七年级数学上册展开与折叠一
- 格式:ppt
- 大小:723.50 KB
- 文档页数:15
北师大课标版初中数学初一上册第一章1一、教材分析北师大版七年级(上)《展开与折叠》第1课时,在本单元中位于“图形的变化”与“从三个方向看”之间,在知识的链条结构中起着重要的衔接作用。
教学过程中要紧包括“猜一猜”、“做一做”、“说一说”、“练一练”四个设计理念。
其中“猜一猜”目的在于将学生的独立摸索、展开想象、自主探究,交流讨论,分析判定等探究活动贯穿于课堂教学的全过程,使学生不断获得和积存数学活动体会,培养学生的学习爱好与能力。
“做一做”目的在于让学生亲身经历和充分体验立体图形与平面图形之间的相互转化过程,建立展开图中的面与正方体的面的对应关系,使学生手脑结合,提高学习效率。
“说一说”目的在于给学生提供了充分表达自我方法和意见的平台,把课堂交还给学生,而不是教师的一言堂。
“练一练”目的在于通过检测对学生所学内容进行课堂评判,及时把握学生对知识吸取明白得情形,便于后续巩固与辅导。
通过本节课“展开与折叠”的学习,让学生能够依照平面展开图来判定是否能够折叠成正方体,在自主发觉的过程中,教给学生学习的方法,比如分类经历和有序思维,使复杂的问题简单化。
通过动手实践,在折展的过程中,体验正方体的展开图和立体图形之间的联系,进展学生的空间想象能力,为解决后面立体图形的表面积和体积问题打下良好基础。
二、教学目标1、知识与技能:通过充分的实践操作和白板的辅助展现,使学生明白将一个正方体的表面沿某些棱剪开,能够得到11种平面展开图。
以此能总结归纳它们的特点及规律,培养学生的观看、动手操作、归纳、合作探究能力。
2、过程与方法:通过用多种方法对正方体展开与折叠的实践操作,在经历和体验图形的转换过程中,初步建立空间概念,培养学生的动手操作能力和空间思维能力,积存数学活动体会。
3、情感态度与价值观:激发学习数学的爱好,使学生体验数学活动中探究与制造过程带来的乐趣。
渗透转化数学思想方法的学习,培养学生多角度探究问题的能力和空间思维能力,体会数学学科的价值,建立正确的数学学习观。
七年级数学教案展开与折叠9篇展开与折叠 1教学目标:1. 通过,感受立体图形与平面图形的关系;2. 学生通过动手动脚实验,发挥想象,开展讨论等方式,认识立体图形与它们的平面展开图的关系;3. 能正确判断平面展开图是哪个几何体的展开图.教学重点:将立体图形展成平面展开图;教学难点:按规定形状把正方体展成平面图形;教学过程:一、引入:出示生活中的立体图形,提出问题:如果把正方体沿某些棱剪开,平面展开图会是什么样子的?二.教学过程动手做一做活动1:把圆柱,圆锥的侧面沿虚线剪开,观察:它的侧面展开图是什么几何图形?请画出它的侧面展开图结论:圆柱的侧面展开图是长方形; 圆锥的侧面展开图是扇形。
活动2:把无盖的的正方体纸盒按图中的红线剪开,并画出展开后的平面图形,把你的展开图与同学交流,你发现了什么?结论:同一正方体按沿棱按同一方式剪开可以得到相同的平面展开图.活动3: 自由发挥,尽显风采将正方体图形沿某些棱按你喜欢的方式剪开成一个平面图形.在与同学交流对比,你有什么发现?结论:同一个正方体沿不同的棱剪开可以得到不同的图形.活动4:将正方体沿棱剪开成平面展开图,你能的到以下图形吗?请你试一试.想一想:要将一个正方体展开成平面展开图要剪开多少条棱?观察: 正方体的平面展开图有什么特点?活动4:将长方体沿棱剪开成平面展开图,与正方体的平面展开图比较,你发现他们有何异同?三.练一练四.小结: 畅所欲言1. 你学会了什么?2. 你最喜欢的一个环节是什么?3. 你收获了什么?五:布置作业小组合作探讨:将正方体沿棱展开成平面图形,到底回出现多少种不同的图形,剪一剪,试一试,把所得的图形在纸上画出展开与折叠 2展开与折叠教学目标:1. 通过展开与折叠,感受立体图形与平面图形的关系;2. 学生通过动手动脚实验,发挥想象,开展讨论等方式,认识立体图形与它们的平面展开图的关系;3. 能正确判断平面展开图是哪个几何体的展开图.教学重点:将立体图形展成平面展开图;教学难点:按规定形状把正方体展成平面图形;教学过程:一、引入:出示生活中的立体图形,提出问题:如果把正方体沿某些棱剪开,平面展开图会是什么样子的?二.教学过程动手做一做活动1:把圆柱,圆锥的侧面沿虚线剪开,观察:它的侧面展开图是什么几何图形?请画出它的侧面展开图结论:圆柱的侧面展开图是长方形; 圆锥的侧面展开图是扇形。
