高中物理 第一章 机械振动 2 单摆学案 教科版选修3-4
- 格式:doc
- 大小:368.67 KB
- 文档页数:12
2021年高中物理 1.2 单摆教案教科版选修3-4成切线方向分力G1和沿半径方向G2,悬线拉力T和G2合力必然沿半径指向圆心,提供了向心力。
那么另一重力分力G1不论是在O左侧还是右侧始终指向平衡位置,而且正是在G1作用下摆球才能回到平衡位置。
(此处可以再复习平衡位置与回复力的关系:平衡位置是回复力为零的位置。
)因此G1就是摆球的回复力。
回复力怎么表示?由单摆的回复力的表达式能否看出单摆的振动是简谐运动?书上已给出了具体的推导过程,其中用到了两个近似:(1)sinα≈α;(2)在小角度下AO直线与AO弧线近似相等。
这两个近似成立的条件是摆角很小,α<5°。
在分析了推导过程后,给出结论:α<5°的情况下,单摆的回复力为满足简谐运动的条件,即物体在大小与位移大小成正比,方向与位移方向相反的回复力作用下的振动,为简谐运动。
所以,当α<5°时,单摆振动是一种简谐运动。
3.单摆振动是简谐运动特征:回复力大小与位移大小成正比,方向与位移方向相反。
但这个回复力的得到并不是无条件的,一定是在摆角α<5°时,单摆振动回复力才具有这个特征。
这也就是单摆振动是简谐运动的条件。
条件:摆角α<5°。
前面我们所学简谐运动是以弹簧振子系统为例,单摆振动和弹簧振子不同,从回复力上说,虽然都具有同一特征,却由不同的力来提供。
弹簧振子回复力由合力提供,而单摆则是由重力的一个分力来提供回复力。
这是回复力不同,那么其他方面,还有没有不同呢?我们在学习弹簧振子做简谐运动时,还提到过弹簧振子系统周期与振幅无关,那么单摆的周期和振幅有没有关系呢?下面我们做个实验来看一看。
4.单摆的周期要研究周期和振幅有没有关系,其他条件就应不变。
这里有两个单摆(展示单摆),摆长相同,摆球质量不同,这会不会影响实验结果呢?也就是单摆的周期和摆球的质量有没有关?那么就先来看一下质量不同,摆长和振幅相同,单摆振动周期是不是相同。
单摆一、教学目标1.知道什么是单摆。
2.会分析摆球在摆动过程中任意点的受力情况。
用近似方法,求出单摆在偏角很小时摆球所受的力。
3.通过比较,认识到摆球与弹簧振子两者在振动时的回复力具有相同的形式,进而理解单摆在偏角很小时的振动是简谐运动。
4.通过实验探究,作出T2-l图像,能分析得出周期和摆长的关系式,并能用来进行有关计算。
二、教学过程引入:小故事(2分钟)伽利略作为一个虔诚的天主教徒,到教堂做祷告时观察被风吹动的吊灯,发现当这些吊灯摆幅减小后周期相同,惠更斯总结伽利略的研究成果,做成了世界上第一台摆钟,并说出“给我一根绳子,我就可以丈量时间”。
老师自言自语“用一根绳子丈量时间,这么厉害”。
同学们可有兴趣跟老师一起来学习一下?学生齐答:有好!这节课我们就一起来学习惠更斯是如何用一根绳子丈量时间的吧!教师提问1:生活中类似于吊灯的摆动还有哪些?学生回答:钟摆、荡秋千、吊桥等教师总结:非常不错,很善于观察生活。
展示钟摆和荡秋千动图并说明:由于存在空气阻力等的原因,它们最终都会停下来。
本着物理研究的一贯习惯,抓住主要因素,忽略次要因素,我们将空气阻力等因素忽略掉,将这类问题进行理想化处理,即得到我们今天将要学习的单摆运动。
板书:单摆1、单摆(3分钟)⑴展示单摆图片——单摆教师提问2:请同学们翻到课本第6页,并快速查看什么是单摆?板书:一、单摆1、概念:学生回答:若忽略悬挂小球的细线长度的微小变化和质量,且线长比球的直径大的多,这样的装置就叫做单摆.教师总结:非常好,反应不错,是个学物理的好苗子!教师提问3:这样的单摆在现实生活中能找到吗?学生回答:能教师总结:错了,不能找到。
现实生活中找不到没有重力,且不可伸长的细绳。
也找不到只有重力没有体积的小球板书:2、单摆是理想化模型教师提问4:单摆做什么运动?学生回答:以O点为中心的往复运动教师总结:单摆做的是机械振动,O点为平衡位置,悬点到小球重心的距离叫摆长,即摆长l=绳长+r,绳子偏离竖直线的最大角度叫偏角。
单摆学习目标:1、通过阅读教材,知道单摆的结构,知道单摆是实际摆的理想化模型;2、通过阅读教材和推导计算,理解单摆在微振动条件下的运动,是简谐运动;3、通过猜想、实验探究和理论计算,掌握单摆的周期。
研究方法:本课所体现的物理学科研究方法:1、一般到特殊。
在前期研究严格的、由弹性力提供回复力的简谐振动的模型后,开始研究准弹性力简谐运动。
2、对未知或可能的结论的猜想和实验探究。
研究单摆的周期与摆长的关系时,我们可以通过实验探究,甚至可能采用理论推导,得出单摆的周期。
(若学生)知识结构:教学过程:引言:简谐运动的定义,是从回复力的角度定义的,对于水平弹簧振子,有,回复力由弹簧弹性力提供,有些情况下,回复力并不是弹簧的弹力,但它也有类似的形式,例如,对于竖直弹簧振子,回复力由弹力和重力的合力提供,且,对于如图所示的电荷系统,第三电荷在微小振动时,回复力仍然具有类似的线性形式。
显然,我们在研究弹性回复力的简谐运动中得到的认识与公式、图像等工具,自然可以应用于一切有的任何力提供回复力的情景。
实际物体的微弱摆动就是一个实例。
而在众多实际情况之中,我们仍然研究最简单的情况。
一、认识单摆阅读教材。
讨论交流:单摆是理想化模型,其理想化条件是什么?二、单摆的微振动规律阅读教材。
讨论交流:1、单摆的回复力是哪个(些)力提供的?你能解释原因吗?2、有人说,单摆的运动就是简谐运动,这句话对吗?为什么?3、尝试一下,按照教材的思路,你能独立推导出单摆在摆角较小时振动的回复力形式吗?三、对单摆周期的研究这里的单摆振动的周期,特指单摆在摆角较小时振动的周期。
