2021文科数学高考复习
- 格式:ppt
- 大小:3.45 MB
- 文档页数:55
2021年高考文科数学一轮复习:题型全归纳与高效训练突破专题1.1 集合的概念与运算目录一、题型全归纳 (1)题型一集合的含义与表示 (1)题型二集合的基本关系 (2)题型三集合的基本运算 (3)题型四利用集合的运算求参数 (4)题型五集合中的新定义问题 (5)二、高效训练突破 (6)一、题型全归纳题型一集合的含义与表示【题型要点】与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是数集、点集还是其他类型的集合.(2)看这些元素满足什么限制条件.(3)根据限制条件求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性.【例1】已知集合A={1,2,3,4,5},B={(x,y)|x∈A且y∈A且x-y∈A},则B中所含元素的个数为() A.3B.6C.8D.10【例2】)已知集合A={m+2,2m2+m},若3∈A,则m的值为________.题型二集合的基本关系【题型要点】(1)判断集合间的关系,要注意先对集合进行化简,再进行判断,并且在描述关系时,要尽量精确.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系(要注意区间端点的取舍),进而转化为参数所满足的关系,常用数轴、V enn图等来直观解决这类问题.【例1】已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1 B.2C.3 D.4【例2】已知集合A={x|-1<x<3},B={x|-m<x<m},若B⊆A,则m的取值范围为______.题型三集合的基本运算【题型要点】集合基本运算的求解策略【例1】(2020·郑州市第一次质量预测)设全集U=R,集合A={x|-3<x<1},B={x|x+1≥0},则∁U(A∪B)=()A.{x|x≤-3或x≥1} B.{x|x<-1或x≥3}C.{x|x≤3} D.{x|x≤-3}【例2】(2020黄冈调研)已知函数f(x)=11-x2的定义域为M,g(x)=ln(1-x)的定义域为N,则M∪(∁R N)=()A .{x |x >-1}B .{x |x ≥1}C .∅D .{x |-1<x <1}题型四 利用集合的运算求参数【题型要点】根据集合的运算结果求参数的值或取值范围的方法(1)将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能一一列举,则用观察法得到不同集合中元素之间的关系;若集合是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取到.(2)将集合之间的关系转化为解方程(组)或不等式(组)问题求解.(3)根据求解结果来确定参数的值或取值范围.【例1】已知集合A ={x |x 2≥4},B ={m }.若A ∪B =A ,则m 的取值范围是( )A .(-∞,-2)B .[2,+∞)C .[-2,2]D .(-∞,-2]∪[2,+∞)【例2】集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4【例3】(河南省洛阳市2019-2020学年高三上学期期中数学试题)已知集合{}3log (2)2A x x =-≤,{}20B x x m =->,若A B ⊆,则实数m 的取值范围是( )A .]4∞(-, B .4∞(-,) C .22∞(-,)D .22]∞(-,题型五 集合中的新定义问题【题型要点】(1)紧扣“新”定义:分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题的关键所在.(2)把握“新”性质:集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.(3)遵守“新”法则:准确把握新定义的运算法则,将其转化为集合的交集、并集与补集的运算即可.【例1】定义集合的商集运算为A B ={x |x =m n ,m ∈A ,n ∈B }.已知集合A ={2,4,6},B ={x |x =k 2-1,k ∈A },则集合B A∪B 中的元素个数为( ) A .6B .7C .8D .9【例2】设A ,B 是非空集合,定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B }.已知集合A ={x |0<x <2},B ={y |y ≥0},则A ⊗B =________.【例3】如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x ,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B =________.二、高效训练突破1.(2020·武汉调研)设A ,B 是两个非空集合,定义集合A -B ={x |x ∈A ,且x ∉B }.若A ={x ∈N |0≤x ≤5},B ={x |x 2-7x +10<0},则A -B =( )A .{0,1}B .{1,2}C .{0,1,2}D .{0,1,2,5} 2.(2020·巴蜀中学月考)已知集合A ={x |x ∈Z ,且32-x ∈Z },则集合A 中的元素个数为( ) A .2B .3C .4D .53.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1 B.2C.3 D.44.设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=()A.{2}B.{2,3}C.{-1,2,3} D.{1,2,3,4}5.(2020·宁夏石嘴山三中一模)已知集合A={-1,0,1,2},B={x|x2-1≥0},则下图中阴影部分所表示的集合为()A.{-1} B.{0}C.{-1,0} D.{-1,0,1}6.已知集合A={x|x2-2x-3≤0,x∈N*},则集合A的真子集的个数为()A.7 B.8C.15 D.167.已知全集U=R,函数y=ln(1-x)的定义域为M,集合N={x|x2-x<0},则下列结论正确的是()A.M∩N=N B.M∩(∁U N)=∅C.M∪N=U D.M⊆(∁U N)9.已知全集U=R,集合A={x|x<-1或x>1},则∁U A=()A.(-∞,-1)∪(1,+∞) B.(-∞,-1]∪[1,+∞)C.(-1,1) D.[-1,1]10.(2020·辽宁辽阳期末)设集合A={x∈Z|x>4},B={x|x2<100},则A∩B的元素个数为()A.3 B.4C.5 D.611.如图所示的Venn图中,A,B是非空集合,定义集合A⊗B为阴影部分表示的集合.若x,y∈R,A={x|2x -x2≥0},B={y|y=3x,x>0},则A⊗B=()A.{x|0<x<2} B.{x|1<x≤2}C.{x|x≤1或x≥2} D.{x|0≤x≤1或x>2}12.(2020·济南外国语学校月考)集合M={x|2x2-x-1<0},N={x|2x+a>0},U=R.若M∩(∁U N)=∅,则a 的取值范围是()A.(1,+∞) B.[1,+∞)C.(-∞,1) D.(-∞,1]二、填空题1.(2020·江苏南京联合调研改编)已知全集U={1,2,3,4,5},集合A={1,3,4},B={3,5},则A∩B =______,∁U A=______.2.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=________.3.已知集合A={1,2,3,4},集合B={x|x≤a,a∈R},A∪B=(-∞,5],则a的值是________.4.已知集合A={x|4≤2x≤16},B=[a,b],若A⊆B,则实数a-b的取值范围是________.5.已知集合A={x∈N|x2-2x-3≤0},B={1,3},定义集合A,B之间的运算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B},则A*B中的所有元素数字之和为________.6.已知k为合数,且1<k<100,当k的各数位上的数字之和为质数时,称此质数为k的“衍生质数”.(1)若k的“衍生质数”为2,则k=________;(2)设集合A={P(k)|P(k)为k的“衍生质数”},B={k|P(k)为k的“衍生质数”},则集合A∪B中元素的个数是________.三、解答题1.(2019·衡水中学测试)已知集合A={x∈R|x2-ax+b=0},B={x∈R|x2+cx+15=0},A∩B={3},A∪B={3,5}.(1)求实数a,b,c的值;(2)设集合P={x∈R|ax2+bx+c≤7},求集合P∩Z.2.已知集合A={x|-1<x≤3},B={x|m≤x<1+3m}.(1)当m=1时,求A∪B;(2)当B⊆∁R A时,求实数m的取值范围.3.(2019·江苏盐城一中模拟)已知集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+a2-5=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.2021年高考文科数学一轮复习:题型全归纳与高效训练突破专题1.1 集合的概念与运算目录一、题型全归纳 (1)题型一集合的含义与表示 (1)题型二集合的基本关系 (2)题型三集合的基本运算 (3)题型四利用集合的运算求参数 (4)题型五集合中的新定义问题 (5)二、高效训练突破 (6)一、题型全归纳题型一集合的含义与表示【题型要点】与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是数集、点集还是其他类型的集合.(2)看这些元素满足什么限制条件.(3)根据限制条件求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性.【例1】已知集合A={1,2,3,4,5},B={(x,y)|x∈A且y∈A且x-y∈A},则B中所含元素的个数为() A.3B.6C.8D.10【答案】D【解析】(1)由x∈A,y∈A,x-y∈A,得x-y=1或x-y=2或x-y=3或x-y=4,所以集合B={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},所以集合B中有10个元素.【例2】)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.【答案】-32【解析】因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去), 当m =-32时,m +2=12≠3,符合题意.所以m =-32. 题型二 集合的基本关系【题型要点】(1)判断集合间的关系,要注意先对集合进行化简,再进行判断,并且在描述关系时,要尽量精确.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系(要注意区间端点的取舍),进而转化为参数所满足的关系,常用数轴、V enn 图等来直观解决这类问题.【例1】已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4【答案】D【解析】 由题意可得,A ={1,2},B ={1,2,3,4},又因为A ⊆C ⊆B ,所以C ={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4}.【例2】已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为______.【答案】(-∞,1]【解析】当m ≤0时,B =∅,显然B ⊆A .当m >0时,因为A ={x |-1<x <3}.当B ⊆A 时,在数轴上标出两集合,如图,所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为(-∞,1].题型三 集合的基本运算【题型要点】集合基本运算的求解策略【例1】(2020·郑州市第一次质量预测)设全集U =R ,集合A ={x |-3<x <1},B ={x |x +1≥0},则∁U (A ∪B )=( )A .{x |x ≤-3或x ≥1}B .{x |x <-1或x ≥3}C .{x |x ≤3}D .{x |x ≤-3}【答案】D【解析】因为B ={x |x ≥-1},A ={x |-3<x <1},所以A ∪B ={x |x >-3},所以∁U (A ∪B )={x |x ≤-3}.故选D.【例2】(2020黄冈调研)已知函数f (x )=11-x 2的定义域为M ,g (x )=ln(1-x )的定义域为N ,则M ∪(∁R N )=( )A .{x |x >-1}B .{x |x ≥1}C .∅D .{x |-1<x <1} 【答案】A11 / 19 【解析】由1-x >0得N ={x |x <1},∁R N ={x |x ≥1},而由1-x 2>0得M ={x |-1<x <1},所以M ∪(∁R N )={x |x >-1}.题型四 利用集合的运算求参数【题型要点】根据集合的运算结果求参数的值或取值范围的方法(1)将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能一一列举,则用观察法得到不同集合中元素之间的关系;若集合是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取到.(2)将集合之间的关系转化为解方程(组)或不等式(组)问题求解.(3)根据求解结果来确定参数的值或取值范围.【例1】已知集合A ={x |x 2≥4},B ={m }.若A ∪B =A ,则m 的取值范围是( )A .(-∞,-2)B .[2,+∞)C .[-2,2]D .(-∞,-2]∪[2,+∞) 【答案】D.【解析】:因为A ∪B =A ,所以B ⊆A ,即m ∈A ,得m 2≥4,解得m ≥2或m ≤-2.【例2】集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4 【答案】D【解析】根据并集的概念,可知{a ,a 2}={4,16},故a =4.【例3】(河南省洛阳市2019-2020学年高三上学期期中数学试题)已知集合{}3log (2)2A x x =-≤,{}20B x x m =->,若A B ⊆,则实数m 的取值范围是( )A .]4∞(-, B .4∞(-,) C .22∞(-,) D .22]∞(-,。
2021年高考考前模拟【新课标Ⅰ卷】文科数学答案1 2 3 4 56 7 8 9 10 11 12 BDBCDCDCDCBB1.【答案】B【解析】因为{}{}24022A x x x x x =-<=-或,2{|30}{|30}B x x x x x =+<=-<<,所以(3,2)A B ⋂=--.故选B 2.【答案】D【解析】由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D. 3.【答案】B【解析】由图可知该几何体底面积为8,高为2的四棱锥,如图所示:∴该几何体的体积1168233V =⨯⨯= 故选B 4.【答案】C【解析】选取两支彩笔的方法有25C 种,含有红色彩笔的选法为14C 种,由古典概型公式,满足题意的概率值为142542105C p C ===,故选择:C. 5.【答案】D【解析】根据图象知ABCE 大概在一条直线上,故排除D 后相关性最大. 故选:D. 6.【答案】C 【解析】如图,22||1(2)3OE +||1236BD =-, ||43AC =∴四边形ABCD 的面积为16431232⨯⨯故选:C . 7.【答案】D【解析】因为sin 32sin 3y x x x π⎛⎫==+⎪⎝⎭,所以 ()22sin 2sin 333f x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,即可知函数()f x 的最小正周期2π,A 正确;当56x π=时,52sin 262f ππ⎛⎫== ⎪⎝⎭,所以函数()f x 的图象关于直线56x π=对称,B 正确;当3x π=时,03f π⎛⎫= ⎪⎝⎭,所以函数()f x 的图象关于,03π⎛⎫⎪⎝⎭对称,C 正确; 因为52sin 262f ππ⎛⎫==⎪⎝⎭,()5326f f ππ⎛⎫=<= ⎪⎝⎭,所以D 错误.故选:D . 8.【答案】C【解析】()()33332log log 9log log 36443314111log 42log 444333f f ++⎛⎫⎛⎫⎛⎫+=+=⨯=⨯=⨯ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭133log 36log 36143439--=⨯=⨯=故选:C 9.【答案】D【解析】A :若空白处是1=+n n ,S S n =+时,14i =≤成立,2,022,24n S i ==+==≤成立, 所以3,235,34n S i ==+==≤成立,所以4,459,44n S i ==+==≤成立,所以5,5914,54n S i ==+==≤不成立,故14S =,不符合题意;B :若空白处是2=+n n ,S S n =+时,14i =≤成立,3,033,24n S i ==+==≤成立, 所以5,538,34n S i ==+==≤成立,所以7,8715,44n S i ==+==≤成立,所以9,15924,54n S i ==+==≤不成立,故24S =,不符合题意;C :若空白处是S S n =+,1=+n n 时,14i =≤成立,1,2,24S n i ===≤成立,所以3,3,34S n i ===≤成立,所以6,4,44S n i ===≤成立,所以10,5,54S n i ===≤不成立,故10S =,不符合题意;D :若空白处是S S n =+,2=+n n 时,14i =≤成立,1,3,24S n i ===≤成立,所以4,5,34S n i ===≤成立,所以9,7,44S n i ===≤成立,所以16,9,54S n i ===≤不成立,故16S =,符合题意. 故选:D 10.【答案】C【解析】由等差数列的性质及求和公式得,11313713()1302a a S a +==>,11515815()1502a a S a +==<,故选C. 11.【答案】B 【解析】由120PF PF ⋅=得12PF PF ⊥,由勾股定理得(22221212100PF PF F F a +===,由双曲线的定义得128PF PF a -=,22221212126421002a PF PF PF PF a PF PF ∴=+-⋅=-⋅,所以21218PF PF a ⋅=,则12PF F ∆的面积为2121992PF PF a ⋅==,0a >,解得1a =. 故选:B. 12.【答案】B【解析】因为,4AB AC AB AC ⊥==,故△ABC 为等腰直角三角形且BC =E 为BC 的中点.故E 为△ABC 的外心,故OE ⊥平面ABC .因为PA ⊥平面ABC ,所以//OE PA ,故,,,P A E O 共面. 连接PE 交OG 于H 点,过O 作OD EH ⊥,垂足为D . 因为,AB AC BE EC ==,故AE BC ⊥,在直角三角形PAC 中,2,4PA AC ==,故25PC =,同理25PB =, 因为BE EC =,故PE BC ⊥,而PEAE E =,故BC ⊥平面GAEO ,因为BC ⊂平面PBC ,故平面GAEO ⊥平面PBC .因为平面GAEO ⋂平面PBC EH =,OD EH ⊥,OD ⊂平面GAEO , 所以OD ⊥平面PBC .因为O 为三棱锥P ABC -的外接球的球心,故OG PA ⊥, 因为PA ⊥平面ABC ,AE ⊂平面ABC ,故PA AE ⊥, 在平面PAEO 中,因为PA AE ⊥,OG PA ⊥,故//OG AE , 故四边形AGOE 为矩形,且1OE GA PG ===,1222OG AE BC ===. 又因为90,,PGH EOH PG OE PHG EHO ∠=∠=︒=∠=∠, 故PGH EOH ≅△△,故122OH GH ==. 在直角三角形OEH 中,126312OD ⨯==+. 故选:B.13.【答案】92【解析】由约束条件得如图所示的三角形区域,令2x y z +=,2y x z =-+, 显然当平行直线过点3(2A ,3)2时,z 取得最小值为:39322+=; 故答案为:92.14.【答案】1(,2)(2,)2-∞-⋃-【解析】因为a 与b 的夹角是钝角,所以0a b ⋅<且a 与b 不共线, 因为14202a b λλ⋅=-<⇒<, 又当a 与b 共线时242λλ-=⇒=-,所以若a 与b 的夹角是钝角,则1(,2)(2,)2λ∈-∞-⋃-. 故答案为:1(,2)(2,)2-∞-⋃- 15.【答案】0x y -=【解析】由()xf x xe =,得()x x f x e xe '=+,所以切线的斜率0(0)1k f e '===, 所以切线方程为00y x -=-,即0x y -=. 故答案为:0x y -= 16.【答案】11或13【解析】因为()1111nn n a a n ++=-+-,当n 为奇数时,11100n n S S n +--=->即9n ≤,所以2468101214S S S S S S S <<<<>>>.当n 为偶数时,11120n n S S n +--=->即12n ≤, 所以135********S S S S S S S S <<<<<=>>.通过比较只需比较11S 和10S 的大小即可, 又601a <<,所以111310S S S =>.6n =时,()676761161=6=6a a a a +=-+-∴-,, 7n =时,()7878761171=4=4=2a a a a a +=-+-∴--+,, 8n =时,()8989861181=4=4=6a a a a a +=-+-∴--,,9n =时,()910910961191=1=1=5a a a a a +=-+-∴--,, 10n =时,()1011101110611101=2=2=7a a a a a +=-+-∴--,, 又601a <<,所以110a >所以11101110S S a S =+>. 所以1113S S =最大. 故答案为:11或1317.【解析】(1)由题可知:[]130,140分数段的参赛学生频率为:0.005100.05⨯=,∴2==400.05N 总(人). ∵成绩在[)100,120分数段的参赛学生频率为:()0.0450.02510=0.7+⨯,∴该校成绩在[)100,120分数段的参赛学生人数为:400.7=28⨯(人).(2)由图可知:90分及以上的学生成绩的众数为110120=1152+(分).设90分及以上的学生成绩的中位数为x . ∵0.01100.02510=0.350.5⨯+⨯<, ∴()1100.0450.350.5113x x -⨯+=⇒≈, ∴90分及以上的学生成绩的中位数为113分. 90分及以上的学生成绩的平均数为:0.0110950.025101050.045101150.015101250.00510135⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯ 112.7113=≈∴90分及以上的学生成绩的众数为115,中位数约为113,平均数约为113.18.【解析】(1)由题知2sin sin 2sin cos C A B A =+,则()2sin sin 2sin cos A B A B A +=+, 则2sin cos sin A B A =,在△ABC 中,sin 0A ≠,所以1cos 2B =,则π3B =.(2)由余弦定理得2222cos b a c ac B =+-,从而得()22293a c ac a c ac =+-=+-, 又5a c +=,所以163ac =,所以△ABC 的面积为143sin 23S ac B ==. 19.【解析】(1)如图所示:取AC 的中点O ,连接OB ,OD , 因为DA DC =,所以OD AC ⊥.又因为平面ADC ⊥平面ABC ,且相交于AC , 所以OD ⊥平面ABC , 所以OD OB ⊥.