第1节立体图形、展开与折叠【知识要点】1、给下列各图形标注名称,用自己的语言描述上列各几何体的特征:(1)(2)(3)(4)(5)(6)(7)2、棱柱与圆柱的相同点:棱柱与圆柱的不同点:3、面与面相交成______,线与线相交得到_______,点动成______,线动成_________,面动成_______4、多面体欧拉公式:【例题讲解】例1、将下列几何体分类,并说明理由(1)(2)(3)(4)(5)(6)(7)(8)【课堂练习】1、将下图中的几何体进行分类,并说明理由.简单的立体图2、一个直角三角形绕其直角边旋转一周得到的几何体是3、一个圆锥体有个面,其中,有_____个平面4、圆柱体有_____个面,其中有____个平面,还有一个面,是_____面。
5、下面给出的图形中,绕虚线旋转一周能形成圆锥的是()6、如图4-5是一些具体的图形—三棱镜、方砖、帆布帐篷、笔筒、铅锤、粮囤、天文台,图4-6中是一些立体图形,找出与图4-6立体图形类似的图形。
【例题】例题2、一个圆柱体的侧面展开图的边为4πcm的正方形,则它的表面积为______cm2例题3、当下面这个图案被折起来组成一个正方体,数字_____会在与数字2所在的平面相对的平面上。
4 5 61 2 3【巩固提高】1、已知某多面体的平面展开图如图所示,其中是三棱柱的有( B )A、1个B、2个C、3个D、4个2、下面的四个图形,能折叠成三棱柱的有( C )个.A、1B、2C、3D、43、下图是( B )的平面展开图.A、六棱柱B、五棱柱C、四棱柱D、五棱锥4、如图1所示,将图沿虚线折起来,得到一个正方体,那么“3”的对面是_____6__(填编号)5、下列图形中是正方体的展开图的是(D)(A) (B)(C)(D)6、如图是一个正方体的展开图,和C面的对面是___F___面.7、若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z的值【解】13=++zyx第2节 展开与折叠、三视图【例题讲解】例1、下列图形中,是正方体的平面展开图的是 ( C )A B C D【课堂练习】1、长方形的长为6厘米,宽为4厘米,若绕着它的宽旋转一周得到的圆柱的体积为( D )立方厘米.A 、36πB 、72πC 、96πD 、144π2、画出下图中由几个正方体组成的几何体的三视图。
相关资料第一章丰富的图形世界展开与折叠(一)一、学生知识状况分析“展开与折叠”是《丰富的图形世界》中继“生活中的立体图形”之后的一个学习内容,学生已经学习了生活中的立体图形的有关知识,对立体图形已有一定的认识,学生在小学学过简单立体图形及其侧面展开图。
本节主要研究正方体的展开图,研究过程中充满着大量的操作实践活动,同时,七年级学生具有好奇心、求知欲较强的特点,学生间相互评价、相互提问的积极性高,因此,参与有关展开与折叠的实践探究活动的热情应该是比较高的。
二、教学任务分析本节是从正方体纸盒的展开体入手,使学生进一步认识立体图形与平面图形的关系:不仅要让学生了解正方体的十一种平面展开图,更重要的是让学生通过观察、思考找出正方体十一种展开图的特征。
通过自己动手操作,经历和体验图形的变化过程,进一步发展学生的空间观念,为后续章节的学习打下基础。
本节分为两个课时,第一课时通过正方体的展开图,了解正方体展开图的基本特征。
同时让学生经历展开与折叠、模型制作等活动,发展空间观念,积累数学活动经验。
而第二课时的教学任务旨在进一步认识棱柱的展开图;了解一些特殊几何体的展开图,能根据展开图判断立体模型。
