中考试题复习综合练习:多边形和平行四边形(无答案).docx
- 格式:docx
- 大小:283.41 KB
- 文档页数:4
初三数学基础知识总复习—平行四边形与多边形命题点1平行四边形的判定1.四边形ABCD的对角线AC与BD相交于点O,下列四组条件中,一定能够判定四边形ABCD为平行四边形的是()A. AD∥BCB. OA=OC,OB=ODC. AD∥BC,AB=DCD. AC⊥BD2.如图,在四边形ABCD中,AD=BC,在不添加任何辅助线的情况下,请你添加一个条件________,使四边形ABCD是平行四边形.第2题图3.如图,□ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.第3题图命题点2平行四边形的相关证明与计算4.已知□ABCD的对角线AC,BD相交于点O,△AOD是等边三角形,且AD=4,则AB等于() A. 2 B. 4 C. 2 3 D. 435.如图□ABCD,F为BC中点,延长AD至E,使DE∶AD=1∶3,连接EF交DC于点G.则S△DEG∶S△CFG=()A. 2∶3B. 3∶2C. 9∶4D. 4∶9第5题图6.如图,在□ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线的点E处.若∠B =60°,AB=3,则△ADE的周长为()A. 12B. 15C. 18D. 21第6题图7.如图,在□ABCD中,AD=7,AB=23,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE 沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为________.第7题图8.如图,在□ABCD中,E,F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小是________.第8题图9.在平面直角坐标系xOy中,□OABC的三个顶点分别为O(0,0),A(3,0),B(4,2),则其第四个顶点C的坐标是________.10.在平行四边形ABCD中,∠A=30°,AD=43,BD=4,则平行四边形ABCD的面积等于________.11.已知:如图,在□ABCD中,点E、F分别是边AD、BC的中点.求证:BE=DF.第11题图12.如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.(1)求证:∠BEC=90°;(2)求cos∠DAE.第12题图13.如图,在正方形ABCD中,分别过顶点B,D作BE∥DF交对角线AC所在直线于E,F点,并分别延长EB,FD到点H,G,使BH=DG,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)已知:AB=22,EB=4,tan∠GEH=23,求四边形EHFG的周长.第13题图命题点3 多边形及其性质14.如图,足球图片正中的黑色正五边形的内角和是()A. 180°B. 360°C. 540°D. 720°第14题图15.如图,小莉从A点出发,沿直线前进10米后左转20°,再沿直线前进10米,又向左转20°,……,照这样走下去,她第一次回到出发点A时,一共走的路程是()A. 150米B. 160米C. 180米D. 200米第15题图16.正十边形的外角和为()A. 180°B. 360°C. 720°D. 1440°17.如图,在正六边形ABCDEF中,AC=23,则它的边长是()A. 1B. 2C. 3D. 2第17题图18.如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a 和b,则a+b不可能是()A. 360°B. 540°C. 630°D. 720°第18题图19.若一个多边形的内角和等于它的外角和,则这个多边形的边数为________.20、用一条宽度相等的足够长的纸条打一个结(如图①所示),然后轻轻拉紧、压平就可以得到如图②所示的正五边形ABCDE.图中,∠BAC=________°.第20题图19.如图,A、B、C、D为一个外角为40°的正多边形的顶点,若O为正多边形的中心,则∠OAD=________°.第21题图中考冲刺集训(时间:60分钟满分:70分)一、选择题(本大题共5小题,每小题3分,共15分)1.若正多边形的内角和是540°,则该正多边形的一个外角为()A. 45°B. 60°C. 72°D. 90°2.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A. 24B. 30C. 36D. 42第2题图3.如图,□ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点.则下列说法正确的是()A. EH=HGB. 四边形EFGH是平行四边形C. AC⊥BDD. △ABO的面积是△EFO的面积的2倍第3题图4.如图,□ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若□ABCD 的周长为28,则△ABE的周长为()A. 28B. 24C. 21D. 14第4题图5.如图,将□ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F.若∠ABD=48°,∠CFD =40°,则∠E为()A. 102°B. 112°C. 122°D. 92°第5题图二、填空题(本大题共5小题,每小题3分,共15分)6.如图,□ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=________度.第6题图7.如图,□ABCD的对角线AC、BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD 的周长为________.第7题图8.在□ABCD中,E是AD上一点,且点E将AD分为2∶3的两部分,连接BE、AC相交于F,则S△AEF∶S△CBF是________.9.如图,在Rt△ABC中,∠ACB=90°,CA=CB=2,D是△ABC所在平面内一点,以A,B,C,D为顶点的四边形是平行四边形,则BD的长为________.第9题图10.如图,□ABCD 的对角线AC ,BD 交于点O ,CE 平分∠BCD 交AB 于点E ,交BD 于点F ,且∠ABC =60°,AB =2BC ,连接OE .下列结论:①EO ⊥AC ;②S △AOD =4S △OCF ;③AC ∶BD =21∶7;④FB 2=OF ·DF .其中正确的结论有________(填写所有正确结论的序号).第10题图三、解答题(本大题共4小题,每小题10分,共40分)11.)如图,四边形ABCD 是平行四边形,延长AD 至点E ,使DE =AD ,连接BD . (1)求证:四边形BCED 是平行四边形;(2)若DA =DB =2,cosA =14,求点B 到点E 的距离.第11题图12.如图,在平行四边形ABCD 中,连接对角线AC ,延长AB 至点E ,使BE =AB ,连接DE ,分别交BC ,AC 于点F ,G . (1)求证:BF =CF ;(2)若BC =6,DG =4,求FG 的长.第12题图13.如图,点E在□ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设□ABCD的面积为S,四边形AEDF的面积为T,求ST的值.第13题图14.在□ABCD中,BE平分∠ABC交AD于点E.(1)如图①,若∠D=30°,AB=6,求△ABE的面积;(2)如图②,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED-AG=FC.第14题图教材改编题拓展1.已知:如图,□ABCD的对角线AC与BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.第1题图【1-变式拓展】平行四边形ABCD中,∠A=60°,AB=2AD,BD的中垂线分别交AB,CD于点E,F,垂足为O.(1)求证:OE=OF;(2)若AD=6,求tan∠ABD的值.1-变式拓展题图2.已知:如图,在□ABCD中,AE⊥BD、CF⊥BD,垂足分别为E、F.求证:∠BAE=∠DCF.第2题图【2-变式拓展】如图,在□ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F.求证:AE=CF.2-变式拓展题图3.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC和CD 于点P,Q,求BP∶PQ∶QR.第3题图【3-变式拓展1】如图,面积为24的□ABCD中,对角线BD平分∠ABC,过点D作DE⊥BD交BC的延长线于点E,DE=6,则sin∠DCE的值为()3-变式拓展1题图A. 2425 B.45 C.34 D.1225【3-变式拓展2】(2018雅安)如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC和CD于点P,Q.(1)求证:△ABC≌△DCE;(2)求PQPR的值.3-变式拓展2题图【3-变式拓展3】(2019湖州)如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连接DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.3-变式拓展3题图4.已知:如图,E、F是□ABCD对角线AC上的两点,且AE=CF.求证:四边形BFDE是平行四边形.第4题图【4-变式拓展】如图,在平行四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E、F.(1)求证:四边形BEDF是平行四边形;(2)若AB=13,AD=20,DE=12,求□□BEDF的面积.4-变式拓展题图第十六讲 平行四边形与多边形命题点分类集训1.B 2.AD ∥BC (答案不唯一)3.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD .∴∠F AE =∠CDE ,∠AFE =∠DCE . ∵点E 是边AD 的中点, ∴AE =DE .(2分)在△AEF 和△DEC 中,⎩⎪⎨⎪⎧∠AFE =∠DCE ,∠F AE =∠CDE ,AE =DE ,∴△AEF ≌△DEC (AAS ).··········(4分) ∴EF =EC . 又∵AE =DE ,∴四边形ACDF 是平行四边形.