锐角的三角比测试题及答案
- 格式:doc
- 大小:115.50 KB
- 文档页数:7
图6(SR7大华梅以良) 在Rt △ABC 中,∠C =90°,∠A =60°,a =10,则c =___________.【解直角三角形】(SR4延西数学组21)已知:如图,在△ABC 中,30A ∠=,45B ∠=,AC=8,点P 在线段AB 上,联接CP ,且34cot APC ∠=. (1)求CP 的长;(2)求BCP ∠的正弦值.【参考答案】:1)CP=5 2)sin BCP ∠=102(SR4延西数学组21)(本题满分10分,第(1)、(2)小题满分各5分)已知:如图6,C 是线段BD 上一点,,,90,AB BD ED BD ACE ⊥⊥∠=︒tan =2,ACB ∠4,AB = 3.ED = 求:(1)线段BD 的长; (2)AEC ∠的正切值.【参考答案】1)BD=8; 2) tan AEC ∠=32【参考答案】(1)解:∵在⊙O 中,OD ⊥弦AB ∴12AC BC AB ==……………1分 ∵8AB =∴4AC BC == ……………………………………………1分设OA 为x ,则OD OA x == ∵2CD = ∴2OC x =-在Rt △ACO 中,222AC OC AO +=∴2224(2)x x +-=,……………………………………………………………2分 解得5x =,∴5OA =………………………………………………………1分 (2)解:联结BE∵OA OE =,AC BC = ∴OC BE ∥且12OC BE =……………1分 ∴90EBA OCA ==∠∠°…………………………………………………1分 ∵523OC OD CD =-=-= ∴6BE = …………………………1分 在Rt △ECB 中,222BC EB EC +=∴22246EC +=, ∴213EC = ………………………………………2分(SR4静安盛社增21)(本题满分10分,第(1)小题满分6分,第(2)小题满分4分) 已知:如图,在梯形ABCD 中,AD ∥BC ,AB ⊥AD ,对角线AC 、BD 相交于点E ,BD ⊥CD ,12AB =,43cot ADB ∠=. 求:(1)∠DBC 的余弦值; (2)DE 的长.【参考答案】: 解:(1)在△ABD 中,ADcot ADB AB∠=, 1分 ∴4312AD=,16AD =. 1分 ∴BD =2222121620BD AB AD =+=+=. 1分∵AD ∥BC ,∴∠DBC =∠ADB , 1分∴164205AD cos DBC cos ADB BD ∠=∠===. 1分 (2)在Rt △BCD 中,BDcos DBC BC∠=, 1分∴4205BC=,25BC =. 1分 ∵AD ∥BC , ∴1625DE AD BE BC ==. 1分 ∴1641DE BD =. 1分 ∴161632020414141DE BD ==⨯=. 1分ABED(SR1长宁天山王鹏22)(10分)某地下车库出口处“两段式栏杆”如图1所示,点A 是栏 杆转动的支点,点E 是栏杆两段的连接点.当车辆经过时,栏杆AEF 升起后的位置如图2所示,其示意图如图3所示,其中AB ⊥BC ,EF ∥BC ,∠EAB=143°,AB=AE=1.2米,求当车辆经过时,栏杆EF 段距离地面的高度(即直线EF 上任意一点到直线BC 的距离). (结果精确到0.1米,栏杆宽度忽略不计参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.)依据:22题一直是一道应用题,今年考察解直角三角形的应用和一次函数的应用这两个知识点的概率比较大。
沪教版九年级上册数学第二十五章锐角的三角比含答案一、单选题(共15题,共计45分)1、拦水坝横断面如图所示,迎水坡的坡度(坡的竖直高度与水平宽度的比)是,坝高,则坡面的长度是()A. B. C. D.2、如图,一个梯子靠在垂直水平地面的墙上,梯子AB的长是2米.若梯子与地面的夹角为,则梯子顶端到地面的距离(BC的长)为()A. 米B. 米C. 米D. 米3、已知CD是Rt△ABC斜边AB上的高,AC=8,BC=6,则cos∠BCD的值是()A. B. C. D.4、如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC= ,∠ADC= ,则竹竿AB与AD的长度之比为A. B. C. D.5、如图,⊙O与正方形ABCD是两边AB,AD相切,DE与⊙O相切于点E,若正方形ABCD的边长为5,DE=3,则tan∠ODE为()A. B. C. D.6、如图,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有()A.2个B.3个C.6个D.7个7、在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.70°B.110°C.120°D.141°8、某人沿倾斜角为30°的斜坡前进50米,则他上升的最大高度为()A.25米B.25 米C.20 米D.25 米9、下列计算结果正确的是()A. (﹣a3)2=a9B. a2•a3=a6C. ﹣22=﹣2D.-=110、在Rt△ABC中,∠C=900,则下列式子成立的是()A.sinA=sinBB.sinA=cosBC.tanA=tanBD.cosA=tanB11、已知Rt△ABC中,∠C=90º,那么cosA表示()的值A. B. C. D.12、国家近年来实施了新一轮农村电网改造升级工程,解决了农村供电“最后1公里”问题,电力公司在改造时把某一输电线铁塔建在了一个坡度为1:0.75的山坡CD的平台BC上(如图),测得∠AED=52°,BC=5米,CD=35米,DE =19米,则铁塔AB的高度约为(参考数据:sin52°≈0.79,tan52°≈1.28)()A.28米B.29.6米C.36.6米D.57.6米13、对于sin60°有下列说法:①sin60°是一个无理数;②sin60°>sin50°;③sin60°=6sin10°。
沪教版九年级上册数学第二十五章锐角的三角比含答案一、单选题(共15题,共计45分)1、如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=1.5,BC=2,则cosB的值是()A. B. C. D.2、如图,已知菱形ABCD的边长为4,∠ABC=120°,过B作BE⊥AD,则BE的长为()A. B. C.2 D.13、在△ABC中,若三边BC ,CA,AB满足 BC:CA:AB=5:12:13,则cosB=()A. B. C. D.4、如图,A,B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A 与点B之间的距离为( )A. rB. rC.rD.2r5、某小区打算在一块长80m,宽7.5m的矩形空地的一侧,设置一排如图所示的平行四边形倾斜式停车位若干个(按此方案规划车位,相邻车位间隔线的宽度忽略不计).已知规划的倾斜式停车位每个车位长6 m,宽2.5m,如果这块矩形空地用于行走的道路宽度不小于4.5m,那么最多可以设置停车位()A.16个B.15个C.14个D.13个6、如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且AB=BD,则tan D的值为()A. B. C. D.7、如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60米到达C点,测得点B在点C的北偏东60°方向,则这段河的宽度为()A.60(+1)米B.30(+1)米C.(90-30 )米D.30(-1)米8、某公园有一座古塔,古塔前有一个斜坡坡角,斜坡高米,是平行于水平地面的一个平台、小华想利用所学知识测量古塔的高度,她在平台的点处水平放置一平面镜,她沿着方向移动,当移动到点时,刚好在镜面中看到古塔顶端点的像,这时,测得小华眼睛与地面的距离米,米,米,米,已知,根据题中提供的相关信息,古塔的高度约为(参考数据:)( )A.19.5B.19.7C.21.3D.22.19、如图,在边长为1的小正方形网格中,点A,B,C,D都在这些小正方形的顶点上,连结CD与AB相交于点P,则tan∠APD的值是( )A.2B.C.D.10、在高为h的山顶上,测得山脚一建筑物的顶端与底部的俯角分别为30°、60°,那么建筑物的高度是()A. hB. hC. hD. h11、在△ABC中,∠C 90°.若AB 3,BC 1,则的值为()A. B. C. D.12、在△ABC中,若tanA=1,sinB=,你认为最确切的判断是()A.△ABC是等腰三角形B.△ABC是等腰直角三角形C.△ABC是直角三角形D.