●猜想:单摆做简谐运动的周期与哪些因素有关?●验证:如何设计实验方案,寻求变量间的未知关系?(不排除由于提前自学,使得探究性实验,转化为验证性实验)1、单摆做简谐运动时,与周期有关的因素(变量)。
2、实验方案。
⑴实验目的;⑵实验步骤;⑶数据记录与处理;⑷结论及评估。
(简要记录)可能的讨论交流:1、摆线和摆球的选择,需要注意什么?2、细线上端悬挂时,需要注意什么?3、测量摆长时,需要注意什么?4、测量振动周期时,你有什么好经验?5、你是怎样通过数据规律得到结论的?四、课时总结五、巩固练习1.一条细线下面挂一个小球,让它自由摆动,作出它的振动图象如图。
2019-2020年高中物理 1.2 单摆教案教科版选修3-4上面两个图的周期分别为:T1= T2=θα.甲、乙两单摆在同一地点做简谐运动的图象如图,由图可知九、课后作业: 课本中本节课后练习1、22019-2020年高中物理 1.2 单摆教案1 教科版选修3-4一、教学目标 1.知识目标:(1)知道什么是单摆;(2)理解单摆振动的回复力来源及做简谐运动的条件;(3)知道单摆的周期和什么有关,掌握单摆振动的周期公式,并能用公式解题。
2.能力目标:观察演示实验,概括出影响周期的因素,培养由实验现象得出物理结论的能力。
二、教学重点、难点分析1.本课重点在于掌握好单摆的周期公式及其成立条件。
2.本课难点在于单摆回复力的分析。
三、教具:两个单摆(摆长相同,质量不同) 四、教学过程 (-)引入新课在前面我们学习了弹簧振子,知道弹簧振子做简谐运动。
那么:物体做简谐运动的条件是什么? 答:物体做机械振动,受到的回复力大小与位移大小成正比,方向与位移方向相反。
今天我们学习另一种机械振动——单摆的运动 (二)进行新课1、 阅读课本第167页到168页第一段,思考:什么是单摆?答:一根细线上端固定,下端系着一个小球,如果悬挂小球的细线的伸长和质量可以忽略,细线的长度又比小球的直径大得多,这样的装置就叫单摆。
物理上的单摆,是在一个固定的悬点下,用一根不可伸长的细绳,系住一个一定质量的质点,在竖直平面内摆动。
所以,实际的单摆要求绳子轻而长,摆球要小而重。
摆长指的是从悬点到摆球重心的距离。
将摆球拉到某一高度由静止释放,单摆振动类似于钟摆振动。
摆球静止时所处的位置就是单摆的平衡位置。
物体做机械振动,必然受到回复力的作用,弹簧振子的回复力由弹簧弹力提供,单摆同样做机械振动,思考:单摆的回复力由谁来提供,如何表示?1)平衡位置 当摆球静止在平衡位置O 点时,细线竖直下垂,摆球所受重力G 和悬线的拉力F 平衡,O 点就是摆球的平衡位置。
高二物理选修3-4 机械振动教案02教学目的:复习巩固振动的有关知识,进一步认识这种运动形式,掌握其运动规律和受力特点;会判断物体是否做简谐运动,在具体问题中分析与位移有关的物理量(如速度、加速度、动能及势能)的变化规律;能在实际问题中应用振动图象解题。
一、简谐运动的规律1.特点和条件特点:运动具有往复性,具有周期性。
条件:回复力的大小与位移成正比,方向相反(即回复力始终指向平衡位置);振动物体所受摩擦阻力很小。
回复力是根据效果来命名的力,可能是一个力,也可能是几个力的合力,也可能是某个力的一个分力。
平衡位置即回复力等于零的位置,亦即振动物体停止振动时所处的位置。
2.描述振动的物理量(振动的三要素)振幅A:振动质点离开平衡位置的最大位移。
周期指完成一次全振动所用的时间,频率是振动质点在单位时间内完成全振动的次数。
3.机械振动、简谐运动的动力学特征动力学表达式:F=-kx ①①和②都可以作为简谐运动的判别式。
4.简谐运动的周期公式5.单摆的振动单摆模型:将一根轻且不可伸长的细线一端固定于悬点,另一端系一质量大而体积小的钢球。
使单摆回到平衡位置的回复力F=mgsinθ从式中可以看出,当单摆做简谐运动时,其固有周期只与摆长和当地的重力加速度有关,而与摆球的质量无关,与振幅无关(在θ<5°的条件下)。
6.简谐运动的图象图象反映振动质点的位移随时间的变化规律,利用图象可以求出任意时刻振动质点的位移。
还可以根据图象确定与位移有关的物理量,如速度、加速度、回复力、势能和动能等。
7.受迫振动、共振物体在周期性外力作用下的振动叫做受迫振动。
物体做受迫振动的频率等于驱动力的频率,而跟固有频率无关。
当驱动力的频率与物体的固有频率相等时,受迫振动的振幅最大,即发生共振现象。
8.振动的能量振动系统的能量与振动的振幅有关。
如果没有摩擦力和空气阻力,在简谐运动过程中就只有动能和势能的相互转化,振动的机械能守恒。
实际的振动总是要受到摩擦和阻力,因此在振动过程中需要不断克服外界阻力做功而消耗能量,振幅会逐渐减小,最终停下来。
第一章机械振动第二节单摆【学习目标】1. 理解单摆振动的回复力来源及做简谐运动的条件。
2.自主学习,小组合作探究,掌握单摆振动的周期公式,并能用公式解题。
3.激情投入,培养由实验现象得出物理结论的能力。
重点:单摆的周期公式及其成立条件难点:单摆回复力的分析【课程内容标准】1.通过实验,探究单摆的周期与摆长的关系。
2.知道单摆周期与摆长、重力加速度的关系。
会用单摆测定重力加速度。
【课前预习案】【使用说明&学法指导】1.同学们要先通读教材,然后依据课前预习案再研究教材;2.勾划课本并写上提示语,熟记基础知识,用红笔标注疑问,并填写到后面“问题反馈”。
