808nm光纤耦合半导体激光泵浦源
- 格式:docx
- 大小:28.76 KB
- 文档页数:3
44瓦超高功率808 nm半导体激光器设计与制作仇伯仓,胡海,何晋国深圳清华大学研究院深圳瑞波光电子有限公司1. 引言半导体激光器采用III-V化合物为其有源介质,通常通过电注入,在有源区通过电子与空穴复合将注入的电能量转换为光子能量。
与固态或气体激光相比,半导体激光具有十分显著的特点:1)能量转换效率高,比如典型的808 nm高功率激光的最高电光转换效率可以高达65%以上[1],与之成为鲜明对照的是,CO2气体激光的能量转换效率仅有10%,而采用传统灯光泵浦的固态激光的能量转换效率更低, 只有1%左右;2)体积小。
一个出射功率超过10 W 的半导体激光芯片尺寸大约为mm3, 而一台固态激光更有可能占据实验室的整整一张工作台;3)可靠性高,平均寿命估计可以长达数十万小时[2];4)价格低廉。
半导体激光也同样遵从集成电路工业中的摩尔定律,即性能指标随时间以指数上升的趋势改善,而价格则随时间以指数形式下降。
正是因为半导体激光的上述优点,使其愈来愈广泛地应用到国计民生的各个方面,诸如工业应用、信息技术、激光显示、激光医疗以及科学研究与国防应用。
随着激光芯片性能的不断提高与其价格的持续下降,以808 nm 以及9xx nm为代表的高功率激光器件已经成为激光加工系统的最核心的关键部件。
高功率激光芯片有若干重要技术指标,包括能量转换效率以及器件运行可靠性等。
器件的能量转换效率主要取决于芯片的外延结构与器件结构设计,而运行可靠性主要与芯片的腔面处理工艺有关。
本文首先简要综述高功率激光的设计思想以及腔面处理方法,随后展示深圳清华大学研究院和深圳瑞波光电子有限公司在研发808nm高功率单管激光芯片方面所取得的主要进展。
2.高功率激光结构设计图1. 半导体激光外延结构示意图图2. 外延结构以及与之对应的光场分布图3. 量子阱限制因子与SCH层厚度之间的关系图4. 光束发散角与SCH层厚度之间的关系图1给出了一个典型的基于AlGaAs材料的808 nm半导体激光外延结构示意图,由其可见,外延结构由有源区量子阱、AlGaAs波导以及AlGaAs包层材料组成,在材料选取上包层材料的Al 组分要高于波导层材料的Al组分,以保证在材料生长方向形成波导结构,即材料对其中的光场有限制作用(见图2)。
半导体激光泵浦源的原理、优势及应用前景一、引言半导体激光泵浦源是一种利用半导体材料作为增益介质,通过电注入或光激发方式实现粒子数反转并产生激光输出的器件。
它具有体积小、重量轻、效率高、可靠性好等优点,因此在通信、医疗、工业加工等领域得到了广泛应用。
本文将从原理、优势及应用前景等方面对半导体激光泵浦源进行详细介绍。
二、半导体激光泵浦源的原理半导体激光泵浦源的工作原理基于半导体材料的能带结构和粒子数反转机制。
当外界注入电流或光激发时,半导体材料中的电子从价带跃迁至导带,形成粒子数反转分布。
在满足一定条件下,这些反转分布的粒子通过受激辐射过程发射出相干光,即激光。
具体来说,半导体激光泵浦源通常由P型半导体和N型半导体组成的PN结结构构成。
当正向偏置电压施加在PN结上时,空穴和电子分别从P区和N区注入到有源层,并在有源层内复合发光。
通过调整注入电流、有源层厚度和掺杂浓度等参数,可以控制激光的输出功率和波长。
三、半导体激光泵浦源的优势1. 体积小、重量轻:与传统的固体激光器相比,半导体激光泵浦源具有更小的体积和重量,便于集成和携带。
2. 效率高:半导体激光泵浦源的电光转换效率较高,通常在百分之几十到百分之几百之间,远高于传统的灯泵浦固体激光器。
3. 可靠性好:半导体激光泵浦源采用电注入方式实现粒子数反转,无需机械运动部件,因此具有较高的可靠性和稳定性。
4. 调制速度快:半导体激光泵浦源的调制速度较快,可以实现高速光通信和光信号处理。
5. 波长可调谐:通过调整有源层的材料和厚度等参数,可以实现半导体激光泵浦源的波长调谐,满足不同应用需求。
6. 成本低:随着半导体材料制备技术的不断发展和规模化生产的实现,半导体激光泵浦源的成本不断降低,具有较高的性价比。
四、半导体激光泵浦源的应用前景1. 通信领域:半导体激光泵浦源是光通信系统中的关键器件之一,用于实现信息的传输和放大。
随着5G、云计算等技术的快速发展,对高速率、大容量光通信系统的需求不断增长,将进一步推动半导体激光泵浦源的发展和应用。
半导体泵浦源半导体泵浦源(Semiconductor Pump Source)是一种广泛应用于激光器领域的关键元件。
本文将介绍半导体泵浦源的原理、特点以及应用领域。
一、原理半导体泵浦源利用半导体材料的特性,通过电流注入使其产生激光,从而实现泵浦作用。
其工作原理主要包括以下几个步骤:1. 电流注入:通过电流注入到半导体材料中,激发电子从低能级跃迁到高能级,形成电子空穴对。
2. 电子空穴对复合:由于电子和空穴的相互作用,电子从高能级跃迁回低能级,并释放出能量。
3. 光子产生:能量释放时,激发的原子或分子会产生光子,形成激光。
二、特点半导体泵浦源相比传统的泵浦源具有以下几个显著特点:1. 小型化:半导体材料具有小尺寸、轻重量的特点,因此半导体泵浦源体积小巧,适合集成到激光器中。
2. 高效率:半导体泵浦源的电光转换效率较高,能够将输入的电能有效转化为激光输出,节约能源。
3. 长寿命:由于半导体泵浦源无需使用活性介质,其寿命相对较长,维护成本低。
4. 可调谐性:通过调节电流的大小,可以实现半导体泵浦源输出激光的波长可调谐。
三、应用领域半导体泵浦源在激光器领域有着广泛的应用,主要包括以下几个方面:1. 医疗美容:半导体泵浦源可用于医疗美容领域,如激光脱毛、激光祛斑等。
其小型化和高效率的特点使得激光器设备更加便携和高效。
2. 通信领域:半导体泵浦源在光通信领域中广泛应用,用于光纤通信、激光雷达等设备。
其可调谐性使得激光器能够适应不同波长的光信号传输需求。
3. 工业加工:半导体泵浦源在激光切割、激光打标等工业加工领域中得到广泛应用。
其高效率和长寿命的特点使得激光器设备更加稳定可靠。
4. 科学研究:半导体泵浦源还广泛应用于科学研究领域,如光谱分析、原子物理实验等。
其小型化和可调谐性使得科研人员能够更方便地开展实验研究。
总结:半导体泵浦源作为激光器的关键元件,具有小型化、高效率、长寿命和可调谐性等特点,广泛应用于医疗美容、通信、工业加工和科学研究等领域。
LD泵浦Nd:YVO4 /Cr4+:YAG被动调Q激光特性研究光信息科学与技术专业指导教师摘要:半导体激光(LD)泵浦的固体激光器具有全固化、体积小、泵浦效率高等特点,在激光通讯、遥感探测、工业加工、军事、医疗等领域有着广泛的应用前景,受到人们极大的关注。
