二次函数的性质教案
- 格式:doc
- 大小:709.00 KB
- 文档页数:5
二次函数图像和性质教学设计【优秀3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数图像和性质教学设计【优秀3篇】二次函数的基本表示形式为y=aX²+bX+c(a≠0)。
二次函数教案(优秀5篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教学心得体会、工作心得体会、学生心得体会、综合心得体会、党员心得体会、培训心得体会、军警心得体会、观后感、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as teaching experience, work experience, student experience, comprehensive experience, party member experience, training experience, military and police experience, observation and feedback, essay collection, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!二次函数教案(优秀5篇)课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。
关于二次函数的图像与性质的数学教案(9篇)二次函数的图像与性质的数学教案篇1【学问与技能】1.会用描点法画函数y=ax2(a>0)的图象,并依据图象熟悉、理解和把握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简洁的实际问题.【过程与方法】经受探究二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象讨论函数的阅历,培育观看、思索、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间沟通争论,到达对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,把握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步熟悉问题 1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么外形呢?问题2 如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思索探究,猎取新知探究1 画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互沟通、展现,表扬画得比拟标准的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和进展趋势.误区二:并非对称点,存在漏点现象,导致抛物线变形。
误区三:无视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延长,而并非到某些点停顿.二次函数的图像与性质的数学教案篇2一学习目标1、把握二次函数的图象及性质;2、会用二次函数的图象与性质解决问题;学习重点:二次函数的性质;学习难点:二次函数的性质与图像的应用;二学问点回忆:函数的性质函数函数图象a0a0性质三典型例题:例 1:已知是二次函数,求m的值例 2:(1)已知函数在区间上为增函数,求a的范围;(2)知函数的单调区间是,求a;例 3:求二次函数在区间[0,3]上的最大值和最小值;变式:(1)已知在[t,t+1]上的最小值为g(t),求g(t)的表达式。
二次函数的图象和性质优质课教案第一章:引言教学目标:1. 让学生了解二次函数的概念和重要性。
2. 引导学生通过实际问题情境,感受二次函数的应用。
教学内容:1. 引入二次函数的概念,给出一般形式的二次函数表达式:y = ax^2 + bx + c。
2. 通过实际问题情境,让学生观察二次函数的图象和性质。
教学活动:1. 引入二次函数的概念,引导学生理解二次函数的三个参数a、b、c的含义。
2. 通过实际问题情境,让学生观察二次函数的图象和性质,例如:抛物线的开口方向、顶点的坐标等。
教学评价:1. 检查学生对二次函数概念的理解程度。
2. 评估学生在实际问题情境中观察二次函数图象和性质的能力。
第二章:二次函数的图象教学目标:1. 让学生掌握二次函数图象的基本特征。
2. 培养学生通过图象分析二次函数性质的能力。
教学内容:1. 介绍二次函数图象的基本特征,包括开口方向、顶点、对称轴等。
2. 引导学生通过图象分析二次函数的增减性和最值问题。
教学活动:1. 利用多媒体展示不同a值的二次函数图象,引导学生观察开口方向的变化。
2. 让学生通过图象分析二次函数的增减性和最值问题,例如:找出函数的最大值或最小值。
教学评价:1. 检查学生对二次函数图象基本特征的掌握程度。
2. 评估学生在图象分析中解决问题的能力。
第三章:二次函数的性质教学目标:1. 让学生了解二次函数的顶点公式及其应用。
2. 培养学生通过二次函数性质解决实际问题的能力。
教学内容:1. 介绍二次函数的顶点公式:顶点坐标为(-b/2a, c b^2/4a)。
2. 引导学生通过二次函数的性质解决实际问题,例如:求函数的最值、对称轴等。
