第3章 地基中的应力计算
- 格式:ppt
- 大小:2.98 MB
- 文档页数:52
第三章土中应力计算一、填空题1.由土筑成的梯形断面路堤,因自重引起的基底压力分布图形是梯形,桥梁墩台等刚性基础在中心荷载作用下,基底的沉降是相同的。
2.地基中附加应力分布随深度增加呈曲线减小,同一深度处,在基底中心点下,附加应力最大。
3.单向偏心荷载作用下的矩形基础,当偏心距e > l/6时,基底与地基局部脱开,产生应力重分部。
4.在地基中,矩形荷载所引起的附加应力,其影响深度比相同宽度的条形基础浅,比相同宽度的方形基础深。
5.上层坚硬、下层软弱的双层地基,在荷载作用下,将发生应力扩散现象,反之,将发生应力集中现象。
6.土中应力按成因可分为自重应力和附加应力。
7.计算土的自重应力时,地下水位以下的重度应取有效重度(浮重度)。
8.长期抽取地下水位,导致地下水位大幅度下降,从而使原水位以下土的有效自重应力增加,而造成地基沉降的严重后果。
9.饱和土体所受到的总应力为有效应力与孔隙水压力之和。
二、名词解释1.基底附加应力:基底压应力与基底标高处原土层自重应力之差。
2.自重应力:由土层自身重力引起的土中应力。
3.基底压力:建筑物荷载通过基础传给地基,在基础底面与地基之间的接触应力。
三、选择题1.成层土中竖向自重应力沿深度的增大而发生的变化为:(B )(A)折线减小(B)折线增大(C)斜线减小(D)斜线增大2.宽度均为b,基底附加应力均为P0的基础,同一深度处,附加应力数值最大的是:(C )(A)方形基础(B)矩形基础(C)条形基础(D)圆形基础(b为直径)3.可按平面问题求解地基中附加应力的基础是:(B )(A)柱下独立基础(B)墙下条形基础(C)片筏基础(D)箱形基础4.基底附加应力P0作用下,地基中附加应力随深度Z增大而减小,Z的起算点为:(A )(A)基础底面(B)天然地面(C)室内设计地面(D)室外设计地面5.土中自重应力起算点位置为:(B )(A)基础底面(B)天然地面(C)室内设计地面(D)室外设计地面6.地下水位下降,土中有效自重应力发生的变化是:(A )(A)原水位以上不变,原水位以下增大(B)原水位以上不变,原水位以下减小(C)变动后水位以上不变,变动后水位以下减小(D)变动后水位以上不变,变动后水位以下增大7.深度相同时,随着离基础中心点距离的增大,地基中竖向附加应力:(D )(A)斜线增大(B)斜线减小(C)曲线增大(D)曲线减小8.单向偏心的矩形基础,当偏心距e < l/6(l为偏心一侧基底边长)时,基底压应力分布图简化为:(B )(A)矩形(B)梯形(C)三角形(D)抛物线形9.宽度为3m的条形基础,作用在基础底面的竖向荷载N=1000kN/m ,偏心距e=0.7m,基底最大压应力为:(C )(A)800 kPa (B)417 kPa (C)833 kPa (D)400 kPa10.矩形面积上作用三角形分布荷载时,地基中竖向附加应力系数K t是l/b、z/b的函数,b指的是:(D )(A)矩形的长边(B)矩形的短边(C)矩形的短边与长边的平均值(D)三角形分布荷载方向基础底面的边长11.某砂土地基,天然重度γ=18 kN/m3,饱和重度γsat=20 kN/m3,地下水位距地表2m,地表下深度为4m处的竖向自重应力为:(A )(A)56kPa (B)76kPa (C)72kPa (D)80kPa12.均布矩形荷载角点下的竖向附加应力系数当l/b=1、Z/b=1时,K C=0.1752;当l/b=1、Z/b=2时,K C=0.084。
地基中的应力计算地基是地下工程中最基本的构造部分,承受着上部结构的重量和荷载,承担着巨大的压力作用。
在地基设计中,应力计算是非常重要的一部分,它能够提供地基承载力和安全性的评估。
