监测频率:对于大体积混凝土,温度变化可能会较慢,因此需要设置合理的监测频率。
根据混凝土的特性和项目需求,确定监测频率,一般建议在混凝土浇筑前、浇筑中和硬化后分别进行测温。
例如,在水利工程大坝的混凝土浇筑过程中,可在浇筑前设置测温点进行预测,浇筑中进行实时监测,硬化后进行稳定监测,以确保温度变化的全面掌握。
大体积混凝土的施工工艺一、大体积混凝土简述:现代建筑中时常涉及到大体积混凝土施工, 如高层楼房基础、大型设备基础、水利大坝等。
它主要的特点就是体积大,一般实体最小尺寸大于或等于1m它的表面系数比较小,水泥水化热释放比较集中,内部温升比较快。
混凝土内外温差较大时,会使混凝土产生温度裂缝,影响结构安全和正常使用。
所以必须从根本上分析它,来保证施工的质量。
二、大体积混凝土的裂缝大体积混凝土内出现的裂缝按深度的不同,分为贯穿裂缝、深层裂缝及表面裂缝三种。
贯穿裂缝是由混凝土表面裂缝发展为深层裂缝,最终形成贯穿裂缝。
它切断了结构的断面,可能破坏结构的整体性和稳定性,其危害性是较严重的;而深层裂缝部分地切断了结构断面,也有一定危害性;表面裂缝一般危害性较小。
但出现裂缝并不是绝对地影响结构安全,它都有一个最大允许值。
处于室内正常环境的一般构件最大裂缝宽度w 0.3mm处于露天或室内高湿度环境的构件最大裂缝宽度w 0.2mm 对于地下或半地下结构,混凝土的裂缝主要影响其防水性能。
一般当裂缝宽度在0.1~0.2mm 时,虽然早期有轻微渗水,但经过一段时间后,裂缝可以自愈。
如超过0.2~0.3mm,则渗漏水量将随着裂缝宽度的增加而迅速加大。
所以,在地下工程中应尽量避免超过0.3mm贯穿全断面的裂缝。
如出现这种裂缝,将大大影响结构的使用,必须进行化学灌浆加固处理。
大体积混凝土施工阶段所产生的温度裂缝,一方面是混凝土内部因素:由于内外温差而产生的;另一方面是混凝土的外部因素:结构的外部约束和混凝土各质点间的约束,阻止混凝土收缩变形,混凝土抗压强度较大,但受拉力却很小,所以温度应力一旦超过混凝土能承受的抗拉强度时,即会出现裂缝。
这种裂缝的宽度在允许限值内,一般不会影响结构的强度,但却对结构的耐久性有所影响,因此必须予以重视和加以控制。
产生裂缝的主要原因有以下几方面:1 、水泥水化热水泥在水化过程中要释放出一定的热量,而大体积混凝土结构断面较厚,表面系数相对较小,所以水泥发生的热量聚集在结构内部不易散失。
一、大体积混凝土的定义及特点现代建筑中时常涉及到大体积混凝土施工,如高层楼房基础、大型设备基础、水利大坝等,在桥梁工程中也经常用到大体积混凝土,如大型桥墩,沉井,桥台、桥塔等。
随着我国桥梁的发展,在桥梁上施工大体积混凝土的情况越来越多,而大体积混凝土施工的特殊性,需要专门研究。
1.1 相关定义中国公路桥涵施工技术规范(JTG/T F50-2011)规定:现场浇筑的最小边尺寸为1~3m 且必须采取措施以避免水化热引起的温差超过25℃的混凝土称为大体积混凝土。
而日本建筑学会标准(JASS5)规定:“结构断面最小厚度在80cm以上,同时水化热引起混凝土内部的最高温度与外界气温之差预计超过25℃的混凝土,称为大体积混凝土”。
美国混凝土学会给出了大体积混凝土的定义:任何现浇混凝土,其尺寸达到必须解决水化热及随之引起的体积变形问题,以最大限度的减少开裂影响的,即称为大体积混凝土。
从上面定义可以看到大体积混凝土从直观上来看就是尺寸较大的混凝土,并且都考虑到水化热对混凝土的影响。