△ABC是一般锐角三角形13、是()A. B. C. D.14、若α是锐角,且cosα=0.7,则()A.0°<α<30°B.30°≤α<45°C.45°<α<60° D.60°≤α<90°15、把cos12°、sin21°、cos67°、sin69°排列大小正确的是()A.cos12°<sin21°<cos67°<sin69°B.sin21°<cos12°<cos67°<sin69°C.sin21°<cos67°<sin69°<cos12°D.cos67°<cos12°<sin21°<sin69°二、填空题(共10题,共计30分)16、如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B 重合),则cosC的值为________.17、如图,在圆 O 中有折线 ABCO,BC=6,CO=4,∠B=∠C=60°,则弦 AB 的长为________.18、计算:+(﹣3)0﹣|﹣|﹣2﹣1﹣cos60°=________.19、如图,在中,,点D为边的中点,连接,若,,则的值为________.20、如图,在Rt△ABC中∠ABC=90°,AB=3,BC=4,点P是AC边上不与端点重合的一动点,将△BPC沿着BP对折,得对应△BPD,在点P的移动过程中,若PD平行于△ABC的一边,则CP的长度为________.21、如图,一艘海轮位于灯塔P的东北方向,距离灯塔海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为________海里(结果保留根号).22、已知,(其中和都表示角度),比如求,可利用公式得,又如求,可利用公式得,请你结合材料,若(为锐角),则的度数是________.23、 +(2﹣π)0﹣sin60°=________.24、在Rt△ABC中,斜边AB的长是8,cosB= ,则BC的长是________.25、如图,某公园入口原有一段台阶,其倾角∠BAE=30°,高DE=2m,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1:5,则AC的长度是________ m .三、解答题(共5题,共计25分)26、计算:tan30°-(π-2019)0;27、为保护渔民的生命财产安全,我国政府在南海海域新建了一批观测点和避风港.某日在观测点A处发现在其北偏西36.9°的C处有一艘渔船正在作业,同时检测到在渔船的正西B处有一股强台风正以每小时40海里的速度向正东方向移动,于是马上通知渔船到位于其正东方向的避风港D处进行躲避.已知避风港D在观测点A的正北方向,台风中心B在观测点A的北偏西67.5°的方向,渔船C与观测点A相距350海里,台风中心的影响半径为200海里,渔船的速度为每小时18海里,问渔船能否顺利躲避本次台风的影响?(sin36.9°≈0.6,tan36.9≈0.75,sin67.5≈0.92,tan67.5≈2.4)28、某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).29、如图1是一把折叠椅子,图2是椅子完全打开支稳后的侧面示意图,其中AD和BC表示两根较粗的钢管,EG表示座板平面,EG和BC相交于点F,MN表示地面所在的直线,EG∥MN,EG距MN的高度为42cm,AB=43cm,CF=42cm,∠DBA=60°,∠DAB=80°.求两根较粗钢管AD和BC的长.(结果精确到0.1cm.参考数据:sin80°≈0.98,co s80°≈0.17,tan80°≈5.67,sin60°≈0.87,cos60°≈0.5,tan60°≈1.73)30、如图,某河的两岸PQ、MN互相平行,河岸PQ上的点A处和点B处各有一棵大树,AB=30米,某人在河岸MN上选一点C,AC⊥MN,在直线MN上从点C前进一段路程到达点D,测得∠ADC=30°,∠BDC=60°,求这条河的宽度.(≈1.732,结果保留三个有效数字).参考答案一、单选题(共15题,共计45分)1、A2、A4、B5、C6、D7、B8、C9、A10、B11、A12、B13、A14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、。
第二十五章锐角的三角比数学九年级上册-单元测试卷-沪教版(含答案)一、单选题(共15题,共计45分)1、已知tanα=0.3249,则α约为()A.17°B.18°C.19°D.20°2、下表是小丽填写的实践活动报告的部分内容:题目测量树顶端到地面的高度测量目标示意图相关数据AB=10m,α=45°,β=56°设树顶端到地面的高度DC为xm,根据以上条件,下面所列方程正确的是()A.x=(x-10)cos56°B.x=(x-10)tan56°C.x-10=xcos56° D.x-10=xtan56°3、如图,在锐角三角形ABC中,AD⊥BC于点D,BC=6,AD=4,AB=5,BE平分∠ABC,若M,N分别是BE,BC上的动点,则CM+NM的最小值为( )A.4B.5C.3.6D.4.84、已知坐标平面上的机器人接受指令“[a , A]”(a≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A后,再向面对方向沿直线行走a.若机器人的位置在原点,面对方向为y轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( )A.(-1,)B.(-1,)C.( ,-1)D.( ,-1)5、如图,在Rt△ABC中,∠C=90°,sinA=,BC=4,则AC的长为()A.6B.5C.D.6、一斜坡长为米,高度为1米,那么坡比为()A.1:3B.1:C.1:D.1:7、在Rt△ABC中,∠C=90°,sinA=,下列错误的是()A.cosA=B.cosB=C.sinB=D.tanB=8、西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱AC高为a.已知,冬至时北京的正午日光入射角∠ABC约为26.5°,则立柱根部与圭表的冬至线的距离(即BC的长)约为()A. B.asin26.5° C.acos26.5° D.9、如图,小明利用所学数学知识测量某建筑物BC高度,采用了如下的方法:小明从与某建筑物底端B在同一水平线上的A点出发,先沿斜坡AD行走260米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为72°,建筑物底端B的俯角为63°,其中点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4,根据小明的测量数据,计算得出建筑物BC的高度约为()米(计算结果精DE 确到0.1米,参考数据:sin72°≈0.95,tan72°≈3.08,sin63°≈0.89,tan63°≈1.96)A.157.1B.157.4C.257.4D.257.110、在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为( )A. B. C. D.111、周末,小明和小华来滨湖新区渡江纪念馆游玩,看到高雄挺拔的“胜利之塔”,萌发了用所学知识测量塔高的想法,如图,他俩在塔AB前的平地上选择一点C,树立测角仪CE,测出看塔顶的仰角约为30°,从C点向塔底B走70米到达D点,测出看塔顶的仰角约为45°,已知测角仪器高为1米,则塔AB的高大约为(≈1.7)()A.141米B.101米C.91米D.96米12、已知△ABC中,∠C=Rt∠,若AC=,BC=1,则sinA的值是()A. B. C. D.13、在中,,,,则的值为A. B. C. D.14、如图,在矩形ABCD中,AB=3,将△ABD沿对角线BD对折,得到△EBD,DE与BC交于点F,∠ADB=30°,则FC为()A. B. C.2 D.315、在Rt△ABC中,各边的长度都扩大两倍,那么锐角A的各三角函数值()A.都扩大两倍B.都缩小两倍C.不变D.都扩大四倍二、填空题(共10题,共计30分)16、如图,林林在A时测得某树的影长为2 m,B时又测得该树的影长为8 m,若两次日照的光线互相垂直,则该树的高度为________17、在锐角三角形ABC中.BC=,∠ABC=45°,BD平分∠ABC.若M,N分别是边BD,BC上的动点,则CM+MN的最小值是________.18、中,,,则________.19、在Rt△ABC中,∠C=90°,a,b分别是∠A、∠B的对边,如果sinA:sinB=2:3,那么a:b等于________.20、如图,AB是⊙O的直径,弦CD交AB于点E,且E为OB的中点,∠CDB=30°,CD=4,则阴影部分的面积________.21、在一次综合社会实践活动中,小东同学从A处出发,要到A地北偏东60°方向的C 处,他先沿正东方向走了4千米到达B处,再沿北偏东15°方向走,恰能到达目的地C,如图所示,则A、C两地相距________千米。
