当前位置:文档之家› 对数函数基础运算法则及例题-答案

对数函数基础运算法则及例题-答案

对数函数基础运算法则及例题-答案
对数函数基础运算法则及例题-答案

对数函数的定义:

函数x y a log =)10(≠>a a 且叫做对数函数,定义域为),0(+∞,值域为

),(+∞-∞.

对数的四则运算法则:

若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log a a a M

M N N

=-;

(3)log log ()n a a M n M n R =∈. (4)N n

N a n

a log 1

log =

对数函数的图像及性质

例1.已知x =4

9时,不等式 (x 2

– x – 2)> (–x 2

+2x + 3)成立,

求使此不等式成立的x 的取值范围.

解:∵x =49使原不等式成立. ∴[249)49(2--]> )34

9

2)49(1[2+?+? 即16

13>16

39. 而16

13<16

39. 所以y = 为减函数,故0<a <1.

∴原不等式可化为???

????++-<-->++->--3220

320222

2

2x x x x x x x x , 解得???

????

<<-<<->-<2513121x x x x 或. 故使不等式成立的x 的取值范围是)2

5,

2( 例2.求证:函数f (x ) =x

x -1log 2

在(0, 1)上是增函数.

解:设0<x 1<x 2<1,

则f (x 2) – f (x 1) = 212

221log log 11x x x x ---2

1221

(1)

log (1)x x x x -=-=

.11log 2

1

122

x x x x --? ∵0<x 1<x 2<1,∴1

2x x >1,2111x x -->1. 则2

1

122

11log x x x x --?

>0,

∴f (x 2)>f (x 1). 故函数f (x )在(0, 1)上是增函数 例3.已知f (x ) = (a – ) (a >1).

(1)求f(x)的定义域和值域;(2)判证并证明f(x)的单调性.

解:(1)由a>1,a–>0,而a>,则x<1. 故f(x)的定义域为( -∞,1),

而<a,可知0<a–<a,又a>1. 则(a– )< = 1.

取f (x)<1,故函数f (x)的值域为(–∞, 1).

(2)设x1>x2>1,又a>1,∴1x a>2x a,∴1x a

a <2x a,

∴ (a–1x a)< (a–2x a),

即f (x1)<f (x2),故f (x)在(1, +∞)上为减函数.

对数函数基础运算法则及例题_答案

对数函数的定义: 函数x y a log =)10(≠>a a 且叫做对数函数,定义域为),0(+∞,值域为),(+∞-∞. 对数的四则运算法则: 若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log a a a M M N N =-; (3)log log ()n a a M n M n R =∈. (4)N n N a n a log 1 log = 对数函数的图像及性质

例1.已知x = 4 9 时,不等式 log a (x 2–x – 2)>log a (–x 2 +2x + 3)成立, 求使此不等式成立的x 的取值范围. 解:∵x = 49使原不等式成立. ∴log a [249)49(2--]>log a )349 2)49(1[2+?+? 即log a 1613>log a 1639. 而1613<16 39 . 所以y = log a x 为减函数,故0<a <1. ∴原不等式可化为??? ? ???++-<-->++->--322032022222x x x x x x x x ,解得??? ???? <<-<<->-<2513121x x x x 或. 故使不等式成立的x 的取值范围是)2 5 ,2( 例2.求证:函数f (x ) =x x -1log 2 在(0, 1)上是增函数. 解:设0<x 1<x 2<1, 则f (x 2)–f (x 1) = 212221log log 11x x x x ---2 1221(1)log (1)x x x x -=-=.11log 2 1 122x x x x --? ∵0<x 1<x 2<1,∴ 12x x >1,2111x x -->1. 则2 1 12211log x x x x --?>0, ∴f (x 2)>f (x 1). 故函数f (x )在(0, 1)上是增函数 例3.已知f (x ) = log a (a –a x ) (a >1). (1)求f (x )的定义域和值域;(2)判证并证明f (x )的单调性. 解:(1)由a >1,a –a x >0,而a >a x ,则x <1. 故f (x )的定义域为( -∞,1), 而a x <a ,可知0<a –a x <a ,又a >1. 则log a (a –a x )<lg a a = 1. 取f (x )<1,故函数f (x )的值域为(–∞, 1). (2)设x 1>x 2>1,又a >1,∴1x a >2x a ,∴1x a a -<a-2x a , ∴log a (a –1x a )<log a (a –2x a ), 即f (x 1)<f (x 2),故f (x )在(1, +∞)上为减函数.