就各个规范给出的定义来看,美国混凝土学会给出了较为笼统的定义,而中国和日本都给出了定量的定义,但日本给出的限制更为明显,具体变现为当混凝土厚度在80cm以上都归为大体积混凝土,小于中国规范中的1~3m。
1.2 大体积混凝土特点正如1.1中的定义所说,大体积混凝土一次性浇筑的混凝土体积量大,水化热引起混凝土内部和外界气温较大的温差,因而容易引起开裂及随之而来的其他问题。
具体表现为:混凝土设计强度较高,单方水泥用量较多,水化热引起的混凝土内部温度较一般混凝土要大的多;结构断面内配筋较多,整体性要求较高;基础结构大多埋置地下,虽然受外界温度变化的影响较小,但要求抗渗性能较高。
大体积混凝土裂缝产生的原因可分为两类:一是结构型裂缝,是由外荷载引起的,包括常规结构计算中的主要应力以及其他的结构次应力造成的受力裂缝。
二是材料型裂缝,是由非受力变形变化引起的,主要是由温度应力和混凝土的收缩引起的。
大体积混凝土水利工程的混凝土大坝、高层建筑的深基础底板、其他重力底座结构物等,由于具有结构厚、体积大、混凝土数量多、工程条件复杂和施工技术要求高等特点,则形成一种特殊的混凝土,这就是体积较大又就地浇注、成形、养护的混凝土—大体积混凝土。
大体积混凝土定义关于大体积混凝土的定义,目前国内外尚无一个统一的规定。
美国混凝土协会(ACI)规定:“任何就地浇注的大体积混凝土,其尺寸之大,必须要求采取措施解决水化热及其随之引起的体积变形的问题,以最大的限度减少开裂。
”日本建筑学会标准(JASS5)中规定:“结构断面最小尺寸在80cm以上同时水化热引起混凝土内的最高温度与外界气温之差,预计超过25℃的混凝土,称之为大体积混凝土。
”大体积混凝土的结构特点由于大体积混凝土结构的截面尺寸较大,所以由外荷载引起的裂缝可能性很小。
但水泥在水化反应过程中释放的水化热产生的温度变化和混凝土收缩的共同作用,将会产生较大的温度应力和收缩应力,这就是大体积混凝土结构出现裂缝的主要原因。
这些裂缝往往给工程带来不同程度的危害,甚至造成严重的经济损失,如何让进一步认识温度应力、防止温度变行裂缝的开展,是大体积混凝土结构施工中的一个重大课题。
关于大体积混凝土的内外温差控制指标,国内外至今还没有一个明确、统一的标准。
根据日本施工经验,一般控制在25℃以内,也有工程控制在30℃获得成功的。
工程实践表明:混凝土的温升和温差和表面系数有关,单面散热的结构断面最小厚度在75cm以上,双面散热的结构断面最小厚度在100 cm以上,水化热引起的混凝土内外温差预计超过25℃,应该按照大体积混凝土施工。
由于大体积混凝土工程的条件比较复杂,施工情况各异,再加上混凝土原材料的材性差别较大,因此,控制温度变性裂缝不是单纯结构理论问题,而是设计结构计算、构造设计、结构组成、物理力学性能以及施工工艺等多学科的综合性问题。
目前,新的观点指出,所谓大体积混凝土,是指其结构尺寸达到必须采取相应的技术措施、妥善处理内外温差、合理处理解决温度应力、并按裂缝开展控制的混凝土。
大体积混凝土施工王锦山西四建集团有限公司.摘要:本文就大体积砼的施工技术方法及质量控制等方面的问题进行了分析与探讨。
关键词:大体积砼;施工方法;质量控制中图分类号:O213.1 文献标识码:A近年来,随着建筑行业的迅速发展,建筑越来越新颖化,施工技术也不断更新,高层建筑的发展,其基础多采用了箱基、筏基等大体积混凝土,因此大体积混凝土施工技术的得到了广泛的应用。
在我国工程建设领域中经常涉及到大体积混凝土施工,如大型桥台、高层楼房基础、大型设备基础、水利大坝等。