第二十五章锐角的三角比数学九年级上册-单元测试卷-沪教版(含答案)一、单选题(共15题,共计45分)1、如图,△ABC的三个顶点在正方形网格的格点上,则tan∠A的值是()A. B. C. D.2、如图所示上山坡道的倾斜度,小明测得图中所示的数据,则该坡道倾斜角α的正切值是()A. B. C. D.3、小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为l米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为( )A.(6+ )米B.12米C.(4+2 )米D.10米4、如果∠A为锐角,cosA=,那么∠A 取值范围是()A.0°< ∠A≤30°B.30°< ∠A≤45°C.45°<∠A<60° D.60°< ∠A < 90°5、如图,在坡度为的山坡上种树,要求相邻两棵树的水平距离是6m,则斜坡上相邻两棵树的坡面距离是()A.3mB.3 mC.12mD.6m6、如图,在平面直角坐标系中,已知A(10,0),点P为线段OA上任意一点.在直线y=x上取点E,使PO=PE,延长PE到点F,使PA=PF,分别取OE、AF中点M、N,连结MN,则MN的最小值是()A.4.8B.5C.5.4D.67、把△ABC三边的长度都扩大为原来的2倍,则锐角A的正切函数值()A.缩小为原来的B.不变C.扩大为原来的2倍D.扩大为原来的4倍8、如图,⊙O的半径为5,弦AB=8,D是优弧AB上一点,则sin D=()A. B. C. D.9、已知α为锐角,下列不等式中正确的是()①tanα>1;②0<sinα<1;③cotα<1;④0<cosα<1.A.②B.①,②,③C.②,④D.①,②,③,④10、△ABC中,∠C=90°,sinA=,则tanB的值为( )A. B. C. D.11、如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为()(结果精确到0.1m,≈1.73).A.3.5mB.3.6mC.4.3mD.5.1m12、已知圆锥的底面半径为5cm,侧面积为65πcm2,设圆锥的母线与高的夹角为θ,如图所示,则sinθ的值为()A. B. C. D.13、在△ABC中,∠A,∠B均为锐角,且sinA=, cosB=, AC=40,则△ABC的面积是()A.800B.800C.400D.40014、在Rt△ABC中,∠C=90°,AB:AC=2:1,则∠A的度数是()A.30°B.45°C.60°D.75°15、如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=,则tanB的值为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,将边长为6的等边△ABC放置在平面直角坐标系中,则A点坐标为________.17、如图,有A、B两艘船在大海中航行,B船在A船的正东方向,且两船保持20海里的距离,某一时刻这两艘船同时测得在A的东北方向,B的北偏东15°方向有另一艘船C,那么此时船C与船B的距离是________ 海里.(结果保留根号)18、在Rt△ABC中,∠BCA=90°,CD是AB边上的中线,BC=8,CD=5,则tan∠ACD=________ .19、观光塔是潍坊市区的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D 处的俯角是30°.已知楼房高AB约是45m ,根据以上观测数据可求观光塔的高CD是________m .20、如图,有一个弓形的暗礁区AEB,圆心角∠AOB=120°,灯塔A在灯塔B的正西方向5 海里处,灯塔B的正北方向9海里处有一救援点C,若救援船沿着东西方向巡逻时,离暗礁区最近点距离为________海里;救援船向西巡逻至点F时,收到来自E点处某轮船的求救信号,测得点E在点F的南偏西60°方向,且∠FEO=90°,救援船立即改变航向以30海里/小时的速度沿FE方向行驶,需________小时到达点E.21、如图,是一个液压升降机,图中两个菱形的边长及等腰三角形的腰长都是定值且相等.如图1,载物台到水平导轨AB的距离h1为468cm,此时tan∠OAB= ,如图2,当tan∠OAB= 时,载物台到水平导轨AB的距离h2为________cm.22、如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC,若sin∠BAC= ,则tan∠BOC=________。
人教版九年级下册数学锐角三角函数单元测试卷附详细解析一、单选题(共10题;共30分)1.(3分)tan30°的值等于()A.√3B.√33C.√22D.12.(3分)如图,PA、PB分别切⊙O于A,B,⊙APB=60°,⊙O半径为2,则PB的长为()A.3B.4C.2√3D.2√23.(3分)已知Rt⊙ABC中,⊙C=90°,⊙A=50°,AB=2,则AC=()A.2sin50°B.2sin40°C.2tan50°D.2tan40°4.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=4,tanA=34.以点C为圆心,CB长为半径的圆交AB于点D,则AD的长是()A.1B.75C.32D.25.(3分)如图,在扇形AOB中,⊙AOB=90°,以点A为圆心,OA的长为半径作OC⌢交AB⌢于点C,若OA=2,则阴影部分的面积为()A.23π−√3B.√3−13πC.13πD.√3+13π6.(3分)如图,一艘轮船在小岛A的西北方向距小岛40√2海里的C处,沿正东方向航行一段时间后到达小岛A的北偏东60°的B处,则该船行驶的路程为()A.80海里B.120海里C.(40+40√2)海里D.(40+40√3)海里7.(3分)如图,A,B,C是小正方形的顶点,且每个小正方形的边长为1,则sin⊙ABC的值()A.√22B.1C.√33D.√28.(3分)在⊙ABC中,(2cosA-√2)2+| √3-tanB|=0,则⊙ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.锐角三角形9.(3分)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin⊙OBD=()A.12B.34C.45D.3510.(10分)如图(1)所示,E为矩形ABCD的边AD上一边,动点P,Q同时从点B出发,点P 沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒,设P、Q同时出发t秒时,⊙BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分)则下列结论正确的是()A.AB:AD=3:4B.当⊙BPQ是等边三角形时,t=5秒C.当⊙ABE⊙⊙QBP时,t=7秒D.当⊙BPQ的面积为4cm2时,t的值是√10或475秒二、填空题(共5题;共15分)11.(3分)cos245∘−tan30∘⋅sin60∘=.12.(3分)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则tan∠ABC的值为.13.(3分)如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是cm.14.(3分)如图,在Rt⊙ABC中,⊙ACB=90°,CD是高,如果⊙A=α,AC=4,那么BD=.(用锐角α的三角比表示)15.(3分)如图,Rt⊙AOB中,⊙OAB=90°,⊙OBA=30°,顶点A在反比例函数y=−4x图象上,若Rt⊙AOB的面积恰好被y轴平分,则进过点B的反比例函数的解析式为.三、解答题(共8题;共78分)16.(8分)先化简,再求代数式(aa2−1−1a+1)⋅(a−1)的值,其中a=tan60°−2sin30°.17.(9分)居庸关位于距北京市区50余公里外的昌平区境内,是京北长城沿线上的著名古关城,有“天下第一雄关”的美誉某校数学社团的同学们使用皮尺和测角仪等工具,测量南关主城门上城楼顶端距地面的高度,下表是小强填写的实践活动报告的部分内容:请你帮他计算出城楼的高度AD(结果精确到0.1m,sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)18.(9分)如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20 √2海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:√2≈1.41,√3≈1.73)19.(9分)如图,从甲楼AB的楼顶A,看乙楼CD的楼顶C,仰角为30°,看乙楼(CD)的楼底D,俯角为60°;已知甲楼的高AB=40m.