磷高效水稻根系对低磷胁迫响应的差异蛋白分析
- 格式:pdf
- 大小:1.60 MB
- 文档页数:8
低磷胁迫下不同野生大豆的形态和生理响应差异磷是植物必需的营养元素之一,在植物生长发育及新陈代谢过程中起着重要的作用[1] 。
磷在土壤中的有效性和含量较低 (含量约为2卩mol/L ),一般以无机、有机2种形态存在,但能被植物直接吸收利用的无机磷只占土壤全磷的1%[2] 。
事实上,土壤中的有效磷远远不能满足一季作物的需求,因而只有通过向土壤中不断施用磷肥,作物才能获得或维持较高产量。
由于近年来磷肥施用量的不断增多,使得土壤盈余的农田磷通过地表径流、渗漏方式向地表、地下水体迁移,从而增加了农田磷的环境风险[3] 。
大豆是需磷量较大的作物,其整个生育期均要有较高的磷营养水平,其中以出苗到盛花期对磷的要求最为迫切。
大豆植株缺磷后将表现出明显的缺素症状,如植株变矮、叶片变小、出现坏死斑点等,若植株结荚期缺磷,还将导致叶片脱落、花期延迟、结荚变少等症状出现,从而严重影响大豆产量和品质[4-5] 。
大豆耐低磷种质资源匮乏,遗传基础狭窄,成为大豆耐低磷育种的瓶颈[6] 。
野生大豆( Glycine soja L. )是栽培大豆的近缘野生物种,目前人们已经对野生大豆开展了包括生态学[7] 、结构植物学[8] 、品质化学[9] 、植物保护[10] 等基础生物学研究。
结果显示,野生大豆化学品质特异,同时具有抗病、抗虫、抗旱、耐贫瘠等较强的抗逆性和适应能力。
野生大豆对于拓宽大豆育种遗传基础、创造新资源及选育新品种将起到一定的作用。
近年来,野生大豆种质资源利用在大豆品质改良中已有许多成功的事例,目前已筛选出一批优质、抗逆性强的种质资源[11-13] 。
但是,目前关于野生大豆在大豆耐低磷育种中的应用研究较少。
本研究以前期初步筛选出的9 份野生大豆为材料,通过低磷胁迫处理后测定不同类型材料的形态、生理指标,比较不同类型的野生大豆在低磷胁迫下的耐低磷能力,以期探讨野生大豆的耐低磷机制,从而为野生大豆耐低磷基因型的筛选和大豆遗传改良提供方法和材料基础。
DOI:10.3969/J.ISSN.1672 7983.2020.03.003低磷胁迫对水稻生长及生理特性的影响丁艳,朱兰保,盛 蒂,常晓梅(蚌埠学院土木与水利水电工程学院,安徽蚌埠,233000)摘要:以3种不同基因型水稻为材料,采用水培方式分别对水稻植株进行正常供磷(+P,0.323mmol·L-1)和低磷(-P,0.013mmol·L-1)培养。
通过对植株的表型观察,根系形态的扫描,生物量及部分理化指标的测定,研究低磷对水稻生长的影响,明确水稻对低磷胁迫的适应机制。
结果表明,与正常供磷水稻植株相比,低磷处理的水稻植株矮小,叶面积减小,分蘖数及穗粒数减少;同时,根长增长,根系活力减弱,根系分泌酸性磷酸酶(APase)活性增强,根系分泌酸(H+)增多;此外,低磷处理水稻植株相对含水率下降,地上部干质量下降,根部干质量增加,根冠比增大。
即在磷营养供应不足时,水稻通过改变根系形态、增加根系分泌酸和提高酸性磷酸酶活性等适应机制,增加对土壤中磷元素的吸收和利用,以适应低磷环境。
关键词:水稻;低磷胁迫;生长指标;生理指标;根系形态中图分类号:S511.01文献标志码:A 文章编号:1672 7983(2020)03 0013 07水稻是重要粮食作物之一,全球约有50%以上的人口以稻米为主食[1]。
水稻的生长过程中,磷肥是不可缺少的营养元素,磷可增强植株体内活力,促进养分合成和转运,增强光合作用,延长叶的功能期,有益于水稻增产稳产[2,3]。
磷素供应不足会影响水稻的正常生长发育,进而影响其产量和品质[4,5]。
有研究表明,在低磷条件下,作物会从形态和生理等方面做出一些适应性反应,以适应低磷环境[6~8]。
刘文菊等[9]研究发现,不同基因型水稻在磷胁迫下其根系形态发生了明显变化,如根长、根冠比均呈增加趋势。
在低磷条件下,水稻植株分蘖数增减少,且每株根系相互之间有横向交织生长现象[10]。
声明:下面论文由《免费论文教育网》 用户转载自互联网,版权归原作者所有,本文档仅供参考,严禁抄袭!《免费论文教育网》植物根系对低磷胁迫的反应伊霞,樊明寿基金项目:内蒙古自然科学基金重点项目“燕麦吸收利用磷的潜力与磷肥利用效率的提高(200607010302),现代农业产业技术体系建设专项资金资助(nycytx-14)作者简介:伊霞(1981-),女,硕士,主要研究方向:植物营养生理通信联系人:樊明寿(1965-),男,教授,主要研究方向:植物营养生理. E-mail: fmswh@(内蒙古农业大学农学院,呼和浩特 010019) 摘要:磷是维持生命活动、能量传递和新陈代谢所必需的,然而由于土壤中磷浓度较低,施5 入土壤的磷肥又容易被固定,且磷素在土壤中的移动性比较小,所以磷经常成为植物生长的限制因子。
一些植物在低磷胁迫下,在形态和生理等方面主动地发生变化来提高磷的有效吸收以更好地适应低磷胁迫,这为植物磷高效育种提供了可能, 本文综述了植物对低磷胁迫的适应性反应的研究进展。
