Linux内核分析
- 格式:docx
- 大小:222.35 KB
- 文档页数:8
Linux操作系统内核性能测试与调优操作系统是计算机系统中最核心的软件之一,它负责协调和管理计算机硬件资源以及提供统一的用户界面。
Linux操作系统因其开放源代码、稳定性和安全性而备受欢迎。
然而,在大规模和高负载的环境中,Linux操作系统的性能可能会出现瓶颈。
因此,进行内核性能测试与调优是非常重要的。
一、性能测试的重要性在处理大量数据和并发用户请求时,操作系统的性能会成为瓶颈。
通过性能测试,我们可以了解操作系统在不同负载情况下的表现,进而定位和解决性能瓶颈。
性能测试有助于提高系统的响应时间、吞吐量和并发性能,从而确保系统的稳定运行。
二、性能测试的分类1. 压力测试:通过模拟实际用户行为或产生大量虚拟用户,并观察系统在负载增加的情况下的响应时间和吞吐量。
常用的压力测试工具包括Apache JMeter和Gatling等。
2. 负载测试:通过模拟实际业务场景,并且能够测试系统在高负载情况下的响应能力和稳定性。
这种测试方法可以帮助我们发现系统在繁忙时是否仍然能够正常工作,并识别可能存在的性能瓶颈。
3. 并发测试:通过模拟多个并发用户并行执行相同或不同的操作,以验证系统在并发访问下的性能表现。
这种测试方法可以评估系统的并发处理能力和资源利用率。
三、内核性能调优的重要性Linux操作系统的性能与其内核配置息息相关。
对内核的性能调优可以提高系统的响应速度、降低延迟和提高吞吐量。
通过调整内核参数和优化内核模块,可以使操作系统更好地适应特定的工作负载。
四、内核性能调优的方法1. 内核参数调整:根据系统的工作负载特点,适当调整内核参数。
例如,可以通过修改TCP/IP堆栈参数来提高网络性能,或者通过修改文件系统参数来提高磁盘I/O性能。
2. 内核模块优化:优化内核使用的模块,选择性加载和卸载不必要的模块,以减少内核的资源占用和启动时间。
3. 中断处理优化:通过合理分配和调整中断处理的优先级,减少中断处理的开销,提高系统的性能。
在 Linux 系统中,内核堆栈(kernel stack)用于执行内核代码。
当发生操作系统内核崩溃、内核出现异常或需要调试时,理解和分析内核堆栈十分重要。
以下是分析 Linux 内核堆栈的常用方法:使用dmesg:当内核发生故障时,错误信息和堆栈追踪通常会输出到内核日志。
你可以使用 dmesg 命令查看内核日志中的堆栈追踪。
dmesg | grep -i stack操作系统崩溃时的系统日志:有时通过分析内核崩溃时的系统日志(如/var/log/syslog 或/var/log/messages、/var/log/kern.log)也可以找到有关堆栈信息。
使用 dump_stack() 函数:在内核代码中,你可以使用 dump_stack() 函数打印当前线程的堆栈信息。
这在调试内核代码时非常有用。
系统核心转储(Core Dump):内核崩溃时,操作系统有时会生成系统核心转储文件。
你可以使用 GNU Debugger(GDB)来分析内核转储文件。
首先,安装 Linux 的调试符号表(debugging symbols),然后使用 gdb 命令加载符号表和内核转储文件,最后使用 bt(backtrace)命令查看堆栈追踪。
gdb path/to/vmlinux path/to/core_dump(gdb) bt请注意,要使内核生成核心转储文件,需要正确配置内核。
具体配置方法取决于你所使用的 Linux 发行版。
内核调试器(如 KGDB 和 KDB):如果你正在研究内核问题,可以使用内核调试器 KGDB 或 KDB。
KGDB 是基于 GDB 的内核调试器,可以在源代码级别进行调试。
KDB 则是一个基于文本的内核调试器。
使用这些工具,你可以从内核级别设置断点、单步执行代码、检查内存内容和调用堆栈等。
通过以上方法可以帮助你分析 Linux 内核堆栈。
如何选择最佳方法取决于你的具体需求和问题。
在进行内核调试之前,请确保熟悉 Linux 操作系统和内核开发的基本知识。
Linux操作系统的内核设计分析Linux操作系统作为开源操作系统的代表,已经在各个领域得到了广泛应用。
而Linux操作系统的内核则是这个系统之所以能够运转的关键所在。
本文将就Linux操作系统的内核设计进行分析,并探讨其优劣之处。
一、Linux内核设计的基础Linux内核的设计基础主要包括以下几个方面:1. 开放源码Linux内核采用的是GPL协议,这意味着它是一个开放源码的项目。
这为世界各地的开发人员提供了极大的便利,方便他们进行开发和修改。
同时,这也确保了Linux内核的透明度,并且鼓励开发者贡献代码的同时,深度参与到Linux开源社区的构建和升级中。
2. 模块化Linux内核的构造采用的是模块化设计。
这种设计方式将内核代码分成独立的模块,每个模块都可以独立编译、加载和卸载。
采用模块化的设计,能够使得开发人员能够更加细致地打包、编译、并部署只包含他们需要的模块的系统。