求乙楼CD的高度,(结果精确到1m)20.(10分)如图,两幢楼高AB=CD=30m,两楼间的距离AC=24m,当太阳光线与水平线的夹角为30°时,求甲楼投在乙楼上的影子的高度.(结果精确到0.01,√3≈1.732,√2≈1.414)21.(10分)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊙AB于E,设⊙ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k,使得⊙EFD=k⊙AEF?若存在,求出k的值;若不存在,请说明理由.②连接CF,当CE2-CF2取最大值时,求tan⊙DCF的值.22.(11分)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)(5分)求楼间距AB;(2)(6分)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)23.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣4与x轴交于点A(﹣4,0)和点B(2,0),与y轴交于点C.(1)(4分)求该抛物线的表达式及点C的坐标;(2)(4分)如果点D的坐标为(﹣8,0),联结AC、DC,求⊙ACD的正切值;(3)(4分)在(2)的条件下,点P为抛物线上一点,当⊙OCD=⊙CAP时,求点P的坐标.答案解析部分1.【答案】B【解析】【解答】解:tan30°=√33. 故答案为:B【分析】利用特殊角的三角函数值直接求解即可。
锐角三角比双基训练*1.在Rt ΔΑBC 中,∠C=900,BC=2,sin Α=,则ΑB= .【1】 *2.已知α为锐角,且cos α=25,则sin α= ,tg α= ,ctg α= .【2】**3.在Rt ΔΑBC 中,∠C=900,tgB=3,c-α=2,则α= ,b= ,c= .【2】 **4.在P 是直线y=512x 在第一象限上一点,若∠Pox=β,则cos β= ,ctg β= .【2】 **5.在直角坐标平面内有一点P(6,y),OP 与x 轴正方向所夹锐角为α,sin α=45,则y 的值是 ;OP 长是 .【2】**6.已知M(2,x)是直角坐标平面内一点,且锐角∠Mox=α,ctg α=3,则点M 的纵坐标为 .【2】**7.(1)sin180=cos ;(2)tg21.30=ctg ;(3)cos21012′=sin ;(4)ctg11021′31″=tg .【2】 **8.比较大小:【3】(1)sin200 sin700;(2)sin350 cos350;(3)tg180 ctg710;(4)sin720 tg620**9.tg10·tg20·tg30·…·tg890= .【2】**10.sin α210+sin220+…+sin 2880+sin 2890= .【2】 **11.已知sin α+cos α=43,则sin α·cos α= .【1】 **12.若α是锐角,且tg2α=3,则sin α·cos α= .【1】 **13.如果6sin 2cos 22sin cos a aa a-=+,那么tg α= .【2】**14.直线上有点Α(-1,-2)、B(3,4),则此直线与x 轴所夹锐角的正弦值为 .【3】**15.若ΔΑBC 中,∠C=900,则tgB=( ).【1】(Α)AB BC (B )AC BC (C )AC AB (D )BC AC**16.在ΔΑBC 中,∠C=900,CD 是ΑB 边上的高,则CD :CB 等于( ).【2】(Α)sin Α (B )cos Α (C )sinB (D )cosB**17.在Rt ΔΑBCk , ∠Α=900,α、b 、c 分别是∠Α、∠B 、∠C 的对边,则下列结论中正确的是( ).【2】(Α)b=α·sinB (B )b=c ·cosB (C )b=c ·tgB (D )c=α·ctgB**18.当450<∠Α<∠B<900时,下列各式不正确的是( ).【2】(Α)sin Α>sinB (B )tg Α>tgB (C )cos Α<cosB (D )ctg Α>ctgB**19.在ΔΑBC 中,∠C=900,CD 是斜边ΑB 上的高,sin Α等于( ).【2】(Α)AD CD (B )BD BC (C )CD AC (D )ADAC**20.在ΔΑBC 中,如果2A Btg +=1,那么ΔΑBC 的形状是( ).【2】(A ) 锐角三角形 (B )钝角三角形 (C )直角三角形 (D )等腰三角形**21.如果x 为锐角,那么sinx+cosx 的值是( ).【2】(Α)大于1 (B )小于1 (C )等于1 (D )不能确定**22.已知sin θ+sin 2θ=1,则cos 2θ+cos 4θ的值是( ).【2】(Α)1 (B )2 (C (D **23.当450<α<900时,下列各式正确的是( ).【2】(Α)tg α>cos α>sin α (B )sin α>cos α>tg α (C )tg α>sin α>cos α (D )cos α>sin α>tg α**24.已知P(sin300,tg450),则P 关于原点对称的点的坐标是( ).【2】(Α)(12,-1) (B )(-12,-1) (C )(-2,-1) (D )(2,1)**25.在ΔΑBC 中,若|tg Α-1|+(cosB-2)2=0,则ΔΑBC 是( ).【2】 (Α)等腰三角形 (B )等边三角形 (C )等腰直角三角形 (D )钝角三角形**26.已知sin α+cos α=m,sin α·cos α=n,则m 、n 的关系是( ).【2】(Α)m=n (B )m=2n+1 (C )m2=2n+1 (D )m2=1-2n**27.如图9-6,两条宽度都为1的纸条交叉重叠放在一起,且它们夹角为α,则其重叠部分面积为( ).p.134【3】(Α)1sin a(B )1cos a (C )sin α (D )1**28.当α为锐角时,sin α和tg α的大小关系为( ).【2】(Α)sin α>tg α (B )si α<tg α(C )sin α≤tg α (D )由α的大小决定 **29.计算下列各式的值:【5】(1)tg300+sin450-cos600; (2)2cos300+5tg600-2sin300;(3)0000cos 604530245tg ctg ctg --; (4)00000006045sin 5060sin 60cos30cos 40tg tg ctg --++. **30.计算:【4】(1)0000002sin 45cos 4545360sin 30cos30tg ctg -+-; (2)0203603cos 301ctg -; (3)0000sin 604560245ctg tg tg --.**31.计算:【6】(1)tg 2300+2sin600·cos450+tg450-ctg600-cos 2300;(2)(1+sin450-cos300)(1-sin450-cos300);(3)(cos450-sin600)(sin450+cos300);(4)tg100·tg200·tg300·tg400·tg500·tg600·tg700·tg800. 纵向应用 **1.计算:【4】(1 (2001|3045|2ctg tg -. **2.计算:【4】(1)2020000sin 23sin 67301872ctg tg tg ++; (2.**3.化简下列各式:【8】(1(2)tg440·tg450·tg460-cos 2260-cos 2640;(3)tg(900-Α)÷ctg Α (Α为锐角)(4)|sin α+cos α|-|sin α-cos α|(α为锐角) **4.化简下列各式:【8】(1)1-sin 2630-cos 2630; (2)tg 2530·ctg 2530;(3)(cos a a为锐角); (4a 为锐角). ***5.θ为锐角时,化简下列各式:【8】(1 (2;(3)|||ctg ctg θθ- (4)1|sin |2θ-. ***6.化简下列各式:【6】(1 (2)(1+tg 2α)·cos 2α;(3)tg(300-α)·tg(600+α). ***7.已知tg α=2且α为锐角,求2sin 5cos 4sin cos a aa a+-的值.【2】***8.已知ctg α且α为锐角,求(2sin α+cos α)÷(2sin α-cos α)的值.【3】 ***9.已知3sin 2cos 22sin cos A AA A+=-,求tg Α.【3】***10.已知sin(x+450)=sin300·ctg300,求x 的值.【2】***11.已知a =,求α2-6α-2的值.【5】***12.若方程22sin 0x A +=有两个相等的实数根,求锐角Α的度数.