教学活动:1. 让学生通过实际问题情境,应用顶点公式求解二次函数的最值、对称轴等问题。
2. 引导学生利用二次函数的性质解决实际问题,例如:求解抛物线与直线的交点等。
教学评价:1. 检查学生对二次函数顶点公式的掌握程度。
2. 评估学生在实际问题中应用二次函数性质解决问题的能力。
二次函数的性质与图像教案一、教学目标1. 让学生了解二次函数的定义和标准形式;2. 理解二次函数的性质,包括顶点、开口、对称轴等;3. 掌握二次函数图像的特点,如开口方向、顶点位置等;4. 能够运用二次函数的性质和图像解决实际问题。
二、教学内容1. 二次函数的定义和标准形式;2. 二次函数的性质:顶点、开口、对称轴;3. 二次函数图像的特点:开口方向、顶点位置等;4. 实际问题举例。
三、教学重点与难点1. 重点:二次函数的性质和图像的特点;2. 难点:运用二次函数的性质和图像解决实际问题。
四、教学方法1. 采用讲解、演示、练习、讨论等教学方法;2. 使用多媒体课件辅助教学,直观展示二次函数的图像;3. 引导学生通过实际问题,探究二次函数的性质和图像特点。
五、教学过程1. 引入:通过生活中的实例,引导学生思考二次函数的存在;2. 讲解:讲解二次函数的定义和标准形式,阐述二次函数的性质,如顶点、开口、对称轴等;3. 演示:使用多媒体课件,展示二次函数的图像,让学生直观理解二次函数的性质和图像特点;4. 练习:布置练习题,让学生巩固二次函数的性质和图像知识;5. 讨论:组织学生分组讨论,分享解题心得和实际问题解决方法;6. 总结:总结二次函数的性质和图像特点,强调运用二次函数解决实际问题的重要性。
六、教学评估1. 课堂练习:设计一份包含不同难度的练习题,以评估学生对二次函数性质与图像的理解程度。
2. 小组讨论:观察学生在小组讨论中的参与情况和合作能力,评估他们对知识点的掌握和运用能力。
3. 课后作业:布置一道综合性的课后作业,要求学生应用二次函数的性质与图像解决实际问题,以评估他们的应用能力。
七、教学资源1. 多媒体课件:制作详细的课件,包括二次函数的图像、性质解释和实际问题示例。
2. 练习题库:准备一份涵盖各种类型题目的题库,用于课堂练习和课后作业。
3. 实际问题案例:收集一些与二次函数相关的实际问题案例,用于教学中的实例分析。
教案:二次函数的图像和性质一、二次函数y=ax 2的图像和性质1、图像是( )2、当a>0时,开口向();当a<0时,开口向()3、顶点坐标是()4、对称轴是()5、增减性:①当a>0,X()时,y 随X的增大而();当X()时,y随X的增大而();②当a<0,X()时,y 随X的增大而();当X()时,y随X的增大而();6、极值:①当a>0,X=()时,y 有()=(),②当a<0,X=()时,y有()=()。
7、|a|越大,抛物线的开口越(),反之,|a|越小,抛物线的开口越()。
变式练习:说出下列函数的性质:(1) y =23 x 2 ,(2) y =-8x 2 ,(3) y =-x 2,(4)y =-12 x 2, (5)y =12 x 2, (6)y =x 2,(7)y =2x 2 ,(8)y =-2x 2 二、二次函数y =ax 2+K 的图像和性质1、图像是( )2、当a >0时,开口向( );当a <0时,开口向( )3、顶点坐标是( )4、对称轴是( )5、增减性:①当a >0,X ( )时,y 随X 的增大而( );当X ( )时,y 随X 的增大而( ); ②当a <0,X ( )时,y 随X 的增大而( );当X ( )时,y 随X 的增大而( );6、极值:①当a >0,X=( )时,y 有( )=( ),②当a <0,X=( )时,y 有( )=( )。
7、|a | 越大,抛物线的开口越( ),反之,|a | 越小,抛物线的开口越( )。
8、二次函数y =ax 2+K 的图像是由( )的图像( )平移( )个单位得到的,平移法则是:( ). 变式练习:说出下列函数的性质:(1) y =23 x 2 +5,(2) y =-8x 2 - 6,(3) y =-x 2 -12 ,( 4)y =-12 x 2+23 , (5)y =12 x 2 -12 (6)y =x 2+15(7)y =2x 2 - 8,(8)y =-2x 2+12 三、二次函数y =a (x+h )2的图像和性质1、图像是( )2、当a >0时,开口向( );当a <0时,开口向( )3、顶点坐标是( )4、对称轴是( )5、增减性:①当a >0,X ( )时,y 随X 的增大而( );当X ( )时,y 随X 的增大而( ); ②当a <0,X ( )时,y 随X 的增大而( );当X ( )时,y 随X 的增大而( );6、极值:①当a >0,X=( )时,y 有( )=( ),②当a <0,X=( )时,y 有( )=( )。
二次函数的性质与图像教案一、教学目标:1. 理解二次函数的定义和标准形式;2. 掌握二次函数的性质,包括对称轴、顶点、开口方向等;3. 能够绘制和分析二次函数的图像;4. 能够应用二次函数解决实际问题。
二、教学内容:1. 二次函数的定义和标准形式;2. 二次函数的性质:对称轴、顶点、开口方向;3. 二次函数的图像:抛物线的基本形状;4. 实际问题中的应用。
三、教学方法:1. 讲授法:讲解二次函数的定义、性质和图像;2. 案例分析法:分析实际问题中的二次函数;3. 互动讨论法:引导学生参与课堂讨论,巩固知识点;4. 实践操作法:让学生动手绘制二次函数的图像,加深理解。