··········(6分) 4.D 5.D 6.C 7.20 8.21° 9.(1,2)10.163或83 【解析】情况有2种:(1)如解图①,当∠ABD 是锐角时, 过点D 作DE ⊥AB 交AB 于点E ,则∠AED =∠DEB =90°,在Rt △AED 中,∵∠A =30°,AD =4 3 ,∴DE =12AD=23,AE =AD ·cos 30°=6. 在Rt △DEB 中,∵DB =4,DE =23,∴EB =DB 2-DE 2=2 .∴AB =6+2=8,∴S □ABCD =8×23=16 3 .(2)如解图②, 当∠ABD 是钝角时,过点D 作DE ⊥AB 交AB 的延长线于点E ,则∠AED =90°,在Rt △AED 中,∵∠A =30°,AD =4 3 ,∴DE =12AD=23,AE =AD ·cos 30°=6,在Rt △DEB 中,∵DB =4,DE =23,∴EB =DB 2-DE 2=2,∴AB =6-2=4.∴S □ABCD =4×23=8 3 . 综上所述,□ABCD 的面积为163或8 3.第10题解图11.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC .··········(4分)∵E ,F 分别是AD ,BC 的中点, ∴DE =BF ,∴四边形BFDE 是平行四边形, ∴BE =DF .··········(8分)12.(1)证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AB ∥CD .∵AE 平分∠DAB .∴∠DAE =∠BAE . ∵CD ∥AB ,∴∠DEA =∠EAB =∠DAE . ∴DE =AD =10=BC .在△BCE 中,CE 2+BE 2=62+82=100=BC 2, ∴△BCE 为直角三角形. ∴∠BEC =90°;··········(5分) (2)解:∵CD ∥AB ,∠BEC =90°, ∴∠ABE =90°,∵AB =CD =DE +CE =10+6=16, ∴AE =AB 2+BE 2=162+82=85,∴cos ∠DAE =cos ∠EAB =AB AE =1685=255.··········(10分)13.(1)证明:∵四边形ABCD 是正方形,∴AB =CD ,∠BAC =∠DCA =45°. ∴∠EAB =∠FCD =135°. ∵EH ∥GF , ∴∠DFC =∠BEA . ∴△DFC ≌△BEA . ∴DF =BE . ∵BH =DG . ∴HE =GF , ∵HE ∥GF ,∴四边形EHFG 是平行四边形;··········(5分)(2)解:如解图,连接BD 交AC 于O ,过点D 作DM ⊥BE 于M ,过点G 作GN ⊥BE 于N .∵四边形EHFG 是平行四边形, ∴四边形GNMD 是矩形. ∴GN =DM ,GD =MN . ∵四边形ABCD 是正方形, ∴AC ⊥BD ,DO =BO =AO . ∵AB =22, ∴BO =2,∴cos ∠OBE =OB BE =12.∴∠OBE =60°.∴DM =BD ·sin ∠DBM =4×32=23,BM =BDcos ∠DBM =4cos 60°=2. ∵tan ∠GEH =GNEN =23,∴EN =1.∴EG =EN 2+GN 2=13.∵MN =EB -BM -EN =4-2-1=1,∴EH =BE +BH =BE +GD =BE +NM =4+1=5.∴平行四边形EHFG 的周长为2(EG +EH )=2(13+5)=213+10.(10分)第13题解图14.C 15.C 16.B 17.D18.C 【解析】如解图,直线可将矩形ABCD 分成的图象有四种情况:解图①,一个三角形和一个五边形,a =180°,b =540°,∴a +b =720°;解图②,一个三角形和一个四边形,则a =180°,b =360°,∴a +b =540°;解图③,两个四边形,即a =b =360°,∴a +b =720°;解图④,两个三角形,则a =b =180°,∴a +b =360°.则a +b 不可能是630°.第18题解图19.420.36°21.30中考冲刺集训1.C2.B3.B4.D5.B6.617.168.4∶25或9∶25 9.2或2210.①③④【解析】∵CE平分∠BCD,∴∠DCE=∠ECB,∵AB∥CD,∴∠CEB=∠DCE,∴∠ECB=∠CEB,∵∠ABC=60°,∴△BCE是等边三角形.∴BC=EB=CE.∵AB=2BC,∴AE =EB=EC,∴AC⊥BC.∵AO=OC,∴OE∥BC,OE为△ABC的中位线,∴OE⊥AC,即①正确;∵OE为△ABC的中位线,∴OE∶BC=1∶2,∵OE∥BC,∴△OFE∽△BFC,∴OF∶FB =1∶2,∴S△OBC=3S△OFC,易证△AOD≌△COB,∴S△AOD=S△OBC,∴S△AOD=3S△OFC,即②错误;∵AC⊥BC,∠ABC=60°,∴AC∶BC=3∶1,∵O为AC的中点,∴OC∶BC=3∶2.∴OB∶OC=7∶3,即AC∶BD=3∶7=21∶7,即③正确;∵OE∥BC,BC=2OE,∴OF∶FB=1∶2(a),∴OB∶FB=3∶2,∴BD∶BF=6∶2,∴DF∶BF=4∶2,即DF∶BF=2∶1(b).a式与b式相乘即可得BF2=OF·DF,即④正确.11.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵DE=AD,∴DE∥BC,DE=BC.∴四边形BCED是平行四边形;··········(4分)(2)解:如解图,连接BE交CD于点O,∵BD=DE,∴四边形BCED是菱形.∵四边形ABCD 是平行四边形, ∴∠A =∠BCD .··········(7分)∵cosA =14,∴OC =BCcos ∠BCD =2×cosA =12.∴BO =BC 2-OC 2=152. ∴BE =2BO =15.··········(10分)第11题解图12.(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD . ∴∠E =∠EDC . ∵BE =AB ,AB =CD ,∴BE =CD .在△BEF 和△CDF 中,⎩⎪⎨⎪⎧∠EFB =∠DFC ,∠E =∠CDF ,BE =CD ,∴△BEF ≌△CDF (AAS ). ∴BF =CF ;··········(4分) (2)解:由(1)知AB ∥CD . ∴△CDG ∽△AEG . ∴DG EG =CDAE . ∵AB =BE =CD , ∴AE =AB +BE =2CD . ∴CD AE =12. ∴DG EG =12.··········(7分) ∵DG =4, ∴EG =8.∴DE =DG +EG =4+8=12.由(1)知△BEF ≌△CDF .∴DF =12DE =12×12=6.∴FG =DF -DG =6-4=2.(10分)13.(1)证明:如解图,延长F A 与CB 的延长线交于点M ,∵AD ∥BC , ∴∠F AD =∠M , 又∵AF ∥BE , ∴∠M =∠EBC , ∴∠F AD =∠EBC . 同理得∠FDA =ECB , 在△BCE 和△ADF 中, ∵⎩⎪⎨⎪⎧∠EBC =∠F AD ,BC =AD ,∠ECB =∠FDA ,∴△BCE ≌△ADF (ASA );··········(5分) (2)解:如解图,连接EF ,由(1)知△BCE ≌△ADF , ∴AF =BE , 又∵AF ∥BE ,∴四边形ABEF 为平行四边形. ∴S △AEF =S △AEB . 同理S △DEF =S △DEC ∴T =S △AEB +S △DEC .∴T =S △AED +S △ADF =S △AED +S △BCE , ∴S =S △AEB +S △DEC +S △AED +S △BEC =2T . ∴ST=2.··········(10分)第13题解图14.(1)解:如解图①,过点B 作BH ⊥AD 交DA 延长线于点H ,第14题解图①∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC .∴∠BAH =∠D =30°,∠EBC =∠AEB . ∵BE 平分∠ABC , ∴∠ABE =∠EBC . ∴∠AEB =∠ABE . ∴AE =AB = 6.在Rt △ABH 中,BH =12AB =62,∴S △ABE =12AE ·BH =12×6×62=32;··········(5分)(2)证明:如解图②,过点A 作AM ⊥BE 于点M ,交DF 的延长线于点K ,连接BF ,第14题解图②∵AM ⊥BE ,∴∠KAF +∠BGA =90°. ∵AF ⊥DC ,AB ∥CD , ∴∠BAG =90°. ∴∠GBA +∠BGA =90°. ∴∠KAF =∠GBA . 在△ABG 和△F AK 中, ⎩⎪⎨⎪⎧∠GBA =∠KAF ,AB =AF ,∠BAG =∠AFK , ∴△ABG ≌△F AK (ASA ). ∴AG =KF ,∠K =∠AGB .∵∠AGB =∠GAE +∠AEG ,∠AEG =∠ABG =∠KAF ,∴∠AGB =∠GAE +∠KAF =∠KAD . ∴∠K =∠KAD . ∴AD =DK .∴FC =DK -CD -KF =AD -CD -KF =AD -AB -AG =AD -AE -AG =ED -AG .(10分)教材改编题拓展1.证明:∵四边形ABCD 是平行四边形,∴DO =BO (平行四边形的对角线互相平分) AD ∥BC (平行四边形的定义) ∴∠ODE =∠OBF . ∵∠DOE =∠BOF , ∴△DOE ≌△BOF . ∴OE =OF .【1-变式拓展】(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ODF =∠OBE ,∠OFD =∠OEB , ∵EF 垂直平分BD , ∴OD =OB ,在△ODF 和△OBE 中, ⎩⎪⎨⎪⎧∠OFD =∠OEB ,∠ODF =∠OBE ,OD =OB ,∴△ODF ≌△OBE (AAS ), ∴OE =OF ;(2)解:如解图,过点D 作DG ⊥AB 于点G , ∵∠A =60°,AD =6, ∴DG =AD ·sin 60°=6×32=33,AG =AD ·cos 60°=6×12=3. ∵AB =2AD =12,∴BG =AB -AG =12-3=9.∴tan ∠ABD =DG BG =339=33.1-变式拓展题解图2.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∴∠ABE =∠CDF .又∵AE ⊥BD ,CF ⊥BD ,∴∠AEB =∠CFD =90°,∴Rt △ABE ≌Rt △CDF .