3. 多任务Linux内核是一个基于多任务设计的系统。
这意味着它能够使得多个程序同时运行,并能够平滑高效地进行任务的切换。
这给开发人员提供了各种各样的自由,使得他们能够更加高效地进行开发。
4. 支持众多处理器架构Linux内核的支持范围非常广泛,它可以适配众多处理器架构。
这意味着一个制造商可以使用不同的处理器架构去生产设备,并且这些设备都能够安装和运行Linux操作系统。
5. 外层调用接口Linux内核支持开放式的外层调用接口。
这使得用户层可以很容易地调用Linux 内核执行某个任务。
这些用户层应用包括网上购物网站、应用程序和各种驱动程序。
6. 子系统Linux内核的子系统主要包括进程管理、内存管理、I/O管理和网络管理等。
二、Linux内核的优点Linux内核具有以下主要优点:1. 开源性Linux内核本身是一个开源的、由社区驱动的项目。
这意味着在它的附加组件和周边产品中,广大的开发者社区都可以为用户提供帮助和支持。
2. 安全性相比其他闭源操作系统,Linux内核在安全性方面更具优势。
linux内核kallsyms机制分析2016-07-24 15:59:41分类: LINUX原文地址:linux内核kallsyms机制分析作者:wangbaolin7191.一、前言2.Linux内核是一个整体结构,而模块是插入到内核中的插件。
尽管内核不是一个可安装模块,但为了方便起见,Linux把内核也看作一个模块。
那么模块与模块之间如何进行交互呢,一种常用的方法就是共享变量和函数。
但并不是模块中的每个变量和函数都能被共享,内核只把各个模块中主要的变量和函数放在一个特定的区段,这些变量和函数就统称为符号。
3.4.因此,内核也有一个module结构,叫做kernel_module。
另外,从kernel_module开始,所有已安装模块的module结构都链在一起成为一条链,内核中的全局变量module_list就指向这条链:5.struct module *module_list =&kernel_module;6.7.一般来说,内核只会导出由EXPORT_PARM宏指定的符号给模块使用。
为了使debugger提供更好的调试功能,需要使用kallsyms 工具为内核生成__kallsyms段数据,该段描述所有不处在堆栈上的内核符号。
这样debugger就能更好地解析内核符号,而不仅仅是内核指定导出的符号。
8.9.二、简介10.在v2.6.0 的内核中,为了更好地调试内核,引入新的功能kallsyms.kallsyms把内核用到的所有函数地址和名称连接进内核文件,当内核启动后,同时加载到内存中.当发生oops,例如在内核中访问空地址时,内核就会解析eip位于哪个函数中,并打印出形如:11.EIP is at cleanup_module+0xb/0x1d [client]的信息,12.调用栈也用可读的方式显示出来.13.Call Trace:14.[<c013096d>] sys_delete_module+0x191/0x1ce15.[<c02dd30a>] do_page_fault+0x189/0x51d16.[<c0102bc1>] syscall_call+0x7/0xb17.18.当然功能不仅仅于此,还可以查找某个函数例如的sys_fork 的地址,然后hook它,kprobe就是这么干的。
其中基于sparc64平台的Linux用户空间可以运行32位代码,用户空间指针是32位宽的,但内核空间是64位的。
内核中的地址是unsigned long类型,指针大小和long类型相同。
内核提供下列数据类型。
所有类型在头文件<asm/types.h>中声明,这个文件又被头文件<Linux/types.h>所包含。
下面是include/asm/types.h文件。
#ifndef _I386_TYPES_H#define _I386_TYPES_H#ifndef __ASSEMBLY__typedef unsigned short umode_t;// 下面__xx类型不会损害POSIX 名字空间,在头文件使用它们,可以输出给用户空间typedef __signed__ char __s8;typedef unsigned char __u8;typedef __signed__ short __s16;typedef unsigned short __u16;typedef __signed__ int __s32;typedef unsigned int __u32;#if defined(__GNUC__) && !defined(__STRICT_ANSI__)typedef __signed__ long long __s64;typedef unsigned long long __u64;#endif#endif /* __ASSEMBLY__ *///下面的类型只用在内核中,否则会产生名字空间崩溃#ifdef __KERNEL__#define BITS_PER_LONG 32#ifndef __ASSEMBLY__#include <Linux/config.h>typedef signed char s8;typedef unsigned char u8;typedef signed short s16;typedef unsigned short u16;typedef signed int s32;typedef unsigned int u32;typedef signed long long s64;typedef unsigned long long u64;/* DMA addresses come in generic and 64-bit flavours. */ #ifdef CONFIG_HIGHMEM64Gtypedef u64 dma_addr_t;#elsetypedef u32 dma_addr_t;#endiftypedef u64 dma64_addr_t;#ifdef CONFIG_LBDtypedef u64 sector_t;#define HAVE_SECTOR_T#endiftypedef unsigned short kmem_bufctl_t;#endif /* __ASSEMBLY__ */#endif /* __KERNEL__ */#endif下面是Linux/types.h的部分定义。
linux内核分析课后答案Linux是将应用层序的请求传递给硬件,并充当底层驱动程序,对系统中的各种设备和组件进行寻址。
支持模块的动态装卸(裁剪)。
Linux内核就是基于这个策略实现的。
Linux进程1.采用层次结构,每个进程都依赖于一个父进程。
内核启动init程序作为第一个进程。
该进程负责进一步的系统初始化操作。
init进程是进程树的根,所有的进程都直接或者间接起源于该进程。
从技术层面讲,内核是硬件与软件之间的一个中间层。
作用是将应用层序的请求传递给硬件,并充当底层驱动程序,对系统中的各种设备和组件进行寻址。
从应用程序的层面讲,应用程序与硬件没有联系,只与内核有联系,内核是应用程序知道的层次中的最底层。
在实际工作中内核抽象了相关细节。
内核是一个资源管理程序。
负责将可用的共享资源(CPU时间、磁盘空间、网络连接等)分配得到各个系统进程。
内核就像一个库,提供了一组面向系统的命令。
系统调用对于应用程序来说,就像调用普通函数一样。
Linux 内核可以进一步划分成 3 层。
最上面是系统调用接口,它实现了一些基本的功能,例如 read 和 write。
系统调用接口之下是内核代码,可以更精确地定义为独立于体系结构的内核代码。
这些代码是 Linux 所支持的所有处理器体系结构所通用的。
在这些代码之下是依赖于体系结构的代码,构成了通常称为 BSP(Board SupportPackage)的部分。
这些代码用作给定体系结构的处理器和特定于平台的代码。
Linux 内核实现了很多重要的体系结构属性。
在或高或低的层次上,内核被划分为多个子系统。
Linux 也可以看作是一个整体,因为它会将所有这些基本服务都集成到内核中。
这与微内核的体系结构不同,后者会提供一些基本的服务,例如通信、I/O、内存和进程管理,更具体的服务都是插入到微内核层中的。
每种内核都有自己的优点,不过这里并不对此进行讨论。
随着时间的流逝,Linux 内核在内存和 CPU 使用方面具有较高的效率,并且非常稳定。
linux内核分析之调度算法linux调度算法在2.6.32中采用调度类实现模块式的调度方式。
这样,能够很好的加入新的调度算法。
linux调度器是以模块方式提供的,这样做的目的是允许不同类型的进程可以有针对性地选择调度算法。
这种模块化结构被称为调度器类,他允许多种不同哦可动态添加的调度算法并存,调度属于自己范畴的进程。
每个调度器都有一个优先级,调度代码会按照优先级遍历调度类,拥有一个可执行进程的最高优先级的调度器类胜出,去选择下面要执行的那个程序。
linux上主要有两大类调度算法,CFS(完全公平调度算法)和实时调度算法。
宏SCHED_NOMAL主要用于CFS调度,而SCHED_FIFO和SCHED_RR主要用于实时调度。