【2】 ***13.在三角函数中,常用sin()sin cos cos sin αβαβαβ+=+计算某些三角函数值,试计算0sin 75的值.【3】***14.sin α是方程23720x x -+=的一个根,求(1)sin α的值;(2)tg α的值.【3】 ***15.已知锐角α的正弦和正切值分别是方程21529120x x -+=的一个根,求角α的正弦和正切的值.【3】***16.已知在锐角∆ΑBC 中,cos m B n=其中m 是方程260x x +-=的根,n 是方程2280x x --=的根,求角B 的度数.【5】***17.试判断方程2212cos (1)sin 0x x x θθ+-+-=的根的情况(θ为锐角).【5】 ***18.已知方程2450x x m -+=的两根是直角三角形的两锐角的正弦,求m 的值.【5】 ***19.已知α的锐角,且2,sin cos tg ctg αααα+=+求的值.【5】 横向拓展***1.已知θ是大于045是锐角,且15θθsin -cos =,求(1)sin cos θθ的值;(2)tg θ的值;(3)33sin cos θθ-的值.【10】***2.已知2232cos tg a a+=8(00090α),求sin α的值.【5】 ***3.已知7sin cos ,5tg ctg ααθθ+=+求的值.【5】***4.已知0012sin cos (045)25a a α=,求sin α和cos α的值.【8】***5.已知sin α、cos α是方程20x px q ++=的两个根,求证:2120q p +-=.【6】****6.已知sin ,sin ,tg a tg b θθθθθ+=-=为锐角,当α≥b 时,求证:22a b -=.【8】****7.已知22268sin sin 1,2cos cos cos cos a a a a a a +=+++求的值.【8】****8.已知222cos cos sin cos sin sin ,sin sin sin A x C B x C A B C ==++且求的值.【6】****9.试比较①04848;tg ctg +②00sin 48cos 48+;③048cos 48tg +;④0048sin 48ctg +,这四个数值的大小.【12】****10.已知4sin 2cos 2sin 1y cisa a a a a =+--且为锐角.求当y 的值为非负时,角α的取值范围.【10】****11.已知函数2(cos )(4sin )6y x x θθ=-+,对于任意实数x 都有0y,且θ是三角形的一个内角,求θ的取值范围.【10】阶梯训练锐角三角比 双基训练8 4.1213 125 5.8 10 6.23± 7.(1)720(2)68.70(3)68048′ (4)78038′29″ 8.(1)< (2)< (3)< (4)< 9.1 10.441211.718、C 17.A 、C 18.A 、B 、C 19.B 、C 20.C 21.A 22.A 23.C 24.B 25.A 、C 26.C 27.A 28.B 29.(1)36(2)6-1 (3)22 (4)0 30.(1) (2)5 (3)1231.(1)71223+-(2)54-14(4)1 纵向应用1.(1) (2)0 (3)1 (4)当00<a ≤450时,原式=2sina ;当450<a<900时,原式=2cos α 4.(1)0 (2)1 (3)1 (4)2tga 5.(1)00<θ≤450时,原式=1-tg θ;450<θ<900时,原式=tg θ-1 (3)00<θ≤300时,原式;300<θ<900时,原式=2ctg θ (4)00<θ≤300时,原式=12-sin θ;300<θ<900时,原式=sin θ-126.(1)cos400-sin400(2)1 (3)1 7.978.3+2 9.4 10.150 11.-5 12.45013.14.(1)13 15.sina=35,tga=4316.60017.∆=0有两个相等实根 18.98横向拓展1.(1)1225 (2)43 (3)37125 2.2 3.2512 4.34sin ,cos 55a a == 5.提示:sin cos a a p +=-,22sin cos ,sin cos 1a a q a a =+= 6.提示:先求出a+b,a-b ,相乘得a 2-b 2=4tg ·sin,再证θ·sin θ 7.2 8.2 9.tg480+ctg480>tg480+cos480>ctg480+sin480>sin480+cos480 10.00<a<600. 提示:y=2(sina+1)·(2cosa-1) 11.00<θ<600.提示:cosθ>0且Δ<0。
初三月考卷(相似三角形及锐角三角比)一、选择题(本大题共6题,每题4分,满分24分)1.把a d b c =写成比例式(其中,,,a b c d 均不为0),下列选项中错误..的是……………………………………………………………………( ) A .a cb d =; B .b d ac =; C .c a bd =; D .a bc d=. 2.如果一个三角形保持形状不变,但周长扩大为原来的4倍,那么这个三角形的边长扩大为原来的…………………………………………( ) A .2倍; B .4倍; C .8倍; D .16倍.3.下列命题中正确的是……………………………………………… ( ) A .所有的菱形都相似; B .所有的矩形都相似; C .所有的等腰三角形都相似; D .所有的等边三角形都相似.4.在Rt△ABC 中,∠B =90º,若AC =a ,∠A =θ,则AB 的长为…………( ) A .sin a θ; B .cos a θ; C .tan a θ; D .cot a θ.5.点C 在线段AB 上,如果AB =3AC , AB a =,那么BC 等于…………( ) A .13a ; B .23a ; C .13a -; D .23a -. 6.已知△ABC 的三边长分别为6 cm ,7.5 cm ,9 cm ,△DEF 的一边长为5cm ,若这两个三角形相似,则△DEF 的另两边长可能是下列各组中的…( ) A .2 cm ,3 cm ;B .4 cm ,6 cm ;C .6 cm ,7 cm ;D .7 cm ,9 cm .二、填空题(本大题共12题,每题4分,满分48分) 7.若35a c b d ==(其中0b d +≠),则a cb d+=+__________. 8.若线段AB 长为2cm ,P 是AB 的黄金分割点,则较长线段PA = cm . 9.如图,点G 为△ABC 重心,若AG =1,则AD 的长度为_________. 10.求值:cot30ºsin60-º=_________. 11.在Rt△ABC 中,∠C =90º,若1tan 3A =,则cot A 的值为_________.12.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若13AD BD =,DE =2,则BC 的长为_______.13.如图,1l ∥2l ∥3l ,AB =2,AC =5,DF =7.5,则DE =_________.14.如图,在平行四边形ABCD 中,点E 、F 是边CD 、BC 边的中点,若AD a =,AB b =,则EF =___________.(结果用a 、b 表示)15.如图,已知AB ∥CD ,AD 与BC 交于点O ,若AD ∶BC = 5∶4,BO =1,DO =2.5,则AD =___________.16.如图,在△ABC 的边BC 上,若DAC B ∠=∠,且BD =5,AC = 6,则CD 的长为___________.17.在△ABC 中,点D 、E 分别在AB 、AC 边上,若2AD =,4BD =,4AC =,且△ADE 与ABC 相似,则AE 的长为___________.(第13题图)B(第9题图)B(第12题图)A(第14题图)A C(第18题图)BDB ’A ’(第16题图)CC(第15题图)18.在答题纸的方格图中画出与矩形ABCD 相似的图形''''A B C D (其中AB 的对应边''A B 已在图中给出).三、简答题(本大题共4题,每题10分,满分40分)19.已知两个不平行的向量, a b ,求作向量: 32()()2a b a b ---.20.如图,已知点D 、F 在△ABC 的边AB 上,点E 在边AC 上, 且DE ∥BC ,AF AD ADAB=.求证:EF ∥DC .21.如图,在Rt △ABC 中,∠C =90º,AC = 3,1tan 2B =. (1) 求BC 的长; (2) 求cos A 的值.CAB(第21题图)B(第20题图)ab(第19题图)22.如图,竖立在点B 处的标杆AB 长2.1米,某测量工作人员站在D 点处,此时人眼睛C 与标杆顶端A 、树顶端E 在同一直线上(点D 、B 、F 也在同一直线上,已知此人眼睛与地面的距离CD 长1.6米,且BD = 1米,BF = 5米,求所测量树的高度.四、解答题(本大题共2题,每题12分,满分24分)23.如图,BE 、CF 分别是△ABC 的边AC 、AB 上的高,BE 与CF 相交于点D . (1) 求证:△ABE ∽△ACF ; (2) 求证:△ABC ∽△AEF ;(3) 若4ABC AEFSS=,求cos BAC ∠的值.24.如图所示,在△ABC 中,已知6BC =,BC 边上中线5AD =。