四、教学准备:1. 教学PPT:包含二次函数的定义、性质、图像及实际问题;2. 练习题:用于巩固所学知识;3. 绘图工具:如直尺、圆规等,用于绘制二次函数的图像。
五、教学过程:1. 导入:通过一个实际问题引入二次函数的概念;2. 讲解:讲解二次函数的定义、性质和图像,引导学生理解;3. 案例分析:分析实际问题中的二次函数,让学生学会应用;4. 互动讨论:引导学生参与课堂讨论,巩固知识点;5. 实践操作:让学生动手绘制二次函数的图像,加深理解;6. 总结:对本节课的内容进行总结,强调重点知识点;7. 布置作业:让学生通过练习题巩固所学知识。
六、教学评估:1. 课堂问答:通过提问方式检查学生对二次函数定义和性质的理解;2. 练习题:布置针对性的练习题,评估学生对二次函数图像分析的能力;3. 小组讨论:评估学生在团队合作中解决问题的能力;4. 作业反馈:收集学生作业,评估其对课堂所学知识的掌握程度。
七、教学拓展:1. 探讨二次函数在实际生活中的应用,如抛物线镜面、物理运动等;2. 介绍二次函数相关的数学历史故事,激发学生兴趣;3. 引导学生探究二次函数的其它性质,如最大值、最小值等;4. 组织数学竞赛,提高学生的学习积极性。
八、教学反思:1. 反思教学方法:根据学生反馈,调整教学方法,提高教学效果;2. 反思教学内容:确保教学内容符合学生认知水平,适当调整难度;3. 反思教学过程:关注学生在课堂上的参与度,优化教学过程;4. 及时与学生沟通:了解学生的学习需求,调整教学策略。
二次函数教案(一)教学目标:1. 理解二次函数的定义和基本性质。
2. 学会如何列写二次函数的一般形式。
3. 掌握二次函数的图像特点。
教学重点:1. 二次函数的定义和一般形式。
2. 二次函数的图像特点。
教学难点:1. 理解二次函数的图像特点。
2. 掌握如何求解二次函数的零点。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入二次函数的概念,让学生回顾一次函数的知识。
2. 提问:一次函数的图像是一条直线,二次函数的图像会是什么样子呢?二、新课讲解(15分钟)1. 讲解二次函数的定义:一般形式为y=ax^2+bx+c(a≠0)。
2. 解释二次函数的各个参数的含义:a是二次项系数,b是一次项系数,c是常数项。
3. 举例说明如何列写二次函数的一般形式。
4. 讲解二次函数的图像特点:开口方向、顶点、对称轴等。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 讲解练习题的答案,解析解题思路。
四、课堂小结(5分钟)2. 强调二次函数的图像特点。
教学反思:本节课通过讲解和练习,让学生掌握了二次函数的定义和一般形式,以及图像特点。
在教学中,可以通过举例和互动提问的方式,激发学生的兴趣和思考。
在课堂练习环节,要注意关注学生的解题过程,培养学生的思维能力。
二次函数教案(二)教学目标:1. 学会如何求解二次方程。
2. 理解二次函数的零点与二次方程的关系。
3. 掌握二次函数的图像与x轴的交点。
教学重点:1. 求解二次方程的方法。
2. 二次函数的零点与图像的关系。
教学难点:1. 理解二次方程的解法。
2. 掌握二次函数的图像与x轴的交点。
1. 教学课件或黑板。
2. 练习题。
教学过程:一、复习导入(5分钟)1. 复习二次函数的定义和一般形式。
2. 提问:二次函数的图像与x轴的交点有什么关系?二、新课讲解(15分钟)1. 讲解如何求解二次方程:公式法、因式分解法等。
2. 解释二次函数的零点与二次方程的关系:零点是二次方程的解。
《二次函数》教学设计最新6篇作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
那么大家知道正规的教案是怎么写的吗?下面是书包范文为大家带来的《1.1二次函数》教学设计最新6篇,希望能够对大家的写作有一些帮助。
次函数教案篇一教学目标【知识与技能】使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质。
【过程与方法】使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力。
【情感、态度与价值观】使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质。
重点难点【重点】使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象。
【难点】用描点法画出二次函数y=ax2的图象以及探索二次函数的性质。
教学过程一、问题引入1、一次函数的图象是什么?反比例函数的图象是什么?(一次函数的图象是一条直线,反比例函数的图象是双曲线。
)2、画函数图象的一般步骤是什么?一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线)。
3、二次函数的图象是什么形状?二次函数有哪些性质?(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质。
)二、新课教授【例1】画出二次函数y=x2的图象。
解:(1)列表中自变量x可以是任意实数,列表表示几组对应值。
(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y)。