如下面的宏定义:1. /*2. * Scheduling policies3. */4. /*支援Real-Time Task的排程,包括有SCHED_FIFO與SCHED_RR.5. */6.7. /*(也稱為SCHED_OTHER): 主要用以排程8. 一般目的的Task.*/9. #define SCHED_NORMAL 010. #define SCHED_FIFO 111. /*task預設的 Time Slice長度為100 msecs*/12. #define SCHED_RR 213. /*主要用以讓Task可以延長執行的時間14. (Time Slice),減少被中斷發生Task Context-Switch15. 的次數.藉此可以提高 Cache的利用率16. (每次Context-Switch都會導致Cache-Flush). 比17. 較適合用在固定週期執行的Batch Jobs任18. 務主機上,而不適合用在需要使用者互19. 動的產品 (會由於Task切換的延遲,而20. 感覺到系統效能不佳或是反應太慢).*/21. #define SCHED_BATCH 322. /* SCHED_ISO: reserved but not implemented yet */23. /*為系統中的Idle Task排程.*/24. #define SCHED_IDLE 51. /*每个处理器都会配置一个rq*/2. s truct rq {3. /* runqueue lock: */4. spinlock_t lock;5.6. /*7. * nr_running and cpu_load should be in the same cacheline because8. * remote CPUs use both these fields when doing load calculation.9. */10. /*用以记录目前处理器rq中执行task的数量*/11. unsigned long nr_running;12. #define CPU_LOAD_IDX_MAX 513. /*用以表示处理器的负载,在每个处理器的rq中14. 都会有对应到该处理器的cpu_load参数配置,在每次15. 处理器触发scheduler tick时,都会呼叫函数16. update_cpu_load_active,进行cpu_load的更新。
本文首先分析了Linux内核中的配置系统结构,然后,解释了Makefile和配置文件的格式以及配置语句的含义,最后,通过一个简单的例子--TEST Driver,具体说明如何将自行开发的代码加入到Linux内核中。
在下面的文章中,不可能解释所有的功能和命令,只对那些常用的进行解释,至于那些没有讨论到的,请读者参考后面的参考文献。
1.配置系统的基本结构Linux内核的配置系统由三个部分组成,分别是:Makefile:分布在Linux内核源代码中的Makefile,定义Linux内核的编译规则;配置文件(config.in):给用户提供配置选择的功能;配置工具:包括配置命令解释器(对配置脚本中使用的配置命令进行解释)和配置用户界面(提供基于字符界面、基于Ncurses图形界面以及基于Xwindows图形界面的用户配置界面,各自对应于Make config、Make menuconfig和make xconfig)。
这些配置工具都是使用脚本语言,如Tcl/TK、Perl编写的(也包含一些用C编写的代码)。
本文并不是对配置系统本身进行分析,而是介绍如何使用配置系统。
所以,除非是配置系统的维护者,一般的内核开发者无须了解它们的原理,只需要知道如何编写Makefile和配置文件就可以。
所以,在本文中,我们只对Makefile和配置文件进行讨论。
另外,凡是涉及到与具体CPU体系结构相关的内容,我们都以ARM为例,这样不仅可以将讨论的问题明确化,而且对内容本身不产生影响。
2.Makefile2.1Makefile概述Makefile的作用是根据配置的情况,构造出需要编译的源文件列表,然后分别编译,并把目标代码链接到一起,最终形成Linux内核二进制文件。
由于Linux内核源代码是按照树形结构组织的,所以Makefile也被分布在目录树中。
Linux 内核中的Makefile以及与Makefile直接相关的文件有:Makefile:顶层Makefile,是整个内核配置、编译的总体控制文件。
Linux内核实验报告实验题目:构造新内核同步机制实验实验目的:要设计一组新的内核同步原语,它们具有如下的功能:能够使多个进程阻塞在某一特定的事件上,直到另一进程完成这一事件释放相关资源,给内核发送特定消息然后由内核唤醒这些被阻塞的进程。
如果没有进程阻塞在这个事件上, 则消息被忽略。
可以编写 4 个系统调用来实现这些功能要求:1、生成一个事件的系统调用函数:int myevent_open(int eventNum);生成一个事件,返回该事件的 ID,如果参数为 0,表示是一个新的事件,否则就是一个存在的事件。
2、将进程阻塞到一个事件的系统调用函数:int myevent_wait(int eventNum);进程阻塞到 eventNum 事件,直到该事件完成才被唤醒。
3、唤醒等某事件进程的系统调用函数:int myevent_signal(int eventNum);唤醒所有等 eventNum 事件的进程,如果队列为空,则忽略。
4、撤销一个事件的系统调用函数:int myevent_close(int eventNum);撤销一个参数代表的事件,成功返回 eventNum。