使用连续激光二极管泵浦Nd:YVO4晶体,得到1064nm 的连续红外激光输出,在激光谐振腔中加入慢饱和吸收晶体Cr4+:YAG,得到了调Q脉冲激光输出,从实验上得到了泵浦功率、Cr4+:YAG小信号透过率以及输出镜透过率对输出脉冲特别是脉冲宽度的影响,并通过数值求解速率方程对实验结果进行了理论分析,实验结果与理论模拟基本相符。
关键词:LD 泵浦;Nd∶YVO4;Cr4+∶YAG;被动调Q;脉冲宽度Characteristic of a laser diode pumped passively Q switched Nd:YVO4laser with Cr4+:YAG saturable absorberStudent majoring in optics information science and technologyHeng SunTutor Xiuqin YangAbstract:Laser-diode (LD) Pumped solid-state laser has wide applications in the fields such as laser telecommunication ,remote-sensing detection ,industry and military as wellashealthduetoitsadvantagessuchasallsolidstate,high pump efficiency,smallvolumeandlonglongevity,andhasbeen ing continuous laser diode pumped Nd: YVO4crystalgets 1064 nm infrared laser outputcontinuously.Then addingslow saturable absorbercrystals Cr4 + : YAG in the laser cavity to obtain the output of theQ-switched pulse laser. Study the influence of the pump power, output transmission and cavity length to the output pulse in particularthe influence of pulse width from experiments.Through the numerical solution of rate equation to carry on the theoretical analysis with the result of the experiment and thenumericalsolutionsoftheequationsagreewiththeexperimentalresults.Keywords:LDpumped;Nd: YVO4; Cr4+:YAG; passively Q switched;pulse width第一章前言自上世纪六十年代世界上首台激光器发明以来,各类激光器和激光技术得到了迅速的发展,其中固体激光器的发展尤为突出。
常用激光器波长 Output Wavelengths of Common Lasers
半导体激光器是用半导体材料作为工作物质的激光器,由于物质结构上的差异,不同种类产生激光的具体过程比较特殊。
常用工作物质有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。
激励方式有电注入、电子束激励和光泵浦三种形式。
808nm半导体激光器可广泛应用于激光医疗,红外夜视,激光印刷,激光泵浦,以及各种科研应用
通常808nm都是用作激光激励源的,比较好的Dilas,Nlight。
不过我推荐前者。
所谓的工业环境是啥?在工业环境下运作??目前有用808nm 500瓦左右的激光做塑料焊接的,这是个很好的激光应用。
808nm光纤耦合半导体激光泵浦源808nm光纤耦合半导体激光泵浦源是一种新型的光学器件,采用光纤耦合技术将半导体激光泵浦源与光纤进行耦合,使得激光器的输出光功率更稳定,噪声更小,应用范围更广泛。
808nm光纤耦合半导体激光泵浦源的工作原理是通过电流驱动半导体激光器的发光二极管,将电能转化为光能。
在808纳米的波长下,激光泵浦源具有较高的光转换效率,并且具有较低的发热量。
同时,采用光纤耦合技术可以将激光器产生的热量快速传导到散热系统中,有效降低了器件的温度,提高了激光器的工作稳定性和寿命。
808nm光纤耦合半导体激光泵浦源具有以下几个特点:首先,具有高功率稳定性。
激光泵浦源采用与光纤绑定的方式,可以大大减少光纤的损耗,并且能够在较长距离内保持光功率的稳定。
这使得激光器的输出功率更加一致,提高了激光器的工作效率和性能。
其次,具有低噪声。
808nm光纤耦合半导体激光泵浦源在工作过程中减少了光学器件的振动和震动,从而降低了激光器的噪声水平。
这使得激光器在科研、医疗和工业等领域中的应用更加广泛,例如激光医疗器械、激光打标机等。
再次,具有高光质量。
808nm光纤耦合半导体激光泵浦源的输出波长符合激光输出的最佳波长范围,可以获得高光质量的激光束。
这对激光器应用中需要高光质量的场景,如光通信和激光测距等领域有着重要的意义。
此外,808nm光纤耦合半导体激光泵浦源还具有小尺寸、低成本、易于集成等优点。
光纤耦合技术使得激光器的结构更加紧凑,便于在各种设备和系统中进行集成。
同时,由于其制造工艺相对简单,所以其成本也相对较低。
综上所述,808nm光纤耦合半导体激光泵浦源是一种具有高功率稳定性、低噪声、高光质量的光学器件。
它的出现不仅拓宽了激光泵浦源的应用领域,而且提高了激光器的性能和可靠性。
随着技术的不断发展,相信这种光学器件将会在更多的领域中得到应用,推动科技的进步和创新。