求锐角的三角比的值一、基础巩固一.解答题1. 在Rt △ABC 中,∠C=90°,∠A,∠B,∠C 的对边分别为a,b,c .若a=2,sin 13A =,求b 和c,【答案】b=c=6.【解析】【分析】先根据sinA=a c 知c=sin a A=6,再根据勾股定理求解可得. 【详解】解:如图,∵a=2,1sin 3A =, ∴c=sin a A =213=6,则,【点睛】本题主要考查锐角三角函数的定义,解题的关键是掌握正弦函数的定义及勾股定理.2. 已知:如图,在Rt △ABC 中,∠C=90°,AC=2BC ,求∠B 的正弦、余弦值和正切值.【答案】, , tanB=2. 【解析】【分析】根据勾股定理与锐角三角函数的定义求解即可.【详解】∵∠C=90°,AC=2BC ,∴设BC=x ,AC=2x ,∴=,∴sinB=AC AB ==,cosB=BC AB == tanB=22xAC x BC ==. 【点睛】本题考查了勾股定理与锐角三角函数的定义,在Rt △ABC 中,∠C=90°,锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数.3. 在△ABC 中,∠C ,90°,AB ,13,BC ,5,求∠A 的正弦值、余弦值和正切值.【答案】5125131312,,. 【解析】【详解】试题分析:根据解直角三角形的意义,根据勾股定理求出AC 的长,然后根据正弦、余弦、正切的概念可求解.试题解析:∵∠C ,90°,AB ,13,BC ,5,∴12AC ==.∴5sin 13BC A AB ==,12cos 13AC A AB ==, 5tan 12BC A AC ==. 4. 在Rt △ABC 中,∠C=90°,a=2,b=1,求∠A 的三个三角函数值.【答案】,,tanA=2. 【解析】【分析】根据勾股定理,可得c ,根据sinA=a c ,cosA=bc ,tanA=a b,可得答案. 【详解】∵∠C=90°,a=2,b=1,∴=∴sinA=ac 5,cosA=bc =5, tanA=a b=2. 【点评】本题考查了锐角三角函数的定义,在Rt △ACB 中,∠C=90°,则sinA=a c ,cosA=b c ,tanA=a b. 5. 如图,在Rt △ABC 中,∠C=90°,M 是直角边AC 上一点,MN ⊥AB 于点N ,AN=3,AM=4,求cosB 的值.. 【解析】 【分析】易证得△AMN ∽△ABC ,根据相似三角形的性质得到AC AB =AN AM =34,设AC=3x ,AB=4x ,由勾股定理得:x ,在Rt △ABC 中,根据三角函数可求cosB .【详解】∵∠C=90°,MN ⊥AB ,∴∠C=∠ANM=90°,又∵∠A=∠A ,∴△AMN ∽△ABC , ∴AC AB =AN AM =34, 设AC=3x ,AB=4x ,由勾股定理得:=,在Rt △ABC 中,cosB=BC AB ==. 【点评】本题考查了锐角三角函数的定义,相似三角形的判定和性质,勾股定理,本题关键是表示出BC ,AB .6. 如图,在正方形ABCD 中,M 是AD 的中点,BE=3AE ,试求sin,ECM 的值.【解析】 【详解】试题分析:依题意设,AE x = 则3424BE x BC x AM x CD x ,,,,====先证明CEM 是直角三角形,再利用三角函数的定义求解.试题解析:设,AE x = 则3424BE x BC x AM x CD x ,,,,====5,EC x ∴==,EM ==,CM ==222EM CM CE ∴+=,CEM ∴是直角三角形,sin EM ECM CE ∴∠== 7. 在△ABC 中,∠C =90°,BC =3,AB =5,求sinA ,cosA ,tanA 的值.【答案】sin A ,35,cos A ,45,tan A ,34, 【解析】【分析】首先利用勾股定理求得AC 的长度为4;然后利用锐角三角函数的定义解答.正弦:把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sin A余弦:把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cos A正切:把锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA【详解】,Rt ,ABC 中,∠C ,90°,BC ,3,AB ,5,,AC,sin A ,BC AB ,35, c os A ,AC AB ,45, ta n A ,BC AC ,34, 【点睛】本题关键考查了勾股定理和锐角三角函数的定义及运用,能正确运用定义写出三角比是解决本题的关键,8. 如图,直角坐标系中,P (3,y )是第一象限内的点,且4tan 3α=,求sinα.【答案】sinα=45. 【解析】 【分析】根据在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,可得答案.【详解】如图:作PC ⊥x 于C 点, 由4tan 33y α==,得y=4.由勾股定理,得=,45PC sin OP α==. 【点睛】本题考查了坐标与图形,勾股定理,锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边. 9. 如图,在平面直角坐标系中,已知点B (4,2),BA ⊥x 轴于A .(1)求tan ∠BOA 的值;(2)将点B 绕原点逆时针方向旋转90°后记作点C ,求点C 的坐标.【答案】(1)12;(2)(﹣2,4). 【解析】 【分析】(1)根据正切的定义,对边与邻边的比,即可求解;(2)根据图形,确定旋转以后的位置,可以直接写出坐标.【详解】(1)∵点B (4,2),BA ⊥x 轴于A ,∴OA=4,AB=2,tan ∠BOA=AB OA =24=12; (2)如图,由旋转可知:CD=BA=2,OD=OA=4,∴点C 的坐标是(﹣2,4).【点评】本题主要考查了正切的定义以及旋转变换作图,正确理解定义是解题的关键.10. 计算:2cos60°+4sin60°•tan30°﹣cos45°【答案】3﹣2. 【解析】【分析】直接利用特殊角的三角函数值代入求出答案.【详解】2cos60°+4sin60°•tan30°﹣cos45°=2×12=1+2﹣2=3﹣2. 【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键. 11. 计算:3sin60°-2cos30°+tan60°•cot45°.【解析】【分析】直接利用特殊角的三角函数值代入求出答案.【详解】原式=3×2-2×2,【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.12. 计算:sin45cos3032cos60︒︒︒+-﹣sin30°(cos45°﹣sin60°)【解析】【分析】依据30°、45°、60°角的各种三角函数值,即可得到计算结果.【详解】解:原式=221322-⨯﹣12⨯(22-)=4【点睛】本题考查了特殊角的三角函数值,其应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.13. 计算:1cos3011cos60tan30 -︒++︒︒.【答案】2 3 +【解析】【分析】利用特殊角的三角函数值代入再通过实数运算法则求出即可.【详解】原式=121 12 -+=(1×2 3=23﹣=23.【点睛】此题主要考查了特殊角的三角函数值应用,正确记忆特殊角的三角函数值是解题关键.14. 计算.2cos60°+4sin60°•tan30°﹣cos245°【答案】5 2【解析】【分析】直接把特殊角的三角函数值代入求出答案.【详解】2cos60°+4sin60°•tan30°﹣cos245°=2×12+4(2)2=1+2﹣1 2=52.【点评】本题主要考查了特殊角的三角函数值,正确记忆特殊角的三角函数值是解题关键.15. 计算:(12)﹣1﹣2tan45°+4sin60°【答案】0.【解析】【分析】根据实数的性质进行化简即可求解.【详解】原式=2﹣=2﹣﹣=0.【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.16. 