因为222AB BC AC +=,所以AB BC ⊥, 所以OB OC =,所以OBD OCD ≅△△, 所以DB DC =,且M 为BC 的中点,所以BC DM ⊥. (2)16D ABC V DO BC AB -=⋅⋅=所以33D ABM V -=-=. 在ABD △中,12ABD S =⨯=△ 设M 到平面ABD 的距离为h ,则13ABD D ABM S h V -⋅=△,解得h =所以M 到平面ABD. 20.【解析】(1)(1)()xa x f x e-'=,由0a <,可得(1,)x ∈+∞时,()0f x '>;(0,1)x ∈时,()0f x '< ∴函数()f x 在(1,)+∞上单调递增,在(0,1)上单调递减.1x ∴=时,函数()f x 取得极小值即最小值()1a f e=. (2)对a 分类讨论:若0a =,则()0f x =,不存在0x R ∈,使得()013f x e<-成立; 若0a >,则111113af a e e -⎛⎫-=-<-<- ⎪⎝⎭,满足题意; 若0a <,由(1)可知,函数()f x 的最小值为()1a f e=,∴13a e e <-,解得13a <-.综上可得,实数a 的取值范围是()1,0,3⎛⎫-∞-+∞ ⎪⎝⎭.21.【解析】(Ⅰ)设椭圆的半焦距为c ,由题意可得22222121914c a a b b c a ⎧=⎪⎪⎪+=⎨⎪+=⎪⎪⎩,解得2a =,b =1c =.所以椭圆的标准方程为22143x y +=.(Ⅱ)12λλ+为定值.由题意可知,直线l 的斜率存在,设直线l 的斜率为k , 因为直线l 过点()1,0F ,所以直线l 的方程为()1y k x =-. 令0x =,可得yk =-,即()0,E k -.联立22(1)143y k x x y =-⎧⎪⎨+=⎪⎩消去y 可得()22223484120k x k x k +-+-=.设()11,M x y ,()22,N x y ,易知11x ≠,21x ≠,则2122834k x x k +=+,212241234k x x k -=+. ()11,EM x y k =+,()22,EN x y k =+,()111,MF x y =--,()221,NF x y =--.由1EM MF λ=,2EN NF λ=,可得1111x x λ=-,2221x x λ=- 所以()()121212121212122112211111x x x x x x x x x x x x λλ-++=+=+-=------++. 将2122834k x x k +=+,212241234k x x k -=+代入上式,化简可得1283λλ+=- 22.【解析】(1)由32πcos 3ρθ=⎛⎫+ ⎪⎝⎭,πππ2cos 2cos cos 2sin sin 333ρθρθρθ⎛⎫+=- ⎪⎝⎭cos sin 3ρθθ==,由于cos sin x yρθρθ=⎧⎨=⎩,则直线l的直角坐标方程为3y x =曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数)(2)由于直线l 的倾斜角为π6,直线PQ 的倾斜角为π3, 则直线l 与直线PQ 的夹角为π6,设点P 到直线l 的距离为d ,则2PQ d =∣∣.由于3||3|34222d πααα⎛⎫-- ⎪--⎝⎭==≥,当且仅当7π2π4k α=+,k ∈Z 时等号成立,因此PQ ∣∣的最小值为323.【解析】(1)当2a =时,()332f x x x =++-,即()41,1,25,12,41,2,x x f x x x x x --≤-⎧⎪=+-<<⎨⎪+≥⎩当1x ≤-时,不等式等价于:414x -->, 解得54x <-,所以54x <-; 当12x -<<时,不等式等价于:254x +>, 解得12x >-,所以122x -<<; 当2x ≥时,不等式等价于:414x +>, 解得34x >,所以2x ≥; 所以,不等式的解集为51,,42⎛⎫⎛⎫-∞-⋃-+∞ ⎪ ⎪⎝⎭⎝⎭. (2)由题意知,当1x >-时,3334x x a x ++->+,即1x a ->恒成立,根据函数y x a =-的图象易知,1,11,a a <-⎧⎨--≥⎩解得,a 的取值范围为(],2-∞-.。
第 2 课时 正、余弦定理的综合问题角度一 计算三角形的面积与三角形面积有关的问题 (多维探究 )(1)(2019高考全国卷n )△ ABC 的内角nA ,B ,C 的对边分别为a ,b ,c ,若b = 6,a = 2c , B =-,则△ ABC 的面积为 _________ .(2)(2020福建五校第二次联考)在厶ABC 中,A , B , C 所对的边分别为 a , b , c ,已知 a 2+ b 2 — c 2= 3ab ,且 acsin B = 2 3sin 。
,则厶 ABC 的面积为 _______________ .【解析】(1)法一:因为a = 2c , b = 6, B = f 所以由余弦定理b 2= a 2 + c 2— 2accosB , 3 得 62= (2c)2+ c 2— 2X 2c X ccos 扌,得 c = 2 3,所以 a = 4 3,所以△ ABC 的面积n法二:因为 a = 2c , b = 6, B =-,所以由余弦定理 b 2= a 2+ c 2— 2accos B ,得 62= (2c)2 3 + c 2 — 2 x 2c x ccos 扌,得 c = 2 3 ,所以 a = 4 3 ,所以 a 2= b 2 + c 2 ,所以 A =(所以△ ABC 的面积S = 1x 2j 3x 6= 6筋.厂 a 2+ b 2— c 2 J 3ab 肃(2)因为a 2+ b 2— c 2= . 3ab ,所以由余弦定理得 cos C =莎=W b =2'又0 < Cv n ,所以C = f •因为acsin B = 2 Esin C ,所以结合正弦定理可得11n故 S* 1absin C =1x2.3sin6=求三角形面积的方法 S = ^acs in B =1 x 4 3 x 2 3 x sinabc = 2 3c ,所以 ab = 2 3.【答(1)6 .3_3 2_3 2 .(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.角度二已知三角形的面积解三角形(2020湖南五市十校共同体联考改编) 已知a, b, c分别为△ ABC的内角A, B, C的对边,(3b —a)cos C= ccos A, c是a, b的等比中项,且△ ABC的面积为 3 2,贝U ab= _________ , a+ b= ________ .【解析】因为(3b—a)cos C = ccos A,所以利用正弦定理可得3sin Bcos C = sin Acos C1+ sin Ccos A= sin(A + C)= sin B.又因为sin B^0,所以cos C = 3,贝卩 C 为锐角,所以sin C = ^3~.由△ ABC的面积为3 , 2,可得gabsin C= 3 2,所以ab= 9•由c是a,11b的等比中项可得c2= ab,由余弦定理可得c2= a2+ b2—2abcos C,所以(a + b)2=~3ab= 33,所以a+ b= . 33.【答案】9 ■ 33已知三角形面积求边、角的方法(1) 若求角,就寻求这个角的两边的关系,利用面积公式列方程求解;(2) 若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.[注意]正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用.1. (2020济南市模拟考试)在厶ABC 中,AC = 5, BC = 10, cos A =等,则△ ABC 的面积为()5A.QB. 5C. 10D四D. 2解析:选A.由AC= 5, BC = ,10, BC2= AB2+ AC2—2AC AB cos A,得AB2—4AB—5=0,解得AB = 5,而sin A = 1 —cos2A^55,故S ZABC =5X 5 X 寿5=号.选A.2. (2020长沙市统一模拟考试)已知△ ABC的内角A, B, C的对边分别为a, b, c,且B + Casi n(A+ B)= csin —2 —.⑴求A;(2)若厶ABC的面积为.3,周长为8,求a.A解:⑴由题设得asin C = ccos^,由正弦定理得A sin Asin C= sin Ceos?,所以sin A = cos ?,所以2sinAcosA = cosA,所以sinA= *,所以A = 60°⑵由题设得^bcsin A= . 3,从而bc= 4.由余弦定理a2= b2+ c2—2bccos A,得a2= (b + c)2—12.13又 a + b + c= 8,所以a2= (8 —a)2—12,解得a = ~.三角形面积或周长的最值(范围)问题(师生共研)(2019高考全国卷川)△ ABC的内角A, _ _ , , 、,A+ C , . AB, C的对边分别为a, b, c.已知asin—厂 =bsin A.⑴求B;⑵若△ ABC为锐角三角形,且c= 1,求厶ABC面积的取值范围.、A+ C【解】⑴由题设及正弦定理得sin Asin~2 —= sin Bsin A.A+ C 因为sin A丸,所以sin—厂 =sin B.A + C B—B B B由A+ B + C= 180° 可得sin—= cos^,故cos? = 2sin?cos?.因为COSB M 0,故sinB = 2,因此B= 60°⑵由题设及⑴知厶ABC的面积S ZABC =丄…亠宀》口csin A sin (120 °-C) 羽1由正弦疋理得a= sin C =Sin~C =2tan~C+2.由于△ ABC为锐角三角形,故0 °A<90 ° 0°C<90 °由(1)知A+ C = 120°所以30°<C<90 ° 故2<a<2,从而^V S^BCV^3.因此,△ABC面积的取值范围是3,产8 2求有关三角形面积或周长的最值(范围)问题在解决求有关三角形面积或周长的最值(范围)问题时,一般将其转化为一个角的一个三角函数,利用三角函数的有界性求解,或利用余弦定理转化为边的关系,再应用基本不等式求解.题多解)(2020福州市质量检测)△ ABC 的内角A , B , C 的对边分别为a , b , c.若角A , B ,C 成等差数列,且b = j.(1)求厶ABC 外接圆的直径; ⑵求a + c 的取值范围.解:⑴因为角A , B , C 成等差数列,所以2B = A + C ,n又因为A + B + C = n 所以B = 3.b 2根据正弦定理得,△ABC 的外接圆直径 2R = T~- == 1.sin B n⑵法一:由B = n 知A + C =竽,可得0 v Av ¥ 由⑴知厶ABC 的外接圆直径为1,根据正弦定理得 a b c= = = 1 sin A sin B sin C'所以 a + c = sin A + sin C 2n=sin A + sin 3 — Asin A + ; cos A2 nn n 5 n因为0vA v-3-,所以6v A+ 6v 孑sin 3- 1 n ,所以2< sin A+ 6 W 1,从而 #< . 3sin A+ 6 < 3,所以a+ c的取值范围是Y, 3 .n法二:由⑴知,B = 3,b2= a2+ c2—2accos B= (a+ c)2—3ac>(a + c)2—3* = 4(a+ c)2(当且仅当a = c时,取等号),因为b=¥,所以(a+ c)2 W 3,即a+ c W、.;3,又三角形两边之和大于第三边,所以丁<a+ c W 3,所以a+ c的取值范围是^3, . 3 .解三角形与三角函数的综合应用(师生共研)(2020湖南省五市十校联考)已知向量1 m= (cos x, sin x), n = (cos x, . 3cos x), x€ R,设函数f(x) = m n +(1) 求函数f(x)的解析式及单调递增区间;(2) 设a,b,c 分别为△ ABC 的内角A, B,C 的对边,若f(A) = 2, b+ c= 2 2,^ ABC1的面积为步,求a的值.1 n【解】(1)由题意知,f(x) = cos1 2x+ 3sin xcos x+ ~= sin 2x+ 6 + 1.n n n n n令2x+ 点€ —o+ 2 k n, o + 2k n , k € Z ,解得x€ —k n, a + k n , k€ Z,6 2 2 3 6n n所以函数f(x)的单调递增区间为—3+ k n, "+ k n , k€ Z.n(2)因为f(A)= sin 2A+ 6 + 1= 2,n所以sin 2A+ 6 = 1.因为0v A< n 所以6< 2A + n< 所以2A+ n= § 即A= £6 6 6 6 2 6标注条件,合理建模1 1由厶ABC 的面积S= ?bcsin A = ?,得bc= 2,又 b + c= 2 . 2 ,所以a2= b2+ c2—2bccos A = (b + c)2—2bc(1 + cos A),解得a= .3—1.解决三角函数的应用问题,无论是实际应用问题还是三角函数与解三角形相结合的问题,关键是准确找出题中的条件并在三角形中进行准确标注,然后根据条件和所求建立相应的数学模型,转化为可利用正弦定理或余弦定理解决的问题.△ ABC中的内角A, B, C的对边分别为a, b, c,已知b= 2a—2ccos B.⑴求角C的大小;⑵求.3cos A+ sin B +寸的最大值,并求出取得最大值时角A, B的值.解:⑴法一:在厶ABC中,由正弦定理可知sin B= 2sin A—2sin Ccos B,又A+ B + C= n则sin A= sin( —(B + C)) = sin(B+ C),于是有sin B = 2sin(B + C)—2sin Ccos B = 2sin BcosC+ 2cos Bsin C—2sin Ceos B,整理得sin B= 2sin Bcos C,又sin B 丸,小1贝U cos C= 2,n 因为0<C< n则C = 3.a2+ c2—b2法二:由题可得b= 2a —2c -2ac整理得a2+ b2—c2= ab,1即cos C= 2,n因为0<C< n则C = 3.(2)由⑴知C=n,贝y B+n= n—A ,于是3cos A+ sin B+ 3 = 3cos A+ sin( —A)= . 3cos A + sin A = 2sin A+ 3 , 因为A = -3——B,所以0<A<-3n,所以3<A+n<nn n n故当A = 2时,2sin A+7的最大值为2,此时B=:.6 3 2[基础题组练]则厶ABC 的面积等于( )C . 9 D. |解析:选 B.因为 cos A =~47,则 sin A = 3,所以 S ZABC = 1 x bcsin A = ^^,故选 B. 2.在△ ABC 中,已知C = n b = 4, ABC 的面积为2^3,贝V c =()3A. 2,7B. .7 C . 2 ,2D . 2.3解析:选 D.由 S = ^absin C = 2a x 于二 2.3,解得 a = 2,由余弦定理得 c 2= a 2+ b 2— 2abcos C = 12,故 c = 2 3.3. (2020河南三市联考)已知a , b , c 分别为△ ABC 三个内角 A , B , C 的对边,sin A : sin B = 1 : •,3, c = 2cos C =・.3,则厶 ABC 的周长为()A . 3+3 ,3B . 2 ,3C . 3 + 2 ,3D . 3+ . 3解析:选C.因为sin A : sin B = 1 :3,所以b =・,3a ,a 2 +b 2—c 2 a 2 +(寸da ) 2— c 2由余弦定理得cosC =2ab = 2a x 3a又c = . 3,所以a = . 3, b = 3,所以△ ABC 的周长为4. (2020湖南师大附中4月模拟)若厶ABC 的内角A , b = 2, c = 5, △ ABC 的面积 S=jcos A ,则 a =()B. .5C. 13D . . 175 1 1 解析:选 A.因为 b = 2, c = 5, S = ^2cos A = ?bcsin A = . 5sin A ,所以 sin A =?cos A.「△ ABC 的内角A , B , C 所对的边分别为a ,b ,c ,已知 b = •, 7, c = 4,3 + 2 3,故选 C.B ,C 的对边分别为a , b , c ,且的面积为4 3,且2bcos A+ a= 2c, a + c= 8,则其周长为()A. 10B. 12C. 8 + 3D. 8+ 2 31 解析:选B.因为△ ABC的面积为4二3,所以qacsin B = 4 3.因为2bcos A+ a = 2c,所以由正弦定理得2sin Bcos A+ sin A = 2sin C,又 A + B + C= n,所以2sin Bcos A + sin A = 2sin1 、Acos B + 2cos Asin B,所以sin A = 2cos B sin A,因为sin A工0,所以cos B =刁因为0< B<n所以B= n,所以ac= 16,又a+ c= 8,所以a= c= 4,所以△ ABC为正三角形,所以△ ABC 3的周长为3X 4= 12.故选B.6. _____________________________________________________________ 在△ ABC 中,A = ^, b2sin C = 4 2sin B,则厶ABC 的面积为___________________________________解析:因为b2sin C = 4.2sin B ,所以b2c=4 ,2b,所以bc= 4 .J2,1 1 2S^\BC= qbcsin A= 5x4,2 x = 2.答案:27. (2020江西赣州五校协作体期中改编)在厶ABC中,A =扌,b = 4 , a = 2,3 ,贝V B= _________ ,△ ABC的面积等于________ .bsin A4X sin3解析:△ ABC中,由正弦定理得sin B= —a —=--------- = 1.又B为三角形的内角,所以B=才,所以c= b2- a2= 42-( 2 .'3) 2= 2 ,1所以S ZABC = 2X 2^3= 2.3.答案:才2 3sin A 5c的对边,且B为锐角,若赢=畐,sin解析:由sinA =5c?a= 5c?a=5c ① sin B 2b b 2b 2c,①4 ,b的值为S A ABC= ^4^,则&在△ ABC 中,a , b,c分别是内角A , B ,厂厂由S A\BC = ?acsin B = ~且sin B =:得~ac= 5 ,联立①,②得a = 5,且c = 2. 由sin B=J 且B 为锐角知cos B =3443由余弦定理知 b 2= 25+ 4 — 2X 5X 2X 4= 14, b = .14. 答案:• 1439.在△ ABC 中,/ A = 60° c = 7a.⑴求sin C 的值;⑵若a = 7,求厶ABC 的面积.3解:⑴在厶ABC 中,因为/ A = 60° c = 7a ,csin A 3 x/33\[3所以由正弦定理得sin C = —7— =玄—=荷3. 3⑵因为a =乙所以c = 7X7= 3.1 由余弦定理 a 2= b2 + c 2—2bccos A 得 72 = b 2 + 32— 2b X 3 X -, 解得b = 8或b =— 5(舍).所以△ ABC 的面积 S = ^bcsin A = *X 8X 3X^ = ^3.10. (2020福建五校第二次联考)在厶ABC 中,角A , B , C 的对边分别是 a , b , c ,且 3 acos C = (2b — . 3c)cos A.(1)求角A 的大小;⑵若a = 2,求△ ABC 面积的最大值.解:(1)由正弦定理可得,3sin Acos C = 2sin Bcos A — 3sin Ccos A , 从而.3s in (A + C) = 2si n Bcos A ,即.3sin B = 2sin Bcos A.n又A 为三角形的内角,所以A = 6.⑵由余弦定理 a 2= b 2+ c 2— 2bccos A ,得 4 = b 2 + c 2— 2bc X 牙 >2bc — , 3bc , 1所以bc w 4(2 + .3),所以S MBC = ^bcsin A < 2 + .3,故厶ABC 面积的最大值为 2+ .3.又B 为三角形的内角,所以sin B 丸,于是cos A =1 5 2亦所以sin2A +cos2A= 4cos2A +cos2A= 4cos2A =1.易得cos A=T.所以a2= b2+c2-2bccos A= 4+5- 2x 2x 5x^= 9- 8= X 所以a= 1.故选A.5. (2020开封市定位考试)已知△ ABC的内角A, B , C的对边分别为a , b , c , △ ABC。