∴∠BAE =∠DCF .【2-变式拓展】证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD .∴∠BAE =∠DCF .∵BE ⊥AC ,DF ⊥AC ,∴∠BEA =∠DFC =90°,在△BAE 和△DCF 中,⎩⎪⎨⎪⎧∠BEA =∠DFC ,∠BAE =∠DCF ,AB =CD ,∴△BAE ≌△DCF (AAS ),∴AE =CF .3.解:∵四边形ABCD 和四边形ACED 都是平行四边形,∴AD =BC =CE ,AC =DE ,AC ∥DE .∵R 为DE 中点,∴RE =DR =12DE =12AC . ∴PC 为△BER 的中位线.∴BP =PR ,PC =12RE =14DE .∵AC ∥DE ,∴△CQP ∽△DQR .∴PQ QR =PC DR =12. ∴QR =2PQ .∴BP ∶PQ ∶QR =3∶1∶2,【3-变式拓展1】A【3-变式拓展2】证明:(1)∵四边形ABCD 和四边形ACED 都是平行四边形,∴AB =CD ,BC =AD =CE ,AC =DE ,∴△ABC ≌△DCE (SSS );(2)解:在△BER 中,C 为BE 中点且CP ∥RE∴CP 为△BER 的中位线,∴CP ∶RE =1∶2,又∵点R 为DE 的中点,∴RE =DR ,∴CP ∶DR =1∶2,又∵CP ∥DR ,∴∠CPQ =∠DRQ ,∠PCQ =∠RDQ ,∴△CPQ ∽△DRQ ,∴PQ ∶QR =CP ∶DR =1∶2,∴PQ PR =13. 【3-变式拓展3】(1)证明:∵D ,E ,F 分别是AB ,BC ,AC 的中点,∴DF ∥BC ,FE ∥AB .∴四边形BEFD 是平行四边形;(2)解:∵∠AFB =90°,D 是AB 的中点,AB =6,∴DF =DB =DA =12AB =3. 由(1)得,四边形BEFD 是平行四边形,∴四边形BEFD 是菱形.∵DB =3,∴四边形BEFD 的周长为12.4.证明:如解图,连接BD ,交AC 于点O ,∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵AE =CF ,∴OA -AE =OC -CF ,即OE =OF ,∴四边形BFDE 是平行四边形.第4题解图【4-变式拓展】(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAF =∠DCE ,∵DE ⊥AC ,BF ⊥AC ,∴BF ∥DE ,∠AFB =∠CED =90°,在△ABF 和△CDE 中,⎩⎪⎨⎪⎧∠AFB =∠CED ,∠BAF =∠DCE ,AB =CD ,∴△ABF ≌△CDE (AAS ),∴BF =DE ,又∵BF ∥DE ,∴四边形BEDF 是平行四边形;(2)解:∵AB =13,∴CD =13.∴EC =CD 2-DE 2=132-122=5.∴AF =EC =5.∵AE =AD 2-DE 2=202-122=16,∴EF =AE -AF =11.∴S □BEDF =EF ·DE =11×12=132.。
初三中考数学专项练习多边形与平行四边形多边形与平行四边形一、选择题1. (?湖北宜昌,第3题3分)平行四边形的内角和为()A.180°B.270°C.360°D.640°考点:多边形内角与外角.分析:利用多边形的内角和=(n﹣2)?180°即可解决问题解答:解:解:根据多边形的内角和可得:(4﹣2)×180°=360°.故选:C.点评:本题考查了对于多边形内角和定理的识记.n边形的内角和为(n﹣2)?180°.2. (?湖南衡阳,第4题3分)若一个多边形的内角和是900°,则这个多边形的边数是()A.5 B.6 C.7 D.8考点:多边形内角与外角.分析:根据多边形的内角和公式(n﹣2)?180°,列式求解即可.解答:解:设这个多边形是n边形,根据题意得,(n﹣2)?180°=900°,解得n=7.故选C.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.3. (?广西来宾,第3题3分)如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形考点:多边形内角与外角.专题:方程思想.分析:n边形的内角和可以表示成(n﹣2)?180°,设这个正多边形的边数是n,就得到方程,从而求出边数.解答:解:这个正多边形的边数是n,则(n﹣2)?180°=720°,解得:n=6.则这个正多边形的边数是6.故选C.点评:考查了多边形内角和定理,此题比较简单,只要结合多边形的内角和公式,寻求等量关系,构建方程求解.4.(年广西南宁,第11题3分)如图,在?ABCD中,点E是AD 的中点,延长BC到点F,使CF:BC=1:2,连接DF,E C.若AB=5,AD=8,sinB=,则DF的长等于()A.B.C.D.2考点:平行四边形的判定与性质;勾股定理;解直角三角形..分析:由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CFDE的对边平行且相等(DE=CF,且DE∥CF),即四边形CFDE是平行四边形.如图,过点C作CH⊥AD于点H.利用平行四边形的性质、锐角三角函数定义和勾股定理求得CH=4,DH=1,则在直角△EHC中利用勾股定理求得CE 的长度,即DF的长度.解答:证明:如图,在?ABCD中,∠B=∠D,AB=CD=5,AD∥BC,且AD=BC=8.∵E是AD的中点,∴DE=A D.又∵CF:BC=1:2,∴DE=CF,且DE∥CF,∴四边形CFDE是平行四边形.∴CE=DF.过点C作CH⊥AD于点H.又∵sinB=,∴sinD===,∴CH=4.在Rt△CDH中,由勾股定理得到:DH==3,则EH=4﹣3=1,∴在Rt△CEH中,由勾股定理得到:EC===,则DF=EC=.故选:C.点评:本题考查了平行四边形的判定与性质、勾股定理和解直角三角形.凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接运用平行四边形的性质和判定去解决问题.5.(?莱芜,第6题3分)若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.16 考点:多边形内角与外角.分析:由一个正多边形的每个内角都为156°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案.解答:解:∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°﹣156°=24°,∴这个多边形的边数为:360°÷24°=15,故选C.点评:此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握多边形的外角和定理是关键.6.(?四川绵阳,第9题3分)下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形考点:命题与定理.分析:根据根据矩形、菱形、正方形和平行四边形的判定方法对各选项进行判断.解答:解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直的平行四边形是菱形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项正确;D、一组对边相等且平行的四边形是平行四边形,所以D选项错误.故选C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.7.(?重庆A,第4题4分)五边形的内角和是()A.180°B.360°C.540°D.600°考点:多边形内角与外角.专题:常规题型.分析:直接利用多边形的内角和公式进行计算即可.解答:解:(5﹣2)?180°=540°.故选C.点评:本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关二、填空题1. (?贵州黔西南州, 第16题3分)四边形的内角和为360°.考点:多边形内角与外角.分析:根据n边形的内角和是(n﹣2)?180°,代入公式就可以求出内角和.解答:解:(4﹣2)×180°=360°.故四边形的内角和为360°.故答案为:360°.点评:本题主要考查了多边形的内角和公式,是需要识记的内容,比较简单.2.(?四川广安,第15题3分)一个多边形的内角和比四边形内角和的3倍多180°,这个多边形的边数是9.考点:多边形内角与外角分析:多边形的外角和是360度,多边形的外角和是内角和的3倍多180°,则多边形的内角和是360×3+180°度,再由多边形的内角和列方程解答即可.解答:解:设这个多边形的边数是n,由题意得,(n﹣2)×180°=360°×3+180°解得n=9.故答案为:9.点评:本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.3.(?四川绵阳,第16题4分)如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)考点:正多边形和圆分析:根据题意得出△COW≌△ABW,进而得出图中阴影部分面积为:S扇形OBC进而得出答案.解答:解:如图所示:连接BO,CO,∵正六边形ABCDEF内接于⊙O,∴AB=BC=CO=1,∠ABC=120°,△OBC是等边三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),∴图中阴影部分面积为:S扇形OBC==.故答案为:.点评:此题主要考查了正多边形和圆以及扇形面积求法,得出阴影部分面积=S扇形OBC是解题关键.4.(?无锡,第16题2分)如图,?ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于4.考点:平行四边形的性质;解直角三角形分析:设对角线AC和BD相交于点O,在直角△AOE中,利用三角函数求得OA的长,然后根据平行四边形的对角线互相平分即可求得.解答:解:∵在直角△AOE中,cos∠EAC=,∴OA===2,又∵四边形ABCD是平行四边形,∴AC=2OA=4.故答案是:4.点评:本题考查了三角函数的应用,以及平行四边形的性质:平行四边形的对角线互相平分,正确求得OA的长是关键.5、(?无锡,第17题2分)如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作?ABC D.若AB=,则?ABCD面积的最大值为2.考点:平行四边形的性质;勾股定理;切线的性质.分析:由已知条件可知AC=2,AB=,应该是当AB、AC是直角边时三角形的面积最大,根据AB⊥AC即可求得.