根据以上分析,确定第一课时的教学目标如下:1、知识与技能目标:通过充分的实践,使学生能将一个正方体的表面沿某些棱剪开,展开成一个平面图形;2、过程与方法目标:通过展开与折叠的实践操作,在经历和体验图形的转换过程中,初步建立空间概念,发展几何直觉,积累数学活动经验。
3、情感与态度目标:体验数学与生活的密切联系。
让学生在充分经历实践、探索、交流,获得成功的体验,培养科学探索精神。
4、教学重难点:重点:将一个正方体的表面沿某些棱展开,展成平面图形;难点:鼓励学生尽可能多地将一个正方体展成平面图形,并用语言描述其过程。
三、教学过程分析本节课设计了五个教学环节:第一环节:创设情景,导入课题;第二环节:动手操作、探求新知;第三环节:先猜想再实践,发展几何直觉;第四环节:巩固基础,检测自我;第五环节:课堂小结,布置作业。
教学设计展开与折叠第1课时正方体的展开与折叠教学目标1.让学生掌握正方体的展开图.2.让学生能根据正方体的展开图判断各面之间的关系.教学重难点重点:正方体的展开图.难点:引导学生根据正方体的展开图判断各面之间的关系.教学过程导入新课在生活中,我们会见到很多正方体形状的盒子,你知道这些正方体形状的盒子是怎样制作的吗?你能制作一个吗?探究新知正方体的展开与折叠阅读教材P8“做一做”和之前的内容,先完成书中所提出的问题,然后做下面的填空:正方体共有6个面,__12__条棱,将一个正方体的表面沿某些棱剪开时,面与面之间必须有__1__条棱相连,所以需剪开__7__条棱.探究:(学生动手操作,教师指导,共同探究规律,教师归纳总结)将小正方形纸盒沿某些棱任意剪开,你能得到哪些形状的平面图形?能否将得到的平面图形分类?归纳:将正方体沿不同的棱展开可得到不同的表面展开图,共有如下11种情形:可分为四类:(1)141型(共6种)四个一行中排列,两端各一个任意放.(2)231型(共3种) 二在三上露一端,一在三下任意放.(3)222型(1种) 两两三行排有序,恰似登天上云梯.(4)33型(1种) 三个三个排两行,中间一“日”放光芒.问题:要将一个正方体展开成一个平面图形,必须沿几条棱剪开?(学生分组进行讨论,得出结论)教师归纳:由于正方体有12条棱,6个面,将其表面展成一个平面图形,面与面之间相连的棱有5条(即未剪开的棱),因此需要剪开7条棱.例1下列的哪些图形能折叠成正方体?(学生自主解答,老师提问,进行总结)解:7、8、9、10这四个图形可以折叠成正方体.总结:展开图中含有“田”字形(如图3,4)、“凹”字形(如图5,6)和超过四个小正方形在同一行的(如图1,2)都不能折叠成正方体.拓展探究:例2 已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么5的对面数字是__4__.课堂练习1.下列图形中,是正方体表面展开图的是()A. B.C. D.2.国庆节的时候,小明准备了一个正方体礼盒,六个面分别写有“祝”“福”“祖”“国”“万”“岁”,其中“祝”的对面是“祖”,“万”的对面是“岁”,则它的平面展开图可能是()3.如图是一个正方体的平面展开图,那么3号面相对的面是________号面.4.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值的是______.5.将下图中平面展开图折叠成正方体后,相对面上的两个数之和都为6,则x=____,y=____.参考答案1.D2.C3.64.65.5;3课堂小结布置作业完成教材习题1.3.板书设计第一章丰富的图形世界2 展开与折叠第1课时正方体的展开与折叠正方体的展开与折叠正方体的表面展开图共有11种情形,可分为四类:(1)141型(共6种).(2)231型(共3种).(3)222型(1种).(4)33型(1种).不能折叠成正方体的表面展开图:含有“田”字形、“凹”字形和超过四个小正方形在同一行的表面展开图.。
《展开与折叠(第1课时)》教学教案“展开与折叠”是《丰富的图形世界》中继“生活中的立体
展开图判断和制作简单的立体图形.
