一次函数--平行与k、b性质
- 格式:doc
- 大小:148.50 KB
- 文档页数:5
第5周一次函数——平移与k 、b 性质一、平移方法:直线y=kx+b 与y 轴交点为(0,b ),直线平移则直线上的点(0,b )也会同样的平移,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。
直线y=kx+b 向左平移2,向上平移3 <=>y=k(x+2)+b+3;(“左加右减,上加下减”)。
1.直线y=5x-3向左平移2个单位得到直线 2.直线y=-x-2向右平移2个单位得到直线 3.直线y=21x 向右平移2个单位得到直线 4.直线y=223+-x 向左平移2个单位得到直线 5.直线y=2x+1向上平移4个单位得到直线 6.直线y=-3x+5向下平移6个单位得到直线 7.直线x y 31=向上平移1个单位,再向右平移1个单位得到直线。
8.直线143+-=x y 向下平移2个单位,再向左平移1个单位得到直线________。
9.过点(2,-3)且平行于直线y=2x 的直线是 10.过点(2,-3)且平行于直线y=-3x+1的直线是___________.11.把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得到的图像表示的函数是____________;12.直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=____________; 二、函数图像及其性质☆一次函数y=kx+b (k≠0)中k 、b 的意义:k(称为斜率)表示直线y=kx+b (k≠0)的倾斜程度; b (称为截距)表示直线y=kx+b (k≠0)与y 轴交点的,也表示直线在y 轴上的。
☆同一平面内,不重合的两直线y=k 1x+b 1(k 1≠0)与y=k 2x+b 2(k 2≠0)的位置关系: 当时,两直线平行。
当时,两直线垂直。
当时,两直线相交。
当时,两直线交于y 轴上同一点。
☆特殊直线方程: X 轴:直线Y 轴:直线与X 轴平行的直线与Y 轴平行的直线 一、三象限角平分线二、四象限角平分线1、对于函数y =5x+6,y 的值随x 值的减小而___________。
一次函数的图像和性质一次函数是一个代数函数,也称为线性函数或直线函数。
它是最简单的一种函数形式,在数学和物理等领域中都有广泛的应用。
一次函数的一般形式为y = ax + b,其中a和b是常数,且a≠0。
一次函数的图像是一个直线,在平面直角坐标系中表示为一根斜率为a的直线,并且通过点(0,b)。
斜率a表示函数的变化率,即y随x的变化速度。
当a>0时,表明随着x增大,y也增大;当a<0时,表明随着x增大,y减小;当a=0时,函数是一个常数函数。
一次函数图像的性质包括斜率、截距、与坐标轴的交点等。
1.斜率:一次函数的斜率表示函数图像在x轴方向每单位变化时,y轴方向的变化量。
斜率的计算可以通过选择两个不同的x值,计算对应的y值的差异,然后除以对应x值的差异。
即斜率a=Δy/Δx。
斜率为正的函数图像向上倾斜,斜率为负的函数图像向下倾斜,斜率为零的函数图像是水平的。
2. 截距:一次函数的截距表示函数图像与y轴的交点,它的值可以从函数的形式y=ax+b中得到。
当x=0时,y=b,因此截距为b。
3. 与坐标轴的交点:一次函数的图像与x轴的交点为y=0时的x值,可以通过令y=0,解方程ax+b=0,得到x=-b/a。
图像与y轴的交点已经在上述截距部分提到,为(0, b)。
4.平行:两个斜率相等的一次函数图像是平行的,它们可能在坐标轴上的交点不同,但是平行于同一直线。
5. 垂直平分线:对于一次函数y = ax + b,它的垂直平分线为x =-a/2、如果两个函数的图像关于该直线对称,那么它们是互为反函数。
6. 对称轴:对于一次函数y = ax + b,它的对称轴为x = -b/(2a)。
如果交换a和b的位置,可以得到该函数关于y轴对称函数。
如果交换x和y的位置,可以得到原函数的倒数。
7.等差数列:一次函数的图像可以表示等差数列,其中公差为斜率a。
数列的第一个项为截距b。
8.增长率:一次函数的增长率等于斜率a的绝对值。
一次函数的定义一、引入共同特征:函数的关系式都是用含自变量的一次整式 二、归纳1、一次函数的定义:函数的关系式都是用含自变量的一次整式表示的函数。