高考数学复习考点知识归纳专题解析 专题18等比数列及其前n 项和考点知识归纳常考点01 等比数列中的基本运算 (1)【典例1】 ................................................................................................................................................ 1 【考点总结与提高】 ............................................................................................................................... 2 【变式演练1】 ........................................................................................................................................ 3 常考点02等比数列基本性质的应用 . (3)【典例2】 ................................................................................................................................................ 3 【考点总结与提高】 ............................................................................................................................... 4 【变式演练2】 ........................................................................................................................................ 4 常考点03 等比数列的通项公式及前n 项和 (5)【典例3】 ................................................................................................................................................ 5 【考点总结与提高】 ............................................................................................................................... 6 【变式演练3】 ........................................................................................................................................ 6 常考点04 等差等比混合应用 (7)【典例4】 ................................................................................................................................................ 7 【考点总结与提高】 ............................................................................................................................... 8 【变式演练4】 ........................................................................................................................................ 9 【冲关突破训练】 .. (10)常考点01 等比数列中的基本运算【典例1】1.(2021年全国高考甲卷数学(文)试题)记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =() A .7B .8C .9D .102.(2021年全国统一高考数学试卷(文科)(新课标Ⅲ))已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =A .16B .8C .4D .2【答案】1.A 2.C【解析】1.∵n S 为等比数列{}n a 的前n 项和, ∴2S ,42S S -,64S S -成等比数列 ∴24S =,42642S S -=-= ∴641S S -=,∴641167S S =+=+=. 故选:A.2.设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【考点总结与提高】(1)等比数列的基本运算方法:①等比数列由首项1a 与公比q 确定,所有关于等比数列的计算和证明,都可围绕1a 与q 进行. ②对于等比数列问题,一般给出两个条件,就可以通过解方程(组)求出1a 与q ,对于1,,,,n n a a q n S 五个基本量,如果再给出第三个条件就可以“知三求二”. (2)基本量计算过程中涉及的数学思想方法:①方程思想.等比数列的通项公式和前n 项和公式联系着五个基本量,“知三求二”是一类最基本的运算,通过列方程(组)求出关键量1a 和q ,问题可迎刃而解.②分类讨论思想.等比数列的前n 项和公式为111,1(1),111n nn na q S a a qa q q q q≠,所以当公比未知或是代数式时,要对公比分1q 和1q ≠进行讨论.此处是常考易错点,一定要引起重视.③整体思想.应用等比数列前n 项和公式时,常把nq ,11a q-当成整体求解. 【变式演练1】1.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =()A .2B .1C .12D .182.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++= A .21B .42C .63D .84【答案】1.C 2.B【解析】1.由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q == ,选C.2.24242135121(1)21172a a a a q q q q q ++=++=∴++=∴=得2357135+()22142a a a q a a a +=++=⨯=,选B.常考点02等比数列基本性质的应用【典例2】1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=() A .12B .24C .30D .322.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=() A .7B .5C .5-D .7-【答案】1.D 2.D【解析】1.设等比数列{}n a 的公比为q ,则()2123111a a a a q q++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q++=++=++==.故选:D.2.56474747822,4a a a a a a a a ==-+=∴=-=或474,2a a ==-.由等比数列性质可知2274101478,1a a a a a a ==-==或2274101471,8a a a a a a ====- 1107a a ∴+=-故选D.【考点总结与提高】等比数列的性质是高考考查的热点之一,利用等比数列的性质求解可使题目减少运算量,题型以选择题或填空题为主,难度不大,属中低档题,主要考查通项公式的变形、等比中项的应用及前n 项和公式的变形应用等.注意:(1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度. (2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.【变式演练2】1.已知数列{a n }是等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5=() A .5B .10C .15D .202.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为___________. 【答案】1.A 2.64【解析】1.数列{a n }是等比数列,所以22243465,a a a a a a ==,所以()2222435463355352225a a a a a a a a a a a a ++=++=+=, 又因为0n a >,所以350a a +>,所以355a a +=,故选:A.2.设等比数列的公比为q ,由132410{5a a a a +=+=得,2121(1)10{(1)5a q a q q +=+=,解得1812a q =⎧⎪⎨=⎪⎩.所以2(1)1712(1)22212118()22n n n n n n nn a a a a q--++++-==⨯=,于是当3n =或4时,12n a a a 取得最大值6264=.常考点03 等比数列的通项公式及前n 项和【典例3】1.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则n nS a =()A .2n –1B .2–21–nC .2–2n –1D .21–n –1【答案】B【解析】设等比数列的公比为q ,由536412,24a a a a -=-=可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩, 所以1111(1)122,21112n nn n n n n a q a a qS q ----=====---,因此1121222n n n n n S a ---==-. 故选:B.2.设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则 A .21n n S a =- B .32n n S a =-C .43n n S a =-D .32n n S a =-【答案】D 【解析】S n =()111na q q--=11n a q a q -⋅-=21313na -=3-2a n .【考点总结与提高】1.求等比数列的通项公式,一般先求出首项与公比,再利用11n n a a q -=求解.但在某些情况下,利用等比数列通项公式的变形n mn m a a q -=可以简化解题过程.求解时通常会涉及等比数列的设项问题,常用的设项方法为:(1)通项法.设数列的通项公式11n n a a q -=来求解;(2)对称设元法:若所给等比数列的项数为2()n n N 且各项符号相同,则这个数列可设为21na q ,…,3a q ,,aaq q,3aq ,…,21n aq ; 若所给等比数列的项数为21()n nN ,则这个数列可设为1n a q,…,,,aa aq q ,…,1n aq . 2.当1q ≠时,若已知1,,a q n ,则用1(1)1n n a q S q求解较方便;若已知1,,n a q a ,则用11n na a qS q求解较方便.3.(1)形如1(1,0)n n a pa q p pq +=+≠≠的递推关系式,①利用待定系数法可化为1n a +-()11n q q p a p p =---,当101q a p -≠-时,数列{}1n qa p --是等比数列;②由1n n a pa q +=+,1(2)n n a pa q n -=+≥,两式相减,得11()n n n n a a p a a +--=-,当210a a -≠时,数列1{}n n a a +-是公比为p 的等比数列.(2)形如+1(,0)nn n a ca d c d cd =+≠≠的递推关系式,除利用待定系数法直接化归为等比数列外,也可以两边同时除以1n d +,进而化归为等比数列.【变式演练3】1.数列{A n }中,A 1=2,A m +n =A m A n .若A k +1+A k +2+…+A k +10=215-25,则k =()A .2B .3C .4D .52.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a +++⋅⋅⋅+=() A .()1614n--B .()1612n--C .()32123n -- D .()32143n -- 【答案】1.C 2.D【解析】1.令m =1,则由A m +n =A m A n ,得A n +1=A 1A n ,即1n n A A +=A 1=2,所以数列{A n }是首项为2,公比为2的等比数列,所以A n =2n,所以A k +1+A k +2+…+A k +10=A k (A 1+A 2+…+A 10)=2k×102(12)12⨯--=12k +×(210-1)=215-25=25×(210-1),解得k =4.故选:C 2.由题得35211,82a q q a ==∴=.所以2232112()()22n n n n a a q ---==⨯=, 所以32251111()()()222n n n n n a a ---+=⋅=.所以1114n n n n a a a a +-=,所以数列1{}n n a a +是一个等比数列. 所以12231n n a a a a a a +++⋅⋅⋅+=18[1()]4114n --=()32143n --. 故选:D常考点04 等差等比混合应用【典例4】1.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为() A .24-B .3-C .3D .82.已知正项等差数列{}n a 和正项等比数列{}n b },111a b ==,3b 是2a ,6a 的等差中项,8a 是3b ,5b 的等比中项,则下列关系成立的是() A .100100a b >B .102411a b =C .105a b >D .999a b >【答案】1.A 2.B【解析】1.设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2326a a a =,即2(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)661(2)2422S a d ⨯-⨯-=+=⨯+⨯-=-. 故选:A2.设等差数列公差为d ,等比数列公比为q ,由题意可得:2326226835212262(1+7)b a a d q d a b b q d q =+=⎧⎧=+⎧⇒⇒⎨⎨⎨===⎩⎩⎩ 1,2-∴==n n n a n bA. 100100,2,==>99100100a 100b b a ,故A 不正确;B. ,2==10102411a 1024b =1024,故B 正确;C. ,2==4105a 10b =16,故C 不正确;D. ,2==8999a 99b =256,故D 不正确.故选:B【考点总结与提高】等差、等比数列混合题型属于常规题型,解题思路基本相同∶按照其中一种数列的通项公式展开已知中的各项,再根据另一种数列的性质列出等式即可;至于使用哪一种数列的通项公式展开已知中的各项,要根据实际题意以及计算方便与否来决定。
第一章 集合与规律用语第1讲 集合的含义与基本关系1.(2021年福建)若集合A ={i ,i 2,i 3,i 4}(i 是虚数单位),B ={1,-1},则A ∩B 等于( ) A .{-1} B .{1} C .{1,-1} D .∅2.(2021年四川)设集合A ={x |-1<x <2},集合B ={x |1<x <3},则A ∪B =( ) A .{x |-1<x <3} B .{x |-1<x <1} C .{x |1<x <2} D .{x |2<x <3}3.(2021年安徽)设全集U ={1,2,3,4,5,6},A ={1,2},B ={2,3,4},则A ∩(∁U B )=( ) A .{1,2,5,6} B .{1} C .{2} D .{1,2,3,4}4.(2021年重庆)已知集合A ={1,2,3},B ={2,3},则( ) A .A =B B .A ∩B =∅ C .A B D .B A5.已知集合A ={(x ,y )|y =log 2x },B ={(x ,y )|y =x 2-2x },则A ∩B 的元素有( ) A .1个 B .2个 C .3个 D .4个6.对任意两个正整数m ,n ,定义某种运算⊕:m ⊕n =⎩⎪⎨⎪⎧m +n ,m 与n 奇偶性相同,mn ,m 与n 奇偶性不同,则集合P ={(a ,b )|a⊕b =8,a ,b ∈N *}中元素的个数为( )A .5个B .7个C .9个D .11个 7.若集合A 具有以下性质: (1)0∈A,1∈A ;(2)若x ∈A ,y ∈A ,则x -y ∈A ,且x ≠0时,1x∈A .则称集合A 是“好集”.下列命题正确的个数是( ) ①集合B ={-1,0,1}是“好集”; ②有理数集Q 是“好集”;③设集合A 是“好集”,若x ∈A ,y ∈A ,则x +y ∈A . A .0个 B .1个 C .2个 D .3个8.(2021年广东广州二模)某校高三(1)班50个同学选择选修模块课程,他们在A ,B ,C 3个模块中进行选择,且至少需要选择1个模块,具体模块选择的状况如下表:模块 选择人数/人模块 选择人数/人 A 28 A 与B 11B 26 A 与C 12 C 26 B 与C 13则3个模块都选择的同学人数是( ) A .7人 B .6人 C .5人 D .4人9.已知集合A ={x ∈R |ax 2-3x +2=0,a ∈R }. (1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并写出A 中的元素;(3)若A 中至多有一个元素,求a 的取值范围.10.已知集合A ={x |x 2-2x -3≤0,x ∈R },B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }. (1)若A ∩B =[0,3],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围.第2讲 命题、量词与简洁的规律联结词1.(2021年湖北)命题“∃x 0∈(0,+∞),ln x 0=x 0-1”的否定是( ) A .∃x 0∈(0,+∞),ln x 0≠x 0-1 B .∃x 0(0,+∞),ln x 0=x 0-1 C .∀x ∈(0,+∞),ln x ≠x -1 D .∀x (0,+∞),ln x =x -12.(2022年重庆)已知命题p :对任意x ∈R ,总有|x |≥0,q :x =1是方程x +2=0的根,则下列命题为真命题的是( )A .p ∧qB .p ∧qC .p ∧qD .p ∧q3.若函数f (x )=x 2+ax (a ∈R ),则下列结论正确的是( )A .∃a 0∈R ,f (x )是偶函数B .∃a 0∈R ,f (x )是奇函数C .∀a ∈R ,f (x )在(0,+∞)上是增函数D .∀a ∈R ,f (x )在(0,+∞)上是减函数4.(2021年湖北,由人教版选修1-1P 28-1改编)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(p )∨(q )B .p ∨(q )C .(p )∧(q )D .p ∧q5.已知命题p :“∀x ∈[0,1],a ≥e x ”,命题q :“∃x ∈R ,x 2+4x +a =0”.若命题“p ∧q ”是真命题,则实数a 的取值范围是( )A .(4,+∞)B .[1,4]C .[e,4]D .(-∞,1] 6.(2021年广东珠海二模)下列四种说法中,错误的个数是( )①命题“∃x 0∈R ,x 20-x 0>0”的否定是“∀x ∈R ,x 2-x ≤0”; ②命题“p ∨q 为真”是命题“p ∧q 为真”的必要不充分条件; ③“若am 2<bm 2,则a <b ”的逆命题为真;④若实数x ,y ∈[0,1],则满足x 2+y 2>1的概率为π4.A .0个B .1个C .2个D .3个7.(2021年山东)若“∀x ∈⎣⎡⎦⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________. 8.已知f (x )=x 2,g (x )=⎝⎛⎭⎫12x-m ,若对∀x 1∈[-1,3],∃x 2∈[0,2],f (x 1)≥g (x 2),则实数m 的取值范围是________.9.设函数f (x )=x 2-2x +m .(1)若∀x ∈[0,3],f (x )≥0恒成立,求m 的取值范围; (2)若∃x ∈[0,3],f (x )≥0成立,求m 的取值范围.10.设命题p :方程x 2+2mx +1=0有两个不相等的正根;命题q :方程x 2+2(m -2)x -3m +10=0无实根.若p ∨q 为真,p ∧q 为假,求实数m 的取值范围.第3讲 充分条件与必要条件1.(2021年天津)设x ∈R ,则“1<x <2”是“|x -2|<1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件2.(2021年四川)设a ,b 为正实数,则“a >b >1”是“log 2a >log 2b >0”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件3.设z 1,z 2∈C ,则“z 1,z 2中至少有一个数是虚数”是“z 1+z 2是虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件4.(2021年湖南)设A ,B 是两个集合,则“A ∩B =A ”是“A ⊆B ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.(2021年福建)若l ,m 是两条不同的直线,m 垂直于平面α,则“l ⊥m ”是“l ∥α”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件6.(2021年陕西)“sin α=cos α”是“cos2α=0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.已知命题p :|x +2|>1,命题q :x <a ,且q 是p 的必要不充分条件,则a 的取值范围可以是( ) A .a ≥3 B .a ≤-3 C .a <-3 D .a >38.(2022年江西)下列叙述中正确的是( )A .若a ,b ,c ∈R ,则“ax 2+bx +c ≥0”的充分条件是“b 2-4ac ≤0”B .若a ,b ,c ∈R ,则“ab 2>cb 2”的充要条件是“a >c ”C .命题“对任意x ∈R ,有x 2≥0”的否定是“存在x 0∈R ,有x 20≥0”D .l 是一条直线,α,β是两个不同的平面,若l ⊥α,l ⊥β,则α∥β9.已知函数f (x )=x 2-2ax +1,若使得f (x )没有零点的a 的取值范围为集合A ,使得f (x )在区间(m ,m +3)上不是单调函数的a 的取值范围为集合B .(1)求A ,B ;(2)若x ∈A 是x ∈B 的充分不必要条件,求m 的取值范围.10.在平面直角坐标系xOy 中,直线l 与抛物线y 2=2x 相交于A ,B 两点.(1)求证:命题“假如直线l 过点T (3,0),那么OA →·OB →=3”是真命题; (2)写出(1)中命题的逆命题,推断它是真命题还是假命题,并说明理由.习题集部分第一章 集合与规律用语 第1讲 集合的含义与基本关系1.C 解析:由已知,得A ={i ,-1,-i,1}.故A ∩B ={1,-1}.故选C.2.A 解析:由题意,得A ={x |-1<x <2},集合B ={x |1<x <3},则A ∪B ={x |-1<x <3}. 3.B 解析:∵∁U B ={1,5,6}.∴A ∩(∁U B )={1}.∴故选B.4.D 解析:由于2∈A,2∈B,3∈A,3∈B,1∈A,1B .故选项A ,B ,C 均错,选项D 正确.故选D. 5.B 解析:在同始终角坐标系下画出函数y =log 2x 与y =x 2-2x 的图象,如图D64,由图可知y =log 2x 与y =x 2-2x 图象有2个交点,则A ∩B 的元素有2个.图D646.C 解析:当a ,b 奇偶性相同时,a ⊕b =a +b =1+7=2+6=3+5=4+4;当a ,b 奇偶性不同时,a ⊕b =ab =1×8.由于(a ,b )有序,故共有元素4×2+1=9个.7.C 解析:(1)集合B 不是“好集”,假设集合B 是“好集”,由于-1∈B,1∈B .所以-1-1=-2∈B ,这与-2B 冲突.(2)有理数集Q 是“好集”,由于0∈Q ,1∈Q ,对任意的x ∈Q ,y ∈Q ,有x -y ∈Q ,且x ≠0时,1x ∈Q .所以有理数集Q 是“好集”.(3)由于集合A 是“好集”.所以0∈A ,若x ∈A ,y ∈A ,则0-y ∈A ,即-y ∈A .所以x -(-y )∈A ,即x +y ∈A .8.B 解析:方法一,设三个模块都选择的同学人数为x ,由韦恩图D65,得5+x +2+x +1+x +11-x +12-x +13-x +x =50.得x =6.图D65方法二,由题意,得28+26+26-11-12-13+x =50.得x =6. 9.解:集合A 是方程ax 2-3x +2=0在实数范围内的解组成的集合.(1)若A 是空集,即方程ax 2-3x +2=0无解,当a =0时,x =23,不合题意;则⎩⎪⎨⎪⎧a ≠0,Δ=(-3)2-8a <0.∴a >98,即实数a 的取值范围是⎝⎛⎭⎫98,+∞. (2)当a =0时,方程只有一解23,此时A 中只有一个元素23;当a ≠0时,应有Δ=0,∴a =98.此时方程有两个相等的实数根.当a =98时,解得x 1=x 2=43,A 中只有一个元素43.∴当a =0或a =98时,A 中只有一个元素,分别是23或43.(3)A 中至多有一个元素,包括A 是空集和A 中只有一个元素两种状况,依据(1)(2)的结果,得a =0或a ≥98,即a 的取值范围是⎩⎨⎧⎭⎬⎫a |a =0,或a ≥98.10.解:A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}. (1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3,即⎩⎨⎧m =2,m ≥1.∴m =2.故所求实数m 的值为2.(2)∵∁R B ={x |x <m -2,或x >m +2}, 若A ⊆∁R B ,则m -2>3或m +2<-1. ∴m >5,或m <-3.因此,实数m 的取值范围是m >5或m <-3.第2讲 命题、量词与简洁的规律联结词1.C 解析:由特称命题的否定为全称命题可知,所求命题的否定为∀x ∈(0,+∞),ln x ≠x -1.