对数函数典型例题

对数运算与对数函数复习 例1.求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2x y a -=. 例2.比较下列各组数中两个值的大小: (1)2log 3.4,2log 8.5; (2)0.3log 1.8,0.3log 2.7; (3)log 5.1a ,log 5.9a . (4)0.91.1, 1.1log 0.9,0.7log 0.8; 例3.求下列函数的值域: (1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47)a y x x =-+(0a >且1a ≠).

例4.(1)已知:36log ,518,9log 3018求==b a 值. 例5.判断函数22()log (1)f x x x =+的奇偶性。

对数运算与对数函数复习练习 一、选择题 1.3 log 9log 28的值是( ) A .32 B .1 C .2 3 D .2 2.函数)2(x f y =的定义域为[1,2],则函数)(log 2x f y =的定义域为( ) A .[0,1] B .[1,2] C .[2,4] D .[4,16] 3.函数2x log y 5+=(x ≥1)的值域是( ) A .R B .[2,+∞] C .[3,+∞] D .(-∞,2) 4.如果0-+ C .0)a 1(log )a 1(>+- D .0)a 1(log )a 1(<-+ 5.如果02log 2log b a >>,那么下面不等关系式中正确的是( ) A .0b>1 D .b>a>1 6 若a>0且a ≠1,且14 3log a <,则实数a 的取值范围是( ) A .0或 D .4 3a 0<<或a>1 7.设0,0,a b <<且,722ab b a =+那么1lg |()|3 a b +等于( ) A .1(lg lg )2a b + B .1lg()2ab C .1(lg ||lg ||)3a b + D .1lg()3 ab 8.如果1x >,12log a x =,那么( ) A .22a a a >> B .22a a a >> C .22a a a >> D .22a a a >> 二、填空题(共8题) 8.计算=+?+3log 22450lg 2lg 5lg . 10.若4 12x log 3=,则x =________ 11 .函数f(x)的定义域是[-1,2],则函数)x (log f 2的定义域是_____________ 12.函数x )31 (y =的图象与函数x log y 3-=的图象关于直线___________对称.

教案对数的运算法则

教案 对数的运算法则 【教学目标】 知识目标: ⑴ 理解对数的概念,了解常用对数的概念. ⑵ 掌握对数的运算法则. 能力目标: 会运用对数的运算法则进行计算. 【教学重点】 对数的概念和对数的运算法则. 【教学难点】 对数的运算法则. 【教学过程】 一、课程导入 以复习指数的相关知识导入新课.(板书,提问等.5分钟) 问题1:2的多少次幂等于8? 问题2:2的多少次幂等于9? 显然,这是同一类问题.就是已知底数和幂如何求指数的问题.为了解决这类问题,我们引进一个新数——对数. 二、新课教学 1.新概念 法则1 lg lg lg MN M N =+(M >0,N >0). 法则2 lg lg lg M M N N =-(M >0,N >0). 法则3 lg n M =n lg M (M >0,n 为整数). 上述三条运算法则,对以)1,0(≠>a a a 为底的对数,都成立. 2.概念的强化 例4 (讲授)用lg x ,lg y ,lg z 表示下列各式: (1)lg xyz ;(2)lg x yz ;(3)z .