3.限时15分钟,独立完成(一)教材助读1.简谐运动的条件是什么?弹簧振子的回复力由哪个力提供?2.单摆模型细线的上端固定,下端系一小球,若忽略悬挂小球的细线长度的__________和_____,且线长比球的直径________,与小球受到的重力及绳的拉力相比,空气等对它的_____可以忽略,这样的装置就叫做单摆.3.单摆振动过程中,摆球在任意点受几个作用力?分别是什么力?单摆的回复力由哪个力提供?4.为什么在偏角很小的情况下,单摆的摆动是简谐运动?单摆是理想化模型,其理想化条件是什么?4.单摆的周期可能与哪些因素有关?单摆的周期公式内容?(二)预习自测1.提供单摆做简谐运动的回复力的是( )A .摆球的重力B .摆球重力沿圆弧切线的分力C .摆线的拉力D .摆球重力与摆线拉力的合力2.某一单摆的周期 为2s,现要将该摆的周期 变为4s,下面措施中正确的是( )A .将摆球质量变为原来的1/4B .将振幅变为原来的2倍C .将摆长变为原来的2倍D .将摆长变为原来的4倍3.为了使单摆周期变小,可采用的方法是( )A .把单摆从赤道移到北极B .减小摆长C .把单摆从地面移到月球表面D .把单摆从山脚下移到山顶上4.频率为0.5Hz 的摆称为秒摆。
第2讲单摆[目标定位] 1.知道什么是单摆.2.理解偏角很小时单摆的振动是简谐运动.3.知道单摆的周期跟什么因素有关,了解单摆的周期公式并能用它进行计算.一、单摆的简谐运动1.如图1,若忽略悬挂小球的细线长度的微小变化和质量,且线长比球的直径大得多,这样的装置就叫做单摆.图12.在偏角很小的情况下,单摆摆球所受的回复力与偏离平衡位置的位移成正比,因而单摆在偏角很小时的振动是简谐运动.想一想单摆的回复力是否就是单摆所受的合外力?答案不是.单摆的运动可看作是变速圆周运动,其合力可分解为指向圆心的法向力和沿圆周切线的切向力,在沿圆周切线的切向力作用下,单摆做的是简谐运动,因而单摆的回复力只是其所受合力的一个分力.二、单摆做简谐运动的周期单摆在偏角很小的情况下做简谐运动的周期T跟摆长l的二次方根成正比,跟重力加速度g的二次方根成反比,跟振幅、摆球的质量无关,单摆做简谐运动时的周期公式为T=一、单摆及单摆的回复力1.单摆(1)单摆是实际摆的理想化模型(2)实际摆看作单摆的条件①摆线的形变量与摆线长度相比小得多②悬线的质量与摆球质量相比小得多③摆球的直径与摆线长度相比小得多2.单摆的回复力(1)单摆的回复力是由重力沿圆弧切向的分力F =mg sin θ提供的.(2)如图2所示,在最大偏角很小的条件下,sin θ≈x l,其中x 为摆球相对平衡位置O 点的位移.图2单摆的回复力F =-mg l x ,令k =mg l,则F =-kx .由此可见,单摆在偏角很小的条件下的振动为简谐运动.注意:(1)单摆经过平衡位置时,回复力为零,但合外力不为零.(2)单摆的回复力为小球受到的沿切线方向的合力,而不是小球受到的合外力.【例1】 对于单摆的振动,以下说法中正确的是( )A .单摆振动时,摆球受到的向心力大小处处相等B .单摆运动的回复力就是摆球受到的合力C .摆球经过平衡位置时所受回复力为零D .摆球经过平衡位置时所受合外力为零解析 单摆振动过程中受到重力和细线拉力的作用,把重力沿切向和径向分解,其切向分力提供回复力,细线拉力与重力的径向分力的合力提供向心力,向心力大小为mv 2l,可见最大偏角处向心力为零,平衡位置处向心力最大,而回复力在最大偏角处最大,平衡位置处为零.故应选C .答案 C借题发挥 单摆振动的回复力是重力在切线方向的分力,或者说是摆球所受合外力在切线方向的分力.摆球所受的合外力在摆线方向的分力作为摆球做圆周运动的向心力,所以并不是合外力完全用来提供回复力.因此摆球经过平衡位置时,只是回复力为零,而不是合外力为零(此时合外力提供摆球做圆周运动的向心力).针对训练 关于单摆,下列说法中正确的是( )A .摆球受到的回复力方向总是指向平衡位置B .摆球受到的回复力是它的合力C .摆球经过平衡位置时,所受的合力为零D.摆角很小时,摆球受的合力的大小跟摆球相对平衡位置的位移大小成正比解析单摆的回复力不是它的合力,而是重力沿圆弧切线方向的分力;当摆球运动到平衡位置时,回复力为零,但合力不为零,因为小球还有向心力,方向指向悬点(即指向圆心);另外摆球所受的合力与位移大小不成正比,故A正确.答案 A二、单摆做简谐运动的周期1.伽利略发现了单摆运动的等时性,惠更斯得出了单摆的周期公式并发明了摆钟.2.单摆的周期公式:T=2πl g .3.对周期公式的理解(1)单摆的周期公式在单摆偏角很小时成立(偏角为5°时,由周期公式算出的周期和精确值相差0.01%).(2)公式中l是摆长,即悬点到摆球球心的距离l=l线+r球.如是双线摆,则公式中l 应为等效摆长:如图3所示,图中甲、乙在垂直纸面方向摆起来的效果是相同的,所以甲摆的摆长为l sin α,这就是等效摆长,所以其周期为T=2πl sin αg.图3(3)公式中g是单摆所在地的重力加速度,由单摆所在的空间位置决定.(4)周期T只与l和g有关,与摆球质量m及振幅无关.所以单摆的周期也叫固有周期.【例2】在“探究单摆的周期和摆长的关系”实验中.(1)下列说法正确的是________.A.悬线越短越好B.悬线上端固定且摆角要小C.摆球应在竖直平面内摆动D.摆球摆至最高点时开始计时(2)以摆球通过平衡位置时开始计时,用停表记下摆球通过平衡位置n次所用的时间t,则单摆周期T=____________;用米尺量出悬线的长度l0,用游标卡尺量出摆球的直径d,则摆长l=____________.