故选C. 2.A 解析:命题p :对任意x ∈R ,总有|x |≥0,为真命题;命题q :x =1是方程x +2=0的根,为假命题,则p ∧q 为真命题.3.A 解析:当a =0时,f (x )是偶函数. 4.A 解析:由题意,得p 是“甲没降落在指定范围”,q 是“乙没降落在指定范围”.命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”,或“甲没降落在指定范围,乙降落在指定范围”,或“甲、乙均没降落在指定范围”三种.则所求命题可表示为(p )∨(q ).5.C 解析:∀x ∈[0,1],a ≥e x ,即a ≥(e x )max =e 1=e ;∃x ∈R ,x 2+4x +a =0,Δ=16-4a ≥0,a ≤4.命题“p ∧q ”是真命题,即p 真q 真.故选C.6.C 解析:①②正确;③④错误.故选C.7.1 解析:若“∀x ∈⎣⎡⎦⎤0,π4,tan x ≤m ”是真命题,则实数m 大于或等于函数y =tan x ,在⎣⎡⎦⎤0,π4上的最大值,由于函数y =tan x ,在⎣⎡⎦⎤0,π4上为增函数.所以函数y =tan x 在⎣⎡⎦⎤0,π4上的最大值为tan π4=1.所以m ≥1,则实数m 的最小值为1.8.⎣⎡⎭⎫14,+∞ 解析:x 1∈[-1,3]时,f (x 1)∈[0,9],x 2∈[0,2]时,g (x 2)∈⎣⎡⎦⎤⎝⎛⎭⎫122-m ,⎝⎛⎭⎫120-m ,即g (x 2)∈⎣⎡⎦⎤14-m ,1-m ,要使∀x 1∈[-1,3],∃x 2∈[0,2],f (x 1)≥g (x 2),只需f (x )min ≥g (x )min ,即0≥14-m .故m ≥14.9.解:(1)若对∀x ∈[0,3],f (x )≥0恒成立,即f (x )min ≥0. f (x )=x 2-2x +m =(x -1)2+m -1, f (x )min =f (1)=m -1≥0,即m ≥1.(2)若∃x ∈[0,3],f (x )≥0成立,即f (x )max ≥0. f (x )=x 2-2x +m =(x -1)2+m -1, f (x )max =f (3)=m +3≥0,即m ≥-3.10.解:设方程x 2+2mx +1=0的两根分别为x 1,x 2,由⎩⎪⎨⎪⎧Δ1=4m 2-4>0,x 1+x 2=-2m >0,得m <-1. 所以命题p 为真时,m <-1.由方程x 2+2(m -2)x -3m +10=0无实根, 可知Δ2=4(m -2)2-4(-3m +10)<0,得-2<m <3. 所以命题q 为真时,-2<m <3.由p ∨q 为真,p ∧q 为假,可知命题p ,q 一真一假,当p 真q 假时,⎩⎪⎨⎪⎧m <-1,m ≥3或m ≤-2,此时m ≤-2;当p 假q 真时,⎩⎪⎨⎪⎧m ≥-1,-2<m <3,此时-1≤m <3.所以所求实数m 的取值范围是m ≤-2,或-1≤m <3.第3讲 充分条件与必要条件1.A 解析:由|x -2|<1⇔-1<x -2<1⇔1<x <3,可知“1<x <2”是“|x -2|<1”的充分不必要条件.故选A.2.A 解析:a >b >1时,有log 2a >log 2b >0成立,反之当log 2a >log 2b >0成立时,a >b >1也正确.故选A.3.B 解析:若z 1,z 2皆是实数,则z 1+z 2肯定不是虚数,因此当z 1+z 2是虚数时,则“z 1,z 2中至少有一个数是虚数”成立,即必要性成立;当z 1,z 2中至少有一个数是虚数,z 1+z 2不肯定是虚数,如z 1=z 2=i ,即充分性不成立.故选B.4.C 解析:由题意,得A ∩B =A ⇒A ⊆B ,反之,A ⊆B ⇒A ∩B =A ,故为充要条件.故选C. 5.B 解析:若l ⊥m ,由于m 垂直于平面α,则l ∥α或l ⊂α;若l ∥α,又m 垂直于平面α,则l ⊥m .所以“l ⊥m ”是“l ∥α”的必要不充分条件.故选B.6.A 解析:cos2α=0⇒cos 2α-sin 2α=0⇒(cos α-sin α)(cos α+sin α)=0.所以sin α=cos α或sin α=-cos α.故选A.7.B 解析:命题p :x <-3,或x >-1,则p :-3≤x ≤-1,q :x ≥a .由题意有p ⇒q ,qp ,则a ≤-3.8.D 解析:当a <0时,由“b 2-4ac ≤0”推不出“ax 2+bx +c ≥0”,A 错误;当b =0时,由“a >c ”推不出“ab 2>cb 2”,B 错误;命题“对任意x ∈R ,有x 2≥0”的否定是“存在x 0∈R ,有x 20<0”,C 错误;由于与同一条直线垂直的两个平面平行.所以D 正确.9.解:(1)若f (x )没有零点,则Δ=4a 2-4<0. ∴-1<a <1,即A ={a |-1<a <1}.若f (x )=(x -a )2+1-a 2在区间(m ,m +3)上不单调, 则m <a <m +3,即B ={a |m <a <m +3}. (2)若x ∈A 是x ∈B 的充分不必要条件, 则AB ,∴⎩⎪⎨⎪⎧m ≤-1,m +3≥1.∴-2≤m ≤-1.10.(1)证明:设过点T (3,0)的直线l 交抛物线y 2=2x 于点A (x 1,y 1),B (x 2,y 2). 当直线l 的斜率不存在时,直线l 的方程为x =3, 此时,直线l 与抛物线相交于点A (3,6),B (3,-6).∴OA →·OB →=3. 当直线l 的斜率存在时,设直线l 的方程为y =k (x -3),其中k ≠0.由⎩⎪⎨⎪⎧y 2=2x ,y =k (x -3),得ky 2-2y -6k =0.则y 1y 2=-6. 又∵x 1=12y 21,x 2=12y 22, ∴OA →·OB →=x 1x 2+y 1y 2=14(y 1y 2)2+y 1y 2=3.综上所述,命题“假如直线l 过点T (3,0),那么OA →·OB →=3”是真命题.(2)解:逆命题:假如OA →·OB →=3,那么直线l 过点T (3,0). 该命题是假命题,理由如下:例如:取抛物线上的点A (2,2),B ⎝⎛⎭⎫12,1, 此时OA →·OB →=3,直线AB 的方程为y =23(x +1),而T (3,0)不在直线AB 上.。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
阶段滚动月考卷(一)集合与常用规律用语、函数与导数(时间:120分钟分值:150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合P={x|x2-x-2≥0},Q={y|y=12x2−1,x∈P},则P∩Q= ( )A.{m|-1≤m<2}B.{m|-1<m<2}C.{m|m≥2}D.{-1}2.(2022·德州模拟)已知集合A={x|4≤2x≤16},B=[a,b],若A⊆B,则实数a-b的取值范围是( )A.(-∞,-2]B.[-2,+∞)C.(-∞,2]D.[2,+∞)3.(2022·潍坊模拟)已知幂函数f(x)的图象过点(4,12),则f(8)的值为( )A.√24B.64 C.2√2 D.1644.“a≤-2”是“函数f(x)=|x-a|在[-1,+∞)上单调递增”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(2022·烟台模拟)已知函数f(x)=lnx,则函数g(x)=f(x)-f ′(x)的零点所在的区间是( ) A.(0,1) B.(1,2) C.(2,3) D.(3,4)6.设函数f(x)的定义域为R,x0(x0≠0)是f(x)的微小值点,以下结论肯定正确的是( )A.∀x∈R,f(x)≥f(x0)B.-x0是f(-x)的极大值点C.-x0是-f(x)的微小值点D.-x0是-f(-x)的极大值点7.(2022·青岛模拟)设a=20.3,b=0.32,c=log x(x2+0.3)(x>1),则a,b,c的大小关系是( )A.a<b<cB.b<a<cC.c<b<aD.b<c<a8.过函数f(x)=3x-x3图象上一点A(2,-2)的切线方程为( )A.y=-2B.y=2C.9x+y-16=0D.9x+y-16=0或y=-29.(2021·北京高考)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率状况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同的路程,三辆汽车中,甲车消耗汽油量最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该城市用丙车比用乙车更省油10.(2022·大连模拟)已知f(x)是定义域为R的偶函数,当x≤0时,f(x)=(x+1)3e x+1,那么函数f(x)的极值点的个数是( )A.5B.4C.3D.2二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.(2022·北京模拟)曲线y=x3+mx+c在点P(1,n)处的切线方程为y=2x+1,其中m,n,c∈R,则m+n+c= .12.(2022·烟台模拟)已知f(x)是定义在R上的函数,且满足f(x+2)=-1f(x),当2≤x≤3时,f(x)=x,则f(−112)= .13.f(x)=log2a[(a2-3a)x]在(-∞,0)上是减函数,则实数a的取值范围是.14.(2022·绍兴模拟)已知函数f(x)满足f(x+1)=-1f(x),且f(x)是偶函数,当x∈[-1,0]时,f(x)=x2,若在区间[-1,3]内,函数g(x)=f(x)-log a(x+2)有4个零点,则实数a的取值范围是.15.(2022·莱芜模拟)已知定义域为R的函数f(x),对于x∈R,满足f(f(x)-x2+x)=f(x)-x2+x,设有且仅有一个实数x0,使得f(x0)=x0,则实数x0的值为.三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤) 16.(12分)(2022·泰安模拟)已知集合A={x|x2-2x-3≤0,x∈R}, B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.(1)若A∩B=[0,3],求实数m的值.(2)若ARB,求实数m的取值范围.17.(12分)设a>0,且a≠1,已知函数f(x)=log a1−bxx−1是奇函数.(1)求实数b的值.(2)求函数f(x)的单调区间.(3)当x∈(1,a-2)时,函数f(x)的值域为(1,+∞),求实数a的值.18.(12分)某地拟建一座长为640米的大桥AB,假设桥墩等距离分布,经设计部门测算,两端桥墩A,B造价总共为100万元,当相邻两个桥墩的距离为x米时(其中64<x<100),中间每个桥墩的平均造价为803√x万元,桥面每1米长的平均造价为(2+x√x640)万元.(1)试将桥的总造价表示为x的函数f(x).(2)为使桥的总造价最低,试问这座大桥中间(两端桥墩A,B除外)应建多少个桥墩?19.(12分)(2022·济宁模拟)已知函数f(x)=ex2-1e x-ax(a∈R).(1)当a=32时,求函数f(x)的单调区间.(2)若函数f(x)在[-1,1]上为单调函数,求实数a的取值范围.20.(13分)已知函数f(x)=(a+1a)lnx+1x-x(a>0).(1)求f(x)的极值.(2)若曲线y=f(x)上总存在不同两点P(x1,f(x1)),Q(x2,f(x2)),使得曲线y=f(x)在P,Q两点处的切线相互平行,证明x1+x2>2.ax2+x,a∈R.21.(14分)(2022·威海模拟)已知函数f(x)=lnx-12(1)若关于x的不等式f(x)≤ax-1恒成立,求整数a的最小值.(2)若a=-2,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,证明:x1+x2≥√5−1.2答案解析1.C P={x|x≥2或x≤-1},又x∈P时,y=12x2-1∈[−12,+∞),故Q={y|y≥−12},故P∩Q={m|m≥2}.2.【解题提示】先化简A,留意运用指数函数的单调性解不等式,再依据集合的包含关系,求出a,b的范围,运用不等式的性质,求出a-b的取值范围.A 集合A={x|4≤2x≤16}={x|22≤2x≤24}={x|2≤x≤4}=[2,4],由于A B,B=[a,b],所以a≤2,b≥4,所以a-b≤2-4=-2,即a-b的取值范围是(-∞,-2].3.A 由于函数f(x)为幂函数,所以设f(x)=xα,由于其图象过点(4,12),所以12=4α,解得α=-12,所以f(x)=x−12,所以f(8)=8−12−12=√24.4.A 函数f(x)=|x-a|={x−a,x≥a,a−x,x<a,则f(x)的单调增区间是[a,+∞).而函数f(x)=|x-a|在[-1,+∞)上单调递增⇔a≤-1,所以“a≤-2”是“函数f(x)=|x-a|在[-1,+∞)上单调递增”的充分不必要条件.5.B 由题意可知g(x)=lnx-1x,由于g(1)=-1<0,g(2)=ln2-12=ln2-ln√e>0.所以函数g(x)的零点所在区间是(1,2).6.D 由于x0是f(x)的微小值点,y=-f(-x)与y=f(x)的图象关于原点对称,所以-x0是y=-f(-x)的极大值点.7.B 由于x>1,所以c=log x(x2+0.3)>log x x2=2,又由于1<a<2,0<b<1,所以b<a<c.8.D 设切点为P(x0,y0),f′(x)=3-3x2,所以切线斜率k=3-3x02,切线方程为y-(3x0-x03)=(3-3x02)(x-x0),又由于点A(2,-2)在切线上,所以-2-(3x0-x03)=(3-3x02)(2-x0),解之得x0=2或x0=-1,所以k=-9或k=0,所以切线方程为9x+y-16=0或y=-2.【加固训练】若曲线y=e-ax+1在点(0,2)处的切线与直线x+2y-1=0垂直,则a= ( )A.-2B.2C.-23D.23A 依题意知y′=-ae-ax,所以曲线在点(0,2)处的切线斜率k=-a,又其切线与直线x+2y-1=0垂直,所以(-a)×(−12)=-1,即a=-2.9.D 选项A,问的是纵坐标最大值.选项B,消耗1升油甲走最远,则反过来路程相同甲最省油.选项C,此时甲走过了80千米,消耗8升汽油.选项D,80千米/小时以下丙“燃油效率”更高,更省油.10.C 当x ≤0时,f ′(x)=3(x+1)2e x+1+(x+1)3e x+1=(x+1)2e x+1(x+4),解f ′(x)=0,得x=-4或x=-1.由于x ∈(-∞,-4)时,f ′(x)<0;x ∈(-4,-1)时,f ′(x)>0;x ∈(-1,0)时,f ′(x)>0,则f(x)在区间x ∈(-∞,-4)上单调递减,在区间x ∈(-4,0)上单调递增.又由于f(x)是定义域为R 的偶函数,由其对称性可得,f(x)在区间x ∈(0,4)上单调递减,在区间x ∈(4,+∞)上单调递增,所以函数f(x)在x=±4或x=0处取得极值. 11.【解析】y ′=3x 2+m,由题意知{1+m +c =n,3+m =2,n =2×1+1.所以{m =−1,n =3,c =3.所以m+n+c=5. 答案:512.【解析】由f(x+2)=-1f(x)可得,f(x+4)=-1f(x+2)=f(x),所以函数f(x)是以4为周期的周期函数, f (−112)=f (−112+8)=f (52)=52.答案:5213.【解析】由x ∈(-∞,0)可得a 2-3a<0,得0<a<3, 所以y=(a 2-3a)x 在(-∞,0)上是减函数, 又f(x)=log 2a [(a 2-3a)x]在(-∞,0)上是减函数, 所以2a>1,故12<a<3.答案:(12,3)14.【解析】由于f(x+1)=-1f(x),则有f(x+2)=f(x),即f(x)是周期为2的周期函数,又f(x)是偶函数,当x ∈[-1,0]时,f(x)=x 2,则有当x ∈[0,1]时,f(x)=x 2,故当x ∈[-1,1]时,f(x)=x 2,那么当x ∈[1,3]时,f(x)=(x-2)2,而函数g(x)=f(x)-log a (x+2)有4个零点,故函数y=f(x)的图象与y=log a (x+2)有4个交点,数形结合可得1≥log a (3+2), 解得a ≥5. 答案:[5,+∞)15.【解析】由于对任意x ∈R,有f(f(x)-x 2+x)=f(x)-x 2+x. 又由于有且只有一个实数x 0,使得f(x 0)=x 0 所以对任意x ∈R,有f(x)-x 2+x=x 0, 在上式中令x=x 0,有f(x 0)-x 20+x 0=x 0,又由于f(x 0)=x 0,所以x 0-x 20=0,故x 0=0或x 0=1,若x 0=0,则f(x)-x 2+x=0,即f(x)=x 2-x,但方程x 2-x=x 有两个不相同实根,与题设条件冲突.故x 0≠0,若x 0=1,则有f(x)-x 2+x=1,即f(x)=x 2-x+1,此时f(x)=x 有且仅有一个实数1, 综上,x 0=1. 答案:116.【解析】由已知得:A={x|-1≤x ≤3}, B={x|m-2≤x ≤m+2}.(1)由于A ∩B=[0,3],所以{m −2=0,m +2≥3,所以{m =2,m ≥1,所以m=2.(2)R B={x|x<m-2或x>m+2}. 由于AR B,所以m-2>3或m+2<-1,所以m>5或m<-3,所以m 的取值范围为(-∞,-3)∪(5,+∞).17.【解题提示】(1)由函数f(x)是奇函数可得f(-x)=-f(x),代入函数f(x)的解析式可解得实数b 的值.(2)首先求出函数f(x)的定义域,再求出其导函数f ′(x),最终分别令f ′(x)>0和f ′(x)<0即可求出函数f(x)的单调增区间和单调减区间.(3)由a-2>1得a>3,结合(2)可得,f(x)在(1,a-2)上单调递减,于是可得f(a-2)=1,解之即可得到实数a 的值.【解析】(1)由于f(x)是奇函数,所以f(-x)=-f(x). 从而f(-x)+f(x)=0, 即log a1+bx −x−1+log a1−bx x−1=0,于是,(b 2-1)x 2=0,由x 的任意性知b 2-1=0, 解得b=-1或b=1(舍),所以b=-1. (2)由(1)得f(x)=log a x +1x−1,(x<-1或x>1),f ′(x)=−2(x 2−1)lna.当0<a<1时,f ′(x)>0,即f(x)的增区间为(-∞,-1),(1,+∞); 当a>1时,f ′(x)<0,即f(x)的减区间为(-∞,-1),(1,+∞).(3)由a-2>1得a>3,所以f(x)在(1,a-2)上单调递减,从而f(a-2)=1,即log a a −1a−3=1,又a>3,得a=2+√3.18.【解析】(1)由桥的总长为640米,相邻两个桥墩的距离为x 米,知中间共有(640x−1)个桥墩,于是桥的总造价f(x)=640(2+x √x 640)+803√x (640x−1)+100,即f(x)=x 32+640×803x −12-803x 12+1380=x32+51 2003x−12-803x12+1380(64<x<100).(表达式写成f(x)=x √x +51 2003√x−803√x +1 380同样给分)(2)由(1)可求f ′(x)=32x 12-640×403x −32-403x −12,整理得f ′(x)=16x −32(9x2-80x-640×80),由f ′(x)=0,解得x 1=80,x 2=-6409(舍去),又当x ∈(64,80)时,f ′(x)<0;当x ∈(80,100)时,f ′(x)>0,所以当x=80时桥的总造价最低,此时桥墩数为64080-1=7.19.【解析】(1)当a=32时,f(x)=e x 2-1e x -32x, f ′(x)=12ex [(e x )2-3e x +2] =12ex (e x -1)(e x -2), 令f ′(x)=0,得e x =1或e x =2, 即x=0或x=ln2,令f ′(x)>0,则x<0或x>ln2, 令f ′(x)<0,则0<x<ln2,所以f(x)在(-∞,0],[ln2,+∞)上单调递增,在(0,ln2)上单调递减. (2)f ′(x)=e x2+1e x -a,令e x =t,由于x ∈[-1,1], 所以t ∈[1e ,e].令h(t)=t 2+1t (t ∈[1e,e]), h ′(t)=12-1t 2=t 2−22t 2, 所以当t ∈[1e,√2)时h ′(t)<0,函数h(t)为单调减函数; 当t ∈(√2,e]时h ′(t)>0,函数h(t)为单调增函数, 所以√2≤h(t)≤e+12e .由于函数f(x)在[-1,1]上为单调函数, 所以若函数f(x)在[-1,1]上单调递增, 则a ≤t 2+1t对t ∈[1e,e]恒成立,所以a ≤√2;若函数f(x)在[-1,1]上单调递减,则a ≥t 2+1t对t ∈[1e,e]恒成立,所以a ≥e+12e,综上可得a ≤√2或a ≥e+12e.20.【解析】(1)f ′(x)=(a +1a )1x -1x2-1=-x 2−(a+1a)x+1x 2=-(x−a)(x−1a)x 2(x>0).当a>1时,0<1a<a,f(x)的单调递减区间是(0,1a),(a,+∞),单调递增区间是(1a,a). f(x)微小值=f (1a ) =(a +1a)ln 1a+a-1a=-(a +1a)lna+a-1a,f(x)极大值=f(a)=(a +1a)lna-a+1a. 当a=1时,f ′(x)=-(x−1)2x 2≤0,f(x)无极值. 当0<a<1时,0<a<1a,f(x)的单调递减区间是(0,a),(1a,+∞),单调递增区间是(a ,1a).f(x)极大值=f (1a)=-(a +1a)lna+a-1a,f(x)微小值=f(a)=(a +1a)lna-a+1a.(2)依题意知,f ′(x 1)=(a +1a )1x 1-1x 12-1=f ′(x 2) =(a +1a )1x 2-1x 22-1, 故a+1a =1x 1+1x 2=x 1+x 2x 1x 2. 由x 1+x 2>2√x 1x 2得x 1x 2<(x 1+x 2)24,故x 1+x 2x 1x 2>4x 1+x 2,故存在x 1,x 2使a+1a =x 1+x 2x 1x 2>4x 1+x 2,即x 1+x 2>4a+1a. 当a>0时,a+1a≥2,当且仅当a=1时取等号.所以x 1+x 2>4(a+1a )min=2.即x 1+x 2>2.21.【解析】(1)令g(x)=f(x)-(ax-1)=lnx-12ax 2+(1-a)x+1,所以g ′(x)=1x-ax+(1-a)=−ax 2+(1−a)x+1x,当a ≤0时,由于x>0,所以g ′(x)>0,所以g(x)在(0,+∞)上是递增函数,又由于g(1)=ln1-12a ×12+(1-a)+1=-32a+2>0,所以关于x 的不等式f(x)≤ax-1不能恒成立.当a>0时, g ′(x)=−ax 2+(1−a)x+1x=-a (x−1a)(x+1)x,令g ′(x)=0,得x=1a.所以当x ∈(0,1a )时,g ′(x)>0;当x ∈(1a,+∞)时,g ′(x)<0,因此函数g(x)在x ∈(0,1a)是增函数,在x ∈(1a,+∞)是减函数.故函数g(x)的最大值为g (1a)=ln 1a -12a ×(1a)2+(1-a)×1a+1=12a-lna.令h(a)=12a-lna,由于h(1)=12>0,h(2)=14-ln2<0,又由于h(a)在a ∈(0,+∞)是减函数,所以当a ≥2时,h(a)<0,所以整数a 的最小值为2.【一题多解】本题还可以接受以下方法 由f(x)≤ax-1恒成立,得lnx-12ax 2+x ≤ax-1在(0,+∞)上恒成立,问题等价于a ≥ln x+x+112x 2+x 在(0,+∞)上恒成立.令g(x)=ln x+x+112x 2+x ,只要a ≥g(x)max , 由于g ′(x)=(x+1)(−12x−lnx)(12x 2+x)2. 令g ′(x)=0, 得-12x-lnx=0.设h(x)=-12x-lnx,由于h ′(x)=-12-1x<0,所以h(x)在(0,+∞)上单调递减, 不妨设-12x-lnx=0的根为x 0.当x ∈(0,x 0)时,g ′(x)>0; 当x ∈(x 0,+∞)时,g ′(x)<0,所以g(x)在x ∈(0,x 0)上是增函数;在x ∈(x 0,+∞)上是减函数.所以g(x)max =g(x 0)=ln x 0+x 0+112x 02+x 0=1+12x 0x 0(1+12x 0)=1x 0,由于h (12)=ln2-14>0,h(1)=-12<0,所以12<x 0<1,此时1<1x 0<2,即g(x)max ∈(1,2).所以a ≥2,即整数a 的最小值为2. (2)当a=-2时,f(x)=lnx+x 2+x,x>0, 由f(x 1)+f(x 2)+x 1x 2=0,即lnx 1+x 12+x 1+lnx 2+x 22+x 2+x 1x 2=0,从而(x 1+x 2)2+(x 1+x 2) =x 1·x 2-ln(x 1·x 2)令t=x 1·x 2,则由φ(t)=t-lnt 得,φ′(t)=t −1t,可知,φ(t)在区间(0,1)上单调递减,在区间(1,+∞)上单调递增. 所以φ(t)≥φ(1)=1, 所以(x 1+x 2)2+(x 1+x 2)≥1,因此x1+x2≥√5−1成立.2关闭Word文档返回原板块。