解 (1) lg xyz =lg x +lg y +lg z ; (2) lg x yz =lg lg lg lg lg x yz x y z -=-+()=lg lg lg x y z --; (3) z 2lg x +3lg z -=2lg x +2 1lg y 3lg z -. 例5 (启发学生回答或提问)已知2ln =0.6931,3ln =1.0986.计算下列各式的值(精确到0.0001): (1))34ln(75?; (2)18ln . 分析 关键是利用对数的运算法则,将所求的对数用2ln 与3ln 来表示. 解 (1))34ln(75?=54ln +73ln =54ln +73ln =522ln +73ln (2)18ln =2118ln =2192ln ?=2 1(2ln +9ln )=21(2ln +23ln ) =0986.16931.02 1+?=1.44515≈1.4452. 例6 求下列各式的值: (1)lg2lg5+; (2)lg600lg2lg3--. 分析 逆向使用运算法则,再利用性质lg101=进行计算. 解 (1)lg2lg5lg(25)lg101+=?==; (2)2600lg600lg2lg3lg( )lg100lg102lg10223 --=====?. 3.巩固性练习 练习3.3.3 ( 12分钟) 1.用lg x ,lg y ,lg z 表示下列各式: (1) (2)lg xy z ; (3)2lg()y x ; (4) 2.已知2ln =0.6931,3ln =1.0986,计算下列各式的值(精确到0.0001): (1)ln 36; (2)ln 216; (3)ln12; (4)911ln(23)?. 答案:1.(1)1lg 2 x ;(2)lg lg lg x y z +-;(3)2lg 2lg y x -;(4)111lg lg lg 243x y z +-. 2.(1) 3.5834;(2)5.3751;(3)1.2424;(4)18.3225. 三、小结(讲授,5分钟) 1.本节内容

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解 1.对数: (1) 定义:如果,那么称为,记作,其中称为对数的底,N称为真数. ①以10为底的对数称为常用对数,记作___________. ②以无理数为底的对数称为自然对数,记作_________. (2) 基本性质: ①真数N为 (负数和零无对数);②;③; ④对数恒等式:. (3) 运算性质: ① log a(MN)=___________________________; ② log a=____________________________; ③ log a M n= (n∈R). ④换底公式:log a N= (a>0,a≠1,m>0,m≠1,N>0) ⑤ . 2.对数函数: ①定义:函数称为对数函数,1) 函数的定义域为( ;2) 函数的值域为; 3) 当______时,函数为减函数,当______时为增函数; 4) 函数与函数互为反函数. ② 1) 图象经过点( ),图象在;2) 对数函数以为渐近线(当时,图象向上无限接近y轴;当时,图象向下无限接近y轴); 4) 函数y=log a x与的图象关于x轴对称. ③函数值的变化特征: ①②③①②③ 例1 计算:(1) (2)2(lg)2+lg·lg5+; (3)lg-lg+lg. 解:(1)方法一利用对数定义求值设=x,则(2+)x=2-==(2+)-1,∴x=-1.方法二利用对数的运算性质求解 = =(2+)-1=-1.

(2)原式=lg(2lg+lg5)+=lg(lg2+lg5)+|lg-1| =lg+(1-lg)=1. (3)原式=(lg32-lg49)-lg8+lg245 = (5lg2-2lg7)-×+ (2lg7+lg5) =lg2-lg7-2lg2+lg7+lg5=lg2+lg5 =lg(2×5)= lg10=. 变式训练1:化简求值. (1)log2+log212-log242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log32+log92)·(log43+log83). 解:(1)原式=log2+log212-log2-log22=log2 (2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=( 例2 比较下列各组数的大小. (1)log3与log5;(2)log1.10.7与(3)已知logb<loga<logc,比较2b,2a,2c的大小关系.解:(1)∵log3<log31=0,而log5>log51=0,∴log3<log5. (2)方法一∵0<<1,<,∴0>, ∴, 即由换底公式可得log1.10.7<方法二作出y=与y=的图象. 如图所示两图象与x=相交可知log1.10.7<为减函数,且, ∴b>a>c,而y=2x是增函数,∴2b>2a>2c. 变式训练2:已知0<a<1,b>1,ab>1,则log a的大小关系是() B. C. D. 解: C 例3已知函数f(x)=log a x(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围. 解:当a>1时,对于任意x∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x在[3,+∞)上为增函数, ∴对于任意x∈[3,+∞),有f(x)≥log a3. 因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立. 只要log a3≥1=log a a即可,∴1<a≤3. 当0<a<1时,对于x∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f(x)=log a x在[3,+∞)上为减函数, ∴-f(x)在[3,+∞)上为增函数. ∴对于任意x∈[3,+∞)都有

指数对数概念及运算公式

指数函数及对数函数重难点 根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根.即,若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n . ②性质:1)a a n n =)(; 2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 幂的有关概念: ①规定:1)∈???=n a a a a n (ΛN * , 2))0(10 ≠=a a , n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ), 2)r a a a s r s r ,0()(>=?、∈s Q ), 3)∈>>?=?r b a b a b a r r r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用. 例 求值 (1) 3 28 (2)2 125 - (3)()5 21- (4)() 43 8116- 例.用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)32 )(b a - (4)43 )(b a + (5)32 2b a ab + (6)42 33 )(b a + 例.化简求值