计算:sin60cos45tan45 sin30︒-︒︒︒.【答案】【解析】【分析】原式利用特殊角的三角函数值及二次根式性质计算即可得到结果.【详解】sin60cos45tan45sin30︒-︒︒︒=22112-11.17. 计算:(sin30°,,1+2sin45cos45tan60?tan30︒+︒︒︒,tan45°,【解析】【详解】试题分析:把特殊角的三角函数值代入进行运算即可.试题解析:原式2111,2-+⎛⎫= ⎪⎝⎭121,22=++-32+=18. 计算:2cos45°﹣tan60°+sin30°﹣|﹣12|.【解析】【详解】试题分析,直接利用特殊角的三角函数值代入求出答案.试题解析,解,原式=2+12,1219. 计算:sin30°•tan60°+cos30cot45cos60︒-︒︒.,2-【解析】【详解】试题分析:把相关的特殊三角形函数值代入进行计算即可.试题解析:原式=1122122--.20.245°,sin30°tan60°+12sin60°【解析】【分析】把特殊角的三角函数值代入运算即可.【详解】解:原式211222⎛=-⎝⎭224=-+=.21. 计算:cos30°•tan60°,4sin30°+tan45°,【答案】12【解析】【分析】代入特殊角的三角函数值计算即可,【详解】原式1 412⨯+=321 2-+=12,22. 计算:2tan60︒,2tan45°,43cos30°+4sin30°,【答案】0【解析】【分析】首先根据特殊角的三角函数值得出各式的值,然后根据实数的计算法则得出答案.【详解】原式43×2+4×12=0,23. 计算:22sin60sin30 cot30s30o oo oco+-,【解析】【分析】把特殊角的三角函数值代入进行运算即可.【详解】原式22123⎛⎫+ ⎪===【点睛】考查特殊角的三角函数值,熟记特殊角是三角形函数值是解题的关键.24. 计算:21tan60sin452cos30cot45︒︒︒︒-⋅-.【答案】12【解析】【分析】直接代入利用特殊角的三角函数值,进而化简即可得答案.【详解】原式12=-=12=.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.25. 计算:sin30°﹣2cos45°+13tan260°.【答案】1.【解析】【分析】将特殊角的三角函数值代入求值即可.【详解】原式=2112223-+⨯=1113223-+⨯=1..26. 计算:222sin60cos60tan604cos45︒︒︒︒--﹣sin45°•tan45°【答案】32+【解析】【分析】把特殊角的三角函数值代入计算即可.【详解】222sin60cos60tan604cos45︒︒︒︒--﹣sin45°•tan45°212212⨯-=-=32=+=32+. 【点睛】本题考查了特殊角的三角函数值及分母有理化、二次根式的化简,牢记特殊角的三角函数值,是解决本题的关键.27. (π+4)0|【答案】1【解析】【分析】分别根据特殊角的三角函数值、零指数幂、绝对值的性质及二次函数化简的法则计算出各数,再根据实数混合运算的法则进行计算即可.π+4,0|=128. 已知α是锐角,cos (a ﹣15°)|cosa ﹣tan 2a |的值.【答案】1﹣3. 【解析】【分析】根据特殊角三角函数值,可得答案.【详解】∵cos 452=°,又cos (a ﹣15°)=2, ∴α﹣15°=45°,∴α=60°,|cosa ﹣tan 2a |12=-1122=+=1 【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键. 29. 求下列各式的值:(1)22cos 60sin 60︒+︒(2)cos 45tan 45sin 45︒-︒︒(3)1sin 60cos302︒⨯︒+(4)sin 452︒+ (5)2cos 45tan 60cos30︒+︒⨯︒(6)1-cos30tan 30sin 60︒+︒︒(7)sin 45cos60cos45︒︒-︒(8) 260tan 602cos 30︒+︒-︒【答案】(1)1;(2)0;(3)54;(4;(5)2;(6;(7)4;(8 【解析】【详解】(1)22cos 60sin 60︒+︒13=+44=1(2)cos45tan45sin45︒-︒︒=110-=(3)1sin60cos302︒⨯︒+ 32=+445=4(4)sin45︒(5)2cos 45tan60cos30︒+︒⨯︒13=+22=2(6)1-cos30tan30sin60︒+︒︒1= (7)sin45cos60cos45︒︒-︒=424-=- (8)2tan602cos 30︒+︒-︒33=22=30. 若规定:sin (α+β)=sinα•cosβ+cosα•sinβ,试确定sin75°+sin90°的值.. 【解析】【分析】根据给出的公式,将75°和90°化为特殊角即可求出答案.【详解】解:原式=sin (30°+45°)+sin (30°+60°)=sin30°•cos45°+cos30°•sin45°+sin30°•cos60°+cos30°•sin60°=12×22+×2+12×12+2×2=4+414+34【点睛】本题考查特殊角的三角函数值,解题的关键是将75°和90°化为特殊角进行计算,本题属于基础题型.二、拓展提升31. 如图,已知△ABC 中,∠C=90°,且BC=1.5,求AC .【答案】 【解析】 【分析】直接利用特殊角的三角函数值得出∠A 的度数,再利用锐角三角函数关系得出答案.【详解】∵∠C=90°,且sinA=2, ∴∠A=60°,∴tanA=BC AC ,∴1.5AC =解得:AC=2. 【点评】本题主要考查了特殊角的三角函数值,正确得出∠A 的度数是解题关键.32. 已知α为锐角,sin (α+15°)4cosα+tanα+(13)﹣1的值. 【答案】4.【解析】 【分析】首先得出α的值,进而利用特殊角的三角函数值以及负整数指数幂的性质化简求出答案.【详解】∵sin (α+15°)sin 60︒ ∴α+15°=60︒,∴α=45°,﹣4cosα+tanα+(13)﹣1﹣+1+3=4.【点评】本题主要考查了特殊角的三角函数值以及负整数指数幂的性质,正确掌握相关性质是解题关键.33. 计算:(3,π,0+11()3-,2cos60°, 【答案】3【解析】【分析】本题涉及实数运算、二次根式化简等多个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】原式=1+3-2×12=334. ()1306045()o sin sin cos --︒⨯︒【答案】1【解析】【分析】)原式利用特殊角的三角函数值,二次根式,负整数指数幂法则计算即可得到结果.【详解】解:原式=(12)-12)-1)=2×()=1-【点睛】此题考查了实数的运算,负整数指数幂,二次根式的性质以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.35. 计算下列各式(1)tan30°×sin45°+tan60°×cos60°(2)sin 230°+2sin60°+tan45°-tan60°+cos 230°.【答案】(1)6+3;(2)2. 【解析】【分析】(1)首先代入特殊角的三角函数值,然后化简二次根式即可;(2)首先代入特殊角的三角函数值,然后化简二次根式即可.【详解】解:(1)×12(2)原式=12⎛⎫ ⎪⎝⎭2+2×2+12⎛ ⎝⎭2=14134=2.【点睛】本题考查了特殊角的三角函数值,解题关键是熟记特殊角的三角函数值. 36. (1)2sin603tan30+(2)22sin 60cos 60tan45+- (3)cos60tan45sin60tan30sin30-++sin602cos45+-. 【答案】(1)(2)0;(3)35-;(4)122+ 【解析】【分析】,1)根据特殊角的三角函数值可求得结果;,2)根据特殊角的三角函数值可求得结果;,3)根据特殊角的三角函数值可求得结果;,4)根据特殊角的三角函数值可求得结果;【详解】解:(1)3 2sin603tan30232+=⨯== (2)22sin 60cos60tan45110+-=-=, (3)111cos60tan45sin602tan30sin30326-+-+===+(421sin602cos452222+-=⨯-= 【点睛】本题考查了特殊角的三角函数值,熟记特殊角三角函数值是解题关键.37. 在△ABC 中,已知∠A =60°,∠B 为锐角,且tanA ,cosB 恰为一元二次方程2x 2-3mx +3=0的两个实数根.求m的值并判断△ABC 的形状.【答案】mABC 是直角三角形.【解析】【分析】先求出一元二次方程的解,再根据特殊角的三角函数值求出各角的度数,判断三角形的形状.【详解】解:∵∠A =60°,∴tanA .