解答:解:由已知条件可知,当AB⊥AC时?ABCD的面积最大,∵AB=,AC=2,∴S△ABC==,∴S?ABCD=2S△ABC=2,∴?ABCD面积的最大值为2.故答案为2.点评:本题考查了平行四边形面积最值的问题的解决方法,找出什么情况下三角形的面积最大是解决本题的关键.三、解答题1. (?湖南永州,第23题10分)在同一平面内,△ABC和△ABD如图①放置,其中AB=B D.小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DF A,如图②,请完成下列问题:(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;(2)连接EF,CD,如图③,求证:四边形CDEF是平行四边形.考点:旋转的性质;平行四边形的判定;菱形的判定..分析:(1)根旋转的性质得AB=DF,BD=F A,由于AB=BD,所以AB=BD=DF=F A,则可根据菱形的判定方法得到四边形ABDF是菱形;(2)由于四边形ABDF是菱形,则AB∥DF,且AB=DF,再根据旋转的性质易得四边形ABCE为平行四边形,根据判死刑四边形的性质得AB∥CE,且AB=CE,所以CE∥FD,CE=FD,所以可判断四边形CDEF是平行四边形.解答:(1)解:四边形ABDF是菱形.理由如下:∵△ABD绕着边AD的中点旋转180°得到△DF A,∴AB=DF,BD=F A,∵AB=BD,∴AB=BD=DF=F A,∴四边形ABDF是菱形;(2)证明:∵四边形ABDF是菱形,∴AB∥DF,且AB=DF,∵△ABC绕着边AC的中点旋转180°得到△CEA,∴AB=CE,BC=EA,∴四边形ABCE为平行四边形,∴AB∥CE,且AB=CE,∴CE∥FD,CE=FD,∴四边形CDEF是平行四边形.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了平行四边形的判定和菱形的判定.2. (?乐山,第23题10分)如图,在平行四边形ABCD中,对角线AC、BD交于点O.M 为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABCM的面积.考点:相似三角形的判定与性质;平行四边形的性质..专题:计算题.分析:(1)由四边形ABCD为平行四边形,得到对边平行且相等,且对角线互相平分,根据两直线平行内错角相等得到两对角相等,进而确定出三角形MND与三角形BCN相似,由相似得比例,得到DN:BN=1:2,设OB=OD=x,表示出BN与DN,求出x 的值,即可确定出BD的长;(2)由相似三角形相似比为1:2,得到NC=2MN,根据三角形MND与三角形DNC 高相等,底边之比即为面积之比,由三角形DCN 面积求出MND面积,进而求出三角形DCM面积,表示出平行四边形ABCD面积与三角形MCD面积,即可求出平行四边形ABCD面积.解答:解:(1)∵平行四边形ABCD,∴AD∥BC,AD=BC,OB=OD,∴∠DMN=∠BCN,∠MDN=∠NBC,∴△MND∽△CNB,∴=,∵M为AD中点,∴MD=AD=BC,即=,∴=,即BN=2DN,设OB=OD=x,则有BD=2x,BN=OB+ON=x+1,DN=x﹣1,∴x+1=2(x﹣1),解得:x=3,∴BD=2x=6;(2)∵△MND∽△CNB,且相似比为1:2,∴MN:CN=1:2,∴S△MND:S△CND=1:4,∵△DCN的面积为2,∴△MND面积为,∴△MCD面积为2.5,∵S平行四边形ABCD=AD?h,S△MCD=MD?h=AD?h,∴S平行四边形ABCD=4S△MCD=10.x点评:此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.3.(?宁夏,第22题6分)在平行四边形ABCD中,将△ABC沿AC对折,使点B落在B′处,A B′和CD相交于点O.求证:OA=O C.考点:平行四边形的性质;翻折变换(折叠问题)专题:证明题.分析:由在平行四边形ABCD中,将△ABC沿AC对折,使点B落在B′处,即可求得∠DCA=∠B′AC,则可证得OA=O C.解答:证明:∵△AB′C是由△ABC沿AC对折得到的图形,∴∠BAC=∠B′AC,∵在平行四边形ABCD中,AB∥CD,∴∠BAC=∠DCA,∴∠DCA=∠B′AC,∴OA=O C.点评:此题考查了平行四边形的性质、等腰三角形的判定与性质以及折叠的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.。
中考数学第五节多边形与平行四边形精练习题(推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(中考数学第五节多边形与平行四边形精练习题(推荐完整))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为中考数学第五节多边形与平行四边形精练习题(推荐完整)的全部内容。
中考数学第五节多边形与平行四边形精练习题(推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望中考数学第五节多边形与平行四边形精练习题(推荐完整) 这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力.本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <中考数学第五节多边形与平行四边形精练习题(推荐完整)〉这篇文档的全部内容.第五节多边形与平行四边形1.(2016长沙中考)六边形的内角和是( B )A.540°B.720°C.900°D.360°2.(2016益阳中考)将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是(D )A.360°B.540°C.720°D.900°3.(2016丽水中考)如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC =6,则△OBC的周长为( B)A.13 B.17 C.20 D.26,(第3题图)),(第4题图))4.(2016泰安中考)如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于(C )A.2 B.3 C.4 D.65.(2016原创)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD 于点E,AB=6,EF=2,则BC长为(B)A.8 B.10 C.12 D.14,(第5题图)) ,(第6题图)) 6.(2016绍兴中考)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( D ) A.①②B.①④C.③④D.②③7.(2016原创)如图,将▱ABCD沿对角线AC折叠,使点B落在点B′处,若∠1=∠2=44°,则∠B为(C )A.66°B.104°C.114°D.124°,(第7题图)) ,(第9题图))8.(2016扬州中考)若多边形的每个内角均为135°,则这个多边形的边数为__8__.9.(2016河南中考)如图 ,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数是__110°__.10.(2016原创)如图,在▱ABCD 中,AC =8,BD =6,AD =a ,则a 的取值范围是__1<a<7__.11.(2016巴中中考)已知:如图,四边形ABCD 是平行四边形,延长BA 至点E ,使AE +CD =AD 。
第四节多边形与平行四边形1.(湘西中考)下列说法错误的是(D)A.对角线互相平分的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形2.(2021乌鲁木齐中考)如果n边形每一个内角等于与它相邻外角的2倍,则n的值是(C)A.4 B.5 C.6 D.73.(河北中考)如图,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是(B)A.7 B.8 C.9 D.10(第3题图)(第4题图)4.(宁夏中考)在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于__2__.5.(2021通辽中考)在平行四边形ABCD中,AE平分∠BAD交边BC于E,DF平分∠ADC交边BC于F.若AD=11,EF=5,则AB=__8或3__.6.(2021汇川升学二模)如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处,若AD=2,BC=3,则EF的长为__6__.7.(梅州中考)如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,若S△DEC=3,则S △BCF=__4__.(第7题图)(第8题图)8.(2021十堰中考)如图,在▱ABCD 中,AB =213cm ,AD =4 cm ,AC ⊥BC ,则△D BC 比△ABC 的周长长__4__cm .9.(2021原创)如图,▱ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上折叠,使点A 正好与CD 上的F 点重合,若△FDE 的周长为16,△FCB 的周长为28,则FC 的长为(C )A .4B .5C .6D .710.(2021南充中考)如图,在▱ABCD 中,过对角线BD 上一点P 作EF∥BC,GH ∥AB ,且CG =2BG ,S △BPG =1,则S ▱AEPH =__4__.(第10题图)(第11题图)11.(2021西宁中考)如图,将▱ABCD 沿EF 对折,使点A 落在点C 处,若∠A=60°,AD =4,AB =8,则AE 的长为__285__.12.(东营中考)如图,在Rt △ABC 中,∠B =90°,AB =4,BC>AB ,点D 在BC 上,以AC 为对角线的平行四边形ADCE 中,DE 的最小值是__4__.(第12题图)(第13题图)13.(2021齐齐哈尔中考)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是__10或273或413__.14.(2021武汉中考)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为__30°__.(第14题图)(第15题图)15.