(1)0 121 32322510002.08 27)()()()(-+--+---- (2)2 11 5 3125.05 25 .231 1.0)32(256) 027.0(?? ????+-+-????? ?-- (3)=?÷ ?--3133 73 32 9a a a a (4)21 1511336622263a b a b a b ??????-÷- ??? ??????? = (5 )= 指数函数的定义: ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R , 2)函数的值域为),0(+∞, 3)当10<a 时函数为增函数. 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)2 2 x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2y x = (6)2 4y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠) 例:比较下列各题中的个值的大小 (1)1.72.5 与 1.7 3 ( 2 )0.1 0.8 -与0.2 0.8 - ( 3 ) 1.70.3 与 0.93.1 例:已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求 (0),(1),(3)f f f -的值. 思考:已知0.7 0.9 0.8 0.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c . 例 如图为指数函数x x x x d y c y b y a y ====)4(,)3(,)2(,)1(,则 d c b a ,,,与1的大小关系为

对数公式的运算

对数公式的运用 1.对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即a b=N,那么数b叫做以a为底N的对数,记作:log a N=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③log a1=0,log a a=1,a logaN=N(对数恒等式),log a a b=b。 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN; 以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作log e N,简记为lnN. 2.对数式与指数式的互化 式子名称a b=N 指数式a b=N(底数)(指数)(幂值) 对数式log a N=b(底数) (真数) (对数) 3.对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)log a(MN)=log a M+log a N. (2)log a(M/N)=log a M-log a N. (3)log a M n=nlog a M(n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②log a a n=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子a b=N,log a N=b名称:a—幂的底数b—N— a—对数的底数b—N— 运算性质: a m·a n=a m+n a m÷a n= a m-n (a>0且a≠1,n∈R) log a MN=log a M+log a N log a MN= log a M n= (n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下: ①a<0,则N的某些值不存在,例如log-28=? ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数? ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数? 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数?

对数函数运算公式

对数函数运算公式集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

1 、b a b a =log 2、 b b a a =log 3、N a M a MN a log log log += 4、N a M a N M a log log log -= 5、M a M a n n log log = 6、M a M a n n log 1log = 1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=1/nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b ,即a^(log(a)(b))=b 。 2、因为a^b=a^b 令t=a^b 所以a^b=t ,b=log(a)(t)=log(a)(a^b) 3、MN=M×N 由基本性质1(换掉M 和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N) 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

两种方法只是性质不同,采用方法依实际情况而定 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 4、与(3)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 5、与(3)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]

对数

对数 导读:本文是关于对数,希望能帮助到您! 教学目标 1.理解对数的概念,掌握对数的运算性质. (1) 了解对数式的由来和含义,清楚对数式中各字母的取值范围及与指数式之间的关系.能认识到指数与对数运算之间的互逆关系. (2) 会利用指数式的运算推导对数运算性质和法则,能用符号语言和文字语言描述对数运算法则,并能利用运算性质完成简单的对数运算. (3) 能根据概念进行指数与对数之间的互化. 2.通过对数概念的学习和对数运算法则的探究及证明,培养学生从特殊到一般的概括思维能力,渗透化归的思想,培养学生的逻辑思维能力. 3.通过对数概念的学习,培养学生对立统一,相互联系,相互转化的思想.通过对数运算法则的探究,使学生善于发现问题,揭示数学规律从而调动学生思维的积极参与,培养学生分析问题,解决问题的能力及大胆探索,实事求是的科学精神. 教学建议 教材分析 (1) 对数既是一个重要的概念,又是一种重要的运算,而且它是与指数概念紧密相连的.它们是对同一关系从不同角度的刻