第3讲 等比数列及其前n 项和一、知识梳理1.等比数列的有关概念 (1)定义:①文字语言:一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(非零). ②符号语言:a n +1a n=q (n ∈N *,q 为非零常数).(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和.(m ,n ,p ,q ,r ,k ∈N *) (1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r ; (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列;(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1). 常用结论1.等比数列的单调性当q >1,a 1>0或0<q <1,a 1<0时,{a n }是递增数列; 当q >1,a 1<0或0<q <1,a 1>0时,{a n }是递减数列; 当q =1时,{a n }是常数列. 2.等比数列与指数函数的关系当q ≠1时,a n =a 1q ·q n,可以看成函数y =cq x ,是一个不为0的常数与指数函数的乘积,因此数列{a n }各项所对应的点都在函数y =cq x 的图象上.3.等比数列{a n }的前n 项和S n =A +B ·C n ⇔A +B =0,公比q =C (A ,B ,C 均不为零) 二、习题改编1.(必修5P53练习T3改编)对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列解析:选 D.设等比数列的公比为q ,则a 3=a 1q 2,a 6=a 1q 5,a 9=a 1q 8,满足(a 1q 5)2=a 1q 2·a 1q 8,即a 26=a 3·a 9.2.(必修5P53习题T1改编)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=54,a 2+a 4=52,则q = . 答案:23.(必修5P54A 组T8改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为 .解析:设该数列的公比为q ,由题意知, 243=9×q 3,得q 3=27,所以q =3.所以插入的两个数分别为9×3=27,27×3=81. 答案:27,81一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的比都是常数,则这个数列是等比数列.( )(2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( ) (3)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( )(4)如果{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( ) (5)等比数列中不存在数值为0的项.( ) 答案:(1)× (2)× (3)× (4)× (5)√ 二、易错纠偏常见误区(1)运用等比数列的前n 项和公式时,忽略q =1的情况; (2)“G 2=ab ”是“a ,G ,b 成等比数列”的必要不充分条件; (3)对等比数列项的符号不能作出正确判断.1.已知在等比数列{a n }中,a 3=7,前三项之和S 3=21,则公比q 的值是( ) A .1 B .-12C .1或-12D .-1或12解析:选C.当q =1时,a n=7,S 3=21,符合题意;当q ≠1时,⎩⎪⎨⎪⎧a 1q 2=7,a 1(1-q 3)1-q =21,得q =-12.综上,q 的值是1或-12,故选C.2.在等比数列{a n }中,a 3=2,a 7=8,则a 5= .解析:因数列{a n }为等比数列,则a 25=a 3a 7=16,又a 3>0,所以a 5=4. 答案:43.在等比数列{a n }中,a 2=4,a 10=16,则a 2和a 10的等比中项为 . 解析:设a 2与a 10的等比中项为G ,因为a 2=4,a 10=16,所以G 2=4×16=64,所以G =±8.答案:±8等比数列的基本运算(师生共研)(1)(一题多解)(2019·高考全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.若a 1=1,S 3=34,则S 4= .(2)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16.则a n = .【解析】 (1)通解:设等比数列{a n }的公比为q ,由a 1=1及S 3=34,易知q ≠1.把a 1=1代入S 3=a 1(1-q 3)1-q=34,得1+q +q 2=34,解得q =-12,所以S 4=a 1(1-q 4)1-q=1×⎣⎡⎦⎤1-⎝⎛⎭⎫-1241-⎝⎛⎭⎫-12=58. 优解一:设等比数列{a n }的公比为q ,因为S 3=a 1+a 2+a 3=a 1(1+q +q 2)=34,a 1=1,所以1+q +q 2=34,解得q =-12,所以a 4=a 1·q 3=⎝⎛⎭⎫-123=-18,所以S 4=S 3+a 4=34+⎝⎛⎭⎫-18=58. 优解二:设等比数列{a n }的公比为q ,由题意易知q ≠1.设数列{a n }的前n 项和S n =A (1-q n )(其中A 为常数),则a 1=S 1=A (1-q )=1 ①,S 3=A (1-q 3)=34 ②,由①②可得A =23,q =-12.所以S 4=23×⎣⎡⎦⎤1-⎝⎛⎭⎫-124=58.(2)设{a n }的公比为q ,由题设得 2q 2=4q +16,即q 2-2q -8=0. 解得q =-2(舍去)或q =4.因此{a n }的通项公式为a n =2×4n -1=22n -1. 【答案】 (1)58(2)22n -1解决等比数列有关问题的常见数学思想(1)方程思想:等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论思想:因为等比数列的前n 项和公式涉及对公比q 的分类讨论,所以当某一参数为公比进行求和时,就要对参数是否为1进行分类讨论.(3)整体思想:应用等比数列前n 项和公式时,常把q n 或a 11-q当成整体进行求解.1.(一题多解)(2020·福州市质量检测)等比数列{a n }的各项均为正实数,其前n 项和为S n .若a 3=4,a 2a 6=64,则S 5=( )A .32B .31C .64D .63解析:选B.通解:设首项为a 1,公比为q ,因为a n >0,所以q >0,由条件得⎩⎪⎨⎪⎧a 1·q 2=4,a 1q ·a 1q 5=64,解得⎩⎪⎨⎪⎧a 1=1,q =2,所以S 5=31,故选B.优解:设首项为a 1,公比为q ,因为a n >0,所以q >0,由a 2a 6=a 24=64,a 3=4,得q =2,a 1=1,所以S 5=31,故选B.2.(2019·高考全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .2解析:选C.设等比数列{a n }的公比为q (q >0),由a 5=3a 3+4a 1,得a 1q 4=3a 1q 2+4a 1,得q 4-3q 2-4=0,令q 2=t ,则t 2-3t -4=0,解得t =4或t =-1(舍去),所以q 2=4,即q =2或q =-2(舍去).又S 4=a 1(1-q 4)1-q=15,所以a 1=1,所以a 3=a 1q 2=4.故选C.3.设等比数列{a n }的前n 项和为S n ,且满足a 6=8a 3,则( ) A .数列{a n }的公比为2 B .数列{a n }的公比为8 C.S 6S 3=8 D .S 6S 3=4解析:选A.因为等比数列{a n }的前n 项和为S n ,且满足a 6=8a 3,所以a 6a 3=q 3=8,解得q =2,所以S 6S 3=1-q 61-q 3=1+q 3=9.等比数列的判定与证明(典例迁移)(1)已知数列{a n }是等比数列,则下列命题不正确的是( ) A .数列{|a n |}是等比数列B .数列{a n a n +1}是等比数列C .数列⎩⎨⎧⎭⎬⎫1a n 是等比数列D .数列{lg a 2n}是等比数列 (2)已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若b n =a n +1-2a n ,求证:{b n }是等比数列.【解】 (1)选D.因为数列{a n }是等比数列,所以a n +1a n =q .对于A ,|a n +1||a n |=⎪⎪⎪⎪⎪⎪a n +1a n =|q |,所以数列{|a n |}是等比数列,A 正确;对于B ,a n +1a n +2a n a n +1=q 2,所以数列{a n a n +1}是等比数列,B 正确;对于C ,1a n +11a n =a n a n +1=1q ,所以数列⎩⎨⎧⎭⎬⎫1a n 是等比数列,C 正确;对于D ,lg a 2n +1lg a 2n =2lg a n +12lg a n =lg a n +1lg a n,不一定是常数,所以D 错误. (2)证明:因为a n +2=S n +2-S n +1=4a n +1+2-4a n -2=4a n +1-4a n ,所以b n +1b n=a n +2-2a n +1a n +1-2a n =4a n +1-4a n -2a n +1a n +1-2a n =2a n +1-4a na n +1-2a n=2.因为S 2=a 1+a 2=4a 1+2,所以a 2=5. 所以b 1=a 2-2a 1=3.所以数列{b n }是首项为3,公比为2的等比数列.【迁移探究1】 (变问法)若本例(2)中的条件不变,试求{a n }的通项公式. 解:由(2)知b n =a n +1-2a n =3·2n -1, 所以a n +12n +1-a n 2n =34,故⎩⎨⎧⎭⎬⎫a n 2n 是首项为12,公差为34的等差数列.所以a n 2n =12+(n -1)·34=3n -14,所以a n =(3n -1)·2n -2.【迁移探究2】 (变条件)在本例(2)中,若c n =a n3n -1,证明:数列{c n }为等比数列.证明:由[迁移探究1]知,a n =(3n -1)·2n -2,所以c n =2n -2. 所以c n +1c n =2n -12n -2=2,又c 1=a 13×1-1=12,所以数列{c n }是首项为12,公比为2的等比数列.等比数列的判定方法(1)定义法:若a n +1a n =q (q 为非零常数)或a na n -1=q (q 为非零常数且n ≥2),则{a n }是等比数列.(2)中项公式法:若数列{a n }中a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列的通项公式可写成a n =c ·q n -1(c ,q 均为不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.[提醒] (1)前两种方法是判定等比数列的常用方法,常用于证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.1.(一题多解)已知等比数列{a n }的前n 项和为S n =a ·2n -1+16,则a 的值为( )A .-13B.13 C .-12D .12解析:选A.法一:当n ≥2时,a n =S n -S n -1=a ·2n -1-a ·2n -2=a ·2n -2,当n =1时,a 1=S 1=a +16,所以a +16=a 2,所以a =-13.法二:因为等比数列的前n 项和S n =k ×q n -k ,则12a =-16,a =-13.2.(2019·高考全国卷Ⅱ节选)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.证明:{a n +b n }是等比数列,{a n -b n }是等差数列.证明:由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列.等比数列的性质及应用(多维探究) 角度一 等比数列项的性质的应用(1)(2020·洛阳市第一次联考)在等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的两根,则a 2a 16a 9的值为( )A .-2+22B .- 2 C. 2D .-2或 2(2)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5= .【解析】 (1)设等比数列{a n }的公比为q ,因为a 3,a 15是方程x 2+6x +2=0的两根,所以a 3·a 15=a 29=2,a 3+a 15=-6,所以a 3<0,a 15<0,则a 9=-2,所以a 2a 16a 9=a 29a 9=a 9=- 2.(2)由题意知a 1a 5=a 23=4,因为数列{a n }的各项均为正数,所以a 3=2.所以a 1a 2a 3a 4a 5=(a 1a 5)·(a 2a 4)·a 3=(a 23)2·a 3=a 53=25.所以log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5.【答案】 (1)B (2)5角度二 等比数列前n 项和的性质的应用(1)已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q = .(2)设等比数列{a n }的前n 项和为S n ,若S 6S 3=12,则S 9S 3= .【解析】 (1)由题意,得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160,所以q =S 偶S 奇=-160-80=2.(2)设等比数列{a n }的公比为q ,因为S 6S 3=12,所以{a n }的公比q ≠1.由a 1(1-q 6)1-q÷a 1(1-q 3)1-q =12,得q 3=-12,所以S 9S 3=1-q 91-q 3=34. 【答案】 (1)2 (2)34等比数列性质应用问题的解题突破口等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项公式的变形,三是前n 项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.[提醒] 在应用相应性质解题时,要注意性质成立的前提条件,有时需要对性质进行适当变形.此外,解题时注意“设而不求”的运用.1.已知等比数列{a n }中,a 4+a 8=-2,则a 6(a 2+2a 6+a 10)的值为( ) A .4 B .6 C .8D .-9解析:选A.a 6(a 2+2a 6+a 10)=a 6a 2+2a 26+a 6a 10=a 24+2a 4a 8+a 28=(a 4+a 8)2,因为a 4+a 8=-2,所以a 6(a 2+2a 6+a 10)=4.2.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( ) A .12 B .13 C .14D .15解析:选 C.因为数列{a n }是各项均为正数的等比数列,所以a 1a 2a 3,a 4a 5a 6,a 7a 8a 9,a 10a 11a 12,…也成等比数列.不妨令b 1=a 1a 2a 3,b 2=a 4a 5a 6,则公比q =b 2b 1=124=3.所以b m =4×3m -1.令b m =324,即4×3m -1=324,解得m =5, 所以b 5=324,即a 13a 14a 15=324. 所以n =14.3.在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8a 9=-98,则1a 7+1a 8+1a 9+1a 10= .解析:因为1a 7+1a 10=a 7+a 10a 7a 10,1a 8+1a 9=a 8+a 9a 8a 9,由等比数列的性质知a 7a 10=a 8a 9, 所以1a 7+1a 8+1a 9+1a 10=a 7+a 8+a 9+a 10a 8a 9=158÷⎝⎛⎭⎫-98=-53. 答案:-53思想方法系列11 分类讨论思想求解数列问题(2020·武汉市调研测试)已知正项等比数列{a n }的前n 项和为S n ,满足a 1=1,a 3-4a 1=0.(1)求S n ;(2)令b n =a n -15,求T =|b 1|+|b 2|+…+|b 10|的值.【解】 (1){a n }是正项等比数列,由a 3-4a 1=0,所以a 1q 2-4a 1=0 所以q =2,则a n 的前n 项和S n =1-2n1-2=2n -1.(2)由(1)知a n =2n -1,当n ≥5时,b n =2n -1-15>0,n ≤4时,b n =2n -1-15<0, 所以T =-(b 1+b 2+b 3+b 4)+(b 5+b 6+…+b 10)=-(a 1+a 2+a 3+a 4-15×4)+(a 5+a 6+…+a 10-15×6)=-S 4+S 10-S 4+60-90 =S 10-2S 4-30=(210-1)-2×(24-1)-30 =210-25-29 =1 024-32-29 =963.分类讨论思想在数列中应用较多,常见的分类讨论有: (1)已知S n 与a n 的关系,要分n =1,n ≥2两种情况. (2)等比数列中遇到求和问题要分公比q =1,q ≠1讨论. (3)项数的奇、偶数讨论.(4)等比数列的单调性的判断注意与a 1,q 的取值的讨论.1.(2020·福建厦门模拟)设等比数列{a n }的前n 项和为S n ,若S n =2n +1+λ,则λ=( ) A .-2 B .-1 C .1D .2解析:选A.法一:当n =1时,a 1=S 1=4+λ. 当n ≥2时,a n =S n -S n -1=(2n +1+λ)-(2n+λ)=2n,此时a n +1a n =2n +12n =2.因为{a n }是等比数列,所以a 2a 1=2,即44+λ=2,解得λ=-2.故选A. 法二:依题意,a 1=S 1=4+λ,a 2=S 2-S 1=4,a 3=S 3-S 2=8,因为{a n }是等比数列,所以a 22=a 1·a 3,所以8(4+λ)=42,解得λ=-2.故选A.2.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( ) A .(-∞,-1]B .(-∞,0)∪[1,+∞)C .[3,+∞)D .(-∞,-1]∪[3,+∞)解析:选D.设等比数列{a n }的公比为q , 则S 3=a 1+a 2+a 3=a 2⎝⎛⎭⎫1q +1+q =1+q +1q . 当公比q >0时,S 3=1+q +1q≥1+2q ·1q=3,当且仅当q =1时,等号成立; 当公比q <0时,S 3=1-⎝⎛⎭⎫-q -1q ≤1-2 (-q )·⎝⎛⎭⎫-1q =-1,当且仅当q =-1时,等号成立.所以S 3∈(-∞,-1]∪[3,+∞).[基础题组练]1.(2020·广东六校第一次联考)等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4=( )A .16B .15C .8D .7解析:选B.设公比为q ,由题意得4a 2=4a 1+a 3,即4a 1q =4a 1+a 1q 2,又a 1≠0,所以4q =4+q 2,解得q =2,所以S 4=1×(1-24)1-2=15,故选B.2.(2020·辽宁五校联考)各项为正数的等比数列{a n }中,a 4与a 14的等比中项为22,则log 2a 7+log 2a 11的值为( )A .1B .2C .3D .4解析:选C.由题意得a 4a 14=(22)2=8,由等比数列的性质,得a 4a 14=a 7a 11=8,所以log 2a 7+log 2a 11=log 2(a 7a 11)=log 28=3,故选C.3.(2020·辽宁部分重点高中联考)已知数列{a n }的前n 项和为S n ,满足S n =2a n -1,则{a n }的通项公式a n =( )A .2n -1B .2n -1 C .2n -1D .2n +1解析:选B.当n =1时,S 1=2a 1-1=a 1,所以a 1=1, 当n ≥2时,a n =S n -S n -1=2a n -2a n -1,所以a n =2a n -1, 因此a n =2n -1,故选B.4.(2020·长春市质量监测(一))已知S n 是等比数列{a n }的前n 项和,若公比q =2,则a 1+a 3+a 5S 6=( ) A.13 B.17 C.23D .37解析:选A.法一:由题意知a 1+a 3+a 5=a 1(1+22+24)=21a 1,而S 6=a 1(1-26)1-2=63a 1,所以a 1+a 3+a 5S 6=21a 163a 1=13,故选A.法二:由题意知S 6=a 1+a 2+a 3+a 4+a 5+a 6=a 1+a 3+a 5+(a 2+a 4+a 6)=a 1+a 3+a 5+2(a 1+a 3+a 5)=3(a 1+a 3+a 5),故a 1+a 3+a 5S 6=13,故选A.5.(2020·宁夏中卫一模)中国古代数学著作《算法统宗》中有这一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为( )A .24里B .12里C .6里D .3里解析:选C.记该人每天走的路程里数为{a n },可知{a n }是公比q =12的等比数列,由S 6=378,得S 6=a 1⎝⎛⎭⎫1-1261-12=378,解得a 1=192,所以a 6=192×125=6,故选C.6.(2019·高考全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5= .解析:通解:设等比数列{a n }的公比为q ,因为a 24=a 6,所以(a 1q 3)2=a 1q 5,所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q =13×(1-35)1-3=1213.优解:设等比数列{a n }的公比为q ,因为a 24=a 6,所以a 2a 6=a 6,所以a 2=1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q=13×(1-35)1-3=1213.答案:12137.(2020·陕西第二次质量检测)公比为2的等比数列{a n }的各项都是正数,且a 2a 12=16,则log 2a 15= .解析:等比数列{a n }的各项都是正数,且公比为2,a 2a 12=16,所以a 1qa 1q 11=16,即a 21q 12=16,所以a 1q 6=22,所以a 15=a 1q 14=a 1q 6(q 2)4=26,则log 2a 15=log 226=6. 答案:68.已知{a n }是递减的等比数列,且a 2=2,a 1+a 3=5,则{a n }的通项公式为 ;a 1a 2+a 2a 3+…+a n a n +1(n ∈N *)= .