(2021连云港中考)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若∠EAF=56°,则∠B=__56°__.16.(2021福建中考)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB=__108__°.(第16题图)(第17题图)17.(2021邵阳中考)如图所示的正六边形ABCDEF,连接FD,则∠FDC的大小为__90°__.18.(2021益阳中考)如图,在▱ABCD中,AE⊥BD于E,CF⊥BD于F,连接AF,CE.求证:AF=CE.证明:∵四边形ABCD是平行四边形,∴AB =CD ,AB ∥CD , ∴∠ABE =∠CDF. 又∵AE⊥BD,CF ⊥BD , ∴∠AEB =∠CFD=90°, AE ∥CF ,在△ABE 和△CDF 中, ⎩⎪⎨⎪⎧∠ABE=∠CDF,∠AEB =∠CFD,AB =CD ,∴△ABE ≌△CDF(AAS ), ∴AE =CF , ∵AE ∥CF ,∴四边形AECF 是平行四边形, ∴AF =CE.19.(鄂州中考)如图,▱ABCD 中,BD 是它的一条对角线,过A ,C 两点作AE⊥BD,CF ⊥BD ,垂足分别为E ,F ,延长AE ,CF 分别交CD ,AB 于M ,N.(1)求证:四边形CMAN 是平行四边形. (2)已知DE =4,FN =3,求BN 的长. 解:(1)∵四边形ABCD 是平行四边形, ∴CD ∥AB , ∵AM ⊥BD ,CN ⊥BD , ∴A M∥CN,又∵CM∥AN, ∴四边形AMCN 是平行四边形;(2)∵四边形AMCN 是平行四边形, ∴CM =AN ,∵四边形ABCD 是平行四边形, ∴CD =AB ,CD ∥AB ,∴DM =BN ,∠MDE =∠NBF,在△MDE 和△NBF 中, ⎩⎪⎨⎪⎧∠MDE=∠NBF,∠DEM =∠BFN=90°,DM =BN , ∴△MDE ≌△NBF ,∴ME =NF =3,在Rt △DME 中, ∵∠DEM =90°,DE =4,ME =3,∴DM =DE 2+ME 2=32+42=5, ∴BN =DM =5.20.如图①,在△OAB 中,∠OAB =90°,∠AOB =30°,OB =8,以OB 为边,在△OAB 外作等边△OBC,D 是OB 的中点,连接AD 并延长交OC 于点E.(1)求证:四边形ABCE 是平行四边形;(2)如图②,将图①中的四边形ABCO 折叠,使点C 与点A 重合,折痕为FG ,求OG 的长. 解:(1)∵在Rt △OAB 中,D 为OB 的中点, ∴AD =12OB ,OD =BD =12OB ,DO =DA ,∴∠DAO =∠DOA=30°, ∴∠EOA =∠DOC+∠DOA=90°, ∴∠AEO =60°,又∵△OBC 为等边三角形, ∴∠BCO =∠AEO=60°, ∴BC ∥AE ,∵∠BAO =∠COA=90°, ∴CO ∥AB ,∴四边形ABCE 是平行四边形;(2)在Rt △OAB 中,OA =OB·cos 30°=43, 在Rt △AOG 中,设OG =x , 则AG =CG =8-x ,根据勾股定理得x 2+(43)2=(8-x)2, 解得x =1. 即OG =1.。
2019 初三数学中考复习平行四边形与多边形专题综合训练题1.在以下条件中,不可以判断四边形为平行四边形的是 ( A )A .一组对边平行,另一组对边相等B.一组对边平行且相等C.两组对边分别平行D.对角线相互均分2.点 A,B,C 是平面内不在同一条直线上的三点,点 D 是平面内随意一点,若 A ,B,C,D 四点恰能组成一个平行四边形,则在平面内符合这样条件的点D有(C)A.1 个B.2 个C.3 个D.4 个3.如图,已知 BC 为等腰三角形纸片ABC 的底边, AD ⊥BC.将此三角形纸片沿AD 剪开成两个三角形,若把这两个三角形拼成一个平行四边形,能拼出( C ) A.1 个B.2 个C.3 个D.4 个4.如图,四边形 ABCD 是平行四边形,点 E 在边 BC 上,假如点 F 是边 AD 上的点,那么△ CDF 与△ABE 不用然全等的条件是 ( C )A .DF=BE B.AF=CE C.CF=AE D.CF∥ AE5.在 ? ABCD 中, AD =8,AE 均分∠BAD 交 BC 于点 E, DF 均分∠ADC 交BC 于点 F,且 EF=2,则 AB 的长为 ( D )A.3B.5C.2 或 3D.3 或 56.在 ? ABCD 中, AB =3,BC=4,当 ? ABCD 的面积最大时,以下结论正确的有(B)①AC =5;②∠ A+∠C= 180°;③AC⊥BD ;④AC =BD.A .①②③B .①②④C.②③④D.①③④7.依据以以下图的三个图所表示的规律,推断第n 个图中平行四边形的个数是( B )A .3n B.3n(n+1)C.6n D.6n(n+1)8.如图,将? ABCD 沿对角线 AC 折叠,使点 B 落在 B′处,若∠1=∠2=44°,则∠B为(C)A .66°B.104°C.114°D.124°9.如图,在 ? ABCD 中,AD =2AB ,F 是 AD 的中点,作 CE⊥AB ,垂足 E 在线段 AB 上,连接 EF,CF,则以下结论中必定建立的是 __①②④ __.1①∠ DCF=2∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠ DFE=3∠AEF. 10.若一个正多边形的一个外角是40°,则这个正多边形的边数是__9__.11.如图,在平行四边形 ABCD 中, AE⊥BC 于点 E,AF ⊥CD 于点 F,若 AE =4,AF =6,平行四边形 ABCD 的周长为 40,则平行四边形 ABCD 的面积为__48__.12.如图,在 ? ABCD 中,∠ D=100°,∠ DAB 的均分线 AE 交 DC 于点 E,连接 BE.若 AE=AB ,则∠EBC 的度数为 __30°__.13.如图,在 ? ABCD 中,用直尺和圆规作∠BAD 的均分线 AG 交 BC 于点 E,若 BF=6,AB =5,则 AE 的长为 __8__.14.如图,过 ? ABCD 的对角线 BD 上一点 M 分别作平行四边形两边的平行线EF 和 GH,那么图中的 ? AEMG 的面积 S1和? HCFM 的面积 S2的大小关系是S1__=__S2(填“>”“或<“”=”).15.如图, ? ABCD 中,BD 是它的一条对角线,过A,C 两点作 AE⊥BD 于点E,CF⊥BD 于点 F,延伸 AE,CF 分别交 CD,AB 于点 M, N.(1)求证:四边形 CMAN 是平行四边形;(2)已知 DE=4,FN=3,求 BN 的长.解: (1)证明:易得 CM ∥AN ,AM ∥CN,四边形 CMAN 是平行四边形.(2)易证△DEM ≌△ BFN,∴DE=BF=4.在 Rt△BFN 中,利用勾股定理得BN=5.16.如图, ? ABCD 中,BD⊥AD ,∠A=45°,E,F 分别是 AB ,CD 上的点,且 BE=DF,连接 EF 交 BD 于点 O.(1)求证: BO=DO;(2)若 EF⊥AB ,延伸 EF 交 AD 的延伸线于点 G,当 FG=1 时,求 AD 的长.解: (1)证明:易证△ODF≌△ OBE,∴ BO=DO.(2)由△ODF≌△ OBE 得 OE=OF.易得△GFD,△DFO,△ OEB 为等腰直角三角形,∴FO=EO=DF=GF=1,DG GF 2 1∴EF=2.DG= 2.∵DF∥ AE,∴AD=EF,∴AD=2.∴AD =2 2.17.如图①,在△OAB 中,∠OAB =90°,∠AOB =30°,OB=8.以 OB 为边,在△ OAB 外作等边△OBC, D 是 OB 的中点.连接 AD 并延伸交 OC 于点 E.(1)求证:四边形 ABCE 是平行四边形;(2)如图②,将图①中的四边形 ABCO 折叠使点 C 与点 A 重合,折痕为 FG,求OG 的长.解: (1)证明,△ CBO 为等边三角形,∴∠ COB=60°,∵∠ AOB =30°,∴∠COA =∠OAB =90°,∴ CE∥AB. ∴∠ OEA=∠EAB =60°=∠C,∴AE∥BC.∴四边形 ABCE 是平行四边形.(2)设 OG=x,由折叠知 AG=CG=8-x,在 Rt△OAG 中,由勾股定理得 x2+ (43)2=(8-2)2,解得 x=1,即 OG=1.18.已知,在 ? ABCD 中, AE⊥BC,垂足为点 E,CE=CD,点 F 为 CE 的中点,点 G 为 CD 上的一点,连接DF,EG,AG,∠ 1=∠2.(1)若 CF=2, AE=3,求 BE 的长;1(2)求证:∠CEG=2∠AGE.解: (1)BE=7.(2)过点 G 作 GM ⊥AE 于点CD ,∴ CD= 2CG.∴G 为M. 易证△DCF≌△ ECG(AAS) ,∵CG=FC,∵CE=DC 的中点.∵MG∥EC∥AD ,∴ M 为 AE 的中1点.∴∠ CEG=∠MGE =2∠AGE.。
第五节多边形与平行四边形基础训练1.(2017苏州中考)如图,在正五边形ABCDE中,连接BE,贝iJZABE的度数为(B)A.30°B.36°C.54°D.72°“(第1题图)2.(湘西屮考)下列说法错误的是(D)A.对角线互相平分的四边形是平行四边形2两组对边分别相等的四边形是平行四边形C 一组对边平行冃相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形3・(2015石家屮四十三屮模拟)如图,在口ABCD屮,延长AB到点E,使BE = AB,连接DE交BC于点F,则下列结论不一定成立的是(D)A. ZE=ZCDF B・ EF=DFC. AD = 2BFD. BE=2CF4.(2017 丽水中考)如图,在口ABCD 中,连接AC, ZABC= ZCAD=45° , AB =2,则BC的长是(C)A.y[2B. 2C. 2^2 D・ 45.(荷泽中考)在口ABCD中,AB = 3, BC=4,当口ABCD的面积最大时,下列结论正确的有(B)①AC = 5;②ZA+ZC=180° ;③AC丄BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④6・(孝感中考)在口ABCD中,AD = 8, AE平分ZBAD交BC于点E” DF平分ZADC 交BC于点F,且EF=2,则AB的长为(D)儿 3 B. 5C 2或3 〃・3或57.平行四边形ABCD与等边AAEF如图放置,如果ZB = 45° ,那么ZBAE 的大小是(A)A.75°B.70°C.65°D.60°8.(北京中考)如图是由射线AB, BC, CD, DE, EA组成的平面图形,则Z1 + Z2+Z3+Z4+Z5= 360°9・(江西中考)如图所示,在oABCD中,ZC = 40° ,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则ZBEF的度数为§0。