画,表示为当时,.所以指数式中的底数,指数,幂与对数式中的底数,对数,真数的关系可以表示如下: (2) 本节的教学重点是对数的定义和运算性质,难点是对数的概念. 对数首先作为一种运算,由引出的,在这个式子中已知一个数和它的指数求幂的运算就是指数运算,而已知一个数和它的幂求指数就是对数运算(而已知指数和幂求这个数的运算就是开方运算),所以从方程角度来看待的话,这个式子有三个量,知二求一.恰好可以构成以上三种运算,所以引入对数运算是很自然的,也是很重要的,也就完成了对的全面认识.此外对数作为一种运算除了认识运算符号“”以外,更重要的是把握运算法则,以便正确完成各种运算,由于对数与指数在概念上相通,使得对数法则的推导应借助指数运算法则来完成,脱到过程又加深了指对关系的认识,自然应成为本节的重点,特别予以关注.对数运算的符号的认识与理解是学生认识对数的一个障碍,其实与+,等符号一样表示一种运算,不过对数运算的符号写在前面,学生不习惯,所以在认识上感到有些困难. 教法建议 (1)对于对数概念的学习,一定要紧紧抓住与指数之间的关系,首先从指数式中理解底数和真数的要求,其次对于对数的性质及零和负数没有对数的理解也可以通过指数式来证明,验证.同时在关系的指导下完成指数式和对数式的互化.

高一指数函数与对数函数经典基础练习题,

指数函数与对数函数 一. 【复习目标】 1. 掌握指数函数与对数函数的函数性质及图象特征. 2. 加深对图象法,比较法等一些常规方法的理解. 3. 体会分类讨论,数形结合等数学思想. 二、【课前热身】 1.设5 .1348.029.0121,8,4-? ? ? ??===y y y ,则 ( ) A. 213y y y >> B 312y y y >> C 321y y y >> D 231y y y >> 2.函数)10(|log |)(≠>=a a x x f a 且的单调递增区间为 ( ) A (]a ,0 B ()+∞,0 C (]1,0 D [)+∞,1 3.若函数)(x f 的图象可由函数()1lg +=x y 的图象绕坐标原点O 逆时针旋转 2 π 得到,=)(x f ( ) A 110 --x B 110-x C x --101 D x 101- 4.若直线y=2a 与函数)且1,0(|1|≠>-=a a a y x 的图象有两个公共点,则a 的取值范围是 . 5..函数)3(log 32x x y -=的递增区间是 . 三. 【例题探究】 例1.设a>0,x x e a a e x f += )(是R 上的偶函数. (1) 求a 的值; (2) 证明:)(x f 在()+∞,0上是增函数 例2.已知()())2(log 2log )(,2 2 log )(222 >-+-=-+=p x p x x g x x x f (1) 求使)(),(x g x f 同时有意义的实数x 的取值范围 (2) 求)()()(x g x f x F +=的值域. 例3.已知函数)1(1 2 )(>+-+ =a x x a x f x (1) 证明:函数)(x f 在()+∞-,1上是增函数;

对 数 运 算 法 则

二进制数的运算方法---【转载】 二进制数的运算方法 ? 电子计算机具有强大的运算能力,它可以进行两种运算:算术运算和逻辑运算。 1.二进制数的算术运算 二进制数的算术运算包括:加、减、乘、除四则运算,下面分别予以介绍。 (1)二进制数的加法 根据“逢二进一”规则,二进制数加法的法则为: 0+1=1+0=1 1+1=0 (进位为1)? 1+1+1=1 (进位为1) 例如:1110和1011相加过程如下: (2)二进制数的减法 根据“借一有二”的规则,二进制数减法的法则为: 0-1=1 (借位为1) 例如:1101减去1011的过程如下: (3)二进制数的乘法 二进制数乘法过程可仿照十进制数乘法进行。但由于二进制数只有0或1两种可能的乘数位,导致二进制乘法更为简单。二进制数乘法的法则为:

0×1=1×0=0 例如:1001和1010相乘的过程如下: 由低位到高位,用乘数的每一位去乘被乘数,若乘数的某一位为1,则该次部分积为被乘数;若乘数的某一位为0,则该次部分积为0。某次部分积的最低位必须和本位乘数对齐,所有部分积相加的结果则为相乘得到的乘积。 (4)二进制数的除法 二进制数除法与十进制数除法很类似。可先从被除数的最高位开始,将被除数(或中间余数)与除数相比较,若被除数(或中间余数)大于除数,则用被除数(或中间余数)减去除数,商为1,并得相减之后的中间余数,否则商为0。再将被除数的下一位移下补充到中间余数的末位,重复以上过程,就可得到所要求的各位商数和最终的余数。 例如:100110÷110的过程如下: 所以,100110÷110=110余10。 2.二进制数的逻辑运算 二进制数的逻辑运算包括逻辑加法(“或”运算)、逻辑乘法(“与”运算)、逻辑否定(“非”运算)和逻辑“异或”运算。 (1)逻辑“或”运算 又称为逻辑加,可用符号“+”或“∨”来表示。逻辑“或”运算的规则如下: 0+0=0或0∨0=0 0+1=1或0∨1=1