(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示。
思考:观察二次函数y=x2的图象,思考下列问题:(1)二次函数y=x2的图象是什么形状?(2)图象是轴对称图形吗?如果是,它的对称轴是什么?(3)图象有最低点吗?如果有,最低点的坐标是什么?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题。
二次函数的性质的教案一、教学内容本节课选自人教版八年级数学下册第十七章《二次函数》的第三节“二次函数的性质”。
具体内容包括:二次函数y=ax^2+bx+c(a、b、c是常数,a≠0)的性质,主要包括开口方向、对称轴、顶点坐标、最值等。
二、教学目标1. 让学生掌握二次函数的基本性质,能准确判断开口方向、对称轴、顶点坐标和最值。
2. 培养学生的观察能力和逻辑思维能力,提高解决问题的能力。
3. 使学生能够运用二次函数的性质解决实际问题,体会数学在实际生活中的应用。
三、教学难点与重点教学难点:二次函数性质的推导和应用。
教学重点:开口方向、对称轴、顶点坐标和最值的判断。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:直尺、圆规、计算器。
五、教学过程1. 实践情景引入利用多媒体展示一个抛物线的实际情景(如篮球投篮),引导学生观察抛物线的特点。
2. 探索性质(1)让学生回顾一次函数的性质,探讨二次函数的性质。
(2)指导学生观察抛物线的开口方向、对称轴、顶点坐标和最值,引导学生发现规律。
3. 例题讲解(1)判断二次函数的开口方向、对称轴、顶点坐标和最值。
(2)求解实际问题,如:求最大(小)值、确定物体运动轨迹等。
4. 随堂练习让学生完成教材第17页练习题1、2、3。
六、板书设计1. 二次函数的定义:y=ax^2+bx+c(a、b、c是常数,a≠0)2. 二次函数的性质:(1)开口方向:a>0,开口向上;a<0,开口向下。
(2)对称轴:x=b/2a。
(3)顶点坐标:(b/2a, y最小(大)值)。
(4)最值:当x=b/2a时,y取最小(大)值。
七、作业设计1. 作业题目:(1)求二次函数y=2x^24x+3的开口方向、对称轴、顶点坐标和最值。
(2)已知二次函数的顶点为(1, 3),且过点(0, 1),求函数的解析式。
2. 答案:(1)开口方向:向上;对称轴:x=1;顶点坐标:(1, 1);最值:y最小值为1。
数学《二次函数》优秀教案数学《二次函数》优秀教案(精选8篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。
优秀的教案都具备一些什么特点呢?下面是小编收集整理的数学《二次函数》优秀教案,仅供参考,欢迎大家阅读。
数学《二次函数》优秀教案篇1教学目标(一)教学知识点1、能够利用二次函数的图象求一元二次方程的近似根。
2、进一步发展估算能力。
(二)能力训练要求1、经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。
2、利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想。
(三)情感与价值观要求通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。
教学重点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2、能够利用二次函数的图象求一元二次方程的近似根。
教学难点利用二次函数的图象求一元二次方程的近似根。
教学方法学生合作交流学习法。
教具准备投影片三张第一张:(记作§2.8.2A)第二张:(记作§2.8.2B)第三张:(记作§2.8.2C)教学过程Ⅰ、创设问题情境,引入新课[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x 轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可。
但是在图象上我们很难准确地求出方程的解,所以要进行估算。
本节课我们将学习利用二次函数的图象估计一元二次方程的根。
数学《二次函数》优秀教案篇2一.学习目标1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。
2.了解二次函数关系式,会确定二次函数关系式中各项的系数。
二次函数的图像与性质教案教案标题:二次函数的图像与性质教案教案目标:1. 理解二次函数的基本概念和性质;2. 掌握二次函数图像的绘制方法;3. 能够分析二次函数的图像特征和性质。
教案步骤:步骤一:引入二次函数的概念和性质(10分钟)1. 引导学生回顾一次函数的概念和性质,然后引入二次函数的概念,解释二次函数与一次函数的区别。
2. 介绍二次函数的一般形式:f(x) = ax^2 + bx + c,并解释各项的含义。
3. 解释二次函数的性质:对称性、开口方向、顶点、轴等。
步骤二:绘制二次函数的图像(20分钟)1. 通过给定不同的a、b、c值,绘制不同形态的二次函数图像。
2. 详细解释如何确定二次函数的顶点、轴和开口方向。
3. 引导学生观察图像的变化规律,总结二次函数图像与a、b、c值的关系。
步骤三:分析二次函数的图像特征和性质(15分钟)1. 引导学生观察不同形态的二次函数图像,分析其对称性、最值、零点等特征。
2. 引导学生发现二次函数图像的对称轴与一次函数图像的x轴有何关系。
