简述8086内部寄存器结构
- 格式:docx
- 大小:3.34 KB
- 文档页数:2
微机原理第2章8086/8088系统结构8086/8088微处理器的内部结构微机原理8086是Intel系列的16bit微处理器,属第三代。
它有16bit数据总线和20bit地址线,可寻址1M空间。
8088有8bit数据总线和20bit地址线,可寻址1M空间。
其内部有16bit数据总线。
AH AL BH BL SI ALU 运算数暂存器标志寄存器EU控制电路16位CSDSSS ES IP 内部暂存器8位1 2 3 4 5 6执行部件(EU )总线控制电路 指令队列缓冲器总线接口部件(BIU )通用寄存器加法器80888086累加器基址寄存器计数寄存器数据寄存器堆栈指针基址指针目的变址源变址AX BX CX DX微机原理CPUEUBIU •16位通用寄存器组(AX、BX、CX 、DX、SP、BP、SI、DI)•算术逻辑单元—ALU•暂存器•EU控制器•标志寄存器—FLAG•段寄存器组(CS,DS,SS,ES),指令指针—IP •地址加法器•指令队列•总线接口控制逻辑微机原理EU 部件不直接与外部总线相连。
它从BIU的指令队列中取指令和数据。
EU 负责指令的执行。
BIU 根据EU 的请求,完成CPU 与存储器或I/O 之间的数据传送。
功能:符号名称高8位符号低8位符号AX累加器AH AL BX基址寄存器BH BL CX计数寄存器CH CL DX数据寄存器DH DL这里的寄存器可以8位或16位参与操作。
符号名称SP堆栈指针寄存器BP基址指针寄存器SI源变址寄存器DI目的变址寄存器这里的寄存器只能以16位参与操作。
符号名称CS代码段寄存器DS数据段寄存器ES附加段寄存器SS堆栈段寄存器IP指令指针寄存器D15D14D13D12D11D10D9D8 x x x x OF DF IF TF D7D6D5D4D3D2D1D0 SF ZF x AF x PF x CF符号名称定义CF进位标志运算中,最高位有进位或借位时CF=1,否则CF=0 PF奇偶标志运算结果低8位“1”个数为偶数时PF=1,否则PF=0 AF辅助进位D3有向D4进(借)位时AF=1,否则AF=0ZF零标志运算结果每位均为“0”时ZF=1, 否则ZF=0SF符号标志运算结果的最高位为1时SF=1,否则SF=0OF溢出标志运算中产生溢出时OF=1, 否则OF=0符号名称功能TF陷阱标志TF=1将使CPU进入单步执行指令IF中断标志IF=1允许CPU响应可屏蔽中断DF方向标志DF=1将从高地址向低地址处理字符串所以:CF=0PF=1AF=1ZF=0SF=1OF=0微机原理下次课见。
第二章8086/8088微处理器及其系统结构内容提要:1.8086微处理器结构:CPU内部结构:总线接口部件BIU,执行部件EU;CPU寄存器结构:通用寄存器,段寄存器,标志寄存器,指令指针寄存器;CPU引脚及其功能:公用引脚,最小模式控制信号引脚,最大模式控制信号引脚。
2.8086微机系统存储器结构:存储器地址空间与数据存储格式;存储器组成;存储器分段。
3.8086微机系统I/O结构4.8086最小/最大模式系统总线的形成5.8086CPU时序6.最小模式系统中8086CPU的读/写总线周期7.微处理器的发展学习目标1.掌握CPU寄存器结构、作用、CPU引脚功能、存储器分段与物理地址形成、最小/最大模式的概念和系统组建、系统总线形成;2.理解存储器读/写时序;3.了解微处理器的发展。
难点:1.引脚功能,最小/最大模式系统形成;2.存储器读/写时序。
学时:8问题:为什么选择8088/8086?•简单、容易理解掌握•与目前流行的P3、P4向下兼容,形成x86体系•16位CPU目前仍在大量应用思考题1、比较8086CPU与8086CPU的异同之处。
2、8086CPU从功能上分为几部分?各部分由什么组成?各部分的功能是什么?3、CPU的运算功能是由ALU实现的,8086CPU中有几个ALU?是多少位的ALU?起什么作用?4、8086CPU有哪些寄存器?各有什么用途?标志寄存器的各标志位在什么情况下置位?5、8086CPU内哪些寄存器可以和I/O端口打交道,它们各有什么作用?6、8086系统中的物理地址是如何得到的?假如CS=2400H,IP=2l00H,其物理地址是多少?思考题1.从时序的观点分析8088完成一次存储器读操作的过程?2.什么是8088的最大、最小模式?3.在最小模式中,8088如何产生其三总线?4.在最大模式中,为什么要使用总线控制器?思考题1.试述最小模式下读/写总线周期的主要区别。
8086的内部结构
1.寄存器:
8086包含了8个16位的通用寄存器,分为AX、BX、CX、DX、SI、DI、BP和SP。
其中AX寄存器又被分为两个8位的子寄存器AH和AL。
这些寄
存器用于存储数据、地址和控制信息,可以进行各种算术和逻辑操作。
此外,8086还有一些特殊的寄存器,如标志寄存器FLAGS用于存储标志位,IP指令指针寄存器用于存储下一条指令的地址。