议一议:
教师引导学生得出:正方体的展开图有11种教师启发学生如何熟记正方体展开图的11种
情况。
记一记:
展开图巧记:
中间四个面,上、下各一面;
中间三个面,一二隔河见;
中间两个面,楼梯天天见;
中间没有面,三三连接一线。
试一试:
例、图中的图形可以折成一个正方体形的盒子.折好以后,与1相邻的数是什么?相对的数是什么?先想一想,再具体折一折,看看你的想法是否正确.
解:正方体中相对的面在展开图中中间应隔
汇报。
小组合作熟
记、汇报
学生先独
立解决问题,
通过小组合作交流、汇报。
小组合作认识到正方体的展开图有11种。
展示归纳使
知识更系统化,
便于学生记
忆。
使学生能更好地
理解正方体与其展开图之间的对应关系。
是是是是不是不是
忆。
板书 1.2展开与折叠(一)
正方体的展开图:
第一类,1,4,1型,共六种;
第二类,2,3,1型,共三种;
第三类,2,2,2型,只有一种;
第四类,3,3型,只有一种。
七年级上展开与折叠知识点在初中数学学习过程中,展开与折叠是一个比较基础的知识点,它们是我们学习面积和体积等相关知识的必备内容。
本文将分为三大部分,分别介绍展开与折叠的定义、应用以及相关练习题。
一、什么是展开与折叠?在数学上,我们把将一个三维物体沿着一些特定的线形状(比如直线、折线)剪开使其变成一个平面图形的过程称为“展开”。
相对的,我们把将一个平面图形按照特定模式叠折起来变成一个三维物体的过程称为“折叠”。
比如:一个盒子的展开图就是一个长方形,而将这个长方形沿着特定的线剪开并打平展开,就得到了这个盒子的展开图。
另一个例子,将一张矩形纸张按照特定模式叠折,可以得到一个立体的长方体。
二、展开与折叠的应用了解展开与折叠不仅有助于我们理解几何形体的各种性质,在日常生活中也有着广泛的应用。
比如说,公司生产各种纸盒产品时,需要对这些产品的展开图进行计算,以确定量身定制的原材料的数量。
在包装生产中,展开图成为了设计师的基础和生产成本的首要考量。
另外,展开与折叠也在其他领域有着广泛应用。
在制造复杂机器设备的过程中,设计师们也需要首先设计出设备的展开图,并在此基础上制造出完整的机器。
展开与折叠的理论在计算机图像学等领域中也扮演着重要的角色。
三、练习题1.对于一个侧棱长分别为3cm、4cm和5cm的直角三棱锥,它的侧壁是一个三角形,高度为5cm。
请画出这个三棱锥的展开图。
2.一个矩形房间的长度为6.5米,宽度为4.2米,屋顶是一个等腰直角三角形,两条直角边的长度为5米,请画出这个房间的展开图。
3.一个生产纸盒的公司,想要生产一个底面积为40平方厘米,高度为30厘米的长方体盒子。
请计算这个盒子需要的纸张面积。
总结:展开与折叠是初中数学必须要掌握的基础知识点,我们在学习面积、体积等相关知识时都需要用到这些知识点。
展开与折叠在日常生活中也有着广泛的应用,比如纸盒包装、机器制造、图形制作等领域都需要用到展开与折叠的理论知识。