它主要的特点就是体积大,一般实体最小尺寸大于或等于1m。
它的表面系数比较小,水泥水化热释放比较集中,内部温升比较快。
混凝土内外温差较大时,会使混凝土产生温度裂缝,影响结构安全和正常使用。
一、大体积混凝土的特点1、混凝土设计强度较高,单方水泥用量较多,水化热引起的混凝土内部温度较一般混凝土要大的多;2、结构断面内配筋较多,整体性要求较高;3、基础结构大多埋置地下,虽然受外界温度变化的影响较小,但要求抗渗性能较高。
二、大体积混凝土施工中存在的问题1、运输的问题。
根据路线的比短、交通的状况,随时增减车辆,保证混凝土的正常供应,连续浇注,避免因混凝土供应不上而出现冷缝。
混凝土运输时间在任何情况下不得大于180min,对到达浇筑点超过210min的混凝土不得使用。
混凝土运输车离开搅拌站后不得掺加任何材料,包括水、外加剂等。
混凝土坍落度在运输过程中损失超过40mm或混凝土到达浇筑点温度大于25℃,不得浇筑到作业面。
要求从每个搅拌站每隔一段时间就派出一辆混凝土罐车,保证混凝土供应的均衡性。
因大体积混凝土方量较大,要求搅拌站派管理人员进驻现场指挥、联络、协调,发现问题及时解决。
2、施工材料选择的问题a.水泥的选择。
内部混凝土主要考虑抗裂性能好、兼顾低热和高强两方面的要求,一般采用低热矿渣水泥,中热硅酸盐水泥掺入一定量的粉煤灰。
外部混凝土,除抗裂性能外,还要求抗冻融性、耐磨性、抗蚀性、强度较高及干缩较小,因此一般采用较高标号的中热硅酸盐水泥。
【行业知识】静态爆破原理和施工工艺简介通常被破碎的物体(如混凝土、岩石)的抗压强度很高,但抗拉强度低,静态爆破正是利用其抗拉强度低的特性,进行“爆破”,相比真正的爆破来说,静态爆破所使用工具和材料为非爆炸危险品,施工时不需要雷管炸药,无需办理常规炸药爆破所需要的各种许可证,操作时不需要爆破员等特殊工种。
在建筑土石方工程中不能使用炸药的情况下,静态爆破具有很大的技术优势,所以在这类的工地中使用静态爆破越来越多。
静态爆破有两种:一种是静态爆破碎裂剂,是一种可以通过物理或化学反应引起体积膨胀的材料,其体积膨胀可被应用于材料生产、无声爆破等多个领域。
静态爆破破碎剂(又名无声破碎剂,静力爆破剂,破石剂等),是一种不使用炸药就能使岩石、混凝土破裂的粉状材料。
它的主要成份是生石灰(即氧化钙),还含有一些按一定比例掺入的化合物催化剂。
其破碎介质的原理就是利用装在介质钻孔中的静态破碎剂加水后发生水化反应,产生体积膨胀,将介质破碎。
静态爆破是国际上流行的新型、环保、非爆炸施工材料。
破碎的施工过程也非常简单:对被破碎介质,经过合理的破碎设计(孔径、孔距等的确定)及钻孔,将粉状破碎剂用适量水调成流动状浆体,直接注入钻孔中。
半小时或数小时(主要由水灰比来确定)后,被爆破物体自行胀裂、破碎。
静态爆破是近年来发展起来的一种新的破碎或切割岩石、混凝土的方法,亦称静态迫裂或静态破碎技术。
静态爆破剂适用范围:静态爆破破碎剂适用范围非常广泛,混凝土构筑物的破碎、拆除,如大体积混凝土桩、柱、墩、台、座、基础的破碎与拆除;岩石、矿石等的开采、石料切割;其它不便于炸药爆破的环境条件下混凝土拆除、岩石及矿石开采工程;静态爆破剂施工安全,易管理。
破碎剂与其它普通货物一样可以购买、运输、使用;使用中无声、无振动、无飞石、无毒气、无粉尘,是国际流行的无公害环保产品;施工简单,易操作。
用水搅拌后灌入钻孔中即可;使用方便。
按破碎要求,设计适当的孔径、孔距、角度,能够达到“外科手术式”的分裂、切割岩石和混凝土。