(3)根据记录的数据,在坐标纸上以T为纵轴,l为横轴,作出T l图像,发现图线是曲线;然后尝试以T2为纵轴,l为横轴,作出T2l图像,发现图线是一条过原点的倾斜直线,由此得出单摆做简谐运动的周期和摆长的关系是( )A .T ∝1l B .T 2∝1l C .T ∝l D .T 2∝l解析 (1)摆线长些好,否则摆球的运动不明显;悬线上端要固定以防摆长变长,并且摆角要小,否则单摆周期公式不成立;摆球应在竖直平面内摆动,应该在摆球摆至最低点时开始计时,因为此时摆球的速度最大,计时更准确.(2)以摆球通过平衡位置时开始计时,记为0,用停表记下摆球通过平衡位置n 次所用的时间t ,则单摆周期T =2t n ;摆长指的是从悬点到摆球球心的距离,本题中摆长l =l 0+d 2. (3)根据题述“T 2l 图线是一条过原点的倾斜直线”可知,T 2∝l ,选项D 正确.答案 (1)BC (2)2t n l 0+d 2(3)D 【例3】 一个单摆和一个弹簧振子,在上海调节使得它们的振动周期相等(设为T ).现在把它们一起拿到北京,若不再做任何调节.设这时单摆的振动周期为T 1,弹簧振子的振动周期为T 2,则它们的周期大小的关系为( )A .T 1<T 2=TB .T 1=T 2<TC .T 1>T 2=TD .T 1<T 2<T解析 弹簧振子的振动周期只与弹簧的劲度系数和振子质量有关,拿到北京后周期不变;北京的重力加速度比上海的大,单摆拿到北京后周期变小.答案 A单摆的简谐运动1.(多选)单摆是为研究振动而抽象出来的理想化模型,其理想化条件是( )A .摆线质量不计B .摆线长度不伸缩C .摆球的直径比摆线长度小得多D .只要是单摆的运动就是一种简谐运动解析 单摆由摆线和摆球组成,摆线只计长度不计质量,摆球只计质量不计大小,摆线不伸缩,A 、B 、C 选项均正确;但把单摆作为简谐运动来处理是有条件的,只有在偏角很小(θ≤5°)的情况下才能视单摆的运动为简谐运动.故A 、B 、C 正确.答案 ABC2.单摆振动的回复力是( )A .摆球所受的重力B .摆球重力在垂直悬线方向上的分力C .悬线对摆球的拉力D .摆球所受重力和悬线对摆球拉力的合力解析 摆球振动的回复力是其重力沿圆弧切线方向的分力,即摆球重力在垂直悬线方向上的分力,B 正确.答案 B单摆做简谐运动的周期3.(多选)单摆原来的周期为T ,下列哪种情况会使单摆周期发生变化( )A .摆长减为原来的14B .摆球的质量减为原来的14C .振幅减为原来的14D .重力加速度减为原来的14解析 由单摆周期公式可知周期仅与摆长、重力加速度有关.答案 AD4.如图4所示,一摆长为l 的单摆,在悬点的正下方的P 处固定一光滑钉子,P 与悬点相距l -l ′,则这个单摆做小幅度摆动时的周期为( )图4A .2πl gB .2πl ′gC .π⎝ ⎛⎭⎪⎫l g + l ′gD .2πl +l ′2g 解析 碰钉子前摆长为l ,故周期T 1=2πl g ,碰钉子后摆长变为l ′,则周期T 2=2πl ′g ,所以该组合摆的周期T =T 12+T 22=π⎝⎛⎭⎪⎫l g + l ′g . 答案 C题组一 单摆的简谐运动1.(多选)做一个单摆有下列器材可供选用,可以用来做成一个单摆的有( )A .带小孔的实心木球B .带小孔的实心钢球C .长约1 m 的细线D .长约10 cm 的细线解析 制作单摆时应选用体积小、质量大的球和细、长、轻、弹性小的线.答案 BC2.关于单摆,下列说法中正确的是( )A .摆球运动的回复力是它受到的合力B .摆球在运动过程中经过轨迹上的同一点,加速度是不变的C .摆球在运动过程中加速度的方向始终指向平衡位置D .摆球经过平衡位置时,加速度为零解析 摆球的回复力为重力沿轨迹切线方向的分力,A 错;摆球经过最低点时,回复力为0,但合力提供向心力,C 、D 错;由简谐运动特点知B 正确.答案 B3.当单摆的摆球摆到最大位移处时,摆球所受的( )A .合外力为零B .回复力为零C .向心力为零D .摆线中张力为零解析 当摆球摆到最大位移处时,回复力最大,不为零,所以选项A 、B 均错;摆球在最大位移处,速度为零,由向心力公式F =mv 2l可知,向心力也为零,此时摆线中的张力等于重力沿摆线方向上的分力,所以选项C 对,D 错.答案 C4.做简谐运动的单摆,在摆动的过程中( )A .只有在平衡位置时,回复力才等于重力和细绳拉力的合力B .只有在最高点时,回复力才等于重力和细绳拉力的合力C .小球在任意位置处,回复力都等于重力和细绳拉力的合力D .小球在任意位置处,回复力都不等于重力和细绳拉力的合力解析 单摆在一个圆弧上来回运动,摆球做圆周运动的向心力由重力沿悬线方向的分力和悬线拉力的合力提供,而回复力是指重力沿圆弧切线方向的分力.摆球在平衡位置速度不为零,向心力不为零,而回复力为零,所以合力不等于回复力;摆球在最高点时,速度为零,向心力为零,合力等于回复力.故选项B 正确.答案 B5.(多选)如图1所示是单摆振动示意图,下列说法正确的是( )图1A .在平衡位置摆球的动能和势能均达到最大值B .在最大位移处势能最大,而动能最小C .在平衡位置绳子的拉力最大,摆球速度最大D .摆球由A →C 运动时,动能变大,势能变小解析 单摆的振动是简谐运动,机械能守恒,远离平衡位置运动,位移变大,势能变大,而动能减小;反之,向平衡位置运动时,动能变大而势能变小,故B 、D 正确,A 错;小球在平衡位置只受重力和绳子拉力,在平衡位置C ,拉力F =mg +mv 2l,由上述分析知,平衡位置时动能最大,即v 最大,故F 也最大,所以C 正确.