中考数学真题《多边形与平行四边形》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(27题)一 、单选题1.(2023·湖南·统考中考真题)如图,在四边形ABCD 中 BC ∥AD 添加下列条件 不能判定四边形ABCD 是平行四边形的是( )A .AB =CD B .AB ∥CDC .∥A =∥CD .BC =AD2.(2023·湖南永州·统考中考真题)下列多边形中 内角和等于360︒的是( )A .B .C .D .3.(2023·湖南·统考中考真题)如图,在四边形ABCD 中 AB CD ∥ 若添加一个条件 使四边形ABCD 为平形四边形,则下列正确的是( )A .AD BC =B .ABD BDC ∠=∠ C .AB AD = D .A C ∠=∠4.(2023·内蒙古通辽·统考中考真题)如图,用平移方法说明平行四边形的面积公式S ah =时 若ABE 平移到DCF 4a = 3h =,则ABE 的平移距离为( )A .3B .4C .5D .125.(2023·四川泸州·统考中考真题)如图,ABCD 的对角线AC BD 相交于点O ADC ∠的平分线与边AB 相交于点P E 是PD 中点 若4=AD 6CD =,则EO 的长为( )A .1B .2C .3D .46.(2023·四川成都·统考中考真题)如图,在ABCD 中 对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A .AC BD =B .OA OC = C .AC BD ⊥ D .ADC BCD ∠=∠7.(2023·安徽·统考中考真题)如图,正五边形ABCDE 内接于O 连接,OC OD ,则BAE COD ∠-∠=( )A .60︒B .54︒C .48︒D .36︒二 填空题8.(2023·云南·统考中考真题)五边形的内角和是________度.9.(2023·新疆·统考中考真题)若正多边形的一个内角等于144︒,则这个正多边形的边数是 ______. 10.(2023·上海·统考中考真题)如果一个正多边形的中心角是20︒ 那么这个正多边形的边数为________. 11.(2023·江苏扬州·统考中考真题)如果一个正多边形的一个外角是60° 那么这个正多边形的边数是_____. 12.(2023·山东临沂·统考中考真题)如图,三角形纸片ABC 中 69AC BC ==, 分别沿与BC AC ,平行的方向 从靠近A 的AB 边的三等分点剪去两个角 得到的平行四边形纸片的周长是____________.13.(2023·湖南·统考中考真题)如图,在平行四边形ABCD 中 3AB = 5BC = B ∠的平分线BE 交AD 于点E ,则DE 的长为_____________.14.(2023·重庆·统考中考真题)如图,在正五边形ABCDE 中 连接AC ,则∥BAC 的度数为_____.15.(2023·湖北黄冈·统考中考真题)若正n 边形的一个外角为72︒,则n =_____________.16.(2023·福建·统考中考真题)如图,在ABCD 中 O 为BD 的中点 EF 过点O 且分别交,AB CD 于点,E F .若10AE =,则CF 的长为___________.17.(2023·山东·统考中考真题)已知一个多边形的内角和为540°,则这个多边形是______边形. 18.(2023·甘肃兰州·统考中考真题)如图,在ABCD 中 BD CD = AE BD ⊥于点E 若70C ∠=︒,则BAE ∠=______︒.19.(2023·吉林长春·统考中考真题)如图,将正五边形纸片ABCDE 折叠 使点B 与点E 重合 折痕为AM 展开后 再将纸片折叠 使边AB 落在线段AM 上 点B 的对应点为点B ' 折痕为AF ,则AFB '∠的大小为__________度.20.(2023·重庆·统考中考真题)若七边形的内角中有一个角为100︒,则其余六个内角之和为________.三 解答题21.(2023·四川自贡·统考中考真题)在平行四边形ABCD 中 点E F 分别在边AD 和BC 上 且DE BF =. 求证:AF CE =.22.(2023·湖南·统考中考真题)如图所示 在ABC 中 点D E 分别为AB AC 、的中点 点H 在线段CE 上 连接BH 点G F 分别为BH CH 、的中点.(1)求证:四边形DEFG 为平行四边形(2)32DG BH BD EF ⊥==,, 求线段BG 的长度.23.(2023·浙江杭州·统考中考真题)如图,平行四边形ABCD 的对角线,AC BD 相交于点O 点,E F 在对角线BD 上 且BE EF FD == 连接,AE EC ,CF FA .(1)求证:四边形AECF 是平行四边形.(2)若ABE 的面积等于2 求CFO △的面积.24.(2023·山东·统考中考真题)如图,在ABCD 中 AE 平分BAD ∠ 交BC 于点E CF 平分BCD ∠ 交AD 于点F .求证:AE CF =.25.(2023·重庆·统考中考真题)学习了平行四边形后 小虹进行了拓展性研究.她发现 如果作平行四边形一条对角线的垂直平分线 那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分. 她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空: 用直尺和圆规 作AC 的垂直平分线交DC 于点E 交AB 于点F 垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形 AC 是对角线 EF 垂直平分AC 垂足为点O .求证:OE OF =.证明:∥四边形ABCD 是平行四边形∥DC AB ∥.∥ECO ∠= ∥ .∥EF 垂直平分AC∥ ∥ .又EOC ∠=___________∥ .∥()COE AOF ASA ∆≅∆.∥OE OF =.小虹再进一步研究发现 过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线 ∥ .26.(2023·四川南充·统考中考真题)如图,在ABCD 中 点E F 在对角线AC 上 CBE ADF ∠=∠.求证:(1)AE CF =(2)BE DF ∥.27.(2023·四川广安·统考中考真题)如图,在四边形ABCD 中 AC 与BD 交于点,O BE AC ⊥ DF AC ⊥ 垂足分别为点E F 、 且,AF CE BAC DCA =∠=∠.求证:四边形ABCD 是平行四边形.参考答案一单选题1.(2023·湖南·统考中考真题)如图,在四边形ABCD中BC∥AD添加下列条件不能判定四边形ABCD 是平行四边形的是()A.AB=CD B.AB∥CD C.∥A=∥C D.BC=AD【答案】A【分析】依据平行四边形的判定依次分析判断即可得出结果.【详解】解:A 当BC∥AD AB=CD时不能判定四边形ABCD是平行四边形故此选项符合题意B 当AB∥CD BC∥AD时依据两组对边分别平行的四边形是平行四边形能判定四边形ABCD是平行四边形故此选项不合题意C 当BC∥AD∥A=∥C时可推出AB∥DC依据两组对边分别平行的四边形是平行四边形能判定四边形ABCD是平行四边形故此选项不合题意D 当BC∥AD BC=AD时依据一组对边平行且相等的四边形是平行四边形能判定四边形ABCD是平行四边形故此选项不合题意故选:A.【点睛】此题考查了平行四边形的判定解决问题的关键要熟记平行四边形的判定方法.2.(2023·湖南永州·统考中考真题)下列多边形中内角和等于360︒的是()A.B.C.D.【答案】Bn-⋅︒分别求解后即可得到答案【分析】根据n边形内角和公式()2180【详解】解:A.三角形内角和是180︒故选项不符合题意B .四边形内角和为()42180360-⨯︒=︒ 故选项符合题意C .五边形内角和为()52180540-⨯︒=︒ 故选项不符合题意D .六边形内角和为()62180720-⨯︒=︒ 故选项不符合题意.故选:B .【点睛】此题考查了n 边形内角和 熟记n 边形内角和公式()2180n -⋅︒是解题的关键.3.(2023·湖南·统考中考真题)如图,在四边形ABCD 中 AB CD ∥ 若添加一个条件 使四边形ABCD 为平形四边形,则下列正确的是( )A .AD BC =B .ABD BDC ∠=∠ C .AB AD = D .A C ∠=∠【答案】D 【分析】根据平行四边形的判定定理逐项分析判断即可求解.【详解】解:A .根据AB CD ∥ AD BC = 不能判断四边形ABCD 为平形四边形 故该选项不正确 不符合题意B . ∥AB CD ∥ ∥ABD BDC ∠=∠ 不能判断四边形ABCD 为平形四边形 故该选项不正确 不符合题意C .根据AB CD ∥ AB AD = 不能判断四边形ABCD 为平形四边形 故该选项不正确 不符合题意D .∥AB CD ∥∥180ABC C ∠+∠=︒∥A C ∠=∠∥180ABC A ∠+∠=︒∥AD BC ∥∥四边形ABCD 为平形四边形故该选项正确 符合题意故选:D .【点睛】本题考查了平行四边形的判定定理 熟练掌握平行四边形的判定定理是解题的关键.4.(2023·内蒙古通辽·统考中考真题)如图,用平移方法说明平行四边形的面积公式S ah =时 若ABE 平移到DCF 4a = 3h =,则ABE 的平移距离为( )A .3B .4C .5D .12【答案】B 【分析】根据平移的方向可得 ABE 平移到DCF ,则点A 与点D 重合 故ABE 的平移距离为AD 的长.【详解】解:用平移方法说明平行四边形的面积公式S ah =时 将ABE 平移到DCF 故平移后点A 与点D 重合,则ABE 的平移距离为4AD a ==故选:B .【点睛】本题考查了平移的性质 熟练掌握平移的性质是解题的关键.5.(2023·四川泸州·统考中考真题)如图,ABCD 的对角线AC BD 相交于点O ADC ∠的平分线与边AB 相交于点P E 是PD 中点 若4=AD 6CD =,则EO 的长为( )A .1B .2C .3D .4【答案】A 【分析】根据平行四边形的性质 平行线的性质 角平分线的定义以及等腰三角形的判定可得4AP AD == 进而可得2BP = 再根据三角形的中位线解答即可.【详解】解:∥四边形ABCD 是平行四边形 6CD =∥AB CD 6AB CD == DO BO =∥CDP APD ∠=∠∥PD 平分ADC ∠∥ADP CDP ∠=∠∥ADP APD ∠=∠∥4AP AD ==∥642BP AB AP =-=-=∥E 是PD 中点∥112OE BP == 故选:A.