参观水利工程心得体会范文(精选3篇)参观水利工程心得体会1 我们作为水利水电工程专业的学习者,在不久的将来将肩负起祖国的历史重任,为祖国的水利事业创作佳绩。
我们水利工作者的任务是防止水患,减少和降低洪涝灾害对人民生命财产的吞食,和对国民经济损失的加剧。
另外,我们要充分利用水能、水资源,确保人民生命安全和提高人民生活水平,使我国国民经济有所改观。
为此,我们需要认识水,认识水利建筑。
大二刚刚结束,学校组织我们去水库作了一次水库认识实习。
尽管我们的专业课还没有开设,我们没有理论基础,更没有实践和经验,但是这次认识实习对我来说显得很有价值。
水库认识实习的目的是让我们对水利工程有一个深刻的认识,了解自己的任务和应该必备的知识,初步使我们对水工建筑物的主要建筑和设备有个感性认识,为我们以后的专业课学习作基础。
我们的水库认识实习定期为一周时间,在暑假里的7月16号正式拉开了帷幕。
我们水工专业本科4个班,加上专科6个班,共10个班将近300人在辅导员穆老师和其他几个实习指导老师的带领下去口上水库、东武仕水库、岳城水库进行了参观认识实习。
通过此次实习使我更加认识了水库,可以说它就是在河流或江河的支流或干流上横跨一座挡水大坝,使上游蓄水,下游断流而形成的。
当然对大坝的要求是有一定的技术设计含量的,如坝的类型,是建成土石坝,还是浆砌石重力坝,还是建成混凝土大坝等,这些选择将考虑到众多因素,对大坝的高度和宽度,坝形的设计也有讲究,此外还有与之匹配的出水建筑物(溢洪道、泄洪洞、发电洞)、电站等。
水库建成后,它将有一定的库容量,不同的水库按自己的设计和环境的要求,能容纳水量的多少各不相同。
故按库容量的大小可将水库划分为以下几个等级:小型水库:小(二)型:10100万立方米小(一)型:1001000万立方米中型水库:1000万立方米1亿立方米大型水库:大(二)型:1亿立方米10亿立方米大(一)型:大于10亿立方米水库的建造有其重要的作用,主要表现在以下几个方面。
大体积混凝土简要施工要点导言现代建筑中时常涉及到大体积混凝土施工,如高层楼房基础、大型设备基础、水利大坝等,应重视其施工过程控制,以保证工程质量。
工程前期准备在进行房屋建筑大体积混凝土施工之前,要结合建筑工程的具体情况及施工流程进行设计。
同时在对其进行设计之前,要综合考虑到大体积混凝土的强度大小,同时还要明确标明混凝土的强度等级。
此外,还要考虑到混凝土钢筋骨架的温度、规格、硬度及质量。
同时还要特别关注的是,要尽可能地降低大体积混凝土施工区域对工程施工的影响,尽可能将固定隔板的数量进行较少。
如果利用连续浇灌方式进行施工,要注意预留出合适的施工缝,通过施工缝的留置可有效修补可能出现的裂缝,也不会对混凝土的强度及面积产生影响。
施工要点1.材料(1)水泥优先选用质量稳定有利于改善混凝土抗裂性能的水泥。
(2)细骨料使用级配良好的中砂,细度模数大于2.3。
(3)釆用非泵送施工时粗骨料的粒径可适当增大。
(4)选用缓凝型的高效减水剂。
2.配合比(1)配合比的设计除应符合设计强度等级、耐久性、抗渗性、体积稳定性等要求外,还应符合大体积混凝土施工工艺特性的要求,并遵循合理使用材料、降低混凝土绝热温升值的原则。
(2)混凝土拌合物在浇筑工作面的坍落度不大于160mm。
(3)拌合水用量不大于170kg/m。
(4)粉煤灰掺量应适当增加,但不超过水泥用量的40%;矿渣粉的掺量不超过水泥用量的50%,2种掺和料的总量不大于混凝土中水泥重量的50%。