3. 引导学生讨论二次函数图像的开口方向与a值的关系,并总结规律。
步骤四:应用二次函数的图像与性质(15分钟)1. 给定实际问题,引导学生建立与之对应的二次函数模型。
2. 利用二次函数图像的性质,解决实际问题,如求最值、零点等。
3. 引导学生讨论二次函数图像在不同场景中的应用,如抛物线的运动轨迹、物体的抛射问题等。
步骤五:总结与拓展(10分钟)1. 让学生总结二次函数的图像特征和性质,包括对称性、开口方向、顶点、轴等。
2. 引导学生思考二次函数的应用领域,并拓展到其他数学知识的应用,如函数的复合、函数的逆运算等。
教学资源:1. 教材:包含二次函数相关知识的教材或教学参考书。
2. 白板、彩色笔等教学工具。
3. 实际问题的案例素材。
评估方式:1. 课堂练习:通过绘制二次函数图像、分析图像特征等练习,检查学生对二次函数的理解和应用能力。
二次函数的性质与图像教案一、教学目标1. 让学生理解二次函数的定义和标准形式;2. 掌握二次函数的性质,包括对称轴、顶点、开口方向等;3. 能够绘制二次函数的图像,并分析图像的性质;4. 能够运用二次函数解决实际问题。
二、教学内容1. 二次函数的定义和标准形式;2. 二次函数的性质;3. 二次函数的图像;4. 实际问题中的应用。
三、教学重点与难点1. 重点:二次函数的性质和图像;2. 难点:二次函数图像的分析与应用。
四、教学方法1. 采用问题驱动法,引导学生探究二次函数的性质;2. 利用数形结合法,让学生直观地理解二次函数的图像;3. 结合实际例子,让学生学会运用二次函数解决实际问题。
五、教学准备1. 教学课件;2. 练习题;3. 实物模型或图形软件。
教案内容请参考下述示例:一、二次函数的定义和标准形式1. 二次函数的定义:形如y=ax^2+bx+c(a≠0,a、b、c为常数)的函数称为二次函数。
2. 二次函数的标准形式:y=a(x-h)^2+k,其中(h,k)为顶点坐标。
二、二次函数的性质1. 对称轴:二次函数的对称轴为x=h。
2. 顶点:二次函数的顶点坐标为(h,k)。
3. 开口方向:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
三、二次函数的图像1. 绘制二次函数的图像:通过顶点、对称轴、关键点等方法绘制。
2. 分析二次函数的图像:观察开口方向、对称轴、顶点等。
四、实际问题中的应用1. 利用二次函数解决实际问题:如抛物线与坐标轴的交点、最值问题等。
2. 结合实际例子,让学生学会运用二次函数解决实际问题。
五、课堂练习1. 练习题:巩固二次函数的性质与图像知识。
2. 实物模型或图形软件:让学生直观地感受二次函数的图像。
六、教学过程1. 导入:通过回顾一次函数和线性函数的图像,引导学生思考二次函数图像的特点。
2. 新课:介绍二次函数的定义和标准形式,解释对称轴、顶点、开口方向等概念。
22.1二次函数的图象和性质22.1.3二次函数y=a(x-h)²+k的图象和性质(第1课时)一、教学目标【知识与技能】1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.【过程与方法】通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.【情感态度与价值观】在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课这个函数的图象是如何画出来呢?(出示课件2)(二)探索新知探究一二次函数y=ax2+k图象的画法在同一直角坐标系中,画出二次函数y=x2,y=x2+1,y=x2-1的图象.(出示课件4)学生自主操作,画图,教师加以巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.1.列表:x…-3-2-10123…y=x2…9410149…y=x2+1…105212510…y=x2-1…830-1038…2.描点,连线:(出示课件5)教师问:抛物线y=x2、y=x2+1、y=x2-1的开口方向、对称轴、顶点各是什么?(出示课件6)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=x2向上x=0(0,0)y=x2+1向上x=0(0,1)y=x2-1向上x=0(0,-1)出示课件7:例在同一直角坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.学生自主操作,画图,教师加以巡视.解:先列表:x…-2-1.5-1-0.500.51 1.52…y=2x2+1…9 5.53 1.51 1.53 5.59…y=2x2-1…7 3.51-0.5-1-0.51 3.57…然后描点画图:(出示课件8)教师问:抛物线y=2x2+1,y=2x2-1的开口方向、对称轴和顶点各是什么?(出示课件9)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=2x2+1向上x=0(0,1)y=2x2-1向上x=0(0,-1)探究二二次函数y=ax2+k的性质教师归纳:(出示课件10)二次函数y=ax2+k(a>0)的性质:开口方向:向上.对称轴:x=0.顶点坐标:(0,k).最值:当x=0时,有最小值,y=k.增减性:当x<0时,y 随x 的增大而减小;当x>0时,y 随x 的增大而增大.