最后重新设计这些系统调用,模拟实现信号量机制。
硬件环境:Pentium(R)*************************软件环境:Ubuntu12.04gcc version 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntu5)内核版本:3.0.24实验步骤:1、代码分析结构体:typedef struct __myevent{int eventNum; // 事件号atomic_t value;wait_queue_head_t p; // 系统等待队列首指针struct __myevent *next; // 队列链指针}myevent_t;P操作:asmlinkage int sys_myevent_wait(int eventNum){myevent_t *tmp;myevent_t *prev = NULL;//取出指定事件的等待队列头指针?只是在事件队列上找到对应的事件吧,然后把该事件上的等待队列头指针取出来用if((tmp = scheventNum( eventNum, &prev)) != NULL){printk("[wait]:value is %u",atomic_read(&tmp->value));if (atomic_read(&tmp->value) > 0){ //YJ:有可用资源,减1并立即返回;不然等待atomic_dec(&tmp->value);printk("[wait]:i've dec value to <%u>",atomic_read(&tmp->value));return eventNum;}printk("[wait]:value should be 0 to sleep-->value:%u\n",atomic_read(&tmp->value));DEFINE_WAIT(wait); //初始化等待队列入口//使调用进程进入阻塞状态//prepare_to_wait(&tmp>p,&wait,TASK_INTERRUPTIBLE);set_current_state(TASK_INTERRUPTIBLE);add_wait_queue_exclusive(&tmp->p,&wait); //独占等待,放到队尾并置标志schedule(); //引发系统重新调度finish_wait(&tmp->p,&wait); // 设置当前进程状态为RUNNING,并且从队列中删除之(如果队列非空)printk("[wait]:now i'm back and value is :%u\n",atomic_read(&tmp->value));return eventNum;}return 0;}V操作:asmlinkage int sys_myevent_signal(int eventNum)myevent_t *tmp = NULL;myevent_t *prev = NULL;//取出指定事件的等待队列头指针if((tmp = scheventNum(eventNum,&prev)) != NULL) {if (list_empty(&(tmp->p.task_list))) { //没有进程在队列上atomic_inc(&tmp->value);printk("[signal]:so list is empty and value now is(added):%u\n",atomic_read(&tmp->value));return eventNum;}//唤醒操作,由于独占等待,只会唤醒一个进程,而且DEFINE_W AIT时挂上了autoremove_wake_up方法,进程会自动从队列上删除,wake_up和add_wait_queue这些都自动加spinlock了printk("[signal]:so i'm going to wake up one exclusive process\n");wake_up(&tmp->p);return eventNum;}return 0;}2、设计说明在这里着重说明信号量机制的实现。
linux操作系统的基本体系结构一、内核(Kernel)Linux操作系统的核心是内核,它负责管理系统资源、控制硬件设备、调度进程和提供基本的系统服务。
Linux内核采用单内核结构,包含了操作系统的大部分核心功能和驱动程序。
内核是操作系统的核心组件,它提供了操作系统运行所必须的基本功能。
Linux内核具有以下特点:1、多任务处理:Linux内核支持多任务处理,可以同时运行多个程序,并实现多个程序之间的切换和管理。
2、硬件管理:Linux内核负责管理硬件设备,与硬件设备交互,控制硬件设备的工作状态。
3、内存管理:Linux内核负责管理系统的内存,包括内存的分配、释放、映射和交换等操作。
4、文件系统:Linux内核支持多种文件系统,包括ext4、NTFS、FAT等,负责文件的读写、管理和保护。