对数函数 典型例题

对数函数 例1求下列函数的定义域 (1)y=log2(x2-4x-5); (2)y=log x+1(16-4x) (3)y= . 解:(1)令x2-4x-5>0,得(x-5)(x+1)>0, 故定义域为{x|x<-1,或x>5}. (2)令得 故所求定义域为{x|-1<x<0,或0<x<2}. (3)令,得 故所求定义域为 {x|x<-1- ,或-1- <x<-3,或x≥2}. 说明求与对数函数有关的定义域问题,首先要考虑,真数大于零.底数大于零不等于1,若处在分母的位置,还要考虑不能使分母为零. 例2求下列函数的单调区间. (1)y=log2(x-4);(2)y=log0.5x2. 解:(1)定义域是(4,+∞),设t=x-4,当x>4时,t随x的增大而增大,而y=log2t,y又随t的增大而增大, ∴(4,+∞)是y=log2(x-4)的递增区间. (2)定义域{x|x∈R,且x≠0},设t=x2,则y=log0.5t 当x>0时,t随x的增大而增大,y随t的增大而减小, ∴(0,+∞)是y=log0.5x2的递减区间. 当x<0时,t随x的增大而减小,y随t的增大而减小, ∴(-∞,0)是y=log0.5x2的递增区间.

例3比较大小: (1)log0.71.3和log0.71.8. (2)(lg n)1.7和(lgn)2(n>1). (3)log23和log53. (4)log35和log64. 解:(1)对数函数y=log0.7x在(0,+∞)内是减函数.因为1.3<1.8,所以 log0.71.3>log0.71.8. (2)把lgn看作指数函数的底,本题归为比较两个指数函数的函数值的大小,故需对底数lgn讨论. 若1>lgn>0,即1<n<10时,y=(lgn)x在R上是减函数,所以(lgn)1.2>(lgn)2; 若lgn>1,即n>10时,y=(lgn)2在R上是增函数,所以(lgn)1.7>(lgn)2.(3)函数y=log2x和y=log5x当x>1时,y=log2x的图像在y=log5x图像上方.这里 x=3,所以log23>log53. (4)log35和log64的底数和真数都不相同,须找出中间量“搭桥”,再利用对数函数的单调性即可求解. 因为log35>log33=1=log66>log64,所以log35>log64. 评析要注意正确利用对数函数的性质,尤其是第(3)小题,可直接利用例2中的说明得到结论. 例4已知函数f(x)=log a(a-a x)(a>1), (1)求f(x)的定义域、值域. (2)判断并证明其单调性. (3)解不等式f-1(x2-2)>f(x). 解:(1)要使函数有意义,必须满足a-a x>0,即a x

对数的运算法则

对数的运算法则 教学目标 1.理解并掌握对数性质及运算法则,能初步运用对数的性质和运算法则解题. 2.通过法则的探究与推导,培养学生从特殊到一般的概括思想,渗透化归思想及逻辑思维能力.3.通过法则探究,激发学生学习的积极性.培养大胆探索,实事求是的科学精神. 教学重点是对数的运算法则及推导和应用难点是法则的探究与证明. 一. 引入新课 我们前面学习了对数的概念,那么什么叫对数呢?通过下面的题目来回答这个问题 如果看到这个式子会有何联想? 由学生回答(1)(2) (3)(4). 也就要求学生以后看到对数符号能联想四件事.从式子中,可以总结出从概念上讲,对数与指数就是一码事,从运算上讲它们互为逆运算的关系.既然是一种运算,自然就应有相应的运算法则,所以我们今天重点研究对数的运算法则. 二.对数的运算法则(板书) 对数与指数是互为逆运算的,自然应把握两者的关系及已知的指数运算法则来探求对数的运算法则,所以我们有必要先回顾一下指数的运算法则. 由学生回答后教师让学生看:,,.