2.执行单元:
8086的执行单元包括指令执行单元、算术逻辑单元(ALU)和控制单元。
指令执行单元负责从内存中读取指令,并根据指令的操作码执行相应
的操作。
ALU用于进行算术和逻辑操作,如加减、与或非等。
控制单元用
于控制指令的执行顺序和分支跳转。
3.数据总线和地址总线:
8086有一个16位的数据总线,用于传输数据。
它还有一个20位的
地址总线,用于寻址内存中的数据和指令。
通过这两条总线,8086能够
与外部存储器、输入输出设备等进行数据的读写和通信。
4.总线控制器:
5.输入输出控制器:
6.内存管理单元(MMU):
7.控制信号产生器:
总的来说,8086的内部结构是一个复杂的系统,包括寄存器、执行单元、数据总线和地址总线、总线控制器、输入输出控制器、内存管理单元和控制信号产生器等组件。
这些组件相互协作,使得8086能够进行数据的处理和存储,实现指令的执行和数据的输入输出。
8086CPU 的结构与功能CPU 结构与功能不管什么型号的CPU ,其内部均有这四⼤部件1. ALU :算术逻辑单元2. ⼯作寄存器:分为数据寄存器和地址寄存器⼯作寄存器的⽬的是为了提⾼运算速度,希望参与运算的数据不从外部存储器去取数据,⽽是在CPU 内部取,所以要有能暂存少量数据的寄存器。
数据寄存器是专门存放数据的,地址寄存器是专门存放地址,进⾏间接寻址⽅式,但当地址寄存器不提供地址时,也可以⽤来暂存数据。
3. 控制器:中央指挥机关4. I/O 控制逻辑电路⼀般CPU 执⾏存储器(按字节组织)⾥⾯指令过程如下:1. CPU 通过控制器部件⾥⾯的程序计数器(PC )给外部存储器的地址引脚输出地址(通过地址总线AB ),同时CPU 给存储器发送读操作命令;2. 在读操作下,就把这个地址单元的指令代码通过数据总线(DB ),取回来放在指令寄存器⾥⾯(IR ),注意此时因为指令没有执⾏完,所以PC 还不能去往下⼀条指令,IR 没有地⽅放数据。
3. 指令译码器(ID )不断检测指令寄存器有没有数据,有的话就把指令取⾛放在ID ⾥⾯,取来的指令就被ID 译码分析,就知道这个指令希望CPU 做什么,怎么做;4. ID 通知控制逻辑部件,在相应的控制引脚发出相应的有效命令(读,写等);5. 此条指令执⾏完,IR 为空,PC ⾃动增加到下⼀条指令的地址,执⾏下⼀条指令流程。
如果指令为n 字节,PC ⾃动增n 。
因为在取指令时候,不能执⾏指令,在执⾏指令时候,不能取指令,因此这种架构CPU 是取指令->执⾏指令->取指令...这样循环下去。
CPU 执⾏效率不⾼。
堆栈由先进后出原则组织的存储器区域,称为堆栈。
单⽚机应⽤中,堆栈是个特殊存储区,堆栈属于RAM 空间的⼀部分,堆栈⽤于函数调⽤、中断切换时保存和恢复现场数据(临时数据)。
对于8006 CPU ⽽⾔,堆栈操作是按字操作。
堆栈单元的地址指针由堆栈指针寄存器SP 的内容提供。
简述8086内部寄存器结构
8086内部寄存器结构是指8086微处理器中用于存储和处理数据的寄存器的组织方式。
8086处理器是Intel公司于1978年推出的一款16位微处理器,是后来x86系列处理器的祖先。
它的内部寄存器结构包括通用寄存器、指针寄存器、索引寄存器、段寄存器和标志寄存器。
首先是通用寄存器,8086处理器有四个16位的通用寄存器,分别是AX、BX、CX和DX。
其中AX寄存器是累加器,用于存储算术运算的结果;BX寄存器是基址寄存器,常用于存储偏移地址;CX 寄存器是计数器,用于循环和计数操作;DX寄存器是数据寄存器,用于存储数据。
其次是指针寄存器,8086处理器有两个16位的指针寄存器,分别是SP和BP。
SP寄存器是堆栈指针寄存器,用于指向堆栈的栈顶;BP寄存器是基址指针寄存器,常用于指向栈帧的基址。
再次是索引寄存器,8086处理器有两个16位的索引寄存器,分别是SI和DI。
SI寄存器是源索引寄存器,常用于指向源操作数;DI 寄存器是目的索引寄存器,常用于指向目的操作数。
然后是段寄存器,8086处理器有四个16位的段寄存器,分别是CS、DS、ES和SS。
CS寄存器是代码段寄存器,用于存储代码段的段地址;DS寄存器是数据段寄存器,用于存储数据段的段地址;
ES寄存器是附加段寄存器,常用于存储附加数据段的段地址;SS 寄存器是堆栈段寄存器,用于存储堆栈段的段地址。
最后是标志寄存器,8086处理器有一个16位的标志寄存器,用于存储处理器的状态信息。
标志寄存器中的各位表示不同的状态,如进位标志、零标志、符号标志等。
这些标志位可以被程序读取和设置,用于控制程序的执行。
这些寄存器之间可以相互传递数据,实现数据的存储和处理。
通用寄存器可以进行算术和逻辑运算,指针寄存器和索引寄存器常用于存储和访问内存中的数据,段寄存器用于访问不同的内存段,标志寄存器用于控制程序的执行。
8086内部寄存器结构的合理设计,使得处理器具有较强的数据处理和运算能力,并且能够有效地访问内存中的数据。
这为后来x86系列处理器的发展奠定了基础,也为计算机系统的性能提升做出了贡献。