解析:由a 2=2,a 1+a 3=5,{a n }是递减的等比数列,得a 1=4,a 3=1,a n =4×⎝⎛⎭⎫12n -1,则a 1a 2+a 2a 3+…+a n a n +1是首项为8,公比为14的等比数列的前n 项和.故a 1a 2+a 2a 3+…+a n a n +1=8+2+12+…+8×⎝⎛⎭⎫14n -1=8×⎣⎡⎦⎤1-⎝⎛⎭⎫14n1-14=323×⎣⎡⎦⎤1-⎝⎛⎭⎫14n .答案:a n =4×⎝⎛⎭⎫12n -1323×⎣⎡⎦⎤1-⎝⎛⎭⎫14n 9.(2018·高考全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 解:(1)设{a n }的公比为q ,由题设得a n =q n -1. 由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1-(-2)n3.由S m =63得(-2)m =-188,此方程没有正整数解. 若a n =2n -1,则S n =2n -1.由S m =63得2m =64,解得m =6. 综上,m =6.10.已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a nn .(1)求b 1,b 2,b 3的值;(2)判断数列{b n }是否为等比数列,并说明理由. 解:(1)由条件可得a n +1=2(n +1)na n .将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4, 将n =2代入得,a 3=3a 2,所以,a 3=12, 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.由条件可得a n +1n +1=2a nn ,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列.[综合题组练]1.(2020·河南郑州三测)已知数列{a n },{b n }满足a 1=b 1=1,a n +1-a n =b n +1b n=3,n ∈N *,则数列{ba n }的前10项和为( )A.12×(310-1) B.18×(910-1) C.126×(279-1) D .126×(2710-1)解析:选D.因为a n +1-a n =b n +1b n=3,所以{a n }为等差数列,公差为3,{b n }为等比数列,公比为3,所以a n =1+3(n -1)=3n -2,b n =1×3n -1=3n -1,所以ba n =33n -3=27n -1,所以{ba n }是以1为首项,27为公比的等比数列,所以{ba n }的前10项和为1×(1-2710)1-27=126×(2710-1),故选D.2.(2020·陕西榆林二模)已知数列{a n }满足a 1=2,na n +1-(n +1)a n =2(n 2+n ),若b n =22a n ,则{b n }的前n 项和S n = .解析:由na n +1-(n +1)a n =2(n 2+n ),得a n +1n +1-a n n =2,又a 1=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为2,公差为2的等差数列,所以a nn =2+2(n -1)=2n ,即a n =2n 2,所以b n =22a n =4n ,所以数列{b n }是首项为4,公比为4的等比数列,所以S n =4-4n +11-4=4n +1-43.答案:4n +1-433.(2020·昆明市诊断测试)已知数列{a n }是等比数列,公比q <1,前n 项和为S n ,若a 2=2,S 3=7.(1)求{a n }的通项公式;(2)设m ∈Z ,若S n <m 恒成立,求m 的最小值.解:(1)由a 2=2,S 3=7得⎩⎪⎨⎪⎧a 1q =2,a 1+a 1q +a 1q 2=7,解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=1,q =2.(舍去)所以a n =4·⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n -3.(2)由(1)可知,S n =a 1(1-q n)1-q =4⎝⎛⎭⎫1-12n 1-12=8⎝⎛⎭⎫1-12n <8. 因为a n >0,所以S n 单调递增. 又S 3=7,所以当n ≥4时,S n ∈(7,8). 又S n <m 恒成立,m ∈Z ,所以m 的最小值为8.4.(2020·山西长治二模)S n 为等比数列{a n }的前n 项和,已知a 4=9a 2,S 3=13,且公比q >0.(1)求a n 及S n ;(2)是否存在常数λ,使得数列{S n +λ}是等比数列?若存在,求λ的值;若不存在,请说明现由.解:(1)由题意可得⎩⎪⎨⎪⎧a 1q 3=9a 1q ,a 1(1-q 3)1-q =13,q >0,解得a 1=1,q =3,所以a n =3n -1,S n =1-3n 1-3=3n -12.(2)假设存在常数λ,使得数列{S n +λ}是等比数列, 因为S 1+λ=λ+1,S 2+λ=λ+4,S 3+λ=λ+13,所以(λ+4)2=(λ+1)(λ+13),解得λ=12,此时S n +12=12×3n ,则S n +1+12S n +12=3,故存在常数λ=12,使得数列⎩⎨⎧⎭⎬⎫S n +12是等比数列.。
2021年高三数学(文科)高考总复习阶段测试卷(第28周)含答案说明:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.总分150分,考试时间120分钟.注意事项:1.答第Ⅰ卷前,考生务必将自己姓名、考号、考试科目用2B铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案.3.将第Ⅰ卷选择题的答案涂在答题卡上,第Ⅱ卷每题的答案写在答题纸的指定位置.4.考试结束,将答题纸和答题卡一并交回,答案写在试卷上视为无效答案.参考公式:圆锥表面积公式:(是圆锥底面半径,是母线)圆锥体积公式:(是圆锥底面半径,是高)球体积公式:(R是球的半径)第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.已知集合,,则()A.B.C.D.2.命题“存在R,0”的否定是()A.不存在R,>0 B.存在R,0C.对任意的R,0 D.对任意的R,>03.已知:,则的大小关系为()A.B.C.D.4.有一个几何体的三视图及其尺寸如下(单位:cm),则该几何体的体积为:()C.cm3 D.cm3()D.“”的()B.必要不充分条件D.既不充分也不必要条件()A.B.C.D.8.已知点在曲线上,为曲线在点处的切线的倾斜角,则的取值范围是()A.B.C.D.9.已知数列是正项等比数列,是等差数列,且,则()A.B.C.D.10.已知向量,,那么= ()A.B.C.D.111.定义两种运算:,,则函数()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数12.已知定义在上的函数满足,且,,有穷数列()的前项和等于, 则n等于()A.4 B.5 C.6 D.7第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在答题纸相应位置上.)13.函数的定义域为____________________.14.已知m>0,n>0,向量,且,则的最小值是 .15.对于函数,在使成立的所有常数中,我们把的最大值-1叫做的下确界,则函数的下确界为 .16.已知中,所对的边长分别为,则下列条件中能推出为锐角三角形的条件是_________. (把正确答案的序号都写在横线上)①. ②.③,. ④.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分10分)设函数,(Ⅰ)不等式的解集为,求的值;(Ⅱ)在(Ⅰ)的条件下,试求不等式的解集.18.(本题满分12分)已知函数.(I)求函数的最小正周期;(II)若不等式在上恒成立,求实数的取值范围.19.(本题满分12分)设数列的前项和为,对,都有成立,(Ⅰ) 求数列的通项公式;(Ⅱ)设数列,试求数列的前项和.20.(本题满分12分)如图,在平面直角坐标系中,点在轴的正半轴上,直线的倾斜角为,,设,.(Ⅰ)用表示;(Ⅱ)若,求的值.21.(本题满分12分)已知数列的各项都为正数,,前项和满足().(Ⅰ)求数列的通项公式;(Ⅱ)令(),数列的前项和为,若对任意正整数都成立,求实数的取值范围.22. (本题满分12分)已知函数().(Ⅰ)若,求在上的最大值;(Ⅱ)若,求的单调区间.参考答案:1.【答案】D【分析】根据集合的含义,把集合具体求出来,再根据集合的运算法则进行计算。
芯衣州星海市涌泉学校2021届高三文科数学一轮复习教案第二章函数第一讲函数概念与三要素〔2〕解析式f(x)的求法一.课标要求1.会用代定系数法、换元法求详细函数的解析式;会用加减法求抽象函数的解析式.2.会用函数的解析式求值.二.求f(x)的常用方法1.换元法:2.代定系数法:3.抽象函数:4.分段函数:5.图象法;6.轨迹法.三.例题分析1.假设f(x+2)=2x+3,求f(x).2.假设22x1x )x 1x(f +=-,求f(x). 3.假设1x )1x (f +=+,求f(x).4.假设x lg )1x 2(f =+,求f(x). 5.假设,x sin )x cos 1(f 2=-求()2x f 6.假设,2x 2)x (log f x 2+=求f(1).7.假设一次函数y=f(x)在区间[--1,2]上的最大值为3,最小值为1,那么f(x)=____________.8.假设一次函数y=f(x),且3f(x+1)-2f(x-1)=2x+17,那么f(x)=_____________.9.假设二次函数y=f(x)过点(0,3〕、(1,4)、(-1,6),那么f(x)=_______________.10.f(x)为二次函数,且)2x (f )2x(f --=-,且f(0)=1,图象在x 轴上截得的线段长为22,那么f(x)=_______________. 11.函数bax x )x (f 2+=〔a ,b 为常数〕且方程f(x)-x+12=0有两个实根为x1=3,x2=4. 那么f(x)=________12.函数)x (f 满足)x (f ,|x |1)x 1(f )x (f 2则=-=___________. 13.偶函数)x (f ,对x1,x2∈R 恒有f(x1+x2)=f(x1)+f(x2)+2x1x2+1,那么f(0)=,f(1)=,f(2)=,f(x)=_______________14.f(x)是奇函数,满足f(x+2)=f(2),当x[0,1]时,f(x)=2x-1,)241(log f 2的值是. 15.(1)假设f(x+2)=2x+3,那么f(2)=_________.(2)假设f(x)=3-x,那么f{f[f(x)]}=____________.16.假设⎪⎩⎪⎨⎧≥-<=-)2x ()1x (log )2x (e 2)x (f 231x ,那么f[(2)]的值=_________. 17.假设f(x)=22x 1x +,那么f(1)+f(2)+++ f(10)+f(21)+f(31)++ f(101)=_________. 18.函数x x y 2+=与)x (g y =的图象关于点〔-2,3〕对称,求)x (g 的解析式.19.某蔬菜基地种植西红柿,由历年场行情得知,从二月一日起的300天内,西红柿的场价与上时间是是关系用图〔甲〕的一条折线表示,西红柿的种植本钱与上时间是是关系用图〔乙〕的一条抛物线段表示.(1)写出图甲表示的场售价与时间是是的函数关系式)t (f P=;写出图乙表示的种植本钱与时间是是的函数关系式)x (g Q =。
2021高考数学复习计划(含时间表)2021高考数学复习计划(含时间表)xx年高考数学复习计划一、学情分析:暑假过后,一个班文科及艺体班和理科班开始高考第一轮复习复习,体育理科班除却部分选修体育运动没有结束。
由于今年我省规范办学,教学时间略显紧张,特别是学理科的学生。
为圆满结束教学任务,积极组织教学,决胜入学特制定如下方案。
二、指导思想以校领导、年级组精神为指导,集思广益一步一个脚印搞好集体备课;2、以新的高考方案为指导,稳扎稳打钻研《考试说明》备好每一节课;3、以重读课本例题、重做课本练习,做实基础为指导,步步为营上好每一节课,不留死角、盲点,落实听话每一个知识点;三、文、理科班复习方案带领学生钟炳昌教材,重做练习。
重点例题重点研究课题,多做变式探讨;重点习题反复做,变式做。
每周集中时间做一份12题左右的综合题试卷。
2、精心编写学案。
在上课前认真做好每一题,做到上课时决不照本宣科;对基础知识梳理若干,要做到查漏补缺努力做到形成知识系统;对例题习题尽量做到一题多解,又要注重通法的总结;适当补充最新考试信息题,以便紧跟形势;认真组织单元练习,要限定时间认真监考,仔细批阅按技术规范量分,力争大学生准确检测学生的学习效果。
3、密切关注最新高考信息,随时调整复习融资方案。
四、体育理班复习融资方案应尽快结束选修课的教学,争取在8月月底中旬开始进入第一轮复习。
2、深入研究《考试说明》,不补充难度大的插值法习题,以已经完成书本内容为主。
3、每周做一次10题的小测试,以促进高中学生学生学习并检测学习效果。
五、复习计划具体安排(一)第一轮复习第一轮复习(八月初到二月底),基础知识复习发展阶段。
在这一阶段,老师将带领同学科重温高中阵痛期所学欢迎您的课程,但这绝不只是决不会对以前所学知识的简单重复,而是站在更高的角度,对旧知识产生新款全新认识的重要过程。
因为在第一次学习前一天,老师是以做题为主线索,依次传授讲解的,由于后面的相关知识依然没有学到,无法进行纵向联系,所以,大家吸取的往往是零碎的、散乱的知识点。
卜人入州八九几市潮王学校二零二零—二零二壹年高考试题解析数学〔文科〕分项专题11排列组合、二项式定理2021年高考试题 一、选择题:1.(2021年高考卷文科7)正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数一共有〔〕A .20B .15C .12D .10【答案】A【解析】先从5个侧面中任意选一个侧面有15C 种选法,再从这个侧面的4个顶点中任意选一个顶点有14C 种选法,由于不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,所以除去这个侧面上、相邻侧面和同一底面上的一共8个点,还剩下2个点,把这个点和剩下的两个点连线有12C 种方法,但是在这样处理的过程中刚好每一条对角线重复了一次,所以最后还要乘以,21所以这个正五棱柱对角线的条数一共有2021121415=•••C C C ,所以选择A. 2.〔2021年高考全国卷文科9)4位同学每人从甲、乙、丙3门课程中选修1门,那么恰有2人选修课程甲的不同选法一共有〔A 〕12种〔B 〕24种〔C 〕30种〔D 〕36种二、填空题:3.〔2021年高考卷文科16)给定*k N ∈,设函数**:f N N →满足:对于任意大于k 的正整数n ,()f n n k =-〔1〕设1k =,那么其中一个函数f 在1n =处的函数值为;〔2〕设4k=,且当4n ≤时,2()3f n ≤≤,那么不同的函数f的个数为。
答案:〔1〕()a a 为正整数,〔2〕16[ 解析:〔1〕由题可知*()f n N ∈,而1k =时,1n >那么*()1f n n N =-∈,故只须*(1)f N ∈,故(1)()f a a =为正整数。
〔2〕由题可知4k=,4n >那么*()4f n n N =-∈,而4n ≤时,2()3f n ≤≤即(){2,3}f n ∈,即{1,2,3,4}n ∈,(){2,3}f n ∈,由乘法原理可知,不同的函数f 的个数为4216=。
专题四三角函数【真题探秘】§4.1 三角函数的概念、同角三角函数的基本关系及诱导公式探考情悟真题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点三角函数的概念、同角三角函数的基本关系及诱导公式①能根据三角函数的定义求三角函数值,会判断三角函数在各象限的符号,会用定义推导有关的公式;②理解同角三角函数的基本关系,并能利用平方关系和商数关系化简、求值和证明;③能利用单位圆中的三角函数线推导有关的诱导公式,能利用诱导公式化简任意角的三角函数值2018课标全国Ⅰ,11,5分三角函数定义的应用三角恒等变换★★☆2017课标全国Ⅲ,4,5分同角三角函数的基本关系二倍角公式2019课标全国Ⅰ,7,5分诱导公式两角和的正切公式分析解读从近几年的高考试题来看,三角函数的概念、同角三角函数的基本关系及诱导公式是高考考查的重点内容,常与两角和与两角差的三角函数公式以及二倍角公式相联系,用于求值和化简,同角三角函数的基本关系扮演了统一函数名称的角色,而诱导公式起着化简的作用.本节内容常以选择题、填空题的形式出现,分值大约为5分,在高考备考中要给予重视.破考点练考向【考点集训】考点三角函数的概念、同角三角函数的基本关系及诱导公式1.(2020届山西运城9月联考,3)已知角θ的顶点为坐标原点,始边为x轴的正半轴,若P(4,y)是角θ终边上一点,且sinθ=-2√55,则y=( )A.-8B.-4C.2D.4答案A2.(2020届豫南九校第二次联考,6)若cos165°=a,则tan195°=()A.√1-a2B.-√1-a2a C.√1-a2aD.√1+a2a答案B3.(2019闽粤赣三省十校联考,2)若α∈(π2,π),sinα=√33,则tanα=()A.-√2B.-√32C.-√22D.√2答案C4.(2019河北唐山第二次模拟,4)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上一点A(2sinα,3)(sinα≠0),则cosα=()A.12B.-12C.√32D.-√32答案A5.(2019晋冀鲁豫名校期末,6)若sin(α+3π2)=35,且α是第三象限角,则cos(α+2 019π2)=( )A.35B.-35C.45D.-45答案D6.(2018四川南充一诊,5)设f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β都是非零实数,若f(2017)=-1,那么f(2018)=( )A.1B.2C.0D.-1答案A7.(2020届湖南郴州四校联考,4)已知sinθ+2cosθ=0,则1+sin2θcos2θ= .答案18.(2018广东惠阳高级中学月考,15)已知α∈(π2,π),4sinα+3cosα=0,则sin2α+3cos2α的值为.答案2425炼技法提能力【方法集训】方法1 用定义法求三角函数值1.(2019广东普宁一中联考,3)已知角α的终边与单位圆x2+y2=1的交点为P(x,√32),则cos2α=()A.12B.-12C.-√32D.1答案B2.(2018安徽合肥第二次教学质量检测,4)在平面直角坐标系中,若角α的终边经过点P(sin5π3,cos5π3),则sin(π+α)=()A.-√32B.-12C.12D.√32答案B3.(2020届江西上高第二中学9月月考,15)已知角α的终边过点P(3a-9,a+2),且cosα≤0,sinα>0,则实数a的取值范围是.答案(-2,3]4.(2020届辽宁本溪高级中学开学检测,13)若600°角的终边上有一点(-4,a),则a的值是.答案-4√3方法2 齐次式问题的求解方法1.(2020届贵州贵阳一中9月月考,5)在等差数列{a n}中,a n≠0(n∈N*),角α的顶点在坐标原点,始边与x轴非负半轴重合,终边经过点(a2,a1+a3),则sinα+2cosαsinα-cosα=( )A.5B.4C.3D.2答案B2.(2018江西吉安一中、九江一中等八所重点中学4月联考,7)若点(θ,0)是函数f(x)=sin x+2cos x图象的一个对称中心,则cos 2θ+sinθcosθ=()A.1110B.-1110C.1D.-1答案D3.(2020届河南南阳一中9月月考,15)已知函数f(x)=sin x-cos x且f'(x)=2f(x),f'(x)是f(x)的导函数,则1+sin2xcos2x-sin2x= .答案-195【五年高考】A组统一命题·课标卷题组考点三角函数的概念、同角三角函数的基本关系及诱导公式1.(2019课标全国Ⅰ,7,5分)tan255°=()A.-2-√3B.-2+√3C.2-√3D.2+√3答案D2.(2018课标全国Ⅰ,11,5分)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=23,则|a-b|=( )A.15B.√55C.2√55D.1答案B3.(2017课标全国Ⅲ,4,5分)已知sinα-cosα=43,则sin2α=()A.-79B.-29C.29D.79答案AB组自主命题·省(区、市)卷题组考点三角函数的概念、同角三角函数的基本关系及诱导公式1.(2015福建,6,5分)若sinα=-513,且α为第四象限角,则tanα的值等于( )A.125B.-125C.512D.-512答案D2.(2019北京,8,5分)如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,∠APB是锐角,大小为β.图中阴影区域的面积的最大值为( )A.4β+4cosβB.4β+4sinβC.2β+2cosβD.2β+2sinβ答案B3.(2017北京,9,5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若sinα=13,则sinβ=.答案134.(2016四川,11,5分)sin750°=.答案125.(2018浙江,18,14分)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(-35,-4 5 ).(1)求sin(α+π)的值;(2)若角β满足sin(α+β)=513,求cosβ的值.答案(1)由角α的终边过点P(-35,-45)得sinα=-45,所以sin(α+π)=-sinα=45.(2)由角α的终边过点P(-35,-45)得cosα=-35,由sin(α+β)=513得cos(α+β)=±1213.由β=(α+β)-α得cosβ=cos(α+β)cosα+sin(α+β)sinα,所以cosβ=-5665或cosβ=1665.C组教师专用题组考点三角函数的概念、同角三角函数的基本关系及诱导公式1.(2014课标Ⅰ,2,5分)若tanα>0,则( )A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0答案C2.(2015四川,13,5分)已知sinα+2cosα=0,则2sinαcosα-cos2α的值是.答案-1【三年模拟】时间:30分钟分值:50分一、选择题(每小题5分,共35分)1.(2020届广西玉林高级中学8月月考,4)已知cos(π2-α)=45,则cos2α=()A.725B.-725C.2425D.-2425答案B2.(2020届广西南宁二中9月月考,6)若sin(π2-α)=35,α∈(0,π2),则tan2α=()A.-247B.32C.-32D.247答案A3.(2020届四川高三联合诊断,5)已知角α的终边上的一点坐标为(sin 5π6,cos 7π6),则角α的最小正值为( )A.5π6B.11π6C.5π3D.2π3答案C4.(2019江西吉安期末,5)已知tan(-2019π+θ)=-2,则2√2sin(θ-π6)sin(θ+π4)=( )A.-2B.2√3+15C.2√3+35D.35答案B5.(2019河北保定期末,9)已知函数f(x)=x3+2x2f'(1)+2的图象在点x=2处的切线的倾斜角为α,则sin(π2+α)·cos(3π2-α)的值为( )A.316B.-316C.417D.-417答案D6.(2018广东省际名校联考(二),7)若cos(α+π3)=45,则cos(π3-2α)=( )A.2325B.-2325C.725D.-725答案D7.(2018广东佛山一中期中模拟,6)若sinθ+cosθ=2√105,则tan(θ+π4)=( )A.12B.2 C.±12D.±2答案D二、填空题(每小题5分,共15分)8.(2020届安徽合肥八校第一次联考,15)已知锐角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点(sin3,-cos3),则角θ的值为.答案3-π29.(2019福建毕业班3月质量检测,15)在平面直角坐标系xOy 中,角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边交单位圆O 于点P(a,b),且a+b=75,则cos (2α+π2)的值是 . 答案 -242510.(命题标准样题,12)已知tan α=√22,则cosα-sinαcosα+sinα=;cos 2α= .答案 3-2√2;13。