5、进程管理:Linux内核管理系统进程,包括进程的创建、调度、挂起、唤醒和终止等操作。
6、网络通信:Linux内核支持网络通信功能,包括TCP/IP协议栈、网卡驱动等,实现网络数据传输和通信。
二、ShellShell是Linux操作系统的命令解释器,用户通过Shell与操作系统进行交互。
Shell接受用户的命令,并将其转换为对应的系统调用,最终由内核执行。
Linux系统中常用的Shell有Bash、Zsh等,用户可以根据自己的喜好选择不同的Shell。
Shell具有以下功能:1、命令解释:Shell接受用户输入的命令,并将其翻译为操作系统可以执行的命令。
2、执行程序:Shell可以执行各种程序、脚本和命令,包括系统工具、应用程序等。
3、环境控制:Shell可以设置环境变量、别名和路径等,帮助用户管理系统环境。
4、文件处理:Shell可以处理文件操作,包括创建、删除、复制、移动等。
5、脚本编程:Shell支持脚本编程,用户可以编写Shell脚本来自动执行一系列操作。
三、系统工具Linux操作系统提供了丰富的系统工具,帮助用户管理系统和执行各种任务。
江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。
试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。
1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。
2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。
3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。
包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。
这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。
二、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →→=,则AB AC →→⋅的最小值为( )A .14-B .12-C .34-D .1-【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。
解法较多,属于较难题,得分率较低。
【易错点】1.不能正确用OA ,OB ,OC 表示其它向量。
2.找不出OB 与OA 的夹角和OB 与OC 的夹角的倍数关系。
【解题思路】1.把向量用OA ,OB ,OC 表示出来。
2.把求最值问题转化为三角函数的最值求解。
【解析】设单位圆的圆心为O ,由AB AC →→=得,22()()OB OA OC OA -=-,因为1OA OB OC ===,所以有,OB OA OC OA ⋅=⋅则()()AB AC OB OA OC OA ⋅=-⋅-2OB OC OB OA OA OC OA =⋅-⋅-⋅+ 21OB OC OB OA =⋅-⋅+设OB 与OA 的夹角为α,则OB 与OC 的夹角为2α所以,cos 22cos 1AB AC αα⋅=-+2112(cos )22α=--即,AB AC ⋅的最小值为12-,故选B 。
【举一反三】【相似较难试题】【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 .【试题分析】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ⋅,体现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现. 【答案】2918【解析】因为1,9DF DC λ=12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==, AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+,()221919191181818AE AF AB BC AB BC AB BC AB BCλλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918. 2.【试卷原题】20. (本小题满分12分)已知抛物线C 的焦点()1,0F ,其准线与x 轴的交点为K ,过点K 的直线l 与C 交于,A B 两点,点A 关于x 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB →→⋅=,求BDK ∆内切圆M 的方程. 【考查方向】本题主要考查抛物线的标准方程和性质,直线与抛物线的位置关系,圆的标准方程,韦达定理,点到直线距离公式等知识,考查了解析几何设而不求和化归与转化的数学思想方法,是直线与圆锥曲线的综合问题,属于较难题。