关键词:低磷胁迫;根构型;根冠比;酸性磷酸酶;有机酸;通气组织10中图分类号:Q945.17The Response of Plant Phosphorus to Low PhosphorusStressYI Xia, FAN Mingshou15 (College of Agronomy,Inner Mongolia Agricultural University, Hohhot 010019)Abstract: Phosphorus is essential for life-sustaining reactions including energy transfer, activation of proteins, and regulation of metabolic processes. P is the least mobile and available to plants in most soil condition , therefore it is a major limiting factor for plant growth. However Plants developed some adaptation to low P stress. This paper reviewed the research progress for 20plant root response to low P stress.Key words: Low Phosphorus Stress; Root Architecture; Shoot:Root Ratio; Acid Phosphtase Activity; Organic Acids; Aerenchyma0 引言25 磷是植物三大必需元素之一,它在细胞膜结构、物质代谢、酶活性调节以及信号传导等方面都起着极为重要的作用[1]。
水稻根系生长与金属胁迫的相互作用水稻作为全球粮食的重要来源,其种植量和生产率的提高一直是农业研究的重点。
然而,在水稻种植中,金属胁迫成为了一个严重的问题。
研究表明,金属胁迫会对水稻的生长、发育和产量造成严重的影响。
水稻的根系生长是影响其抗金属胁迫能力的重要因素。
本文将介绍水稻根系生长与金属胁迫的相互作用。
一、金属胁迫对水稻根系生长的影响金属胁迫是指环境中的金属元素以超过正常范围的浓度存在,对植物的生长和发育造成了不利影响。
钴、铜、镉、铅等金属元素都会对水稻根系生长造成影响。
其中,镉是最为严重的金属污染元素之一。
镉作为一种重金属,会在土壤中积累并被吸收到水稻根中,进而进入植物体内,影响植物代谢、生长、发育等生理过程。
研究表明,镉会抑制水稻根系的生长和发育,导致根长、侧根数、总根数等指标下降,并影响植物的吸水能力。
二、水稻根系生长对金属胁迫的响应虽然金属胁迫对水稻根系生长有一定影响,但水稻也有自身对抗金属胁迫的能力,其中包括其根系生长调节机制。
一些研究表明,水稻在遭受金属胁迫时,会自行调节根系生长,产生适应性反应。
例如,水稻可以增加根长、分支、毛细根等,提高根系可吸收环境中营养元素的能力,进而减轻金属胁迫对植物的影响。
而这些调节作用中,激素信号通路在其中扮演了重要的角色。
三、激素信号通路在水稻根系生长与金属胁迫中的调节作用在水稻根系的生长过程中,激素信号通路可以调节根的生长和分枝,从而提高植物对环境中营养元素的吸收;同时,激素还可以调节植物对金属胁迫的响应,从而提高水稻对抗金属胁迫的能力。
一些研究表明,纤维素素合酶凭据域1(RHD1)是水稻生长素信号通路的重要组成部分,其对水稻的根系生长和分枝有着重要调节作用。
通过对水稻杂交群体的研究,发现RHD1是否存在会显著影响水稻的根系生长和侧根的数量,从而进一步影响水稻对环境中镉元素的吸收和响应。
另外,研究表明植物激素细胞分裂素(cytokinin)对抗镉元素的胁迫也有着重要贡献。
声明:下面论文由《免费论文教育网》 用户转载自互联网,版权归原作者所有,本文档仅供参考,严禁抄袭!《免费论文教育网》植物根系对低磷胁迫的反应伊霞,樊明寿基金项目:内蒙古自然科学基金重点项目“燕麦吸收利用磷的潜力与磷肥利用效率的提高(200607010302),现代农业产业技术体系建设专项资金资助(nycytx-14)作者简介:伊霞(1981-),女,硕士,主要研究方向:植物营养生理通信联系人:樊明寿(1965-),男,教授,主要研究方向:植物营养生理. E-mail: fmswh@(内蒙古农业大学农学院,呼和浩特 010019) 摘要:磷是维持生命活动、能量传递和新陈代谢所必需的,然而由于土壤中磷浓度较低,施5 入土壤的磷肥又容易被固定,且磷素在土壤中的移动性比较小,所以磷经常成为植物生长的限制因子。
一些植物在低磷胁迫下,在形态和生理等方面主动地发生变化来提高磷的有效吸收以更好地适应低磷胁迫,这为植物磷高效育种提供了可能, 本文综述了植物对低磷胁迫的适应性反应的研究进展。