第50卷第4期2021年4月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.50㊀No.4April,2021高可靠性无铝有源层808nm 半导体激光器泵浦源刘㊀鹏1,2,3,朱㊀振2,陈㊀康2,王荣堃1,夏㊀伟2,3,徐现刚1,2(1.山东大学,新一代半导体材料研究院,晶体材料国家重点实验室,济南㊀250100;2.山东华光光电子股份有限公司,济南㊀250101;3.济南大学物理科学与技术学院,济南㊀250022)摘要:针对高功率808nm 激光器泵浦源的应用需求,设计并制备了InGaAsP /GaInP 材料体系的无铝有源区半导体激光器㊂使用双非对称的限制层及波导层结构,降低了P 侧材料的热阻及光吸收㊂优化了金属有机化学气相沉积(MOCVD)中As 和P 混合材料的生长条件,制备出界面陡峭的四元InGaAsP 单晶外延薄膜㊂制作的激光器室温测试阈值电流为1.5A,斜率效率为1.26W /A,10A 下的功率达到10.5W,功率转换效率为58%㊂连续电流测试最大功率为23W@24.5A,准连续电流测试最大功率为54W@50A,没有产生灾变性光学损伤(COD)㊂在15A 电流加速老化下,激光器工作4200h 未出现功率衰减及COD 现象,说明制备的无铝有源区808nm 激光器具有高可靠性的输出性能㊂关键词:无铝材料;高可靠性;InGaAsP;808nm;非对称;泵浦源;半导体激光器中图分类号:TN248.4㊀㊀文献标志码:A ㊀㊀文章编号:1000-985X (2021)04-0757-05High Reliable Al-Free 808nm Semiconductor Laser Diode Pump SourceLIU Peng 1,2,3,ZHU Zhen 2,CHEN Kang 2,WANG Rongkun 1,XIA Wei 2,3,XU Xiangang 1,2(1.Institute of Novel Semiconductors,State Key Laboratory of Crystal Material,Shandong University,Jinan 250100,China;2.Shandong Huaguang Optoelectronics Co.,Ltd.,Jinan 250101,China;3.School of Physics and Technology,University of Jinan,Jinan 250022,China)Abstract :For 808nm high power laser used as pump source,Al-free active-region laser diode was designed and fabricated,consisting of InGaAsP /GaInP.In this work,a double asymmetric structure of cladding and waveguide layers to reduce the thermal resistance and optical loss of P-side layers were proposed.By optimizing the MOCVD growth of As and P hybrid material,InGaAsP single-crystal epitaxial film with steep interface was fabricated.The threshold current is 1.5A at room temperature and the slope efficiency is 1.26W /A.The output power is 10.5W at 10A and the power efficiency is 58%.Under continuous wave (CW)operation,the maximum output power is 23W@24.5A,while it can reach 54W@50A under quasi continuous wave (QCW)mode without catastrophic optical damage (COD).No power degradation or COD occurred for accelerated aging over 4200h at 15A,showing high long-term reliability of Al-free active-region 808nm laser diode.Key words :Al-free material;high reliabile;InGaAsP;808nm;asymmetric;pump source;semiconductor laser diode㊀㊀收稿日期:2021-03-01㊀㊀基金项目:山东省激光装备创新创业共同体项目㊀㊀作者简介:刘㊀鹏(1994 ),男,山东省人,硕士研究生㊂E-mail:seekersliupeng@㊀㊀通信作者:朱㊀振,博士,高工㊂E-mail:zhuzhen@ 徐现刚,博士,教授㊂E-mail:xxu@ 0㊀引㊀㊀言半导体激光器具有体积小㊁质量轻㊁效率高及易于集成等优点,在工业加工㊁智能传感㊁医养健康及固体和光纤激光器泵浦源等方面有着重要应用㊂其中808nm 半导体激光器是Nd 掺杂YAG 固体激光器的理想泵浦源,被广泛用于精细加工㊁雷达测距等领域[1-2]㊂除了激光器的功率和效率,可靠性是实际应用中最为关注的性能㊂随着激光器输出功率越来越高,灾变性光学损伤(COD)成为影响半导体激光器可靠性及寿命的关键因素㊂这和激光器的材料生长和腔面处理有直接关系㊂由于AlGaAs 材料生长工艺比较成熟,目前758㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第50卷808nm激光器大部分使用AlGaInAs/AlGaAs作为有源层㊂但是含铝材料不稳定,极易氧化形成缺陷并在材料内部延伸造成器件失效㊂国际上,大功率808nm激光器一般都在腔面做特殊处理来控制缺陷的产生或延伸,如美国II VI公司的E2工艺[3],德国FBH研究所的H离子清洗工艺[4]㊂但特殊处理会带来复杂的工艺问题,降低良率,给808nm激光器的批量化生产增加难度㊂本文通过量产型金属有机化学气相沉积(MOCVD)设备生长了InGaAsP/GaInP结构的808nm半导体激光器㊂由于有源区不含活泼性的铝元素,材料生长及腔面处理的工艺窗口较大,激光器的性能更加稳定和可靠㊂在15A电流加速老化下,激光器工作4200h未出现功率衰减及COD现象,10W工作寿命推测在40000h以上㊂本文是继承和发扬了蒋民华院士 为晶体提供泵源 