(5)水胶比不大于0.55。
3.浇筑(1)配合比的设计除应符合设计强度等级、耐久性、抗渗性、体积稳定性等要求外,还应符合大体积混凝土施工工艺特性的要求,并遵循合理使用材料、降低混凝土绝热温升值的原则。
(2)混凝土拌合物在浇筑工作面的坍落度不大于160mm。
(3)拌合水用量不大于170kg/m。
(4)粉煤灰掺量应适当增加,但不超过水泥用量的40%;矿渣粉的掺量不超过水泥用量的50%,2种掺和料的总量不大于混凝土中水泥重量的50%。
温度应力是水利、土木等工程中的一个重要问题。
特别是大致积混凝土工程, 如水利工程中的混凝土大坝等, 由于变温引起的拉应力往往超过荷载引起的拉应力, 其数值可能超过混凝土的抗拉强度, 常常会使混凝土结构产生裂缝, 危及结构的安全。
因此, 细致地分析结构中的温度应力, 相应采取必要的温度控制措施, 是工程技术人员必须考虑的一个问题。
在土木工程领域中会遇到大量作用问题, 因而对它的研究具有十分重要的意思。
例如, 工业建筑的生产车间, 由于外界温度的变化, 直接影响到屋面板混凝土内部的温度分布, 产生不同的温度应力和温度变形; 各类结构温度伸缩缝的设置方法以及大小和间距等的优化设计, 也必须建立在对温度应力和变形的准确计算上; 还有诸如板壳的热应力和热应变, 相应得翘曲和稳定问题; 地基低温变形引起基础的破裂问题; 构件的合理设计问题; 温度变化下断裂问题的分析计算; 热应力下构件的合理设计问题; 浇注大致积混凝土, 例如高层建筑筏板基础的浇捣, 水化热温升和散热阶段的温降引起贯穿裂缝; 对混合结构的房屋, 因屋面温度应力引起开裂渗漏; 浅埋结构土的温度梯度影响等等。
要分析温度应力, 首先要计算温度场。
水利、土木工程中的混凝土结构是弹性-徐变体, 不但具有弹性性质, 而且具有显着的徐变性质。
因此, 分析混凝土结构的温度应力, 必然要涉及徐变应力的分析。
温度应力, 是物体中由于温度改变(即变温)而产生的应力, 与温度本身无关。
当物体中发生变温时, 它的每一部分都将由于变温而引起热胀冷缩的变形。
这种变形受到物体内部各部分之间的相互约束和边界上的外部约束的制约, 并不能完全自由地发生, 有约束就产生约束力, 即所谓温度应力。
温度应力是水利、土木、机械、航空等工程中经常遇到的一个重要问题。
温度应力的分析是必须重视的问题。
首先, 温度应力常常超过荷载引起的应力。
例如, 设混凝土的弹性模量为E=2×104MPa, 热胀系数为α=10-5/℃, 若杆件中发生变温T=1℃时, 将发生自由的温度变形ε=αT=10-5。
当杆件两端被完全约束时, 这种变形受到阻止, 在杆件中将引起σ=-Eε=-0.2MPa的压应力。
若变温T=10℃, 则将引起-2MPa的压应力。
因此, 几十度的变温将引起相当大的应力。
其次, 温度应力常引起混凝土结构的裂缝, 危及结构的安全。
以上述的约束杆件为例, 当变温为负值(降温)时, T=-10℃将引起2MPa的拉应力。
混凝土的抗拉极限强度是比较低的, 一般只有1~3MPa。
当混凝土结构中有较大的降温时, 虽然结构内没有达到完全阻止温度变形的约束, 但产生的拉应力也常常超过极限抗拉强度, 引起混凝土结构的裂缝。
这就是北方水库溢洪道底板和许多混凝土结构产生裂缝的原因。
总之, 无论从数量级的大小, 还是从结构的安全性(裂缝危及结构安全)来看, 温度应力的分析以及相应的温度控制设计都是十分重要的问题。
求解温度应力, 首先要求出物体中的温度场, 这是属于热传导理论的内容。