出示课件11:在同一坐标系中,画出二次函数212y x =-,2122y x =-+,2122y x =--的图像,并分别指出它们的开口方向,对称轴和顶点坐标.学生自主操作,画图,并整理.解:如图所示.抛物线开口方向对称轴顶点坐标y =12-x 2向下x =0(0,0)y =12-x 2+2向下x =0(0,2)y =12-x 2-2向下x =0(0,-2)出示课件12:在同一坐标系内画出下列二次函数的图象:231x y -=;23121--=x y ;23122+-=x y .学生自主操作,画图,教师巡视加以指导.出示课件13,14:根据图象回答下列问题:(1)图象的形状都是;(2)三条抛物线的开口方向_______;(3)对称轴都是__________;(4)从上而下顶点坐标分别是_____________________;(5)顶点都是最____点,函数都有最____值,从上而下最大值分别为_______、_______﹑________;(6)函数的增减性都相同:____________________________.学生独立思考并口答.⑴抛物线;⑵向下;⑶直线x=0;⑷(0,2),(0,0),(0,-2);⑸高;大;y=2,y=0,y=-2;⑹对称轴左侧y随x增大而增大,对称轴右侧y随x增大而减小师生共同归纳:二次函数y=ax2+k(a≠0)的性质(出示课件15)y=ax2+k a>0a<0开口方向向上向下对称轴y轴(x=0)y轴(x=0)顶点坐标(0,k)(0,k)出示课件16:已知二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x=x1+x2时,其函数值为________.学生独立思考后,师生共同解答.解:由二次函数y=ax2+c图象的性质可知,x1,x2关于y轴对称,即x1+x2=0.把x=0代入二次函数表达式求出纵坐标为c.教师归纳:方法总结:二次函数y=ax2+c的图象关于y轴对称,因此左右两部分折叠可以重合,函数值相等的两点的对应横坐标互为相反数.出示课件17:抛物线y=−2x2+3的顶点坐标是________,对称轴是________,在________侧,y随着x的增大而增大;在________侧,y随着x的增大而减小.学生口答:(0,3);y轴;对称轴左;对称轴右探究三二次函数y=ax2+k的图象及平移出示课件18:从数的角度探究:出示课件19:从形的角度探究:观察图象可以发现,把抛物线y=2x2向_____平移1个单位长度,就得到抛物线_____;把抛物线y=2x2向_____平移1个单位长度,就得到抛物线y=2x2-1.学生观察图象并解答:上;y=2x2+1;下师生共同归纳:二次函数y=ax2与y=ax2+k(a≠0)的图象的关系(出示课件20)二次函数y=ax2+k的图象可以由y=ax2的图象平移得到:当k>0时,向上平移k个单位长度得到.当k<0时,向下平移k个单位长度得到.教师强调:上下平移规律:平方项不变,常数项上加下减.出示课件21:二次函数y=-3x2+1的图象是将()A.抛物线y=-3x2向左平移3个单位得到B.抛物线y=-3x2向左平移1个单位得到C.抛物线y=3x2向上平移1个单位得到D.抛物线y=-3x2向上平移1个单位得到学生独立思考并口答:D出示课件22:想一想:教师问1.二次函数y=ax2+k图象的画法分几步?学生答:第一种方法:平移法,分两步,即第一步画y=ax2的图象;第二步把y=ax2的图象向上(或向下)平移︱k︱单位.第二种方法:描点法,分三步即列表、描点和连线.教师问2.抛物线y=ax2+k中的a决定什么?怎样决定的?k决定什么?它的对称轴是什么?顶点坐标怎样表示?学生答:a决定开口方向和大小;k决定顶点的纵坐标.(三)课堂练习(出示课件23-27)1.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.2.抛物线y=2x2向下平移4个单位,就得到抛物线.3.填表:函数开口方向顶点对称轴有最高(低)点y=3x2y=3x2+1y=-4x2-54.已知点(m,n)在y=ax2+a(a不为0)的图象上,点(-m,n)___(填“在”或“不在”)y=ax2+a(a不为0)的图象上.5.若y=x2+(k-2)的顶点是原点,则k____;若顶点位于x轴上方,则k____;若顶点位于x轴下方,则k____.6.不画函数y=-x2和y=-x2+1的图象回答下面的问题:⑴抛物线y=-x2+1经过怎样的平移才能得到抛物线y=-x2.(2)函数y=-x2+1,当x_____时,y随x的增大而减小;当x_____时,函数y有最大值,最大值y是_____,其图象与y轴的交点坐标是_____,与x轴的交点坐标是_____.(3)试说出抛物线y=x2-3的开口方向、对称轴和顶点坐标.7.对于二次函数y=(m+1)x m2-m+3,当x>0时y随x的增大而增大,则m=____.8.已知二次函数y=(a-2)x2+a2-2的最高点为(0,2),则a=____.9.抛物线y=ax2+c与x轴交于A(-2,0)﹑B两点,与y轴交于点C(0,-4),则三角形ABC的面积是_______.参考答案:1.y=x2+22.y=2x2-43.函数开口方向顶点对称轴有最高(低)点y=3x2向上(0,0)y轴有最低点y=3x2+1向上(0,1)y轴有最低点y=-4x2-5向下(0,-5)y轴有最高点4.在5.=2;>2;<26.⑴向下平移1个单位.⑵>0;=0;1;(0,1);(-1,0),(1,0)⑶开口方向向上,对称轴是y轴,顶点坐标(0,-3).7.28.-29.8(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(22.1.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.。