1 / 202021年高考文科数学一轮复习:题型全归纳与高效训练突破专题2.4 函数性质的综合问题目录一、题型全归纳 (1)题型一 函数的奇偶性与单调性 ........................................................................................................................ 1 题型二 函数的奇偶性与周期性 ........................................................................................................................ 2 题型三 函数的综合性应用 ................................................................................................................................ 3 题型四 函数性质中“三个二级”结论的灵活应用 . (4)结论一、奇函数的最值性质 ...................................................................................................................... 4 结论二、抽象函数的周期性 ...................................................................................................................... 4 结论三、抽象函数的对称性 . (5)二、高效训练突破 (6)一、题型全归纳题型一 函数的奇偶性与单调性【题型要点】函数的单调性与奇偶性的综合问题解题思路(1)解决比较大小、最值问题应充分利用奇函数在关于原点对称的两个区间上具有相同的单调性,偶函数在关于原点对称的两个区间上具有相反的单调性.(2)解决不等式问题时一定要充分利用已知的条件,把已知不等式转化成f (x 1)>f (x 2)或f (x 1)<f (x 2)的形式,再根据函数的奇偶性与单调性,列出不等式(组),要注意函数定义域对参数的影响.【例1】已知函数y =f (x )是R 上的偶函数,对任意x 1,x 2∈(0,+∞),都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 13,b =(ln 3)2,c =ln 3,则( )2 / 20A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )题型二 函数的奇偶性与周期性【题型要点】周期性与奇偶性结合,此类问题多考查求值问题,常利用奇偶性及周期性进行转换,将所求函数值的自变量转化到已知解析式的定义域内求解.【例1】(2020·武昌区调研考试)已知f (x )是定义域为R 的奇函数,且函数y =f (x -1)为偶函数,当0≤x ≤1时,f (x )=x 3,则⎪⎭⎫⎝⎛25f = .题型三 函数的综合性应用【题型要点】求解函数的综合性应用的策略(1)函数的奇偶性、对称性、周期性,知二断一.特别注意“奇函数若在x =0处有定义,则一定有f (0)=0;偶函数一定有f (|x |)=f (x )”在解题中的应用.(2)解决周期性、奇偶性与单调性结合的问题,通常先利用周期性转化自变量所在的区间,再利用奇偶性和单调性求解.【例1】(2020·陕西榆林一中模拟)已知偶函数f (x )满足f (x )+f (2-x )=0,现给出下列命题:①函数f (x )是以2为周期的周期函数;②函数f (x )是以4为周期的周期函数;③函数f (x -1)为奇函数;④函数f (x -3)为偶函数,其中真命题的个数是( ) A .1 B .2 C .3D .4题型四 函数性质中“三个二级”结论的灵活应用结论一、奇函数的最值性质【题型要点】已知函数f (x )是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f (x )+f (-x )=0.特别地,若奇函数f (x )在D 上有最值,则f (x )max +f (x )min =0,且若0∈D ,则f (0)=0.3 / 20【例1】设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M +m = .结论二、抽象函数的周期性(1)如果f (x +a )=-f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a . (2)如果f (x +a )=1f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a .(3)如果f (x +a )+f (x )=c (a ≠0),那么f (x )是周期函数,其中的一个周期T =2a .【例2】已知定义在R 上的函数f (x ),对任意实数x 有f (x +4)=-f (x )+22,若函数f (x -1)的图象关于直线x =1对称,f (1)=2,则f (17)= .结论三、抽象函数的对称性已知函数f (x )是定义在R 上的函数.(1)若f (a +x )=f (b -x )恒成立,则y =f (x )的图象关于直线x =a +b2对称,特别地,若f (a +x )=f (a -x )恒成立,则y =f (x )的图象关于直线x =a 对称.(2)若函数y =f (x )满足f (a +x )+f (a -x )=0,即f (x )=-f (2a -x ),则f (x )的图象关于点(a ,0)对称.【例2】(2020·黑龙江牡丹江一中期末)设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),下面关于f (x )的判定,其中正确命题的个数为( ) ①f (4)=0;②f (x )是以4为周期的函数; ③f (x )的图象关于x =1对称; ④f (x )的图象关于x =2对称. A .1B .24 / 20C .3D .4二、高效训练突破 一、选择题1.(2020·洛阳一中月考)已知定义域为(-1,1)的奇函数f (x )是减函数,且f (a -3)+f (9-a 2)<0,则实数a 的取值范围是( ) A .(22,3) B .(3,10) C .(22,4)D .(-2,3)2.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 019)=( ) A .-2 B .2 C .-98D .983.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=( ) A .-6 B .6 C .4D .-44.(2020·广东六校第一次联考)定义在R 上的函数f (x )满足f (x )=f (2-x )及f (x )=-f (-x ),且在[0,1]上有f (x )=x 2,则⎪⎭⎫⎝⎛212019f =( ) A.94 B.14 C .-94D .-145.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<⎪⎭⎫ ⎝⎛31f 的x 的取值范围是( )A.⎪⎭⎫ ⎝⎛3231,B.⎪⎭⎫⎢⎣⎡3231,5 / 20C.⎪⎭⎫ ⎝⎛3221,D.⎪⎭⎫⎢⎣⎡3221,6.(2020·石家庄市模拟(一))已知f (x )是定义在R 上的奇函数,且满足f (x )=f (2-x ),当x ∈[0,1]时,f (x )=4x -1,则在(1,3)上,f (x )≤1的解集是( )A.⎥⎦⎤ ⎝⎛231,B.⎥⎦⎤⎢⎣⎡2523,C.⎪⎭⎫⎢⎣⎡323,D .[2,3)6.(2020·黑龙江齐齐哈尔二模)已知函数f (x )是偶函数,定义域为R ,单调增区间为[0,+∞),且f (1)=0,则(x -1)f (x -1)≤0的解集为( ) A .[-2,0] B .[-1,1]C .(-∞,0]∪[1,2]D .(-∞,-1]∪[0,1]7.对于函数f (x )=a sin x +bx +c (其中a ,b ∈R ,c ∈Z ),选取a ,b ,c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能是( ) A .4和6 B .3和1 C .2和4D .1和28.(2020·甘肃甘谷一中第一次质检)已知定义在R 上的函数f (x )满足条件:①对任意的x ∈R ,都有f (x +4)=f (x );②对任意的x 1,x 2∈[0,2]且x 1<x 2,都有f (x 1)<f (x 2);③函数f (x +2)的图象关于y 轴对称,则下列结论正确的是( )A .f (7)<f (6.5)<f (4.5)B .f (7)<f (4.5)<f (6.5)C .f (4.5)<f (7)<f (6.5)D .f (4.5)<f (6.5)<f (7)9.(2020·甘肃静宁一中一模)函数y =f (x )在[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<⎪⎭⎫ ⎝⎛25f <⎪⎭⎫ ⎝⎛27fB .⎪⎭⎫ ⎝⎛27f <⎪⎭⎫ ⎝⎛25f <f (1)6 / 20C .⎪⎭⎫ ⎝⎛27f <f (1)<⎪⎭⎫ ⎝⎛25fD .⎪⎭⎫ ⎝⎛25f <f (1)<⎪⎭⎫ ⎝⎛27f10.(2020·辽宁沈阳东北育才学校联考(二))函数f (x )是定义在R 上的奇函数,且f (-1)=0,若对任意x 1,x 2∈(-∞,0),且x 1≠x 2,都有x 1f (x 1)-x 2f (x 2)x 1-x 2<0成立,则不等式f (x )<0的解集为( )A .(-∞,-1)∪(1,+∞)B .(-1,0)∪(0,1)C .(-∞,-1)∪(0,1)D .(-1,0)∪(1,+∞)二、填空题1.若偶函数f (x )满足f (x )=x 3-8(x ≥0),则f (x -2)>0的条件为 .2.设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是________; 3.偶函数y =f (x )的图象关于直线x =2对称,f (3)=3,则f (-1)= .4.已知定义在R 上的函数f (x )满足f (x +2)=1f (x ),当x ∈[0,2)时,f (x )=x +e x ,则f (2020)=________.5.已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )= .6.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )x <0的解集为 .三、解答题1.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论.7 / 202.已知函数f (x )对任意x ∈R 满足f (x )+f (-x )=0,f (x -1)=f (x +1),若当x ∈[0,1)时,f (x )=a x +b (a >0且a ≠1),且⎪⎭⎫ ⎝⎛23f =12.(1)求实数a ,b 的值; (2)求函数f (x )的值域.2021年高考文科数学一轮复习:题型全归纳与高效训练突破8 / 20专题2.4 函数性质的综合问题目录一、题型全归纳 (1)题型一 函数的奇偶性与单调性 ........................................................................................................................ 1 题型二 函数的奇偶性与周期性 ........................................................................................................................ 2 题型三 函数的综合性应用 ................................................................................................................................ 3 题型四 函数性质中“三个二级”结论的灵活应用 . (4)结论一、奇函数的最值性质 ...................................................................................................................... 4 结论二、抽象函数的周期性 ...................................................................................................................... 4 结论三、抽象函数的对称性 . (5)二、高效训练突破 (6)一、题型全归纳题型一 函数的奇偶性与单调性【题型要点】函数的单调性与奇偶性的综合问题解题思路(1)解决比较大小、最值问题应充分利用奇函数在关于原点对称的两个区间上具有相同的单调性,偶函数在关于原点对称的两个区间上具有相反的单调性.(2)解决不等式问题时一定要充分利用已知的条件,把已知不等式转化成f (x 1)>f (x 2)或f (x 1)<f (x 2)的形式,再根据函数的奇偶性与单调性,列出不等式(组),要注意函数定义域对参数的影响.【例1】已知函数y =f (x )是R 上的偶函数,对任意x 1,x 2∈(0,+∞),都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 13,b =(ln 3)2,c =ln 3,则( ) A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )9 / 20C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )【答案】 C【解析】 由题意易知f (x )在(0,+∞)上是减函数, 又因为|a |=ln 3>1,b =(ln 3)2>|a |,0<c =ln 32<|a |,所以f (c )>f (|a |)>f (b ). 又由题意知f (a )=f (|a |), 所以f (c )>f (a )>f (b ).故选C.题型二 函数的奇偶性与周期性【题型要点】周期性与奇偶性结合,此类问题多考查求值问题,常利用奇偶性及周期性进行转换,将所求函数值的自变量转化到已知解析式的定义域内求解.【例1】(2020·武昌区调研考试)已知f (x )是定义域为R 的奇函数,且函数y =f (x -1)为偶函数,当0≤x ≤1时,f (x )=x 3,则⎪⎭⎫⎝⎛25f = .【答案】-18【解析】解法一:因为f (x )是R 上的奇函数,y =f (x -1)为偶函数,所以f (x -1)=f (-x -1)=-f (x +1),所以f (x +2)=-f (x ),f (x +4)=f (x ),即f (x )的周期T =4,因为0≤x ≤1时,f (x )=x 3,所以⎪⎭⎫⎝⎛25f =⎪⎭⎫ ⎝⎛4-25f =⎪⎭⎫ ⎝⎛23-f =⎪⎭⎫ ⎝⎛23-f =⎪⎭⎫ ⎝⎛+211-f =⎪⎭⎫ ⎝⎛21-f =⎪⎭⎫⎝⎛21-f =-18. 解法二:因为f (x )是R 上的奇函数,y =f (x -1)为偶函数,所以f (x -1)=f (-x -1)=-f (x +1),所以f (x +2)=-f (x ),由题意知,当-1≤x <0时,f (x )=x 3,故当-1≤x ≤1时,f (x )=x 3,当1<x ≤3时,-1<x -2≤1,f (x )=-(x -2)3,所以⎪⎭⎫ ⎝⎛25f =32-25-⎪⎭⎫⎝⎛=-18.题型三函数的综合性应用【题型要点】求解函数的综合性应用的策略(1)函数的奇偶性、对称性、周期性,知二断一.特别注意“奇函数若在x=0处有定义,则一定有f(0)=0;偶函数一定有f(|x|)=f(x)”在解题中的应用.(2)解决周期性、奇偶性与单调性结合的问题,通常先利用周期性转化自变量所在的区间,再利用奇偶性和单调性求解.【例1】(2020·陕西榆林一中模拟)已知偶函数f(x)满足f(x)+f(2-x)=0,现给出下列命题:①函数f(x)是以2为周期的周期函数;②函数f(x)是以4为周期的周期函数;③函数f(x-1)为奇函数;④函数f(x-3)为偶函数,其中真命题的个数是()A.1 B.2C.3 D.4【答案】B【解析】偶函数f(x)满足f(x)+f(2-x)=0,所以f(-x)=f(x)=-f(2-x),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),可得f(x)的最小正周期为4,故①错误,②正确;由f(x+2)=-f(x),可得f(x+1)=-f(x-1).又f(-x-1)=f(x+1),所以f(-x-1)=-f(x-1),故f(x-1)为奇函数,③正确;若f(x-3)为偶函数,则f(x-3)=f(-x-3),又f(-x-3)=f(x+3),所以f(x+3)=f(x-3),即f(x+6)=f(x),可得6为f(x)的周期,这与4为最小正周期矛盾,故④错误,故选B.10/ 2011 / 20题型四 函数性质中“三个二级”结论的灵活应用结论一、奇函数的最值性质【题型要点】已知函数f (x )是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f (x )+f (-x )=0.特别地,若奇函数f (x )在D 上有最值,则f (x )max +f (x )min =0,且若0∈D ,则f (0)=0.【例1】设函数f (x )=(x +1)2+sin x x 2+1的最大值为M ,最小值为m ,则M +m = . 【答案】2【解析】函数f (x )的定义域为R ,f (x )=(x +1)2+sin x x 2+1=1+2x +sin x x 2+1, 设g (x )=2x +sin x x 2+1,则g (-x )=-g (x ), 所以g (x )为奇函数,由奇函数图象的对称性知g (x )max +g (x )min =0,所以M +m =[g (x )+1]max +[g (x )+1]min =2+g (x )max +g (x )min =2.结论二、抽象函数的周期性(1)如果f (x +a )=-f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a .(2)如果f (x +a )=1f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a . (3)如果f (x +a )+f (x )=c (a ≠0),那么f (x )是周期函数,其中的一个周期T =2a .【例2】已知定义在R 上的函数f (x ),对任意实数x 有f (x +4)=-f (x )+22,若函数f (x -1)的图象关于直线x =1对称,f (1)=2,则f (17)= .【答案】2【解析】由函数y =f (x -1)的图象关于直线x =1对称可知,函数f (x )的图象关于y 轴对称,故f (x )为偶函数.12 / 20由f (x +4)=-f (x )+22,得f (x +4+4)=-f (x +4)+22=f (x ),所以f (x )是最小正周期为8的偶函数,所以f (17)=f (1+2×8)=f (1)=2.结论三、抽象函数的对称性已知函数f (x )是定义在R 上的函数.(1)若f (a +x )=f (b -x )恒成立,则y =f (x )的图象关于直线x =a +b 2对称,特别地,若f (a +x )=f (a -x )恒成立,则y =f (x )的图象关于直线x =a 对称.(2)若函数y =f (x )满足f (a +x )+f (a -x )=0,即f (x )=-f (2a -x ),则f (x )的图象关于点(a ,0)对称.【例2】(2020·黑龙江牡丹江一中期末)设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),下面关于f (x )的判定,其中正确命题的个数为( )①f (4)=0;②f (x )是以4为周期的函数;③f (x )的图象关于x =1对称;④f (x )的图象关于x =2对称.A .1B .2C .3D .4【答案】C【解析】 因为f (x )是(-∞,+∞)上的奇函数,所以f (-x )=-f (x ),f (0)=0,因为f (x +2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),即f (x )是以4为周期的周期函数,f (4)=f (0)=0,因为f (x +2)=-f (x ),所以f [(x +1)+1]=f (-x ),令t =x +1,则f (t +1)=f (1-t ),所以f (x +1)=f (1-x ),所以f (x )的图象关于x =1对称,而f (2+x )=f (2-x )显然不成立.。