式子表示:y =kx +b (k,b 为常数,k ≠0)条件:○1含自变量 ○2自变量的次数为1 ○3整式 特别地,当b=0,一次函数y=kx(k ≠0)叫正比例函数 注:(1)对于y =kx +b当k ≠0,b 为任意数时是一次函数 当k ≠0,且b=0时是正比例函数 (2)正比例函数是特殊的一次函数 一次函数不一定是正比例函数(3)若y 是x 的一次函数关系,则函数关系一定可表示为y =kx +b (k ≠0)形式,反过来,能化为y =kx +b (k ≠0)形式的函数一定是一次函数若y 是x 的正比例函数关系,则函数关系一定可表示为y =kx (k ≠0)形式,反过来,能化为y =kx (k ≠0)形式的函数一定是正比例函数 三、典例1、函数:○1y=2x ○2y=4x=3 ○3y=12○4y=3x +1 ○5y=3x+1 ○6y=ax ○7xy=3 ○82x+3y-1=0 ○9y=12x 2+1 ○10y=x2 ○11 y=x(x-4)-x 2 ○12 y=-5x 2_ 一次函数是__________ ___ 正比例函数是___________2、 关于x 的函数y=(5m-3)x 2-m+(m+n) (1) 当m 、n 为何值时,它是一次函数 (2) 当m 、n 为何值时,它是正比例函数。
3、 关于x 的函数3)3(3+--=-n xm y m(1) 当m 、n 为何值时,它是一次函数(2) 当m 、n 为何值时,它是正比例函数。
4、 已知y 与x-3成正比例,当x=4时,y=3(1) 写出y 与x 的函数关系式 (2) Y 与x 之间是什么函数关系。
(3) 当x=2.5时,求y 的值。
小结:1. y 与x 成正比例,则函数关系可设为y=kx(k ≠0)2. 成正比例不一定是正比例函数,但正比例函数一定成正比例。
2019初三一次函数的图像和性质分析知识点1 基本信息1.y的变化值与对应的x的变化值成正比例,比值为k即:△y/△x=k (△为任意不为零的实数),即函数图像的斜率。
2.一次函数的表达式:y=kx+b3.性质:当k0时,y随x的增大而增大;当k0时,y随x的增大而减小。
当b0时,该函数与y轴交于正半轴;当b0时,该函数与y轴交于负半轴当x=0时,b为函数在y轴上的截距。
4.一次函数定义域xR,值域f(x)R5.一次函数在xR上的单调性:若f(x)=kx+b,k0,则该函数在xR上单调递增。
若f(x)=kx+b,k0,则该函数在xr上单调递减。
2 函数性质1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k0) (k不等于0,且k,b为常数)2.当x=0时,b为函数在y轴上的,坐标为(0,b).当y=0时,该函数图像在x轴上的交点坐标为(-b/k,0)3.k为一次函数y=kx+b的斜率,k=tan(角为一次函数图象与x轴正方向夹角,90)形、取、象、交、减。
4.当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数.5.函数图像性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图像相交;当k互为负倒数时,两直线垂直;当k,b都相同时,两条直线重合。
3 图像性质1.作法与图形:通过如下3个步(1)列表(2)描点:一般取两个点,根据两点确定一条直线的道理;(3)连线,可以作出一次函数的图像一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点分别是-k分之b与0,0与b)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。
3.函数不是数,它是指某一变化过程中两个变量之间的关系。
第5周一次函数——平移与k 、b 性质一、平移方法:直线y=kx+b 与y 轴交点为(0,b ),直线平移则直线上的点(0,b )也会同样的平移,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。
直线y=kx+b 向左平移2,向上平移3 <=>y=k(x+2)+b+3;(“左加右减,上加下减”)。
1.直线y=5x-3向左平移2个单位得到直线2.直线y=-x-2向右平移2个单位得到直线3.直线y=21x 向右平移2个单位得到直线 4.直线y=223+-x 向左平移2个单位得到直线5.直线y=2x+1向上平移4个单位得到直线6.直线y=-3x+5向下平移6个单位得到直线7.直线x y 31=向上平移1个单位,再向右平移1个单位得到直线。
8.直线143+-=x y 向下平移2个单位,再向左平移1个单位得到直线________。