【点睛】本题考查了平行四边形的性质 平行线的性质 等腰三角形的判定以及三角形的中位线定理等知识 熟练掌握相关图形的判定与性质是解题的关键.6.(2023·四川成都·统考中考真题)如图,在ABCD 中 对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A .AC BD =B .OA OC = C .AC BD ⊥ D .ADC BCD ∠=∠【答案】B【分析】根据平行四边形的性质逐项分析判断即可求解.【详解】∥四边形ABCD 是平行四边形 对角线AC 与BD 相交于点OA. AC BD = 不一定成立 故该选项不正确 不符合题意B. OA OC = 故该选项正确 符合题意C. AC BD ⊥ 不一定成立 故该选项不正确 不符合题意D. ADC BCD ∠=∠ 不一定成立 故该选项不正确 不符合题意故选:B .【点睛】本题考查了平行四边形的性质 熟练掌握平行四边形的性质是解题的关键.7.(2023·安徽·统考中考真题)如图,正五边形ABCDE 内接于O 连接,OC OD ,则BAE COD ∠-∠=()A .60︒B .54︒C .48︒D .36︒【答案】D【分析】先计算正五边形的内角 再计算正五边形的中心角 作差即可.【详解】∥360360180,55BAE COD ︒︒∠=︒-∠=∥3603601803655BAE COD ︒︒∠-∠=︒--=︒ 故选D . 【点睛】本题考查了正五边形的外角 内角 中心角的计算 熟练掌握计算公式是解题的关键.二 填空题8.(2023·云南·统考中考真题)五边形的内角和是________度.【答案】540【分析】根据n 边形内角和为()2180n -⨯︒求解即可.【详解】五边形的内角和是()52180540-⨯︒=︒.故答案为:540.【点睛】本题考查求多边形的内角和.掌握n 边形内角和为()2180n -⨯︒是解题关键.9.(2023·新疆·统考中考真题)若正多边形的一个内角等于144︒,则这个正多边形的边数是 ______.【答案】10【分析】本题需先根据已知条件设出正多边形的边数 再根据正多边形的计算公式得出结果即可.【详解】解:设这个正多边形是正n 边形 根据题意得:()2180144n n -⨯︒÷=︒解得:10n =.故答案为:10.【点睛】本题主要考查了正多边形的内角 在解题时要根据正多边形的内角公式列出式子是本题的关键. 10.(2023·上海·统考中考真题)如果一个正多边形的中心角是20︒ 那么这个正多边形的边数为________.【答案】18【分析】根据正n 边形的中心角的度数为360n ︒÷进行计算即可得到答案.【详解】根据正n 边形的中心角的度数为360n ︒÷则3602018n =÷=故这个正多边形的边数为18故答案为:18.【点睛】本题考查的是正多边形内角和中心角的知识 掌握中心角的计算公式是解题的关键.11.(2023·江苏扬州·统考中考真题)如果一个正多边形的一个外角是60° 那么这个正多边形的边数是_____.【答案】6【详解】解:根据多边形的外角和等于360°和正多边形的每一个外角都相等 得多边形的边数为360°÷60°=6.故答案为:6.12.(2023·山东临沂·统考中考真题)如图,三角形纸片ABC 中 69AC BC ==, 分别沿与BC AC ,平行的方向 从靠近A 的AB 边的三等分点剪去两个角 得到的平行四边形纸片的周长是____________.【答案】14【分析】由平行四边形的性质推出DF BC ∥ DE AC ∥ 得到∽ADF ABC BDE BAC ∽△△ 利用相似三角形的性质求解即可. 【详解】解:如图,由题意得13AD AB = 四边形DECF 是平行四边形∥DF BC ∥ DE AC ∥ ∥∽ADF ABC BDE BAC ∽△△ ∥13DF AD BC AB == 23DE BD AC AB == ∥69AC BC ==,∥3DF = 4DE =∥四边形DECF 平行四边形∥平行四边形DECF 纸片的周长是()23414+=故答案为:14.【点睛】本题考查了平行四边形的性质 相似三角形的判定和性质 解题的关键是灵活运用所学知识解决问题.13.(2023·湖南·统考中考真题)如图,在平行四边形ABCD 中 3AB = 5BC = B ∠的平分线BE 交AD 于点E ,则DE 的长为_____________.【答案】2【分析】根据平行四边形的性质可得AD BC ∥,则AEB CBE ∠=∠ 再由角平分线的定义可得ABE CBE ∠=∠ 从而求得AEB ABE ∠=∠,则AE AB = 从而求得结果.【详解】解:∥四边形ABCD 是平行四边形∥AD BC ∥∥AEB CBE ∠=∠∥B ∠的平分线BE 交AD 于点E∥ABE CBE ∠=∠∥AEB ABE ∠=∠∥AE AB =∥3AB = 5BC =∥===53=2DE AD AE BC AB ---故答案为:2.【点睛】本题考查平行四边形的性质 角平分线的定义 等腰三角形的判定 掌握平行四边形的性质是解题的关键.14.(2023·重庆·统考中考真题)如图,在正五边形ABCDE 中 连接AC ,则∥BAC 的度数为_____.【答案】36°【分析】首先利用多边形的内角和公式求得正五边形的内角和 再求得每个内角的度数 利用等腰三角形的性质可得∥BAC 的度数.【详解】正五边形内角和:(5﹣2)×180°=3×180°=540° ∥5401085B ︒︒∠==∥180B 1801083622BAC ︒︒︒︒-∠-∠=== . 故答案为36°.【点睛】本题主要考查了正多边形的内角和 熟记多边形的内角和公式:(n -2)×180°是解答此题的关键. 15.(2023·湖北黄冈·统考中考真题)若正n 边形的一个外角为72︒,则n =_____________.【答案】5【分析】正多边形的外角和为360︒ 每一个外角都相等 由此计算即可.【详解】解:由题意知 360572n == 故答案为:5.【点睛】本题考查正多边形的外角问题 解题的关键是掌握正n 边形的外角和为360︒ 每一个外角的度数均为360n ︒. 16.(2023·福建·统考中考真题)如图,在ABCD 中 O 为BD 的中点 EF 过点O 且分别交,AB CD 于点,E F .若10AE =,则CF 的长为___________.【答案】10【分析】由平行四边形的性质可得,DC AB DC AB =∥即,OFD OEB ODF EBO ∠=∠∠=∠ 再结合OD OB=可得()AAS DOF BOE ≌△△可得DF EB = 最进一步说明10FC AE ==即可解答. 【详解】解:∥ABCD 中∥,DC AB DC AB =∥∥,OFD OEB ODF EBO ∠=∠∠=∠∥OD OB =∥()AAS DOF BOE ≌△△ ∥DF EB =∥DC DF AB BE -=-,即10FC AE ==.故答案为:10.【点睛】本题主要考查了平行四边形的性质 全等三角形的判定与性质等知识点 证明三角形全等是解答本题的关键.17.(2023·山东·统考中考真题)已知一个多边形的内角和为540°,则这个多边形是______边形.【答案】5【详解】设这个多边形是n 边形 由题意得(n -2) ×180°=540° 解之得 n =5.18.(2023·甘肃兰州·统考中考真题)如图,在ABCD 中 BD CD = AE BD ⊥于点E 若70C ∠=︒,则BAE ∠=______︒.【答案】50【分析】证明70DBC C ∠=∠=︒ 18027040BDC ∠=︒-⨯︒=︒ 由AB CD ∥ 可得40ABE BDC ∠=∠=︒ 结合AE BD ⊥ 可得904050BAE ∠=︒-︒=︒.【详解】解:∥BD CD = 70C ∠=︒∥70DBC C ∠=∠=︒ 18027040BDC ∠=︒-⨯︒=︒∥ABCD∥AB CD ∥∥40ABE BDC ∠=∠=︒∥AE BD ⊥∥904050BAE ∠=︒-︒=︒故答案为:50【点睛】本题考查的是等腰三角形的性质 平行四边形的性质 三角形的内角和定理的应用 熟记基本几何图形的性质是解本题的关键.19.(2023·吉林长春·统考中考真题)如图,将正五边形纸片ABCDE 折叠 使点B 与点E 重合 折痕为AM 展开后 再将纸片折叠 使边AB 落在线段AM 上 点B 的对应点为点B ' 折痕为AF ,则AFB '∠的大小为__________度.【答案】45【分析】根据题意求得正五边形的每一个内角为()5218101508-⨯︒=︒ 根据折叠的性质求得,,BAM FAB '∠∠在AFB '中 根据三角形内角和定理即可求解.【详解】解:∥正五边形的每一个内角为()5218101508-⨯︒=︒ 将正五边形纸片ABCDE 折叠 使点B 与点E 重合 折痕为AM 则111085422BAM BAE ∠=∠=⨯︒=︒ ∥将纸片折叠 使边AB 落在线段AM 上 点B 的对应点为点B ' 折痕为AF ∥11542722FAB BAM '∠=∠=⨯︒=︒ 108AB F B '∠=∠=︒ 在AFB '中 1801801082745AFB B FAB ''∠=︒-∠-∠=︒-︒-︒=︒故答案为:45.【点睛】本题考查了折叠的性质 正多边形的内角和的应用 熟练掌握折叠的性质是解题的关键. 20.(2023·重庆·统考中考真题)若七边形的内角中有一个角为100︒,则其余六个内角之和为________.【答案】800︒/800度【分析】根据多边形的内角和公式()1802n ︒-即可得.【详解】解:∥七边形的内角中有一个角为100︒∥其余六个内角之和为()180********︒⨯--︒=︒故答案为:800︒.【点睛】本题考查了多边形的内角和 熟记多边形的内角和公式是解题关键.三 解答题21.(2023·四川自贡·统考中考真题)在平行四边形ABCD 中 点E F 分别在边AD 和BC 上 且DE BF =.求证:AF CE =.【答案】见解析【分析】平行四边形的性质得到,AD BC AD BC = 进而推出AE CF = 得到四边形AECF 是平行四边形 即可得到AF EC =. 【详解】解:四边形ABCD 是平行四边形∴,AD BC AD BC =BE DF =AE CF ∴=∥,AE CF AE CF =∥∴四边形AECF 是平行四边形AF CE ∴=.【点睛】本题考查平行四边形的判定和性质.熟练掌握平行四边形的判定方法 是解题的关键. 22.(2023·湖南·统考中考真题)如图所示 在ABC 中 点D E 分别为AB AC 、的中点 点H 在线段CE 上 连接BH 点G F 分别为BH CH 、的中点.(1)求证:四边形DEFG 为平行四边形(2)32DG BH BD EF ⊥==,, 求线段BG 的长度.