二次函数数学教案(优秀6篇)二次函数超级经典课件教案篇一1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。
2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。
3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。
初中数学二次函数教案篇二教学准备教学目标1、知识与技能(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由的图象得到函数的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。
2、过程与方法通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。
3、情感态度与价值观通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。
教学重难点重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。
难点:各种性质的应用。
教学工具投影仪教学过程【创设情境,揭示课题】函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。
五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业:习题1-7第4,5,6题。
课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
二次函数的性质与图像教案一、教学目标:1. 让学生理解二次函数的定义,掌握二次函数的一般形式;2. 引导学生探究二次函数的性质,包括对称性、单调性等;3. 让学生学会绘制二次函数的图像,并能分析图像的特点;4. 培养学生运用二次函数解决实际问题的能力。
二、教学重点与难点:重点:二次函数的定义、性质及图像特点;难点:二次函数图像的绘制及分析。
三、教学方法:1. 采用问题驱动法,引导学生探究二次函数的性质;2. 利用数形结合法,让学生直观地理解二次函数的图像特点;3. 采用实例分析法,培养学生解决实际问题的能力。
四、教学准备:1. 教师准备PPT,包括二次函数的定义、性质、图像等;2. 准备一些实际问题,用于巩固所学知识。
五、教学过程:1. 引入:通过一个实际问题,引导学生思考二次函数的应用;2. 讲解:介绍二次函数的定义、一般形式,引导学生探究二次函数的性质;3. 演示:利用PPT展示二次函数的图像,让学生直观地理解二次函数的图像特点;4. 练习:让学生绘制一些二次函数的图像,并分析其性质;5. 总结:对本节课的内容进行总结,强调二次函数的性质及图像的特点;6. 作业:布置一些练习题,巩固所学知识。
教学反思:在教学过程中,要注意引导学生主动探究二次函数的性质,培养学生的动手能力。
通过实际问题的分析,让学生感受二次函数在生活中的应用,提高学生的学习兴趣。
在讲解二次函数的图像时,要注重让学生理解顶点、对称轴等关键点的作用,以便能更好地分析二次函数的性质。
六、教学拓展:1. 引导学生探讨二次函数在实际生活中的应用,如抛物线运动、最优化问题等;2. 介绍二次函数与其他数学知识的关系,如导数、积分等;3. 引导学生思考二次函数在自然界中的体现,如物体的自由落体运动等。
七、课堂小结:1. 回顾本节课所学内容,让学生总结二次函数的性质及图像特点;2. 强调二次函数在实际问题中的应用价值;3. 提醒学生注意在学习过程中积累经验,提高解决问题的能力。
4.2二次函数的性质
一、教材的地位与作用
初中学习了一元二次函数2(0)
=++≠图象、开口方向、对称轴
y ax bx c a
最大、最小值,有了初步的感性认识。
在高一阶段将进一步从“数和形”两个方面研究一般二次函数的图象和性质,二次函数也是我们用来研究函数性质的最典型的函数。
可以以它为素材来研究函数的单调性,奇偶性,最值等问题。
还可建立起函数、方程、不等式之间的有机联系基础,是解决数学问题的常用工具,也是培养学生逻辑推理能力和渗透数形结合思想的重要素材。
二、教学目标
1、知识与技能:掌握研究二次函数的一般方法——配方法,进而研究其性质。
2、过程与方法:进一步培养学生探究、合作、交流能力,培养学生的观察、
分析、归纳概括能力,进一步向学生渗透数形结合的数学思想方
法。
3、情感态度与价值观:通过本节课的教学,渗透二次函数图象的对称美,和谐
的数学美。
三、教学重难点
教学重点:掌握研究二次函数图象的重要方法---配方法,能够较快求出二次函数的开口方向对称轴,单调区间、最值及顶点坐标。
教学难点:运用配方法研究二次函数的性质。
四、教法学法和教具
教师启发讲授,学生探究学习的教学方法,教学中使用了多媒体投影和计算机来辅助教学,目的是让学生直接感受抛物线这种对称和谐美,有助于学生对问题的理解和认识。
教具:多媒体
五、教学过程
一、问题提出
1.画出函数2243y x x =--的图像,根据图像讨论抛物线的开口方向、顶点坐标、对称轴、单调区间、最大值和最小值.