答案 BCD题组二 单摆做简谐运动的周期6.发生下列哪一种情况时,单摆周期会增大( )A .增大摆球质量B .缩短摆长C .减小单摆振幅D .将单摆由山下移至山顶 解析 由单摆周期公式T =2πl g知,T 与单摆的摆球质量、振幅无关;缩短摆长,l 变小,T 变小;单摆由山下移到山顶,g 变小,T 变大.答案 D7.(多选)如图2所示,甲、乙是摆长相同的两个单摆,它们中间用一根细线相连,其中一个摆线与竖直方向成θ角.已知甲的质量大于乙的质量.当细线突然断开后,两单摆都做简谐运动,在摆动过程中下列说法正确的是( )图2A .甲的振幅小于乙的振幅B .甲的振幅等于乙的振幅C .甲的最大速度小于乙的最大速度D .甲的运动周期大于乙的运动周期解析 由题意知,甲、乙是摆长相同的两个单摆,原来二者静止时由于质量不同,故偏角不同,质量大的偏角小,甲的振幅小,选项A 正确,B 错误;两物体在平衡位置时速度最大,根据mgh =12mv 2得v =2hg ,与质量无关,所以甲的最大速度小于乙的最大速度,选项C 正确;根据T =2πl g,周期与质量无关,选项D 错误. 答案 AC8.一只钟从甲地拿到乙地,它的钟摆摆动加快了,则下列对此现象的分析及调准方法的叙述中正确的是( )A .g 甲>g 乙,将摆长适当增长B .g 甲>g 乙,将摆长适当缩短C .g 甲<g 乙,将摆长适当增长D .g 甲<g 乙,将摆长适当缩短 解析 从甲地到乙地,钟摆的周期减小了,由T =2πl g,知g 甲<g 乙,若要使周期回到原值,应适当增加摆长.答案 C 9.已知演示简谐运动的沙摆的摆长为l ,漏斗的质量为m ,细沙的质量为M ,M ≫m ,细沙逐渐下漏的过程中,单摆的周期( )A .不变B .先变大后变小C .先变小后变大D .逐渐变大解析 在沙摆摆动细沙逐渐下漏的过程中,摆的重心逐渐下移,即摆长l 逐渐变大,当细沙流到一定程度后,摆的重心又重新上移,即摆长l 变小,由周期公式T =2π l g可知,沙摆的周期先变大后变小,故正确选项为B.答案 B10.如图3所示的单摆,摆长为l =40 cm ,摆球在t =0时刻从右侧最高点释放做简谐运动,则当t =1 s 时,小球的运动情况是( )图3A .向右加速B .向右减速C .向左加速D .向左减速解析 单摆的周期T =2πl g =2π0.410 s =0.4π s≈1.256 s,t =1 s 时,则34T <t <T ,摆球从右侧最高点释放做简谐运动,在t =1 s 时已经越过平衡位置(最低点),正向右侧最大位移处运动,由平衡位置向最大位移运动的过程中,摆球做的是减速运动,故A 、C 、D 错误,B 正确.答案 B11.有一摆长为L 的单摆,悬点正下方某处有一小钉,当摆球经过平衡位置向左摆动时,摆线的上部将被小钉挡住.使摆长发生变化.现使摆球做小幅度摆动,摆球从右边最高点M 至左边最高点N 运动过程的闪光照片,如图4所示(悬点和小钉未被摄入).P 为摆动中的最低点,已知每相邻两次闪光的时间间隔相等,由此可知,小钉与悬点的距离为( )图4A .L 4B .L2 C .3L 4 D .条件不足,无法确定 解析 题图中M 到P 为四个时间间隔,P 到N 为两个时间间隔,即左半部分单摆的周期是右半部分单摆周期的12,根据周期公式T =2πl g ,可得左半部分单摆的摆长为L 4,即小钉距悬点的距离为34L ,故C 选项正确. 答案 C12.(多选)如图5所示,有一个小球(视为质点)从光滑圆弧槽的P 点由静止释放,沿圆弧槽来回摆动,PO ︵(O 点为圆弧的最低点)段远小于圆弧槽的半径R ,则下列说法正确的是( )图5A .小球摆动过程中的回复力由重力沿其运动方向的分力提供B .小球摆动至最低点O 时所受合外力为零C .小球摆动的周期为T =2πR gD .若小球在P 点释放的同时,O 点右侧的Q 点上也有一个不计大小的小球由静止释放,已知PO ︵>OQ ︵,则两球将在O 点左侧相遇解析 圆弧摆摆球受力与单摆相似,圆弧槽对其弹力F N 与单摆摆线的拉力F T 所起的作用是一样的,重力沿圆弧切线方向的分力做振动的回复力,故A 正确;摆至最低点时,回复力为零,但向心力最大,故B 错误;当偏角(半径与竖直方向夹角)θ≤5°时,近似为简谐运动,因PO ︵段远小于圆弧槽的半径R ,满足条件,故周期T =2πR g,C 正确;周期与振幅大小无关,两小球必在最低点O 相遇,D 错误.答案 AC13.一个单摆的摆球偏离到最大位置时,正好遇到空中竖直下落的雨滴,雨滴均匀附着在摆球的表面,下列说法正确的是( )A .摆球经过平衡位置时速度要增大,周期也增大,振幅也增大B .摆球经过平衡位置时速度没有变化,周期减小,振幅也减小C .摆球经过平衡位置时速度没有变化,周期也不变,振幅要增大D .摆球经过平衡位置时速度要增大,周期不变,振幅要增大解析 由题意可知,单摆的摆长和重力加速度不变,根据单摆的周期公式可知,周期不变,摆球偏离到最大位置雨滴均匀附着在摆球的表面,摆球的质量增加,摆球经过平衡位置时速度要增大,振幅要增大,选项D 正确.答案 D14.在“探究单摆的周期与摆长的关系”实验中,某同学准备好相关实验器材后,把单摆从平衡位置拉开一个很小的角度后释放,同时按下秒表开始计时,当单摆再次回到释放位置时停止计时,将记录的这段时间作为单摆的周期.以上操作中有不妥之处,请对其中两处加以改正.解析 摆球通过平衡位置时具有较大的速度,此时开始计时,误差较小.若只测量一次全振动的时间会产生较大的误差,而测量多次全振动的时间求平均值可减小误差.答案 ①应在摆球通过平衡位置时开始计时;②应测量单摆多次全振动的时间,再计算出周期的测量值.(或在单摆振动稳定后开始计时)15.如图6所示,三根细线在O 点处打结,A 、B 端固定在同一水平面上相距为l 的两点上,使△AOB 成直角三角形,∠BAO =30°,已知OC 线长是l ,下端C 点系着一个直径可忽略的小球.图6(1)让小球在纸面内小角度摆动,求单摆的周期是多少?(2)让小球垂直纸面小角度摆动,周期又是多少?解析(1)让小球在纸面内摆动,在偏角很小时,单摆可看做简谐运动,摆长为OC的长度,所以单摆的周期T=2πl g .(2)让小球垂直纸面摆动,如图所示,由几何关系可得OO′=34l,等效摆长为l′=OC+OO′=l+34l,所以周期T′=2πl′g=2π+34lg.答案见解析。