本文将介绍地基中应力计算的方法和计算公式。
首先,需要了解地基中的应力是如何形成的。
地基承受的主要应力有自重应力、活载荷载应力和附加应力。
自重应力是由于地基材料本身的重量所引起的应力,可以通过材料的密度和重力加速度计算得到。
活载荷载应力是由上部结构的荷载所引起的应力,可以根据上部结构的设计荷载计算得到。
附加应力是由于地基中存在的其他因素所引起的应力,比如建筑物的自身形变引起的应力。
接下来,我们介绍如何计算地基中的应力。
地基中的应力计算可以根据不同的地基类型和荷载情况采用不同的方法。
下面以均质土壤的地基为例,介绍几种常用的应力计算方法。
1.利用铁索计算应力:铁索是一种常用的应力计算工具,可以通过测量铁索的伸长量来计算地基中的应力。
首先,在地基中铺设一根长度合适的铁索,然后测量并记录铁索的伸长量。
根据该伸长量和铁索的初始长度,可以通过应力-应变关系计算得到地基中的应力。
2.利用试孔计算应力:试孔是另一种用于计算地基中应力的方法。
首先,在地基中进行试孔,并记录试孔的深度和直径。
然后,根据试孔的直径和土壤的剪切强度,可以计算得到地基中的应力分布情况。
3.利用数值模拟计算应力:数值模拟是一种常用的计算地基应力的方法,它可以通过建立地基的有限元模型来模拟地基的应力分布情况。
首先,需要根据地基的实际情况建立有限元模型,然后通过数值计算方法求解得到地基中的应力。
综上所述,地基中的应力计算是地基设计的重要环节,可以通过铁索、试孔和数值模拟等多种方法进行计算。
在进行应力计算时,需要考虑地基的类型、荷载情况和材料特性等因素,确保计算结果的准确性和可靠性。
地基中的应力计算对于确保地基的稳定性和安全性具有重要意义,是地基设计中不可或缺的一环。
第三章 地基中的应力计算土中的应力按引起的原因可分为:(1)由土本身有效自重在地基内部引起的自重应力;(2)由外荷(静荷载或动荷载) 在地基内部引起的附加应力。
应力计算方法:1.假设地基土为连续、均匀、各向同性、半无限的线弹性体;2.弹性理论。
第一节 土中自重应力研究目的:确定土体的初始应力状态研究方法:土体简化为连续体,应用连续体力学 (例如弹性力学)方法来研究土中应力的分布。
假设天然土体是一个半无限体,地面以下土质均匀,天然重度为γ (kN/m3),则在天然地面下任意深度z (m)处的竖向自重应力σcz (kPa),可取作用于该深度水平面上任一单位面积上土柱的重量γz ⨯ l 计算,即: σcz= γzσcz 沿水平面均匀分布,且与z 成正比,即随深度按直线规律分布地基中除有作用于水平面上的竖向自重应力外,在竖直面上还作用有水平向的侧向自重应力。
由于地基中的自重应力状态属于侧限应力状态,故εx=εy=0,且σcx = σcy ,根据广义虎克定理,侧向自重应力σcx 和σcy 应与σcz 成正比,而剪应力均为零,即σcx = σcy = K0σczτxy=τyz=τzx =0式中 K0 ―比例系数,称为土的侧压力系数或静止土压力系数。
它是侧限条件下土中水平向有效应力与竖直向有效应力之比。
(1) 土中任意截面都包括有骨架和孔隙的面积,所以在地基应力计算时考虑的是土中单z σsz = γz 天然地面σcy zσcx天然地面σcz位面积上的平均应力。
(2) 假设天然土体是一个半无限体,地基中的自重应力状态属于侧限应力状态,地基土在自重作用下只能产生竖向变形,而不能有侧向变形和剪切变形。
地基中任意竖直面和水平面上均无剪应力存在。
(3) 土中竖向和侧向的自重应力一般均指有效自重应力。
为了简便起见,把常用的竖向有效自重应力σcz ,简称为自重应力,并改用符号σc 表示。
成层地基土中自重应力因各层土具有不同的重度。