的指导思想,不忘初心,通过各单位多年持久的产学研紧密结合,坚持创新,在山东华光光电子股份有限公司实现了规模化量产,满足了市场需求㊂同时开发了630~1100nm波段的多种半导体激光器泵浦源,其中808nm激光器由于具有优异的性能,是产业化较为成功的泵源之一㊂1㊀实㊀㊀验1.1㊀激光器结构如上所述,无铝结构的激光器在抑制体材料缺陷及提高腔面光学损伤方面有很多优势,但和传统的AlGaAs材料相比,InGaAsP/GaInP材料也有一些短板㊂根据JDSU的研究[5],GaInP材料的热导率是0.08W/(cm㊃K),为Al0.25Ga0.75As材料的一半,而其相同掺杂浓度下的电导率也要低于AlGaAs材料,这会影响激光器的高功率和高转换效率输出㊂在激光器外延结构设计上采用双非对称结构,如表1所示,P侧GaInP波导层的厚度要小于N侧GaInP波导层的厚度,P型AlGaInP限制层的Al组分要高于N型AlGaInP 限制层的Al组分㊂这不仅使光场偏向N区,降低空穴对光子的吸收,同时还能缩减P侧的外延层厚度,降低P区外延层的热阻及电阻㊂GaInP波导层中间为一层8nm厚度的InGaAsP单量子阱㊂InGaAsP材料可以通过调节III族及V族原子的组分实现量子阱的压缩和伸张应变,进而得到不同的激光偏振模式㊂为获得更低的阈值电流密度,可以使用压应变的InGaAsP量子阱㊂表1㊀808nm激光器的外延结构Table1㊀Epitaxial structure of808nm laser diodeLayer Material Thickness/nm Doping/cm-3Contact GaAs200>1ˑ1019P-cladding Al x Ga0.5-x In0.5P9001ˑ1018P-waveguide Ga0.5In0.5P400Quantum well InGaAsP8N-waveguide Ga0.5In0.5P800N-cladding Al y Ga0.5-y In0.5P15001ˑ1010Buffer GaAs2002ˑ1018为满足激光器耦合进入400μm芯径的光纤的需求,激光器发光区的宽度设计为390μm,周期为750μm,腔长为2mm㊂1.2㊀激光器制备外延材料生长使用量产型MOCVD系统㊂衬底为偏向<111>A方向15ʎ的GaAs(100)晶面,可以有效抑制GaInP材料的有序结构,增加材料生长窗口㊂III族有机源采用三甲基镓(TMGa)㊁三甲基铝(TMAl)和三甲基铟(TMIn),V族源材料为砷烷(AsH3)和磷烷(PH3),N型掺杂为Si,P型掺杂为Mg㊂外延层生长过程的温度控制在600~700ħ,反应室压力为104Pa㊂量子阱是整个激光器结构的核心,其生长质量决定了激光器的性能㊂InGaAsP为四元材料,且AsH3和PH3在不同生长条件下的分配系数差别较大,需要对量子阱的生长方式进行特殊设计㊂如图1所示,通过优化量子阱及两侧界面的生长温度及气流切换方式,得到界面陡峭的InGaAsP量子阱㊂外延层的结晶质量和表面状态也会影响激光器的性能参数㊂图2是经过优化后㊀第4期刘㊀鹏等:高可靠性无铝有源层808nm半导体激光器泵浦源759㊀的单层GaInP的原子力显微镜(AFM)照片,可以看到外延层的表面非常平整,粗糙度Ra仅为0.13nm,很接近外延生长前的GaAs衬底表面㊂图1㊀GaInP/InGaAsP量子阱的TEM照片Fig.1㊀TEM image of GaInP/InGaAsP quantum well图2㊀GaInP外延层的AFM照片Fig.2㊀AFM image of GaInP epitaxial layer 外延片生长完成以后进行芯片工艺的制作㊂使用湿法腐蚀工艺形成390μm的宽条,并在宽条两侧覆盖SiO2绝缘膜,形成电流注入区㊂P面金属电极为Ti/Pt/Au,N面金属电极为Ge/Ni/Au㊂解理成2mm腔长的巴条,使用电子束蒸发设备在前后腔面分别蒸镀5%的增透膜及98%的高反膜㊂解离成管芯,P面朝下烧结于AlN陶瓷材料的AuSn热沉上㊂2㊀结果与讨论为验证设计的外延结构及生长的材料质量,测试并计算了芯片的内量子效率和腔内损耗㊂将工艺晶片分别解理成1.0mm㊁1.5mm㊁2.0mm㊁2.5mm四种腔长的巴条,在未镀膜的条件下,利用脉冲电流分别测试它们的斜率效率和阈值电流,然后通过数值拟合,得到图3和4的曲线㊂通过计算得到芯片的内量子效率ηi 为97%,光吸收损耗系数αi为1.1cm-1,透明电流密度J tr为96A㊃cm-2,模式增益系数ΓG0为15cm-1㊂这个结果同德国Jenoptik公司及FBH研究所报道的808nm激光器结果是接近的[6-7]㊂图3㊀外微分量子效率和腔长的拟合曲线Fig.3㊀Curve of external differential efficiency and cavity length图4㊀阈值电流密度和腔长的拟合曲线Fig.4㊀Curve of threshold current density and cavity length图5为封装后的808nm激光器在25ħ条件下的功率-电流-电压曲线㊂从图中可以看出,激光器的阈值电流为1.5A,对应的阈值电流密度为192A㊃cm-2㊂激光器的斜率效率为1.26W/A,对应的外量子效率为82%㊂在10A电流下,激光器的输出功率达到了10.5W,电压1.82V,转换效率为58%㊂图6为热沉温度分别是25ħ㊁35ħ㊁45ħ及55ħ下的功率及电压曲线㊂随着温度增加,激光器的载流子溢出变得严重,阈值电流会增加,斜率效率会下降㊂由于P型限制层使用了高带隙的AlGaInP材料,高温下可以很好地将载流子限制在有源区内,激光器在55ħ及10A电流下的输出功率仍达到了9.3W,具有较好的温度特性㊂图7是激光器在10A电流下测试的光谱曲线㊂其峰值波长为807.9nm,光谱的半高宽(FWHM)为1.7nm㊂图8是激光器的远场特性测试㊂激光器工作时的水平发散角为9ʎ,垂直发散角为31ʎ㊂760㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第50卷图5㊀808nm LD的功率-电流-电压曲线Fig.5㊀Power-current-voltage curves of808nm LD图6㊀不同温度下的808nm LD功率曲线Fig.6㊀Power curves of808nm LD at different temperatures图7㊀808nm LD的光谱曲线Fig.7㊀Optical spectrum of808nm LD图8㊀808nm LD的远场发散角Fig.8㊀Far field angle of808nm LD图9㊀CW及QCW大电流测试下的功率曲线Fig.9㊀Power curves at high current CW and QCW testing图10㊀激光器加速老化曲线Fig.10㊀Accelerated aging curves of the laser 