2 单摆[学习目标] 1.理解单摆模型及其振动的特点.2.理解单摆做简谐运动的条件,知道单摆振动时回复力的来源.3.了解影响单摆周期的因素,会用周期公式计算周期和摆长.一、单摆的简谐运动1.单摆:忽略悬挂小球的细线长度的微小变化和质量,且线长比球的直径大得多,这样的装置叫做单摆.单摆是理想化模型.2.单摆的回复力(1)回复力的提供:摆球的重力沿圆弧切线方向的分力.(2)回复力的大小:在偏角很小时,F =-mg l x .3.单摆的运动特点小球所受的回复力与它偏离平衡位置的位移成正比,方向总是指向平衡位置,单摆在偏角很小时的振动是简谐运动.二、单摆做简谐运动的周期1.单摆做简谐运动的周期T 跟摆长l 的二次方根成正比,跟重力加速度g 的二次方根成反比,跟振幅、摆球的质量无关.2.单摆的周期公式:T =2πl g. [即学即用]1.判断下列说法的正误.(1)单摆运动的回复力是重力和摆线拉力的合力.( × )(2)单摆经过平衡位置时受到的合力为零.( × )(3)若单摆的振幅变为原来的一半,则周期也将变为原来的一半.( × )(4)一个单摆在月球上摆动的周期大于其在地球上摆动的周期.( √ )2.一个理想的单摆,已知其周期为T .如果由于某种原因重力加速度变为原来的2倍,振幅变为原来的3倍,摆长变为原来的8倍,摆球质量变为原来的2倍,则它的周期变为________. 答案 2T一、单摆及单摆的回复力[导学探究] (1)单摆的回复力就是单摆所受的合外力吗?(2)单摆经过平衡位置时,回复力为零,合外力也为零吗?答案(1)回复力不是合外力.单摆的运动可看做是变速圆周运动,其重力可分解为沿悬线方向的分力和沿圆弧切线方向的分力,重力沿圆弧切线方向的分力是使摆球沿圆弧振动的回复力.(2)单摆经过平衡位置时,回复力为零,但合外力不为零.[知识深化] 单摆的回复力(1)单摆受力:如图1所示,受细线拉力和重力作用.图1(2)向心力来源:细线拉力和重力沿径向的分力的合力.(3)回复力来源:重力沿圆弧切线方向的分力F=mg sinθ提供了使摆球振动的回复力.(4)回复力的大小:在偏角很小时,摆球的回复力满足F=-kx,此时摆球的运动可看成是简谐运动.例1图2中O点为单摆的固定悬点,现将摆球(可视为质点)拉至A点,此时细线处于张紧状态,释放摆球,摆球将在竖直平面内的A、C之间来回摆动,B点为运动中的最低位置,则在摆动过程中( )图2A.摆球在A点和C点处,速度为零,合力也为零B.摆球在A点和C点处,速度为零,回复力也为零C.摆球在B点处,速度最大,回复力也最大D.摆球在B点处,速度最大,细线拉力也最大答案 D解析摆球在摆动过程中,最高点A、C处速度为零,回复力最大,合力不为零,在最低点B处,速度最大,回复力为零,细线的拉力最大.单摆的回复力是重力在切线方向的分力,或者说是摆球所受合外力在切线方向的分力.摆球所受的合外力在摆线方向的分力提供摆球做圆周运动的向心力,所以并不是合外力完全用来提供回复力.因此摆球经过平衡位置时,只是回复力为零,而不是合外力为零(此时合外力提供摆球做圆周运动的向心力).二、单摆的周期[导学探究] 单摆的周期公式为T=2πl g .(1)单摆的摆长l等于悬线的长度吗?(2)将一个单摆移送到不同的星球表面时,周期会发生变化吗?答案(1)不等于.单摆的摆长l等于悬线的长度与摆球的半径之和.(2)可能会.单摆的周期与所在地的重力加速度g有关,不同星球表面的重力加速度可能不同.[知识深化] 单摆的周期(1)伽利略发现了单摆运动的等时性,惠更斯得出了单摆的周期公式并发明了摆钟.(2)单摆的周期公式:T=2πl g .(3)对周期公式的理解①单摆的周期公式在单摆偏角很小时成立(偏角小于5°时,由周期公式算出的周期和准确值相差不超过万分之五).②公式中l是摆长,即悬点到摆球球心的距离l=l线+r球.③公式中g是单摆所在地的重力加速度,由单摆所在的空间位置决定.④周期T只与l和g有关,与摆球质量m及振幅无关,所以单摆的周期也叫固有周期.例2如图3所示,单摆的周期为T,则下列说法正确的是( )图3A.把摆球质量增加一倍,其他条件不变,则单摆的周期变短B.把摆角α变小,其他条件不变,则单摆的周期变短C.将此摆从地球移到月球上,其他条件不变,则单摆的周期将变长D.将单摆摆长增加为原来的2倍,其他条件不变,则单摆的周期将变为2T 答案 C解析根据单摆的周期公式T=2πlg知,周期与摆球的质量和摆角无关,摆长增加为原来的2倍,周期变为原来的2倍,故A、B、D错误;月球表面的重力加速度小于地球表面的重力加速度,由周期公式T=2πlg知,将此摆从地球移到月球上,单摆的周期将变长,C正确.例3如图4所示,三根细线在O点处打结,A、B端固定在同一水平面上相距为l的两点上,使△AOB成直角三角形,∠BAO=30°,已知OC线长也是l,下端C点系着一个小球(球的大小忽略不计),下列说法正确的是(以下皆指小角度摆动,重力加速度为g)( )图4A.