把x 2x 2-3mx +3=0,得2-+3=0,解得m .把m2x2-3mx+3=0得2x2-3mx+3=0,解得x1x2∴cos B=2,即∠B=30°.∴∠C=180°-∠A-∠B=90°,即△ABC是直角三角形.【点睛】本题考查的知识点是解一元二次方程和判断三角形,解题关键是熟记特殊三角函数值.38. (1)已知3tanα﹣2cos30°=0,求锐角α;(2)已知2sinα﹣3tan30°=0,求锐角α.【答案】(1)α=30°;(2)α=60°.【解析】【分析】(1)先求出tanα的值,然后求出角的度数;(2)先求出sinα的值,然后求出角的度数.【详解】解:(1)解得:tanα=3,则α=30°;(2)解得:则α=60°.【点睛】本题考查了特殊角的三角函数值,解题的关键是掌握几个特殊角的三角函数值.39. 计算:(1)sin3011sin60tan30︒︒︒++;(2)tan30°•tan60°+sin245°+cos245°;(3)2cos30°•sin60°﹣tan45°•sin30°.【答案】(1)2;(2)2;(3)1.【解析】【分析】分别代入特殊角的三角函数值,进一步计算得出答案即可.【详解】(1)sin 3011sin 60tan 30︒︒︒++1==+=2=2;(2)tan30°•tan60°+sin 245°+cos 245°=32⎝⎭+2⎝⎭=1+12+12=2;(3)2cos30°•sin60°﹣tan45°•sin30°=21×12 =32﹣12=1.【点评】本题考查了特殊角的三角函数,识记特殊角的三角函数值是解决问题的关键.40. 已知正六边形ABCDEF 的边长为1,QR 是正六边形内平行于AB 的任意线段,求以QR 为底边的内接于正六边形ABCDEF 的△PQR 的最大面积.【解析】【分析】要使△PQR 的面积最大,P 点应在DE 上;Q ,R 点应分别在AF 、BC 上.过P 点PH ⊥QR 于H ,连接AE 、BD 分别交QR 、QR 于M 、N ,FC 交AE 于G ,可设PH=x ,再用含x 的式子表示QR ,根据平方的非负性,得出△PQR 的最大面积.【详解】解:过P 点PH ⊥QR 于H ,连接AE 、BD 分别交QR 、QR 于M 、N ,FC 交AE 于G ,∵正六边形ABCDEF 的边长为1,∴∠EFA=∠FAB=∠ABC=()621801206-⨯︒=︒,EF=FA=AB=1, ∵QR ∥AB ,∴四边形ABNM 、ABDE 、MHPE 、MNDE 都是矩形,∠EFG=∠AFG=60︒,∴,设PH=x ,则x ,QM=NR=AM•tan30°=1,QR=2(1x ,△PQR 的面积=12(3﹣)2,当时,△PQR . 【点评】本题考查了正六边形的性质,矩形的判定和性质,解直角三角形,平方的非负性等知识,作出常用辅助线是解题的关键.。
锐角三角比练习题及答案
1. 已知一个锐角三角形的两个锐角分别为30度和60度,求第三个角的度数。
答案:第三个角的度数为90度。
2. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
答案:斜边的长度为5。
3. 已知一个锐角三角形的两个角的正弦值分别为0.5和0.866,求这两个角的度数。
答案:这两个角的度数分别为30度和60度。
4. 一个直角三角形的斜边长为10,一条直角边长为6,求另一条直角边的长度。
答案:另一条直角边的长度为8。
5. 已知一个锐角三角形的余弦值为0.6,求对应角的度数。
答案:对应角的度数为53度。
6. 一个直角三角形的两条直角边长分别为5和12,求斜边的长度。
答案:斜边的长度为13。
7. 已知一个锐角三角形的正切值为1.732,求对应角的度数。
答案:对应角的度数为45度。
8. 一个直角三角形的斜边长为17,一条直角边长为8,求另一条直角边的长度。
答案:另一条直角边的长度为15。
9. 已知一个锐角三角形的正弦值为0.3,求对应角的度数。
答案:对应角的度数为19.47度。
10. 一个直角三角形的斜边长为20,一条直角边长为10,求另一条直角边的长度。
答案:另一条直角边的长度为10√3。
锐角的三角比测试题及答案(三)
一、填空题(每小题2分,共40分)
1、Rt△ABC中,∠C=90°,BC=5,AB=13,则sinA=__________。
2、Rt△ABC中,∠C=90°,sinA=,则cosA=__________。
3、Rt△ABC中,∠C=90°,sinA=,则tgB=__________。
4、若α为锐角,cosα=,则α=__________度。
5、计算sin230°十cos230°=__________。
6、Rt△ABC中,∠C=90°,BC=2,sinA=,则AC=__________。
7、如图:厂房屋顶的人字架为等腰三角形,若跨度AB=12米,∠A=30°,则中柱CD等于__________米。
8、Rt△ABC中,∠C=90°,c=8,a=6,则最小角正切值为__________。
9、计算=__________。
10、Rt△ABC中,∠C=90°,3a=b,那么cosA的值为__________。
11、等腰三角形腰长、底边长分别为6和8,则底角正弦值为__________。
12、已知:α为锐角,tgα一1=0,则α为__________度。
13、等腰直角三角形ABC中,∠C=90°,AC=BC,则cosA·tgA=__________。
14、等腰三角形底边长为2,底边上高为,则它的顶角为__________度。
15、如图,等腰梯形的铁路路基高6米,斜面与地平面倾斜角30°,路基上底宽10米,则下底宽为__________米。
16、△ABC中,∠C∶∠B∶∠A=1∶2∶3,则三边之比a∶b∶c=__________。
17、等腰三角形顶角为12O°,底边上高为4cm,则此三角形面积为__________。
18、等腰△ABC中,AB=AC=5,BC=6,则sinA=__________。
19、△ABC中,∠A=30°,∠C=45°,AB=2cm,则BC=__________cm。
20、如图Rt△ABC中,∠C=90°,D是BC上一点,BD=DA=6,∠ADC=60°,则AB=__________。
二、选择题(每小题2分,共10分)
1、△ABC中,∠C=90°,sinA=,则tgB等于()。
(A);(B);(C);(D)。
2、计算等于()。
(A)4;(B)2;(C)3;(D)2。
3、如图,等腰梯形底角60°,上底长2,下底长6,则梯形面积为()。
(A)8;(B)4;(C)8;(D)4。
4、△ABC中,∠C=90°,∠A=60°,a+b=3+,则a=()。
(A);(B)2;(C)+l;(D)3。
5、如图,两建筑物水平距离为a米,从A点测得D点俯角为α,测得C点俯角为β,则较低建筑物CD高为()。
(A)a米;(B)a·ctgα米;(C)a·ctgβ米;(D)a·(tgβ-tgα)米。
三、(每小题4分,共28分)
1、计算:
2、如图,Rt△ABC中,∠ACB=90°,CD⊥Ab于点D,CD=2,BD=3,求tgA的值。
3、等腰梯形腰长为6,底角正切值为,下底长为12,求上底长。
4、△ABC中,∠B=45°,∠C=30°,BC=4+2,求AB长。
5、等腰三角形顶角为α,底边长为a,求此等腰三角形面积。
(用α和a 的式子表示)
6、如图,水坝横断面为梯形,梯形上底长3米,高4米,又水坝迎水坡、背水坡坡角分别为1∶和1∶1,求水坝横断面面积(不取近似值)
7、如图,从山顶A望地面C、D两点,测得它们的俯角分别为45°和30°,已知CD=100米,点C在BD上,求山高AB的长。
四、(本题6分)
△ABC中,AB∶AC=7∶8,BC=15,锐角B的正弦值为,求△ABC面积。
五、(本题8分)
如图,四边形ABCD中,AB=4,CD=2,∠A=60°,∠B=∠D=90°,求四边形ABCD面积。
六、(本题8分)
某轮船沿正北方向航行,在A处测得灯塔C在北偏西30°处,船以每小时20千米速度航行2小时到达B点后,测得灯塔C在船北偏西75°处,当此船继续航行到达灯塔C正东方向时,求此船与灯塔C的距离。
(不取近似值)
测试题(三)答案
一、1、;2、;3、;4、60;5、1;6、;7、2;8、;9、0;
10、;11、;12、30;13、;14、120;15、12+10; 16、1∶∶2;17、16;18、;19、;20、18。
二、1、A;2、C;3、A;4、D;5、D。
三、1、2+2;2、;3、4;4、+;5、;6、20+8;
7、50(+1)
四、过A作BC垂线,垂足为D,设AB=7k,AC=8k,(8k)2=(4k)2+(15一k)2,k=3,(k=-5舍去),。
五、延长BC、AD交于E,BE=4,DE=2,。
六、过B作AC垂线,垂足为E,过C作AB垂线,垂足为F,BE=20,AE=20,CE=20,CF=10+10。