而两个时刻的温度场之差, 就是物体的变温场。
然后, 根据物体中的变温来求出物体中的应力场。
在弹性体中求解温度应力, 这是属于热弹性理论的内容。
在混凝土结构中, 混凝土的徐变性质(特别是早期)十分明显, 对温度应力的影响很大。
由于徐变的影响, 可使混凝土中的实际应力低于弹性应力(约为弹性应力的40%~60%)。
因此, 在分析混凝土结构的温度应力时, 必须考虑徐变的因素, 须要求解弹性-徐变体的应力。
在分析中考虑了混凝土的徐变性质, 可使得出的应力成果既符合实际情况, 又能充分利用材料性能, 降低工程造价。
卢奇51026温度的变化对结构物内部产生一定的影响, 其影响的计算应根据不同结构类型区别对待。
静定结构在温度变化时不对温度变形产生约束, 故不产生内力, 但由于材料具有热胀冷缩的性质, 可使静定结构自由地产生符合其约束条件的位移, 这种位移可由变形体系的虚功原理按下式计算h t kt k k m t n /ωαωα∆∑+∑=∆式中kt ∆——结构中任一点K 沿任意方向k-k 的位移α——材料的线膨胀系数( 材料每升高一摄氏度的相对变形)T ——杆件轴线处的温度变化, 若设杆件体系上侧温度升高为t1, 下侧温度升高为t2, 截面高度为h, h1和h2分别表示杆轴至上、 下边缘的距离, 并设温度沿截面高度为线性变化( 即假设温度变化时横截面仍保持为平面) , 则由几何关系可得杆件轴线处的温度升高t为t=( t1h2+t2h1) /h,若杆件轴截面对称于形心轴, 即h1=h2=h/2, 则上式变为t=( t1+t2) /2t ∆——杆件上下侧温差的绝对值H ——杆截面高度kn ω——杆件nk 图的面积, nk 图为虚拟状态下轴力大小沿杆件的分布图km ω——杆件的Mk 图的面积, Mk 图为虚拟状态下弯矩大小沿杆件的分布图对超静定结构, 由于存在多余约束, 当温度改变时引起的温度变形会受到约束, 从而在结构内产生内力, 这也是超静定结构不同于静定结构的特征之一。
超静定结构的温度作用效应, 一般可根据变形协调条件, 按结构力学方法计算。
吴滨51025工程结构除了承受荷载之外, 还常受到温度变化等因素的作用, 可统称为非荷载因素作用。
1在温度变化作用下, 超静定结构的内力与平均温度的变化值t 以及材料的线膨胀系数α成正比。
内力的数值还随受温度变化作用的AB 杆截面刚度增大而增大。
2柱子的侧移刚度越大, 则横杆中的轴力也愈大。
若k 趋于零, 横杆的轴力也趋于零, 这说明温度变化作用下, 杆件只有在变形受到约束的情况下才会产生内力; 若k 趋于无穷大, 或者说横杆两端受到刚性约束, 则杆件轴力取得最大值αtEA, 与杆件截面刚度成正比, 而与杆件的长度无关; 若k的值介于0到无穷大之间, 则杆件的内力还将还将随受温度变化作用的横杆长度的增大而增大。
毛超51013在水利工程和土木工程中, 有许多大致积混凝土结构。
这些大致积混凝土结构是分块分层施工的, 每浇筑一层, 混凝土中的水化热将很快地发出热量, 使自身温度升高。
因此, 必须间歇几天使热量散发出去。
这就必须随施工过程, 分时段逐步计算各时刻的温度场、相应的变温场, 并再求解其弹性-徐变应力场。
为了防止过大的温差和危险的应力值, 必须采取相应的温度控制措施, 例如采用低水化热的水泥, 降低入仓温度, 增加或减少间歇天数, 采用水管冷却等等, 并分析相应的温度场和温度应力, 直到符合设计要求为止。