808nm的大功率激光器一般在工业及特种行业中作为泵浦源使用,需要具有高的可靠性㊂由于大功率激光器的主要失效模式为COD造成的突然失效,其COD功率是影响激光器可靠性的重要因素㊂在实验中,可以通过大电流测试考评激光器的COD水平㊂图9为连续电流(CW)及准连续电流(QCW,脉宽1ms,周期100ms)模式测试下的激光器功率曲线图㊂受限于测试电源的最大电流,激光器在CW24.5A下功率达到了23W,在QCW50A下的功率达到了54W,并且两种测试方式均没有COD产生,说明制作的808nm激光器的腔面COD功率在54W以上,具有高的抗腔面光学损伤特性㊂激光器的寿命和稳定性可以通过提高电流或温度的加速老化方式进行快速考评㊂由于808nm激光器的主要失效原因是腔面COD,提高电流(功率)的加速方式更能反映808nm激光器的可靠性水平㊂国内外同行大部分使用12A以内的加速电流进行老化[6,8-9],鉴于无铝结构激光器在抗腔面光学损伤方面的优势,使用更高的15A加速电流㊂图10是10只㊀第4期刘㊀鹏等:高可靠性无铝有源层808nm半导体激光器泵浦源761㊀808nm激光器在15A电流㊁水冷温度25ħ下的在线监控老化曲线㊂经过4200h的老化,激光器没有出现功率衰减及突然失效现象㊂通过文献所用的加速因子计算方法[10],推算808nm激光器在10W下的寿命为40000h以上,12W下的寿命也在20000h以上㊂3㊀结㊀㊀论本文使用MOCVD方法生长了高质量的InGaAsP/GaInP材料体系的激光器外延片,并制作了390μm条宽及2mm腔长的器件㊂室温测试阈值电流为1.5A,斜率效率1.26W/A,10A下的功率达到10.5W,转换效率为58%㊂CW电流测试最大功率为23W@24.5A,QCW电流测试最大功率为54W@50A㊂在15A电流加速老化下,激光器工作4200h未出现功率衰减及COD现象,推算808nm激光器在10W下的寿命为40000h以上,12W下的寿命在20000h以上㊂参考文献[1]㊀陈良惠,杨国文,刘育衔.半导体激光器研究进展[J].中国激光,2020,47(5):13-31.CHEN L H,YANG G W,LIU Y X.Development of semiconductor lasers[J].Chinese Journal of Lasers,2020,47(5):13-31(in Chinese).[2]㊀宁永强,陈泳屹,张㊀俊,等.大功率半导体激光器发展及相关技术概述[J].光学学报,2021,41(1):0114001.NING Y Q,CHEN Y Y,ZHANG J,et al.Brief review of development and techniques for high power semiconductor lasers[J].Acta Optica Sinica,2021,41(1):0114001(in Chinese).[3]㊀EPPERLEIN P W.Semiconductor laser engineering,reliability and diagnostics[M].John Wiley&Sons Ltd:Wiley,2013.[4]㊀CRUMP P,WENZEL H,ERBERT G,et al.Passively cooled TM polarized808nm laser bars with70%power conversion at80W and55Wpeak power per100μm stripe width[J].IEEE Photonics Technology Letters,2008,20(16):1378-1380.[5]㊀PETERS M,ROSSIN V,ACKLIN B.High-efficiency high-reliability laser diodes at JDS Uniphase[C]//Lasers and Applications in Science andEngineering.Proc SPIE5711,High-Power Diode Laser Technology and Applications III,San Jose,California,USA.2005,5711:142-151.[6]㊀PIETRZAK A,HüLSEWEDE R,ZORN M,et al.High-power single emitters and low fill factor bars emitting at808nm[C]//SPIE LASE.ProcSPIE9733,High-Power Diode Laser Technology and Applications XIV,San Francisco,California,USA.2016,9733:97330R. [7]㊀KNAUER A,ERBERT G,STASKE R,et al.High-power808nm lasers with a super-large optical cavity[J].Semiconductor Science andTechnology,2005,20(6):621-624.[8]㊀REN Z Q,LI Q M,LI B,et al.High wall-plug efficiency808-nm laser diodes with a power up to30.1W[J].Journal of Semiconductors,2020,41(3):61-63.[9]㊀MARTIN HU H,QIU B C,WANG W M,et al.High performance808nm GaAsP/InGaP quantum well lasers[C]//SPIE/COS Photonics Asia.Proc SPIE10017,Semiconductor Lasers and Applications VII,Beijing,China.2016,1001:100170M.[10]㊀BAO L,KANSKAR M,DEVITO M,et al.High reliability demonstrated on high-power and high-brightness diode lasers[C]//SPIE LASE.ProcSPIE9348,High-Power Diode Laser Technology and Applications XIII,San Francisco,California,USA.2015,9348:93480C.。