【易错点】1.设直线l 的方程为(1)y m x =+,致使解法不严密。
2.不能正确运用韦达定理,设而不求,使得运算繁琐,最后得不到正确答案。
【解题思路】1.设出点的坐标,列出方程。
2.利用韦达定理,设而不求,简化运算过程。
3.根据圆的性质,巧用点到直线的距离公式求解。
【解析】(Ⅰ)由题可知()1,0K -,抛物线的方程为24y x =则可设直线l 的方程为1x my =-,()()()112211,,,,,A x y B x y D x y -,故214x my y x =-⎧⎨=⎩整理得2440y my -+=,故121244y y m y y +=⎧⎨=⎩则直线BD 的方程为()212221y y y y x x x x +-=--即2222144y y y x y y ⎛⎫-=- ⎪-⎝⎭令0y =,得1214y yx ==,所以()1,0F 在直线BD 上.(Ⅱ)由(Ⅰ)可知121244y y m y y +=⎧⎨=⎩,所以()()212121142x x my my m +=-+-=-,()()1211111x x my my =--= 又()111,FA x y →=-,()221,FB x y →=-故()()()21212121211584FA FB x x y y x x x x m →→⋅=--+=-++=-,则28484,93m m -=∴=±,故直线l 的方程为3430x y ++=或3430x y -+=213y y -===±,故直线BD 的方程330x -=或330x -=,又KF 为BKD ∠的平分线,故可设圆心()(),011M t t -<<,(),0M t 到直线l 及BD 的距离分别为3131,54t t +--------------10分 由313154t t +-=得19t =或9t =(舍去).故圆M 的半径为31253t r +== 所以圆M 的方程为221499x y ⎛⎫-+= ⎪⎝⎭【举一反三】【相似较难试题】【2014高考全国,22】 已知抛物线C :y 2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=54|PQ|.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.【试题分析】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,解法及所涉及的知识和上题基本相同. 【答案】(1)y 2=4x. (2)x -y -1=0或x +y -1=0. 【解析】(1)设Q(x 0,4),代入y 2=2px ,得x 0=8p,所以|PQ|=8p ,|QF|=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D(2m 2+1,2m), |AB|=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M(x 3,y 3),N(x 4,y 4),则y 3+y 4=-4m,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝ ⎛⎭⎪⎫2m2+2m 2+3,-2m ,|MN|=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2.由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=12|MN|,从而14|AB|2+|DE|2=14|MN|2,即 4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1, 故所求直线l 的方程为x -y -1=0或x +y -1=0.三、考卷比较本试卷新课标全国卷Ⅰ相比较,基本相似,具体表现在以下方面: 1. 对学生的考查要求上完全一致。
即在考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平,符合考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”的原则. 2. 试题结构形式大体相同,即选择题12个,每题5分,填空题4 个,每题5分,解答题8个(必做题5个),其中第22,23,24题是三选一题。
题型分值完全一样。
选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、二项式定理、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.解答题中仍涵盖了数列,三角函数,立体何,解析几何,导数等重点内容。
3. 在考查范围上略有不同,如本试卷第3题,是一个积分题,尽管简单,但全国卷已经不考查了。
四、本考试卷考点分析表(考点/知识点,难易程度、分值、解题方式、易错点、是否区分度题)。