9.过点(2,-3)且平行于直线y=2x 的直线是10.过点(2,-3)且平行于直线y=-3x+1的直线是___________.11.把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得到的图像表示的函数是____________; 12.直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=____________; 二、函数图像及其性质☆一次函数y=kx+b (k≠0)中k 、b 的意义:k(称为斜率)表示直线y=kx+b (k≠0)的倾斜程度;b (称为截距)表示直线y=kx+b (k≠0)与y 轴交点的,也表示直线在y 轴上的。
☆同一平面内,不重合的两直线y=k 1x+b 1(k 1≠0)与y=k 2x+b 2(k 2≠0)的位置关系:当时,两直线平行。
当时,两直线垂直。
当时,两直线相交。
当时,两直线交于y 轴上同一点。
☆特殊直线方程:X 轴:直线Y 轴:直线与X 轴平行的直线与Y 轴平行的直线 一、三象限角平分线二、四象限角平分线1、对于函数y =5x+6,y 的值随x 值的减小而___________。
2、对于函数1223y x =-,y 的值随x 值的________而增大。
3、一次函数y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__________。
4、直线y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是_________。
5、已知直线y=kx+b 经过第一、二、四象限,那么直线y=-bx+k 经过第_______象限。
6、无论m 为何值,直线y=x+2m 与直线y=-x+4的交点不可能在第______象限。
7、已知一次函数???(1)当m 取何值时,y 随x 的增大而减小????(2)当m 取何值时,函数的图象过原点?三、综合1、已知23y -与31x +成正比例,且2x =时,5y =(1)求y 与x 之间的函数关系式,并自行建立直角坐标系画出该函数图像; (2)当a 为多少时,点(),2a 在这个函数的图象上.2、已知x+a 与y+b 成正比例,且x=1时y=-1;x=2时y=2。
(1)求y 与x 的函数关系式(2)作出函数的图象(3)利用图象回答当x 为何值时,y 等于零,y 大于零,y 小于零?3、某校部分住校生,放学后到学校锅炉房打水,每人接水2升,他们先同时打开两个放水龙头,后来因故障关闭一个放水龙头.假设前后两人接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量y(升)与接水时间x(分)的函数图象如图2.请结合图象,回答下列问题:(1)根据图中信息,请你写出一个结论;(2)问前15位同学接水结束共需要几分钟? 4、已知一次函数y kx b =+的图象过点()3,0A 且与坐标轴围成的三角形的面积为6,O2 X(分)4 72 8096 图Y(升)求这个一次函数的解析式 5、直线与x 轴y 轴的交点分别是A 和B ,点C 在坐标轴上,三角形ABC 是等腰三角形,求满足条件的点C 坐标 四、待定系数法求解析式方法:依据两个独立的条件确定k,b 的值,即可求解出一次函数y=kx+b (k ≠0)的解析式。
☆ 已知是直线或一次函数可以设y=kx+b (k ≠0);☆ 若点在直线上,则可以将点的坐标代入解析式构建方程。
1、若函数y=3x+b 经过点(2,-6),求函数的解析式。
2、直线y=kx+b 的图像经过A (3,4)和点B (2,7),求直线的解析式。
3、一次函数的图像与y=2x-5平行且与4、若一次函数y=kx+b 的自变量x 的取值范围是-2≤x ≤6,x 轴交于点(-2,0)求解析式。
相应的函数值的范围是-11≤y ≤9,求此函数的解析式。
5、已知直线y=kx+b 与直线y=-3x +7关于y 轴6、已知直线y=kx+b 与直线y=-3x +7关于x 轴对称,求k 、b 的值。
对称,求k 、b 的值。
8、已知直线y=kx+b 与直线y=-3x +7关于原点对称,求k 、b 的值。
7、如图1表示一辆汽车油箱里剩余油量y (升)与行驶时间x (小时)之间的关系.求油箱里所剩油y (升)与行驶时间x (小时)之间的函数关系式,并且确定自变量x 的取值范围。