激光打标机端泵模块(光纤耦合模块)和光纤激光器泵浦源(光纤激光器泵浦模块)关键词:光纤耦合模块半导体端泵激光器光纤耦合半导体激光器光纤耦合输出模组光纤激光器泵浦源光纤激光器泵浦模块光纤激光泵浦模块光纤激光泵浦源光纤激光泵浦模组激光打标机泵浦模组泵浦激光器端泵激光器光纤激光器的激发激光光纤激光器目前市场主流使用的是功率30W~400W不等的半导体光纤耦合输出模块,其中有用于端面泵浦固体激光器的30W和45W的激光模块,可用于激光打标机;还有适用于泵浦光纤激光器的功率50W以上的激光模块,激光能量耦合到芯径仅105μm光纤中输出,便于泵浦光纤激光器。
1. 型号半导体激光波长:808nm、880nm、915nm、940nm、965nm和980nm激光输出光纤的芯径:105μm、200μm、400μm和600μm功率:30W、45W、50W、65W、75W、100W、120W、200W、400W2. 产品特点长寿命,大于20000小时(20000h)高稳定性金属薄片传导冷却部分模块集成功率监测器部分产品参数3.JOLD-50-FC-11 JOLD-65-FC-11 JOLD-75-FC-11 JOLD 50 FC 11 Design 215620524JOLD-30-FC-12 JOLD-30-FC-14 JOLD 30 FC 12JOLD-30-CPXF-1L JOLD-45-CPXF-1L JOLD-70-CPXF-1L JOLD-75-CPXF-1L JOLD-120-CPXF-1L JOLD 30 CPXF 1L(更多半导体激光模块知识可参见深圳顶尖(科仪)的博客)好的半导体激光器的特点1、长寿命,寿命测试数据是对产品在真实连续工作的条件下测试得到的数据2、高稳定性,在有效寿命期间,功率输出非常稳定,无明显波动3、工艺控制水平,每一批次的产品的一致性4、是否得到广大客户的一致认同。
固体激光原理与技术综合实验一、实验目的1.掌握半导体泵浦固体激光器的工作原理和调试方法;2.掌握固体激光器被动调Q的工作原理,进行调Q脉冲的测量;3.了解固体激光器倍频的基本原理。
二、实验仪器固体激光器实验箱(内含808nm泵浦源、耦合透镜、激光晶体、倍频晶体、调Q晶体、输出镜、导轨、功率计、防护眼镜、)、示波器三、实验内容1.808nm半导体泵浦源的I-P曲线测量①将808nm泵浦源固定于导轨的右端,将功率计探头放置于其前端出光口并靠近。
②调节功率计调零旋钮,使读数归零。
③调节工作电流从零到最大,依次记录对应的电源电流示数I和功率计读数P,并且画出I-P曲线图。
④将半导体泵浦光源的电流调回至最小。
2.1064nm固体激光谐振腔涉及调整①将650nm指示激光器固定在导轨左端,调节旋钮,使之照射到有段泵浦光源的中心。
②将耦合镜组放置在光源左边并靠近,调节旋钮,使指示激光束照射到耦合镜组中心,且反射的指示激光束返回到出光口。
③将激光晶体放置在耦合镜组前,调节前后位置,使泵浦光源的聚焦点能够打在晶体中间,再调节旋钮,使反射的指示激光束返回到出光口。
④将1064nm的激光输出镜放置在激光晶体前,镀膜面朝向晶体,距离为50mm左右。
调节旋钮,使反射的指示激光束返回到出光口。
慢慢调高泵浦光功率至800mA时,使用红外显示卡观察是否可以看到1064nm的激光点。
如果没有,微调输出镜的俯仰旋钮,直至出光,关闭指示激光。
3.1064nm固体激光器模式观测及调整①固定一个输出镜和腔长,将功率计放置在导轨左端,使激光点打到功率计中心。
②观察功率计读数,通过调整输出镜、激光晶体、耦合镜组的旋钮和激光晶体的前后,使功率计示数最高,确保激光谐振腔此时处于相对最佳状态。
③调节工作电流从阈值到最大,依次记录对应的电源电流示数I 和功率计读数P,填入下表。
④根据实验1的测试数据,拟合出1064nm固体激光输出的I-P转化效率和P-P转换效率曲线,并研究阈值条件。
808nm光纤耦合半导体激光泵浦源808nm光纤耦合半导体激光泵浦源是一种常见的激光器泵浦技术。
它采用光纤将半导体激光器的红外激光传输到需要激发的介质中,具有高效率、紧凑和可靠等优势。
本文将从原理、结构、工作原理和应用等方面对808nm光纤耦合半导体激光泵浦源进行详细介绍。
首先,我们来了解808nm光纤耦合半导体激光泵浦源的原理。
其原理基于半导体激光器能够产生高能量的激光,并且可以通过单模光纤进行传输。
808nm激光是一种红外激光,具有较长的波长和高能量,可以实现高效的激发效果。
通过光纤耦合技术,将808nm激光器的输出光纤耦合到需要激发的介质中,实现对介质的激发。
808nm光纤耦合半导体激光泵浦源的结构主要由激光器模块、光纤连接器和激光输出端口等组成。
激光器模块包括激光二极管芯片、散热器和光学系统。
光纤连接器用于连接激光器模块和激光输出端口,确保激光的传输效率和稳定性。
激光输出端口用于调节激光器的输出功率和波长等参数。
808nm光纤耦合半导体激光泵浦源的工作原理是通过激光二极管芯片产生激光,并经过散热器散去热量。
然后,激光经过光学系统,通过光纤连接器传输到激光输出端口。
在激发介质中,808nm激光被吸收,并转化为其他波长的激光,实现对介质的激发。
808nm光纤耦合半导体激光泵浦源在许多领域都有广泛的应用。
首先,在医学美容领域,它常用于激光除毛、皮肤美白、血管疾病治疗等。
其次,在工业领域,它常用于激光切割、激光打标、激光焊接等加工工艺。
再次,在科学研究领域,它常用于生物医学、光谱分析、光学显微镜等实验研究。
总之,808nm光纤耦合半导体激光泵浦源是一种高效率、紧凑和可靠的激光器泵浦技术。
它通过光纤传输808nm激光到介质中,实现对介质的激发。
在医学美容、工业加工和科学研究等领域都有广泛的应用。
随着激光技术的不断发展,808nm光纤耦合半导体激光泵浦源将会有更广阔的应用前景。
光信息专业实验报告:半导体泵浦激光原理实验九、实验数据处理与结果分析1、808nm LD半导体激光器的激光功率与电源电流间的关系将光功率计紧贴激光器放置,以避免外界光的干扰。
开启光功率计并进行调零,然后从零开始逐步增大电源电流I,观察并记录光功率计读数P。
所得数据如表1.由表1数据可作出I-P关系图,如图1、2。
观察图像可以发现除去I=0~80mA段,I与P基本呈线性关系。
对I=80~400mA段作线性拟合,得图3、4.图3 第一次实验所得808nmLD的I-P线性拟合结果图图4 第二次实验所得808nmLD的I-P线性拟合结果图可见两次拟合所得的线性相关系数分别为r1=0.99625和r2=0.99716,表明除去I=0~80mA段,I与P的线性相关程度很高。
拟合直线的表达式分别为y1=0.34x-27.49和y2=0.32x-24.79,则当y=0时,x1=80.85,x2=77.47,故808nmLD激光器的阈值电流I0为122x x+=79.16mA左右。