然后直接提出课题:若是 否成立? 由学生讨论并举出实例说明其不成立(如可以举而 ),教师在肯定结论的正确性的同时再提出 可提示学生利用刚才的反例,把5改写成应为,而32 =2,还可以让学生再找几个例子, .之后让学生大胆说出发现有什么规律? 由学生回答应有成立. 现在它只是一个猜想,要保证其对任意都成立,需要给出相应的证明,怎么证呢? 你学过哪些与之相关的证明依据呢? 学生经过思考后找出可以利用对数概念,性质及与指数的关系,再找学生提出证明的基本思路,即对数问题先化成指数问题,再利用指数运算法则求解.找学生试说证明过程,教师可适当提示,然后板书. 证明:设则,由指数运算法则 得, 即.(板书) 法则出来以后,要求学生能从以下几方面去认识: (1) 公式成立的条件是什么?(由学生指出.注意是每个真数都大于零,每个对数式都有意义为使用前提条件).

高一数学对数函数经典题及详细答案

高一数学对数函数经典练习题 一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知32a =,那么33log 82log 6-用a 表示是( ) A 、2a - B 、52a - C 、2 3(1)a a -+ D 、 2 3a a - 答案A 。 ∵3a =2→∴a=log 32 则: log 38-2log 36=log 323 -2log 3(2*3) =3log 32-2[log 32+log 33] =3a-2(a+1) =a-2 2、2log (2)log log a a a M N M N -=+,则 N M 的值为( ) A 、41 B 、4 C 、1 D 、4或1 答案B 。 ∵2log a (M-2N )=log a M+log a N , ∴log a (M-2N)2=log a (MN ),∴(M-2N)2 =MN , ∴M 2-4MN+4N 2=MN ,→m 2-5mn+4n 2=0(两边同除n 2)→(n m )2 -5n m +4=0,设x=n m →x 2-5x+4=0→(x 2 ???==1x x 又∵2log (2)log log a a a M N M N -=+,看出M-2N>0 M>0 N>0 ∴n m =1答案为:4 3、已知2 2 1,0,0x y x y +=>>,且1 log (1),log ,log 1y a a a x m n x +==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()1 2 m n - 答案D 。 ∵loga(1+x)=m loga [1/(1-x)]=n ,loga(1-x)=-n 两式相加得:→ loga [(1+x)(1-x)]=m-n →loga(1-x 2)=m-n →∵ x 2+y 2=1,x>0,y>0, → y 2=1- x 2→loga(y 2)=m-n

对数公式的推导(全)

对数函数公式的推导(全) 由指数函数 (01)n a a a b >≠=且,可推知:log a n b =,从而: ()log a b a b =对数恒等式 性质1、log ()log log a a a MN M N =+ <证法1> 由于m n m n a a a +?= 设 ,m n M a N a == 则: log a M m = l o g a N n = m n MN a += 于是: ()log log log a a a M N MN m n =+=+ <证法2> log log log a a a M N M N M N M N a a a =?=?对数恒等式 即: log log log a a a MN M N a a +=由于指数函数是单调函数,故: log ()log log a a a MN M N =+ 性质2、log log log M a a a N M N =- <证明> log log log log log M M N a a a a N a M N a M M N N a a a -== =对数恒等式 由于指数函数是单调函数,故:log log log M a a a N M N =- 性质3、log log ()(0,1)log b b a N N a b b >≠= 换底公式 特例:1log log a b b a = <证明> 由对数恒等式可知:log log a b N N N a b ==,log b a a b = log log log log a b b a N a N a N b b ???→==?? log log log b b a N a N N b b ?→== 由于指数函数是单调函数,故:log log log b b a N a N =? 故:log log log b b a N N a = 性质4、log log n a a M n M = 特例:1 log log n a a n M M =

必修1第三章对数函数的运算法则(全)

【本讲教育信息】 一. 教学内容: 对数运算、对数函数 二. 重点、难点: 1. 对数运算 0,0,1,1,0,0>>≠≠>>N M b a b a (1)x N a =log N a x =? (2)01log =a (3)1log =a a (4)N a N a =log (5)N M N M a a a log log )(log +=? (6)N M N M a a a log log log -= (7)M x M a x a log log ?= (8)a M M b b a log /log log = (9)b x y b a y a x log log = (10)1log log =?a b b a 2. 对数函数x y a log =,0>a 且1≠a 定义域 (+∞,0) 值域 R 单调性 ↓∈)1,0(a ↑+∞∈),1(a 奇偶性 非奇非偶 过定点 (1,0) 图象 x y a log =与x y a 1log =关于x 轴对称