2.画出函数245y x x =-++的图像,根据图像讨论抛物线的开口方向、顶点坐标、对称轴、单调区间、最大值和最小值.
3.讨论函数2(0)y ax bx c a =++≠图像的开口方向、顶点坐标、对称轴、单调区间、最大值和最小值.
22(1)5y x =-- 2(2)9y x =--+
222432(1)5y x x x =--=--,∴开口向上,对称轴1x =,顶点坐标-15(,), ∞(-,1)递减,∞(1,+)递增,min ()5f x =-
2245(2)9y x x x =-++=--+∴开口向下,对称轴2x =,顶点坐标(2,9), ∞(-,2)递增,∞(2,+)递减,max ()9f x =
设计意图:从具体到抽象,从简单到复杂的认知,概括2(0)y ax bx c a =++≠的
开口方向、顶点坐标、对称轴、单调区间、最大值和最小值.渗透分类讨论和数形结合的思想。
探究:函数2(0)y ax bx c a =++≠图像的开口方向、顶点坐标、对称轴、
单调区间、最大值和最小值.
2
224()24b ac b y ax bx c a x a a -=++=++
0a > 0a <
性质:
(1)定义域:R .
(2)值域:当a >0时,为⎣⎢⎡⎭⎪⎫f ⎝ ⎛⎭⎪⎫-b 2a ,+∞,当a <0时,为⎝ ⎛⎦
⎥⎤-∞,f ⎝ ⎛⎭⎪⎫-b 2a . (3)单调性:
当a >0时,单调递减区间是⎝ ⎛⎦⎥⎤-∞,-b 2a ,单调递增区间是⎣⎢⎡⎭
⎪⎫-b 2a ,+∞; 当a <0时,单调递减区间是⎣⎢⎡⎭⎪⎫-b 2a ,+∞,单调递增区间是⎝ ⎛⎦⎥⎤-∞,-b 2a . (4)最值:当a >0时,有最小值f ⎝ ⎛⎭⎪⎫-b 2a ,没有最大值; 当a <0时,有最大值f ⎝ ⎛⎭
⎪⎫-b 2a ,没有最小值. (5)f (0)=c .
例1:求函数f (x )=x 2-2x ,x ∈[-2,3]的最大值和最小值.
思路分析:画出函数的图像,写出单调区间,根据函数的单调性求出. 解:画出函数f (x )=x 2-2x ,x ∈[-2,3]的图像,如图所示,
观察图像得,函数f (x )=x 2-2x 在区间[-2,1]上是减函数,
则此时最大值是f (-2)=8,最小值是f (1)=-1;
函数f (x )=x 2-2x 在区间(1,3]上是增函数,
则此时最大值是f (-2)=8,最小值是f (1)=-1;
则函数f (x )=x 2-2x ,x ∈[-2,3]的最大值是8,最小值是-1.
点评:因此可见,求二次函数f (x )=ax 2+bx +c (a ≠0)在闭区间[p ,q ]上的最
值的关键是看二次项系数a 的符号和对称轴x =-b 2a 的相对位置,由此确定其单
调性,再由单调性求得最值.
例2.某企业生产一种仪器的固定成本为20 000元,每生产一台仪器需增加投入
100元,已知总收益满足函数:21400,0400,()280000,400,x x x R x x ⎧-≤≤⎪=⎨⎪>⎩
其中x 是仪器的月产量.(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润是多少?
解:(1)设月产量为x 台,则总成本为20 000+100x ,从而
2130020000,0400,()260000100,
400,x x x f x x x ⎧-+-≤≤⎪=⎨⎪->⎩
(2)当0≤x ≤400时,21()30025000.2
f x x ()=--+ 当x =300时,有最大值25 000;
当x >400时,()60000100f x x =-是减函数,
又()60000100400f x <-⨯2000025000,=<
所以,当x =300时,有最大值25 000.
即当月产量为300台时,公司所获利润最大,最大利润是25 000元.
练习3.某工厂生产某种产品的固定成本为200万元,并且生产量每增加一单位产品,成本增加1万元,又知总收入R 是单位产量Q 的函数:21()4200R Q Q Q =-, 则总利润L (Q )的最大值是____________万元,这时产品的生产数量为_______. 解:222111()4(200)3200(300)250200200200
L Q Q Q Q Q Q Q =--+=-+-=--+ 六、课堂小结
1.二次函数的性质(1)开口方向;(2)顶点坐标;(3)对称轴;
(4)单调区间;(5)最大值和最小值.
2.解决二次函数的实际应用问题:求最值.
七、作业布置P47B 1,2,3。