经典·考题·赏析【例1】直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为()O y xl 2l 13-1A .x >-1B .x <-1C .x <-2D .无法确定【解法指导】由图象可知l 1与l 2的交点坐标为(-1,-2),即当x =-1时,两函数的函数值相等;当x >-1时,l 2的位置比l 1高,因而k 2x >k 1x +b ;当当x <-1时,l 1的位置比l 2高,因而k 2x <k 1x +b .因此选.01.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论: ①k <0;②a >0;③当x <3时,y 1<y 2中,正确的个数是() A .0B .1C .2D .302.如图,已知一次函数y =2x +b 和y =ax -3的图象交于点P (-2,-5), 则根据图象可得不等式2x +b >ax -3的解集是________.【例2】若直线l 1:y =x -2与直线l 2:y =3-mx 在同一平面直角坐标系的交点在第一象限,求m 的取值范围.【解法指导】直线交点坐标在第一象限,即对应方程组的解满足0x y >⎧⎨>⎩,从而求出m的取值范围.解:23y x y mn=-⎧⎨=-⎩,∴51321x m m y m ⎧=⎪⎪+⎨-⎪=⎪+⎩,∵0x y >⎧⎨>⎩,∴5013201mm m⎧>⎪⎪+⎨-⎪>⎪+⎩,即10320m m +>⎧⎨->⎩,∴-1<m <32.【变式题组】01.如果直线y =kx +3与y =3x -2b 的交点在x 轴上,当k =2时,b 等于() A .9 B .-3 C .32- D .94-02.若直线122y x =-与直线14y x a =-+相交于x 轴上一点,则直线14y x a =-+不经过()A .第四象限B .第三象限C .第二象限D .第一象限 03.两条直线y 1=ax +b ,y 2=cx +5,学生甲解出它们的交点坐标为(3,-2),学生乙因抄错了c 而解出它们的交点坐标为(34,14),则这两条直线的解析式为____________.04.已知直线y =3x 和y =2x +k 的交点在第三象限,则k 的取值范围是________. 【例3】(四川省初二数学联赛试题)在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点,设k 为整数,当直线y =x -2与y =kx +k 的交点为整点时,k 的取值可以取()A .4个B .5个C .6个D .7个 【解法指导】两直线的交点为整点即对应方程组的解均为整数.解:由2y x y kx k =-⎧⎨=+⎩得21221k x kk y k +⎧=⎪⎪-⎨+⎪=-⎪-⎩, ∵两直线交点为整数,∴x 、y 均为整数。
又当x 为整数时,y 为整数, ∴21k k +-为整数即可,2213311111k k k k k k k ++-+=-=-=------, ∵k -1是整数,∴k -1=±1,±3时,x 、y 为整数,∴k =-2,0,2,4.所以选.【变式题组】01.(广西南宁)从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y=px -2和y=x+q,并使这两个函数图象的交点在直线x=2的右侧,则这样的有序数对(p,q)共有()A.12对B.6对C.5对D.3对02.(浙江竞赛试题)直线l:y=px(p是不等于0的整数)与直线y=x+10的交点恰好是整点(横坐标和纵坐标都是整数),那么满足条件的直线l有()A.6条B.7条C.8条D.无数条03.(荆州竞赛试题)点A、B分别在一次函数y=x,y=8x的图像上,其横坐标分别是a、b(a>0,b>0).若直线AB为一次函数y=kx+m的图象,则当ba是整数时,求满足条件的整数k的值.01.已知一次函数y=32x+m,和y=12x+n的图象交点A(-2,0),且与y轴分别交于B、C两点,那么△ABC的面积是()A.2 B.3 C.4 D.602.已知关于x的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x轴的交点是()A.(0,1) B.(-1,0) C.(0,-1) D.(1,0)第3题图第6题图03.如图,直线y=kx+b与x轴交于点A(-4,0),则y>0时,x的取值范围是() A.x>-4 B.x>0 C.x<-4 D.x<004.直线kx-3y=8,2x+5y=-4交点的纵坐标为0,则k的值为() A.4 B.-4 C.2 D.-2。