【典型例题】 [例1] 求值 (1)=7 log 3) 9 1( ; (2)=-++4log 20log 2 3 log 2log 151515 15 ; (3)=+?+18log 3log 2log )2(log 66626 ; (4)=?81log 16log 329 ; (5)=+?++)2log 2(log )5log 5)(log 3log 3(log 2559384 ; (6)=+?+2)2(lg 50lg 2lg 25lg 。 解: (1)原式49 173 3) 3(27log 7 log 27 log 22 333= ====---- (2)原式115log 15== (3)原式18log )3log 2(log 2log 6666++?= 236 log 18 log 2log 666==+= (4)原式58 )3log 54()2log 24(23=?= (5)原式8 15 )2log 23()5log 23()3log 65(532=??= (6)原式)2lg 50(lg 2lg 25lg ++= 2 100lg 2 lg 225lg ==+= [例2] 若z y x ,,满足)](log [log log )](log [log log 33 1322 12y x =)]z (log [log log 55 15= 0=,试比较z y x 、、的大小关系。 解:log 2〔log 21 (log 2x)〕=0?log 2 1(log 2x)=1?log 2x =21?x =2=(215 )1. 同理可得 y =33=(310) 30 1 ,z =5 5=(56) 30 1 . ∵310 >215 >56 ,由幂函数y =x 30 1 在(0,+∞)上递增知,y>x>z. [例3] 若==2121log log b b a a ……λ==n a b n log ,则=?)(log 21)(21n a a a b b b n 。 解:由已知λ 11a b =,λ λn n a b a b == 22 ∴ λ)()(11n n a a b b = ∴ λ=)(log 21)(1n a a b b b n

对数指数函数公式全集

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 14 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1,但 y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210,,的图象的 认识。 图象特征与函数性质:

对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及10222--<。 ②y x =2与y x =?? ? ? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ? ? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的 示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中间,且过点()01,,从而y x =?? ? ? ? 13也由 关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =l o g (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0 故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 求lo g .032524?? ? ? ? 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成log .032524?? ? ? ?=x ,再改写为指数式就比较好办。 解:设log .032524?? ? ? ?=x

对数函数及其性质-对数的公式互化-详尽的讲解

2.1 对数与对数运算 1.对数的概念 一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 说明:(1)实质上,上述对数表达式,不过是指数函数y =a x 的另一种表达形式,例如:34=81与4=log 381这两个式子表达是同一关系,因此,有关系式a x =N ?x =log a N ,从而得对数恒等式:a log a N =N . (2)“log ”同“+”“×”“ ”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这种运算叫对数运算,不过对数运算的符号写在数的前面. (3)根据对数的定义,对数log a N (a >0,且a ≠1)具有下列性质: ①零和负数没有对数,即N >0; ②1的对数为零,即log a 1=0; ③底的对数等于1,即log a a =1. 2.对数的运算法则 利用对数的运算法则,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然.这种运算的互化可简化计算方法,加快计算速度. (1)基本公式 ①log a (MN )=log a M +log a N (a >0,a ≠1,M >0,N >0),即正数的积的对数,等于同一底数的各个因数的对数的和. ②log a M N =log a M -log a N (a >0,a ≠1,M >0,N >0),即两个正数的商的对数,等于被除数 的对数减去除数的对数. ③log a M n =n ·log a M (a >0,a ≠1,M >0,n ∈R ),即正数的幂的对数等于幂的底数的对数乘以幂指数. (2)对数的运算性质注意点 ①必须注意M >0,N >0,例如log a [(-3)×(-4)]是存在的,但是log a (-3)与log a (-4)均不存在,故不能写成log a [(-3)×(-4)]=log a (-3)+log a (-4). ②防止出现以下错误:log a (M ±N )=log a M ±log a N ,log a (M ·N )=log a M ·log a N ,log a M N = log a M log a N ,log a M n =(log a M )n . 3.对数换底公式 在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底

相关主题
文本预览
相关文档 最新文档