让小球在纸面内振动,周期T=2πl gB.让小球在垂直纸面内振动,周期T=2π3l 2gC.让小球在纸面内振动,周期T=2π3l 2gD.让小球在垂直纸面内振动,周期T=2πl g答案 A解析让小球在纸面内振动,在偏角很小时,单摆做简谐运动,摆长为l,周期T=2πl g ;让小球在垂直纸面内振动,在偏角很小时,单摆做简谐运动,摆长为(34l+l),周期T′=2π(34+1)lg,A正确,B、C、D错误.例4如图5所示,光滑轨道的半径为2m,C点为圆心正下方的点,A、B两点与C点相距分别为6cm与2cm,a、b两小球分别从A、B两点由静止同时放开,则两小球相碰的位置是( )图5A.C点B.C点右侧C.C点左侧D.不能确定答案 A解析由于光滑轨道的半径远远地大于运动的弧长,小球都做简谐运动,类似于单摆.因此周期只与半径有关,与运动的弧长无关,故选项A正确.1.(对单摆回复力的理解)振动的单摆小球通过平衡位置时,关于小球受到的回复力及合力的说法中正确的是( )A.回复力为零,合力不为零,方向指向悬点B.回复力不为零,方向沿轨迹的切线C.回复力就是合力D.回复力为零,合力也为零答案 A解析单摆的回复力不是它受到的合力,而是重力沿圆弧切线方向的分力;当摆球运动到平衡位置时,回复力为零,但合力不为零,因为小球还有向心力,方向指向悬点(即指向圆心).2.(单摆的周期公式)一单摆的摆长为40cm,摆球在t=0时刻正从平衡位置向右运动,若g 取10m/s2,则在1s时摆球的运动情况是( )A.正向左做减速运动,加速度正在增大B.正向左做加速运动,加速度正在减小C.正向右做减速运动,加速度正在增大D.正向右做加速运动,加速度正在减小答案 D解析 由T =2πl g ,代入数据得T =1.256s ,则1s 时,正处于第四个14T 内,由左侧最大位移向平衡位置运动,即向右做加速运动,加速度减小,D 正确.3.(单摆的周期公式)如图6所示,MN 为半径较大的光滑圆弧轨道的一部分,把小球A 放在MN 的圆心处,再把另一小球B 放在MN 上离最低点C 很近的一处,今使两球同时自由释放,则在不计空气阻力时有( )图6A.A 球先到达C 点B.B 球先到达C 点C.两球同时到达C 点D.无法确定哪一个球先到达C 点答案 A解析 A 球做自由落体运动,到达C 点所需时间t A =2R g,R 为圆弧轨道的半径.因为圆弧轨道的半径R 很大,B 球离最低点C 又很近,所以B 球可看做沿圆弧做简谐运动,等同于摆长为R 的单摆,则运动到最低点C 所用的时间是单摆振动周期的14,即t B =T 4=π2R g >t A ,所以A 球先到达C 点.4.(单摆的周期公式)有一单摆,其摆长l =1.02m ,摆球的质量m =0.10kg ,已知单摆做简谐运动,单摆30次全振动所用的时间t =60.8s ,试求:(1)当地的重力加速度约为多大?(2)如果将这个单摆改为秒摆(周期为2s),摆长应怎样改变?改变约为多少?答案 (1)9.79m/s 2 (2)缩短0.027m解析 (1)当单摆做简谐运动时,其周期公式T =2πl g ,由此可得g =4π2l T 2.因为T =t n =60.830 s ≈2.027 s ,所以g =4π2l T 2=4×3.142×1.022.0272 m/s 2≈9.79 m/s 2. (2)秒摆的周期是2 s ,设其摆长为l 0,由于在同一地点重力加速度是不变的,根据单摆的振动规律有T T 0=l l 0,故有:l 0=T 02l T 2=22×1.022.0272 m ≈0.993 m. 其摆长要缩短Δl =l -l 0=1.02 m -0.993 m =0.027 m.一、选择题考点一 单摆及单摆的回复力1.(多选)单摆是为研究振动而抽象出的理想化模型,其理想化条件是( )A.摆线质量不计B.摆线不可伸缩C.摆球的直径比摆线长度小得多D.只要是单摆的运动就是一种简谐运动答案 ABC解析 单摆由摆线和摆球组成,摆线只计长度不计质量,摆球只计质量不计大小,且摆线不可伸缩.只有在摆角很小(θ≤5°)的情况下才能视单摆运动为简谐运动.故正确答案为A 、B 、C.2.关于单摆,下列说法中正确的是( )A.摆球运动的回复力是它受到的合力B.摆球在运动过程中经过轨迹上的同一点,加速度是不变的C.摆球在运动过程中加速度的方向始终指向平衡位置D.摆球经过平衡位置时,加速度为零答案 B解析 摆球的回复力为重力沿轨迹切线方向的分力,A 错误;摆球经过最低点时,回复力为0,但合力提供向心力,C 、D 错误;由简谐运动特点知B 正确.3.(多选)关于单摆的运动,下列说法中正确的是( )A.单摆的回复力是摆线的拉力与重力的合力B.单摆的回复力是重力沿摆球运动轨迹切向的分力C.摆球做匀速圆周运动D.单摆做简谐运动的条件是最大偏角很小,如小于5°答案BD解析单摆的回复力是重力沿摆球运动轨迹切向的分力,千万不要误认为是摆球所受的合外力,所以A错误,B正确;单摆在摆动过程中速度大小是变化的,不是匀速圆周运动,C错误;在摆角很小时,单摆近似做简谐运动,D正确.4.单摆在振动过程中,当摆球的重力势能增大时,摆球的( )A.位移一定减小B.回复力一定减小C.速度一定减小D.加速度一定减小答案 C解析当摆球的重力势能增大时,摆球的位移增大,回复力、加速度增大,速度减小,故C 正确.考点二单摆的周期公式5.(多选)某单摆由1m长的摆线连接一个直径为2cm的铁球组成,关于单摆周期的下列说法正确的是( )A.