关键词:低磷胁迫;根构型;根冠比;酸性磷酸酶;有机酸;通气组织10中图分类号:Q945.17The Response of Plant Phosphorus to Low PhosphorusStressYI Xia, FAN Mingshou15 (College of Agronomy,Inner Mongolia Agricultural University, Hohhot 010019)Abstract: Phosphorus is essential for life-sustaining reactions including energy transfer, activation of proteins, and regulation of metabolic processes. P is the least mobile and available to plants in most soil condition , therefore it is a major limiting factor for plant growth. However Plants developed some adaptation to low P stress. This paper reviewed the research progress for 20plant root response to low P stress.Key words: Low Phosphorus Stress; Root Architecture; Shoot:Root Ratio; Acid Phosphtase Activity; Organic Acids; Aerenchyma0 引言25 磷是植物三大必需元素之一,它在细胞膜结构、物质代谢、酶活性调节以及信号传导等方面都起着极为重要的作用[1]。
低磷胁迫下植物的生理适应机制摘要:磷是我国乃至世界农业生产中最重要的限制因素。
低磷胁迫下,植物自身会发展形成各种形态上和生理上的适应性来获得土壤中的磷素。
本文综述了低磷胁迫下植物的生理适应机制。
关键词:低磷;胁迫;生理机制Abstract: Phosphorus is the most important agricultural production in our country and the world limiting factors. Under low phosphorus stress, plants themselves will develop a variety of forms and physiological adaptation to obtain phosphorus in the soil. This article reviewed under low phosphorus stress of plant physiological adaptation mechanism.Key words:low phosphorus;stress;physiological mechanism磷是农业生产的重要物质保证,又是不可再生的矿质资源。
有报道指出,根据目前已探明的磷矿储量与开采速度,世界现有磷矿资源只能维持50~400年[1]。
然而,世界绝大部分农业土壤又严重缺磷。
磷仍然是我国乃至世界农业生产中最重要的限制因素,磷肥的供求不仅是现在而且更是将来农业生产的突出矛盾之一[2]。
因此,大部分磷肥作为无效态(难溶态)在土壤中积累起来。
磷是植物必需的大量矿质元素之一,是构成植物体中核酸、磷脂和ATP 等生命大分子的重要组成成分。
同时,磷作为植物体内能量代谢的关键底物之一,参与许多重要的酶促反应及其代谢调节[3]。
因此,磷对促进植物生长发育和新陈代谢具有重要作用。
然而,磷与植物其他必需矿质元素不同,在土壤中容易与其他元素互作形成配合物,降低了磷在土壤中的有效性和移动性,多以难溶性磷的形式存在。
植物对低磷胁迫的适应机制的综述王磊;陈永忠;王承南;王瑞;陈隆升【摘要】P是植物生长必要元素,但土壤中有效P含量低,P成为阻碍植物生长的因素之一.在长期进化过程中,植物形成了多种适应机制,包括根系变化、根系分泌有机酸等等.本文综述了植物在磷胁迫下的适应机制,以期为磷胁迫研究提供一些借鉴,并对磷胁迫的研究方向进行了展望.【期刊名称】《湖南林业科技》【年(卷),期】2012(039)005【总页数】5页(P105-108,119)【关键词】磷胁迫;适应机制【作者】王磊;陈永忠;王承南;王瑞;陈隆升【作者单位】中南林业科技大学林学院,湖南长沙410004;湖南省林业科学院,湖南长沙410004;中南林业科技大学林学院,湖南长沙410004;湖南省林业科学院,湖南长沙410004;湖南省林业科学院,湖南长沙410004【正文语种】中文【中图分类】Q945.78磷(P)是植物必须矿物元素之一,约占植物干重的0.05%~0.5%左右,是体内核酸、核蛋白和磷脂的主要成分。
磷与细胞分裂、蛋白质合成、细胞生长有着密切的联系;此外呼吸作用、光合作用、碳水化合物的合成运输等过程都离不开磷。
土壤中虽富含P元素,但有效P含量却很低,仅为土壤全P含量的1/600~1/100;大部分P与Ca2+、Fe3+、Fe2+和Al3+等结合成磷酸盐,形成了植物难吸收利用的形态。
20世纪80年代,我国的缺磷耕地占78%,从1981年到2000年,我国共投入农田的磷肥总量为13296.4万t(P2O5),使我国缺磷耕地面积减少了30%左右[1]。
可一味的增施磷肥却与可持续发展相悖,易造成资源衰竭,据估计以目前的磷矿消耗速度计算,世界磷矿资源只能再用50~100年[2]。
发掘磷高效植物已成为目前解决缺磷的一大重点突破点。
不同研究表明,植物在低磷胁迫下,会有不同的适应机制,如根形态发生改变、释放磷酸酶、释放有机酸、磷转运体变化等等,能增加植株在磷胁迫下的适应性。