当电源电流小于阈值电流时,激光器输出的光主要由自发辐射产生,因而很弱;当电源电流大于阈值电流时,激光器产生受激辐射光放大,即产生了激光,因此光功率很大。
在产生激光以后,光功率P与电源电流I呈线性正相关的关系。
2、532nm 绿色激光的光功率与转换效率,及其与808nm LD激光器电源电流的关系调节出强度较大且功率稳定的绿色激光后,在光路中加入滤色片滤去红外激光,用光功率计测量不同电源电流对应的绿色激光功率,计算转换效率,并与前面测得的808nm LD激光器光功率对照得出对应关系。
所得数据和计算结果如表2.表2 不同电源电流对应532nm激光的光功率与转化效率其中转换效率100%Pη=⨯.由表2数据可得出532nm激光功率P’及转换效率η与电源电流I间的关系,如图5、6.图5 532nm激光的I-P关系图图6 532nm激光的I-η关系图由图5可以看出,532nm激光功率与电源电流基本呈正相关的关系。
半导体泵浦激光原理实验一.实验仪器1.808nm半导体激光器≤500mW2.半导体激光器可调电源电流0~500mA3.Nd:YVO4晶体 3×3×1mm4.KTP倍频晶体 2×2×5mm5.输出镜(前腔片)φ6 R=50mm6.光功率指示仪 2μW~200mW 6挡二.实验目的及意义半导体泵浦0.53μm绿光激光器由于其具有波长短,光子能量高,在水中传输距离远和人眼敏感等优点。
效率高、寿命长、体积小、可靠性好。
近几年在光谱技术、激光医学、信息存储、彩色打印、水下通讯、激光技术等科学研究及国民经济的许多领域中展示出极为重要的应用, 成为各国研究的重点。
半导体泵浦0.53μm绿光激光器适用于大学近代物理教学中非线性光学实验。
本实验以808nm半导体泵浦Nd:YVO4激光器为研究对象,让学生自己动手,调整激光器光路,在腔中插入KTP晶体产生532nm倍频激光,观察倍频现象,测量阈值、相位匹配等基本参数。
从而对激光技术有一定了解。
三.实验原理光与物质的相互作用可以归结为光与原子的相互作用,有三种过程:吸收、自发辐射和受激辐射。
如果一个原子,开始处于基态,在没有外来光子,它将保持不变,如果一个能量为hv21的光子接近,则它吸收这个光子,处于激发态E2。
在此过程中不是所有的光子都能被原子吸收,只有当光子的能量正好等于原子的能级间隔E1-E2时才能被吸收。
hvE 2 E 1(a) 21 2 E 1(c) 光与物质作用的吸收过程 E2 E 12E 1(a) 2 1 (b) 光与物质作用的自发辐射过程激发态寿命很短,在不受外界影响时,它们会自发地返回到基态,并放出光子。
自发辐射过程与外界作用无关,由于各个原子的辐射都是自发的、独立进行的,因而不同原子发出来的光子的发射方向和初相位是不相同的。
处于激发态的原子,在外的光子的影响下,会从高能态向低能态跃迁,并两个状态间的能量差以辐射光子的形式发射出去。
半导体泵浦源半导体泵浦源是一种能够产生激光输出的关键元件,广泛应用于激光器、光通信、医疗设备等领域。
它以半导体材料中的电子和空穴复合过程为基础,通过外界的泵浦源提供能量,实现激光器的工作。
半导体泵浦源的工作原理是基于半导体材料的特性。
半导体材料具有导电性能,但其电子和空穴的浓度远低于金属。
当半导体材料处于外部电场的作用下,电子和空穴会被激发到导带和价带,形成电子空穴对。
当电子和空穴相遇时,会发生复合过程,释放出能量。
半导体泵浦源利用外界的泵浦源提供能量,将能量转移到半导体材料中,激发电子和空穴的复合过程。
常见的泵浦源包括激光二极管、氙灯等。
其中,激光二极管是一种常用的泵浦源,它能够提供高能量密度的光束,将能量准确地传输到半导体材料中。
半导体泵浦源的特点是体积小、效率高、寿命长。
由于半导体材料具有优良的电子输运性能,电子和空穴的复合效率较高。
同时,半导体泵浦源的体积小,可以灵活地集成到各种器件中。
此外,半导体材料的寿命较长,能够保证激光器的长时间稳定工作。
半导体泵浦源在激光器中起到关键作用。
激光器是一种通过受激辐射产生的相干光输出的器件。
半导体泵浦源作为激光器的能量提供者,能够将外界的能量转换为激光输出。
激光器的性能和稳定性很大程度上依赖于半导体泵浦源的质量和工作状态。
除了激光器,半导体泵浦源还应用于光通信领域。
光通信是一种利用光信号传输信息的通信方式,具有传输速度快、带宽大等优点。
半导体泵浦源作为光通信的光源,能够提供高质量的激光输出,保证通信信号的传输质量。
半导体泵浦源还应用于医疗设备中。
激光在医疗领域有着广泛的应用,如激光手术、激光治疗等。
半导体泵浦源能够提供高能量密度的激光输出,满足医疗设备对激光能量的需求。
半导体泵浦源是一种能够产生激光输出的关键元件。
它利用半导体材料的特性,通过外界的泵浦源提供能量,实现激光器的工作。
半导体泵浦源具有体积小、效率高、寿命长等特点,广泛应用于激光器、光通信、医疗设备等领域。
808nm激光器说明808nm激光器是一种常见的激光器类型,其波长为808纳米。
本文将对808nm激光器进行详细说明,包括其原理、应用领域以及特点。
一、激光器原理808nm激光器是一种半导体激光器,其工作原理基于半导体材料的电子能级结构。
当外加电流通过半导体材料时,电子会从低能级跃迁到高能级,形成电子空穴对。
当这些电子和空穴重新结合时,会释放出光子能量,产生激光。
二、应用领域808nm激光器在医疗、工业和科研领域有广泛的应用。
1. 医疗应用:808nm激光器被广泛应用于医疗美容领域,用于脱毛、皮肤再生和血管治疗等。
其波长能够被黑色素吸收,可以有效地破坏毛囊和血管,达到治疗的效果。
2. 工业应用:808nm激光器在工业领域主要用于材料加工,如激光焊接、激光切割和激光打标等。
其高能量密度和较高的光束质量使其成为高效、精确的加工工具。
3. 科研应用:808nm激光器在科研领域被广泛用于光谱分析、光学测量和实验研究等。
其稳定的输出功率和较窄的光谱线宽使其成为研究人员进行精确实验的理想选择。
三、特点808nm激光器具有以下特点:1. 高效能:808nm激光器的电光转换效率较高,能够将大部分电能转化为激光能量,具有较高的能量利用率。
2. 窄线宽:808nm激光器的光谱线宽较窄,能够提供较高的光束质量和较好的光学性能。
3. 长寿命:808nm激光器采用半导体材料作为激光介质,具有较长的使用寿命和稳定性。
4. 易于控制:808nm激光器的输出功率和频率可以通过调节电流和温度等参数进行精确控制,具有较好的可调性。
5. 安全性高:808nm激光器的波长处于近红外区域,对人体组织的穿透性较强,但对眼睛的损伤较小,使用时需要注意眼睛的防护。
808nm激光器是一种重要的激光器类型,具有广泛的应用领域和独特的特点。