用等大的铜球替代铁球,单摆的周期不变B.用大球替代小球,单摆的周期不变C.摆角从5°改为3°,单摆的周期会变小D.将单摆从赤道移到北极,单摆的周期会变小答案AD解析用等大的铜球替代铁球,摆长不变,由单摆周期公式T=2πlg可知,单摆的周期不变,故A正确;用大球替代小球,单摆摆长变长,单摆的周期变大,故B错误;在小摆角情况下,单摆做简谐运动的周期与摆角无关,摆角从5°改为3°时,单摆周期不变,故C 错误;将单摆从赤道移到北极,重力加速度g变大,单摆周期变小,故D正确.6.如图1所示为演示简谐振动的沙摆,已知摆长为l,沙筒的质量为m,沙子的质量为M,沙子逐渐下漏的过程中,摆的周期( )图1A.不变B.先变大后变小C.先变小后变大D.逐渐变大答案 B解析 在沙摆摆动、沙子逐渐下漏的过程中,沙摆的重心逐渐下降,即摆长逐渐变大,当沙子流到一定程度后,摆的重心又重新上移,即摆长变小,由周期公式可知,沙摆的周期先变大后变小,故选B.7.做简谐运动的单摆,其摆长不变,若摆球的质量增加为原来的94倍,摆球经过平衡位置的速度减为原来的23,则单摆振动的( ) A.周期不变,振幅不变B.周期不变,振幅变小C.周期改变,振幅不变D.周期改变,振幅变大 答案 B解析 由单摆的周期公式T =2πl g可知,当摆长l 不变时,周期不变,故C 、D 错误;由能量守恒定律可知12mv 2=mgh ,其摆动的高度与质量无关,因平衡位置的速度减小,则摆动的最大高度减小,即振幅减小,选项B 正确,A 错误.8.(多选)惠更斯利用摆的等时性发明了带摆的计时器,叫摆钟.摆钟运行时克服摩擦所需的能量由重力势能提供,运动的速率由钟摆控制.旋转钟摆下端的螺母可以使摆上的圆盘沿摆杆上下移动,如图2所示,下列说法正确的是( )图2A.当摆钟不准时需要调整圆盘位置B.摆钟快了应使圆盘沿摆杆上移C.由冬季变为夏季时应使圆盘沿摆杆上移D.把摆钟从广州移到北京应使圆盘沿摆杆上移答案 AC解析 调整圆盘位置可改变摆长,从而达到调整周期的目的.若摆钟变快,是因为周期变小,应增大摆长,即下移圆盘.由冬季变为夏季,摆杆由于热胀冷缩变长,应上移圆盘.从广州到北京,g 值变大,周期变小,应增加摆长,下移圆盘.综上所述,选项A 、C 正确.9.(多选)图3中两单摆摆长相同,平衡时两摆球刚好接触,现将摆球A 在两摆球所在平面内向左拉开一小角度后释放,碰撞后,两摆球分开,各自做简谐运动,以m A 、m B 分别表示摆球A 、B 的质量,则( )图3A.如果m A >m B ,下一次碰撞将发生在平衡位置右侧B.如果m A <m B ,下一次碰撞将发生在平衡位置左侧C.无论两摆球的质量之比是多少,下一次碰撞都不可能在平衡位置右侧D.无论两摆球的质量之比是多少,下一次碰撞都不可能在平衡位置左侧答案 CD解析 A 、B 两球碰撞后,B 球一定向右摆,A 球可能向右摆,也可能向左摆,还可能停下来.由于两单摆摆长相同,因此摆动的周期相同,它们在第一次碰后半个周期回到平衡位置而发生第二次碰撞,C 、D 正确.10.如图4所示,竖直平面内有一半径为1.6m 、长为10cm 的光滑圆弧轨道,小球置于圆弧左端,t =0时刻起由静止释放,g =10m/s 2,t =2s 时小球正在( )图4A.向右加速运动B.向右减速运动C.向左加速运动D.向左减速运动 答案 D解析 将小球的运动等效成单摆运动,则小球的周期: T =2πR g =2π 1.610s =0.8πs ≈2.5s. 所以在t =2s =45T 时刻,小球在由最低点向左侧的运动过程中,所以是向左做减速运动.故D 正确.二、非选择题11.(单摆的周期公式)正在修建的房顶上固定的一根不可伸长的细线垂到三楼窗沿下,某同学应用单摆原理测量窗的上沿到房顶的高度.先将线的下端系上一个小球,发现当小球静止时,细线恰好与窗子上沿接触且保持竖直,他打开窗子,让小球在垂直于墙的竖直平面内摆动,如图5所示,从小球第1次通过图中的B 点开始计时,第21次通过B 点用时30s ;球在最低点B 时,球心到窗上沿的距离为1m ,当地重力加速度g 取π2m/s 2;根据以上数据可得小球运动的周期T =________s ;房顶到窗上沿的高度h =________m.图5答案 3 3解析 n =12×(21-1)=10,T =t n=3s , T =T 12+T 22=12(2πl g +2πl +h g),又l =1m , 解得h =3m. 12.(单摆的周期公式)如图6所示,光滑的半球壳半径为R ,O 点在球心O ′的正下方,一小球甲由距O 点很近的A 点由静止释放,R ≫»AO .图6(1)若另一小球乙从球心O ′处自由落下,问两球第一次到达O 点的时间比.(2)若另一小球丙在O 点正上方某处自由落下,为使丙球与甲球在O 点相碰,丙球应由多高处自由落下?答案 (1)2π∶4 (2)(2n -1)2π2R 8(n =1,2,3,…) 解析 (1)小球甲沿圆弧做简谐运动,它第一次到达O 点的时间为:t 1=14T =14×2πR g =π2R g.小球乙做自由落体运动,设到达O 点的时间为t 2.R =12gt 22,所以t 2=2R g,t 1∶t 2=2π∶4. (2)小球甲从A 点由静止释放运动到O 点的时间为t =T4(2n -1),n =1,2,3,…,由O 点正上方自由落下的小球丙到达O 点的时间也为t 时两球才能在O 点相碰,所以h =12gt 2=12g ·4π2R 16g(2n -1)2=(2n -1)2π2R 8(n =1,2,3,…).。