2021年普通高等学校招生全国统一考试(全国乙卷) 数学(文)一、选择题1.已知全集{1,2,3,4,5}U =,集合{1,2}M =,{3,4}N =,则)(U C M N =( )A.{5}B.{1,2}C.{3,4}D.{1,2,3,4} 2.设43iz i =+,则z =( )A.34i --B.–34i +C.34i -D.34i +3.已知命题:,sin 1p x R x ∃∈<;命题||:,1x q x R e ∈∀≥,则下列命题中为真命题的是( ) A.p q ∧ B.p q ⌝∧ C.p q ∧⌝ D.()p q ⌝∨4.函数()sincos 33x xf x =+的最小正周期和最大值分别是( ) A.3πB.3π和2C.6πD.6π和25.若,x y 满足约束条件2,3,4,y x y x y ≤≤+≥⎧⎪-⎨⎪⎩则3z x y =+的最小值为( )A.18B.10C.6D.46.225coscos 1212ππ-=( ) A.12B.3C.2D.27.在区间1(0,)2随机取1个数,则取到的数小于13的概率为( ) A.34 B.23 C.13 D.168.下列函数中最小值为4的是( )A.224y x x =++ B.4|sin ||sin |y x x =+C.222x xy -=+ D.4n ln l y x x=+9.设函数1(1)xf x x-=+,则下列函数中为奇函数的是( ) A.1()1f x -- B.1()1f x -+ C.1()1f x +- D.1()1f x ++10.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为A.2π B.3π C.4π D.6π 11.设B 是椭圆C :2215x y +=的上顶点,点P 在C 上,则PB 的最大值为A.52212.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则A.a b <B.a b >C.2ab a <D.2ab a > 二、填空题13.已知向量(2,5)a =,(,4)b λ=,若//a b ,则λ= .14.双曲线22145x y -=的右焦点到直线280x y +-=的距离为 .15.记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,面积为,60B =︒,223a c ac +=,则b = .16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备 9.810.310.0 10.2 9.9 9.8 10.0 10.1 10.2 9.7 新设备 10.1 10.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥不认为有显著提高).18.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ﹔(2)若1PD DC ==,求四棱锥P ABCD -的体积.19.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a ,成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S ,和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 20.已知抛物线C :22(0)y px p =>的焦点F 到准线的距离为2. (1)求C 的方程,(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值. 21.已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 22.在直角坐标系xOy 中,C 的圆心为)(2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点)(4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立坐标系,求这两条切线的极坐标方程. 23.已知函数()|||3|f x x a x =-++. (1)当1a =时,求不等式()6f x ≥的解集; (2)若()f x a >-,求a 的取值范围.答案及解析一、选择题1.已知全集{1,2,3,4,5}U =,集合{1,2}M =,{3,4}N =,则)(U C M N =( )A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}2.设43iz i =+,则z =( ) A.34i -- B.–34i + C.34i - D.34i +3.已知命题:,sin 1p x R x ∃∈<;命题||:,1x q x R e ∈∀≥,则下列命题中为真命题的是( ) A.p q ∧B.p q ⌝∧C.p q ∧⌝D.()p q ⌝∨答案: A 解析:根据正弦函数的值域sin [1,1]x ∈-,sin 1x <,故x R ∃∈,p 为真命题,而函数||x y e =为偶函数,且0x ≥时,1x y e =≥,故x R ∀∈,||1x y e =≥恒成立.则q 也为真命题,所以p q∧为真,选A. 4.函数()sin cos 33x xf x =+的最小正周期和最大值分别是( )A.3πB.3π和2C.6πD.6π和2 答案: C 解析:()sin()34x f x π=+max ()f x =,2613T ππ==. 故选C.5.若,x y 满足约束条件2,3,4,y x y x y ≤≤+≥⎧⎪-⎨⎪⎩则3z x y =+的最小值为( )A.18B.10C.6D.4答案: C 解析:根据约束条件可得图像如下,3z x y =+的最小值,即3y x z =-+,y 轴截距最小值.根据图像可知3y x z =-+过点(1,3)B 时满足题意,即min 336z =+=.6.225cos cos 1212ππ-=( ) A.12B.33 C.22 3 答案: D 解析:2222223()sin cos 25cos cos cos cos cos 12121212121262ππππππππ-=-=--==∴选D. 7.在区间1(0,)2随机取1个数,则取到的数小于13的概率为( ) A.34 B.23 C.13 D.16答案: B解析:在区间1(0,)2随机取1个数,可知总长度12d =,取到的数小于13,可知取到的长度范围13d '=,根据几何概型公式123132d p d '===,∴选B.8.下列函数中最小值为4的是( ) A.224y x x =++ B.4|sin ||sin |y x x =+C.222x xy -=+D.4n ln l y x x=+答案: C 解析:对于A ,22224213(1)33y x x x x x =++=+++=++≥.不符合, 对于B ,4|sin ||sin |y x x =+,令|sin |[0,1]t x =∈,∴4y t t=+,根据对勾函数min 145y =+=不符合, 对于C ,242222x x x xy -==++,令20xt =>,∴4224y t t =+≥=⨯=, 当且仅当2t =时取等,符合,对于D ,4n ln l y x x =+,令ln t x R =∈,4y t t=+. 根据对勾函数(,4][4,)y ∈-∞-+∞,不符合.9.设函数1(1)xf x x-=+,则下列函数中为奇函数的是( ) A.1()1f x --B.1()1f x -+C.1()1f x +-D.1()1f x ++答案: B 解析:12()111x f x x x-==-+++, ()f x 向右平移一个单位,向上平移一个单位得到2()g x x=为奇函数. 所以选B.10.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为A.2πB.3πC.4πD.6π 答案: D 解析:做出图形,11//AD BC ,所以1PBC ∠为异面直线所成角,设棱长为1.1BC,12B P =,12PC =,BP =. 2221111312cos 22BC BP C P PBC BP BC +-+-∠===⋅,即16PBC π∠=,故选D.11.设B 是椭圆C :2215x y +=的上顶点,点P 在C 上,则PB 的最大值为 A.526 5D.2 答案: A 解析:方法一:由22:15x C y +=,(0,1)B 则C 的参数方程:5sin x y θθ⎧=⎪⎨=⎪⎩.22||(sin 1)(5cos )PB θθ=-+24sin 2sin 6θθ=--+212554(sin )442θ=-++≥.∴max 5||2PB =,故选A. 方法二:设00(,)P x y ,则220001([1,1])5x y y +=∈-①,(0,1)B . 因此22200||(1)PB x y =+-②将①式代入②式化简得:22012525||4()444PB y =-++≥,当且仅当014y =-时||PB 的最大值为52,故选A.12.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则A.a b <B.a b >C.2ab a <D.2ab a > 答案: D 解析:2()2()()()()(32)f x a x a x b a x a a x a x b a '=--+-=---当0a >时,原函数先增再减后增.原函数在()0f x '=的较小零点时取得极大值. 即23a b a +<,即a b <,∴2a ab <. 当0a <时,原函数先减再增后减.原函数在()0f x '=的较大零点时取得极大值. 即23a b a +>,a b >,2a ab <,故选D. 二、填空题13.已知向量(2,5)a =,(,4)b λ=,若//a b ,则λ= . 答案:85解析:由已知//a b 可得82455λλ⨯=⇒=. 14.双曲线22145x y -=的右焦点到直线280x y +-=的距离为 . 答案:5解析:22145x y -=的右焦点为(3,0),到直线280x y +-=的距离22|38|512d -==+. 15.记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,面积为3,60B =︒,223a c ac +=,则b = .答案:22解析: 由面积公式1sin 32S ac B ==,且60B =︒,解得4ac =, 又由余弦定理2222cos b a c ac B =+-,223a c ac +=,且0b > 解得22b =.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).答案: ②⑤或③④ 解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面PAC ⊥平面ABC ,2PA PC ==5BA BC ==2AC =,俯视图为⑤.俯视图为③,如图(2),PA ⊥平面ABC ,1PA =,5AC AB ==,2BC =,俯视图为④.17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备 9.810.310.0 10.2 9.9 9.8 10.0 10.1 10.2 9.7 新设备 10.1 10.4 10.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥不认为有显著提高). 答案:见解析 解析:9.810.31010.29.99.81010.110.29.71010x ++++++++==+;10.110.410.11010.110.310.610.510.410.510.310y ++++++++==+.211(0.040.090.040.010.040.010.040.09)10s =+++++++10.360.03610=⨯= 221(0.040.010.040.090.040.090.040.010.04)10s =++++++++10.40.0410=⨯=. (2)10.3100.3y x -=-=22120.0360.04221010s s ++=20.0076=. ∵则0.30.0920.0760.0304=>=,所以可判断新设备生产产品的该项指标的均值较旧设备有显著提高; 没有显著提高.18.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ﹔(2)若1PD DC ==,求四棱锥P ABCD -的体积.答案: 见解析 解析:19.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a ,成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S ,和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 答案: 见解析 解析:设{}n a 的公比为q ,则1n n a q -=,因为1a ,23a ,39a 成等差数列,所以21923q q +=⨯,解得13q =, 故11()3n n a -=,11313(1)12313n n n S -==--. 又3n n n b =,则1231123133333n n n n nT --=+++++,两边同乘13,则234111231333333n n n n nT +-=+++++,两式相减,得23412111113333333n n n nT +=+++++-,即1111(1)1133(1)332333121n n n n n n n T ++-=-=---, 整理得31323(1)4323423n n n nn n T +=--=-⨯⨯, 323314322()(1)04232323n n n n nn n T S ++-=---=-<⨯⨯,故2n n S T <.20.已知抛物线C :22(0)y px p =>的焦点F 到准线的距离为2. (1)求C 的方程,(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值. 答案:见解析 解析:(1)由焦点到准线的距离为p ,则2p =. 抛物线c 的方程:24y x =.(2)设点200(,)4y P y ,(,)Q Q Q x y ,(1,0)F .∵9PQ QF =.∴222000009499(,)9(1,)4104910Q Q Q Q Q Q Q Q Q Q y y x x x y x y y x y y y x y y ⎧+⎪⎧-=-=⎪⎪--=--⇒⇒⎨⎨⎪⎪-=-⎩=⎪⎩则020001193944Q OQ Qy y k y y x y ===≤=++. ∴直线OQ 斜率的最大值为13. 21.已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 答案: 见解析 解析:(1)2()32f x x x a '=-+(i )当4120a ∆=-≤,即13a ≥时,()0f x '≥恒成立,即()f x 在()f x 在x ∈R 上单调递增.(ii )当4120∆=->,即13a <时,()0f x '=解得,113x =,213x +=.∴()f x 在113(,)3a --∞,113()3a -+∞单调递增,在113113(33a a-+单调递减,综上所述:当13a ≥时,()f x 在R 上单调递增;当13a <时,()f x 在113113(,33a a-++单调递减.(2)设可原点切线的切点为32(,1)t t t at -++,切线斜率2()32k f t t t a '==-+.又321t t at k t -++=,可得322132t t at t t a t-++=-+.化简得2(1)(21)0t t t -++=,即1t =.∴切点为(1,1)a +,斜率1k a =+,切线方程为(1)y a x =+,将(1)y a x =+,321y x x ax =-++联立可得321(1)x x ax a x -++=+,化简得2(1)(1)0x x -+=,解得11x =,21x =-.∴过原点的切线与()y f x =公共点坐标为(1,1)a +,(1,1)a ---.22.在直角坐标系xOy 中,C 的圆心为)(2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点)(4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立坐标系,求这两条切线的极坐标方程. 答案: 见解析 解析: (1)C 的参数方程为2cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数)(2)C 的方程为22(2)(1)1x y -+-=①当直线斜率不存在时,直线方程为4x =,此时圆心到直线距离为2r >,舍去;②当直线斜率存在时,设直线方程为1(4)y k x -=-,化简为410kx y k --+=, 此时圆心(2,1)C 到直线的距离为1d r ===,化简得2||k =,两边平方有2241k k =+,所以k =代入直线方程并化简得40x -+=或40x +-=化为极坐标方程为5cos sin 4sin()46πρθθρθ=⇔+=或cos sin 4sin()46πρθθρθ+=⇔+=+23.已知函数()|||3|f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集; (2)若()f x a >-,求a 的取值范围. 答案: 见解析 解析:当1a =时,()6|1||3|6f x x x ≥⇔-++≥,当3x ≤-时,不等式136x x ⇔---≥,解得4x ≤-; 当31x -<<时,不等式136x x ⇔-++≥,解得x ∈∅; 当1x ≥时,不等式136x x ⇔-++≥,解得2x ≥. 综上,原不等式的解集为(,4][2,)-∞-+∞. (2)若()f x a >-,即min ()f x a >-,因为()|||3||()(3)||3|f x x a x x a x a =-++≥--+=+(当且仅当()(3)0x a x -+≤时,等号成立),所以min ()|3|f x a =+,所以|3|a a +>-,即3a a +<或3a a +>-,解得3(,)2a ∈-+∞.。
2021届高三数学(文科)一轮复习通关检测卷全国卷(一)【满分:150分】一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,则复数313i 12iz -=-的共轭复数z 在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.如图,U 是全集,,,M P S 是U 的三个子集,则阴影部分所表示的集合是( )A.()M P S ⋂⋂B.()M P S ⋂⋃C.()()U M P S ⋂⋂D.()()U M P S ⋂⋃3.函数()2sin sin2f x x x =-在[]0,2π的零点个数为( ) A .2B .3C .4D .54.函 数cos sin y x x x =+在区间[-π,+π]上的图像可能是( ) A. B.C. D.5.已知154432,2,log 2p q s ===,则,,p q s 的大小关系为( ) A.q s p <<B.q p s <<C.s p q <<D.s q p <<6.已知π3sin 245x ⎛⎫-= ⎪⎝⎭.则sin 4x 的值为( )A.725B.725±C.1825D.1825±7.执行右面的程序框图,若输入的00k a ==,,则输出的k 为:( )A.2B.3C.4D.58.已知向量(3,1)a =,b 是不平行于x 轴的单位向量,且3a b ⋅=,则b 等于( )A.12⎫⎪⎪⎝⎭B.12⎛ ⎝⎭C.14⎛ ⎝⎭D.(1,0)9.若变量,x y 满足约束条件10,210,10,x y x y x y -+≥⎧⎪--≤⎨⎪++≥⎩则目标函数2z x y =+的最小值为()A.4B.1-C.2-D.3-10.已知,a b 是方程20x x -的两个不等实数根,则点(),P a b 与圆22:8C x y +=的位置关系是( ) A.点P 在圆内B.点P 在圆上C.点P 在圆外D.无法确定11.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,,2(),F F a c b P -=是椭圆 C 上的动点.若12PF F 的面积的最大值为S ,则2Sc=( )B.145C.43D.16912.已知函数()223f x x ax ax b =+++的图像在点()()1,1f 处的切线方程为12y x m =-+.若函数()f x 至少有两个不同的零点,则实数b 的取值范围是( )A.()5,27-B.[]5,27-C.(]1,3-D.[]1,3-二、填空题:本题共4小题,每小题5分,共20分.13.曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________.14.若sin cos αα+则sin 2α的值为__________. 15.从数学内部看,推动几何学发展的矛盾有很多,比如“直与曲的矛盾”,随着几何学的发展,人们逐渐探究曲与直的相互转化,比如:“化圆为方”解决了曲、直两个图形可以等积的问题. 如图,设等腰直角三角形ABC 中,,90AB BC ABC =∠=︒,以A C 为直径作半圆,再以为直径作半圆AmB ,那么可 以探究月牙形面积(图中黑色阴影部分)与AOB △面积(图中灰色阴影部分)之间的关系,在这种关系下,若向 整个几何图形中随机投掷一点,那么该点落在图中阴影部分的概率为___________.16.已知抛物线2:2(0)C y px p =>的焦点为F ,点A 是抛物线C 上一点,以点A 为圆心,23AF 为半径的圆与y 轴相切,且截线段AF,则p =_______. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)已知各项均为正数的等差数列{}n a 和等比数列{}n b 满足111a b ==,且236a a ⋅=,238b b a ⋅=(1)求数列{}n a ,{}n b 的通项公式.(2)若2221log n n n c a b +=,求12n c c c ++⋯+.18. (12分)某学校用简单随机抽样方法抽取了30名同学,对其每月平均课外阅读时间(单位:小时)进行调查,所得数据的茎叶图如图:若将月均课外阅读时间不低于30小时的学生称为“读书迷”. (1).将频率视为概率,估计该校900名学生中“读书迷”有多少人?(2).从已抽取的7名“读书迷”中随机抽取男、女“读书迷”各1人,参加读书日宣传活动. (i)共有多少种不同的抽取方法?(ii)求抽取的男、女两位“读书迷”月均读书时间相差不超过2小时的概率.19. (12分)如图,在四棱锥P ABCD -中,90,60ABC ACD BAC CAD ∠=∠=︒∠=∠=︒,PA ⊥平面,2,1ABCD PA AB ==.设,M N 分别为,PD AD 的中点.(1)求证:平面CMN 平面PAB .(2)求三棱锥P ABM -的体积.20. (12分)已知椭圆2222:1(0)x y C a b a b +=>>,且经过点⎝⎭. (1)求椭圆C 的标准方程;(2)若过点()0,2P 的直线交椭圆C 于,A B 两点,求OAB (O 为原点)面积的最大值.21. (12分)已知函数2()ln 2()f x a x x a =+-∈R . (1)求函数()f x 的单调区间;(2)若函数()f x 在1x =处的切线方程为45y x =-,且当对于任意实数[1,2]λ∈时,存在正实数12,x x ,使得()()()1212x x f x f x λ+=+,求12x x +的最小正整数.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22. [选修4 – 4:坐标系与参数方程](10分) 已知曲线12,C C 的参数方程分别为2124cos ,4sin x C y θθ⎧=⎪⎨=⎪⎩:(θ为参数),211x t t C y t t ⎧=+⎪⎪⎨⎪=-⎪⎩,:(t 为参数). (1)将12,C C 的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设12,C C 的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程. 23. [选修4 – 5:不等式选讲](10分)已知函数()112f x x a x =-++的最小值为2. (1).求实数a 的值;(2).若0a >,求不等式()4f x ≤的解集.答案以及解析一、选择题 1.答案:C解析:由题设得313i (13i)(12i)55i1i 12i (12i)(12i)5z -++-+====-+--+,故1i z =--,其在复平面内对应的点位于第三象限,故选C 。
2021高考数学备考基本思路高考数学备考策略2021一、调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
二、“内紧外松”,集中注意,消除焦虑怯场集中注意力是数学考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
三、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到数学试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
高考数学怎么备考20211、立足基础知识高三复习数学的时候老师平时讲的大多数都是基础知识,很少讲特别难的,因为只有高考考察的大部分内容还是基础,并且只有基础知识掌握好了才能进一步学好难的。
再者平时考试结束以后,很多同学都会出现这种情况:明明是很简单的题,但是不知道为什么当时考虑错了,这也是因为基础知识没有学好,考试的时候一紧张就会出现思维混乱,简单的题就会做错。
2、做题注重审题减少错误审题是做题的第一步,只有读懂了题干,清楚了题目的要求才能继续分析解题,如果题干内容都不清楚就半猜测的做题,就很容易做错。
就像考试卷子发下来以后,发现明明是会做的题却做错了,就是因为审题不清楚、不谨慎。