这是属于大致积混凝土的温度应力和温度控制的分析内容。
沙牌碾压混凝土拱坝温度徐变应力仿真计算对不设横缝或横缝间距很大的碾压混凝土拱坝, 无论是在施工期, 还是在运行期, 温度荷载所占的比例都相当高, 且具有准周期荷载的特性。
在计算混凝土温度徐变应力时, 应该考虑混凝土不可恢复徐变对坝体应力状态的影响。
但由于混凝土不可恢复徐变的试验有一定的难度, 一般的工程也不做, 因此, 从混凝土的已有徐变实验资料中, 分离出其中的不可恢复部分, 就具有重要的工程意义。
Bazant固化徐变理论公式[1]是从混凝土组成的微观机制出发, 根据各组成材料的物理性质推导出来的。
具有概念明确、参数较少、方程线性等优良性质。
文献[2]经过对沙牌工程碾压混凝土徐变资料的拟合计算表明: 该公式拟合效果良好, 拟合参数唯一, 各参数的重要性处于同一水平。
不同龄期、不同持荷时间下, 老化粘弹性相徐变C a(t,τ)、非老化粘弹性相徐变C na(t,τ)、粘性流动相徐变C f(t,τ)(不可复徐变)在混凝土总徐变C(t,τ)中所占的比例, 与工程试验资料基本吻合, 能够用于建立混凝土非线性徐变理论模型。
这种考虑了不可复徐变在不同应力水平下的非线性性质的理论公式, 对研究大坝混凝土温度徐变应力具有一定的优势。
因为, 分缝很少的大致积混凝土在温升过程中的预压应力被混凝土后期温降拉应力逐渐消解直至反超的过程, 呈现出一个典型的加载又卸载的徐变应力问题, 需要相应的非线性徐变理论来计算。
1沙牌碾压混凝土徐变试验资料及其分解按照Bazant固化徐变理论公式[1], 混凝土徐变度函数C(t,τ)能够分解为:C(t,τ)=C a(t,τ)+C na(t,τ)+Cf(t,τ)(1)其C a(t,τ)=q2Γ(t,τ)(2)中:) ] (3)C na(t,τ)=q3ln[1+( t-τ/λC(t,τ)=q4ln( t/τ) (4)f表1”沙牌工程”碾压混凝土徐变度计算值与试验值单位: 10-6MPa-1加荷龄期τ/dt-τ/d372890180试验值371430609018036067808999105109115120404955626769747824293337424548531317202426283135912151820222427计算值371430609018036066(71)81(79)86(85)90(92)97(99)105(103)118(111)123(117)43(47)53(53)56(58)58(64)64(71)67(74)76(81)85(88)23(25)30(28)31(31)33(35)36(39)38(42)44(48)50(54)16(16)20(18)21(19)23(21)26(24)28(26)33(30)38(35)13(13)16(14)18(15)19(16)22(18)24(20)29(22)34(26)(5)τ为混凝土的加载龄期, t-τ为混凝土的持荷时间; λ0、m、n 为经验系数; q2、q3、q4为对具体工程试验数据进行拟合时的拟合系数。
对于沙牌工程, 其拟合结果为[2]:q2=133.23,q3=5.44,q4=7.98, 变异系数ωopt=0.065.沙牌碾压混凝土徐变度试验值与按式(1)得到的计算值列于表1中。
为了和现行规范比较, 表1的括号中还给出了按朱伯芳公式[3]得到的沙牌碾压混凝土徐变度计算值。
由表1可见: 二者的拟合效果都相当好。
按照公式(2)、(3)、(4)分解式(1)得到的老化粘弹性。