随着科技的不断进步,808nm激光器在各个领域的应用将会更加广泛,为人们的生活和工作带来更多便利和创新。
808nm光纤耦合激光器功率808nm光纤耦合激光器功率是一个重要的激光器性能参数,通常用来描述光源的输出功率大小。
在医疗美容、半导体制造和科研领域中,808nm光纤耦合激光器广泛应用于激光照射、激光切割、激光焊接等工艺中。
本文将介绍808nm光纤耦合激光器功率的相关概念、其影响因素以及提高功率的方法。
首先,我们来了解一下光纤耦合激光器的功率概念。
光纤耦合激光器的功率指的是激光器输出端的平均功率,通常以瓦特(W)作为单位进行衡量。
光纤耦合激光器的功率与其泵浦源的功率、光纤的光损耗以及光学系统的效率密切相关。
其次,光纤耦合激光器功率受到多个因素的影响。
首先是泵浦源的功率。
泵浦源是提供能量给激光器介质的光源,在泵浦能量越大的情况下,激光器的输出功率也会相应增加。
其次是光纤的光损耗。
光纤会对传输的激光束进行损耗,导致输出功率下降。
因此,选择光损耗小、传输效率高的光纤对于提高输出功率非常重要。
最后是光学系统的效率。
光学系统包括透镜、反射镜等光学元件,其设计和质量都会直接影响输出功率的大小。
为了提高808nm光纤耦合激光器的功率,可以采取以下方法。
首先是增加泵浦源的功率,例如使用功率更大的二极管激光器来提供泵浦能量。
其次是选择光损耗小的光纤,例如低损耗的光纤材料以及精细加工的光纤连接接头。
此外,还可以通过优化光学系统来提高传输效率,例如使用高透射率的透镜和反射镜,减小反射和散射损耗。
此外,合理的整体激光器设计以及良好的冷却措施也有助于提高功率。
总而言之,808nm光纤耦合激光器功率是一个重要的性能指标,和泵浦源功率、光纤光损耗以及光学系统效率等因素密切相关。
通过增加泵浦源功率、选择光损耗小的光纤、优化光学系统和整体激光器设计等方法,我们可以有效地提高808nm光纤耦合激光器的输出功率。
这对于满足各种实际应用的需求非常重要。
实验三 半导体泵浦激光实验半导体泵浦532nm 绿光激光器由于具有波长短,光子能量高,体积小,效率高,可靠性高,寿命长,在水中传输距离远和对人眼敏感等优点,近几年在光谱技术,激光医学,信息存储,彩色打印,水下通讯等领域展示出极为重要的作用,从而成为各国研究的热点。
半导体泵浦532nm 绿光激光器适用于大学近代物理教学中的非线性光学实验。
本实验以808nm 半导体激光泵浦Nd 3+: YVO 4激光器为研究对象,在激光腔内插入倍频晶体KTP ,产生532nm 倍频光,观察倍频现象、测量倍频效率、相位匹配角等基本参数。
一、实验目的1、 掌握光路调整基本方法,观察横模,测量输出红外光与泵浦能量的关系,斜效率和阈值;2、 测量半导体激光器注入电流和功率输出的变化关系,了解激光原理及倍频等激光技术。
二、实验原理光与物质的相互作用可以归结为光与原子的相互作用。
爱因斯坦从辐射与原子的相互作用的量子论观点出发提出:在平衡条件下,这种相互作用过程有三种,也就是受激吸收,受激辐射和自发辐射。
假定一个原子,其基态能量为E 1,第一激发态的能量为E 2,如图1所示。
如果原子开始处于基态,在没有外界光子入射时,原子的能级状态将保持不变。
如果有一个能量为2121hv E E =-的光子入射,则原子就会吸收这个光子而跃迁到第一激发态。
原子的跃迁必须符合跃迁选择定则,也就是入射光子的能量21hv 等原子的能级间隔21E E -时才能被吸收(为叙述的简单起见,这里假定自发辐射是单色的)。
激发态的寿命很短,在不受外界影响时,它们会自发地返回到基态并发射出光子。
自发辐射与外界作用无关,由于原子的辐射都是自发地,独立地进行的,所以不同原子发射的光子的发射方向和初相位都是随机的,各不相同的,如图2所示。
如果有一个能量为2121hv E E =-的光子入射,则原子就会在这个光子的激励下产生新的光子,即引起受激辐射,如图3所示,受激辐射发射的光子与外来光子的频率、发射方向、偏振态和初相位完全相同。
808nm光纤耦合半导体激光泵浦源808nm光纤耦合半导体激光泵浦源是一种利用光纤耦合技术,将激光器的输出光束耦合到光纤中进行激光泵浦的一种光纤耦合激光器源。
它具有方便性、高效性和稳定性等特点,在现代光通信和光电器件领
域有着广泛的应用。
本文将从原理、结构和应用领域等方面介绍808nm 光纤耦合半导体激光泵浦源。
808nm光纤耦合半导体激光泵浦源的原理是利用半导体激光器产生808nm波长的光束,通过透镜将光束聚焦到光纤的输入端,然后通过光纤传输到输出端,从而实现对目标物质的泵浦。
在光纤耦合激光器源中,光纤起到了光束传输的作用,避免了传统激光器泵浦源中存在的
激光束扩散、气动光损耗等问题,提高了光能利用率和泵浦效率。
808nm光纤耦合半导体激光泵浦源的结构主要包括激光器、透镜、光纤和输出端。
激光器是光源,产生波长为808nm的激光光束。
透镜
起到聚焦和耦合的作用,通过调整透镜的位置和焦距,实现光束的聚
焦和耦合效果。
光纤作为传输媒介,将激光光束从输入端传输到输出
端。
输出端通常配备有滤光片和准直透镜,用于过滤杂散光和调整激光的准直性。
808nm光纤耦合半导体激光泵浦源的应用非常广泛,主要包括以下几个方面:
首先,光通信领域。
808nm光纤耦合半导体激光泵浦源可以作为光纤放大器的泵浦源,用于放大光信号,提高光通信系统的传输距离和信号质量。
另外,它还可以用于光纤激光器的泵浦源,产生窄线宽、高功率的激光光束,用于光纤光通信系统中的光谱分析、光纤传感器等应用。
其次,光电子器件领域。
808nm光纤耦合半导体激光泵浦源可以用于激发固体或半导体材料中的光电子材料,产生特定波长的光激发物质的电子跃迁过程,实现电子的能级转移和激发态的产生,从而实现激光器、光电二极管、光电晶体管等光电子器件的制备。
再次,生物医学领域。
808nm光纤耦合半导体激光泵浦源可以用于激发生物标记物(如荧光染料)的荧光发射过程,实现生物体内的光学成像、光热治疗、光动力疗法等应用。
它具有对生物组织穿透能力
强、选择性强、治疗效果好等优点,在癌症治疗、皮肤美容等领域有
着广阔的前景。
最后,科学研究领域。
808nm光纤耦合半导体激光泵浦源可以用于实验室中的光谱分析、光学实验、光学调制、光学测量等科学研究工作。
由于它具有高功率、窄线宽、稳定性好等特点,能够提供高强度、单色的激光光源,满足科研工作中对激光的严格要求。
综上所述,808nm光纤耦合半导体激光泵浦源是一种优秀的光纤耦合激光器源,具有方便性、高效性和稳定性等优点。
在光通信、光电
子器件、生物医学和科学研究等领域都有着广泛的应用前景。
随着科
学技术的不断发展,相信808nm光纤耦合半导体激光泵浦源将会在更
多领域中发挥重要作用。