【答案】(1)见解析 5【分析】(1)由三角形中位线定理得到1,2DE BC DE BC =∥ 1,2GF BC GF BC =∥ 得到,GF DE GF DE =∥ 即可证明四边形DEFG 为平行四边形(2)由四边形DEFG 为平行四边形得到2DG EF == 由DG BH ⊥得到90DGB ∠=︒ 由勾股定理即可得到线段BG 的长度.【详解】(1)解:∥点D E 分别为AB AC 、的中点 ∥1,2DE BC DE BC =∥ ∥点G F 分别为BH CH 的中点. ∥1,2GF BC GF BC =∥ ∥,GF DE GF DE =∥∥四边形DEFG 为平行四边形(2)∥四边形DEFG 为平行四边形∥2DG EF ==∥DG BH ⊥,∥90DGB ∠=︒∥3BD = ∥2222325BG BD DG =--【点睛】此题考查了中位线定理 平行四边形的判定和性质 勾股定理等知识 证明四边形DEFG 为平行四边形和利用勾股定理计算是解题的关键.23.(2023·浙江杭州·统考中考真题)如图,平行四边形ABCD 的对角线,AC BD 相交于点O 点,E F 在对角线BD 上 且BE EF FD == 连接,AE EC ,CF FA .(1)求证:四边形AECF 是平行四边形.(2)若ABE 的面积等于2 求CFO △的面积.【答案】(1)见解析(2)1【分析】(1)根据平行四边形对角线互相平分可得OA OC = OB OD = 结合BE FD =可得OE OF = 即可证明四边形AECF 是平行四边形(2)根据等底等高的三角形面积相等可得2AEF ABE S S == 再根据平行四边形的性质可得11121222CFO CEF AEF S S S ===⨯=. 【详解】(1)证明:四边形ABCD 是平行四边形∴OA OC = OB OD =BE FD =∴OB BE OD FD -=-∴OE OF =又OA OC =∴四边形AECF 是平行四边形.(2)解:2ABE S = BE EF = ∴2AEF ABE S S ==四边形AECF 是平行四边形∴11121222CFO CEF AEF S S S ===⨯=. 【点睛】本题考查平行四边形的判定与性质 解题的关键是掌握平行四边形的对角线互相平分. 24.(2023·山东·统考中考真题)如图,在ABCD 中 AE 平分BAD ∠ 交BC 于点E CF 平分BCD ∠ 交AD 于点F .求证:AE CF =.【答案】证明见解析【分析】由平行四边形的性质得B D ∠=∠ AB CD = AD BC ∥ 由平行线的性质和角平分线的性质得出BAE DCF ∠=∠ 可证BAE DCF ≌△△ 即可得出AE CF =.【详解】证明:∥四边形ABCD 是平行四边形∥B D ∠=∠ AB CD = BAD DCB ∠=∠ AD BC ∥∥AE 平分BAD ∠ CF 平分BCD ∠∥BAE DAE BCF DCF ∠=∠=∠=∠在BAE 和DCF 中B D AB CDBAE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∥()ASA BAE DCF ≌∥AE CF =.【点睛】本题主要考查平行四边形的性质 平行线的性质及全等三角形的判定与性质 根据题目已知条件熟练运用平行四边形的性质 平行线的性质是解答本题的关键.25.(2023·重庆·统考中考真题)学习了平行四边形后 小虹进行了拓展性研究.她发现 如果作平行四边形一条对角线的垂直平分线 那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分. 她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空: 用直尺和圆规 作AC 的垂直平分线交DC 于点E 交AB 于点F 垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形 AC 是对角线 EF 垂直平分AC 垂足为点O .求证:OE OF =.证明:∥四边形ABCD 是平行四边形∥DC AB ∥.∥ECO ∠= ∥ .∥EF 垂直平分AC∥ ∥ .又EOC ∠=___________∥ .∥()COE AOF ASA ∆≅∆.∥OE OF =.小虹再进一步研究发现 过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线 ∥ .【答案】作图:见解析 FAO ∠ AO CO = FOA ∠ 被平行四边形一组对边所截 截得的线段被对角线中点平分【分析】根据线段垂直平分线的画法作图 再推理证明即可并得到结论.【详解】解:如图,即为所求证明:∥四边形ABCD 是平行四边形∥DC AB ∥.∥ECO ∠= FAO ∠.∥EF 垂直平分AC∥AO CO =.又EOC ∠=FOA ∠.∥()COE AOF ASA ≅.∥OE OF =.故答案为:FAO ∠ AO CO = FOA ∠由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截 截得的线段被对角线中点平分故答案为:被平行四边形一组对边所截 截得的线段被对角线中点平分.【点睛】此题考查了平行四边形的性质 作线段的垂直平分线 全等三角形的判定和性质 熟练掌握平行四边形的性质及线段垂直平分线的作图方法是解题的关键.26.(2023·四川南充·统考中考真题)如图,在ABCD 中 点E F 在对角线AC 上 CBE ADF ∠=∠.求证:(1)AE CF =(2)BE DF ∥.【答案】见解析【分析】(1)根据平行四边形的性质推出相应的线段和相应的角度相等 再利用已知条件求证ABE CDF ∠=∠ 最后证明()ASA ABE CDF ≌△△即可求出答案.(2)根据三角形全等证明角度相等 再利用邻补角定义推出BEF EFD ∠=∠即可证明两直线平行.【详解】(1)证明:四边形ABCD 为平行四边形AB CD ∴∥ AB CD = ABC ADC ∠=∠BAE FCD .CBE ADF ∠=∠ ABC ADC ∠=∠ABE CDF ∴∠=∠.()ASA ABE CDF ∴≌.AE CF ∴=.(2)证明:由(1)得()ASA ABE CDF ≌△△ AEB CFD ∴∠=∠.180AEB BEF ∠+∠=︒ 180CFD EFD ∠+∠=︒BEF EFD ∴∠=∠.BE DF ∴∥.【点睛】本题考查了平行四边形的性质 邻补角定义 三角形全等 平行线的判定 解题的关键在于熟练掌握平行四边形的性质.27.(2023·四川广安·统考中考真题)如图,在四边形ABCD 中 AC 与BD 交于点,O BE AC ⊥ DF AC ⊥ 垂足分别为点E F 、 且,AF CE BAC DCA =∠=∠.求证:四边形ABCD 是平行四边形.【答案】见详解【分析】先证明()≌ASA AEB CFD 再证明 ,AB CD AB CD =∥ 再由平行四边形的判定即可得出结论.【详解】证明:BE AC ⊥ DF AC ⊥90AEB CFD ∴∠=∠=︒,,,AF CE AE AF EF CF CE EF ==-=-,AE CF ∴=又BAC DCA ∠=∠(ASA)∴≌AEB CFD∴=AB CD∠=∠∥BAC ACD∴∥AB CD四边形ABCD是平行四边形.【点睛】本题考查了平行四边形的判定全等三角形的判定与性质等知识熟练掌握平行四边形的判定证明三角形全等是解题的关键.。
中考数学复习同步检测(20)多边形与平行四边形知识网络一、⎧⎨⎩内角和多边形外角和1.2.3.⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎪⎨⎪⎪⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩用定义:两组对边分别平行两组对边分别相等一组对边平行且相等判定角:两组对边分别相等平行四边形对角线:对角线互相平分边性质角对角线一、选择题1.【05杭州】下列图形中面积最大的是 ( )A.边长为5的正方形B.半径为22的圆C.边长分别为6,8,10的直角三角形D.边长为7的正三角形2.【05南通】已知一个多边形的内角和为540°,则这个多边形为 ( )A 、三角形B 、四边形C 、五边形D 、六边形3.【05南通】已知:如图,菱形ABCD 中,对角线AC 与BD 相交于点O,OE ∥DC 交BC 于点E,AD=6cm,则OE 的长为 ( ) A 、6 cm B 、4 cm C 、3 cm D 、2 cm(4题图)4.【05苏州】如图,在平行四边形ABCD 中,下列各式不一定正确的是 ( )A .012180∠+∠=B .023180∠+∠=C .034180∠+∠=D .024180∠+∠=5.【05南通海门】下列角度中,是多边形内角和的只有 ( )A .270°B .560°C .630°D .1800°6.【05宿迁】为了美化城市,经统一规划,将一正方形草坪的南北方向增加3m,东西方向缩短3m,则改造后的长方形草坪面积与原来正方形草坪面积相比 ( ) A .增加6m2 B .增加9m2 C .减少9m2 D .保持不变7.【05临沂课改】多边形的内角中,锐角的个数最多有 ( )A. 1个.B. 2个.C. 3个.D. 4个. 8.【05丰台】七边形的内角和是 ( )(第3题)A. 360︒B. 720︒C. 900︒D. 1260︒9.【05北京】 如图,在平行四边形ABCD 中,E 是AD 上一点,连结CE 并延长交BA 的延长线于点F ,则下列结论中错误的是 ( ) A. ∠AEF =∠DEC B. FA:CD =AE:BC C. FA:AB =FE:EC D. AB =DC10.【05东营】如图,平行四边形ABCD 中,对角线AC ,BD 相交于点O ,将△AOD 平移至△BEC 的位置,则图中与OA 相等的其它线段有 ( ) A. 1条B. 2条C. 3条D. 4条11.【05东营】如图,在□ABCD 中,对角线AC ,BD 相交于点O ,E ,F 是对角线AC 上的两点,当E ,F 满足下列哪个条件时,四边形DEBF 不一定是平行四边形 ( ) A. AE =CFB. DE = BFC. ∠ADE =∠CBFD. ∠AED =∠CFB12.【05陕西】如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是 ( ) A.3:4 B.5:8 C.9:16 D.1:2二、填空题1.【05连云港】已知一个五边形的4个内角都是︒100,则第5个内角的度数是 . 2.【05北京】 如果正多边形的一个外角为72°,那么它的边数是_________。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】中考总复习:多边形与平行四边形--知识讲解(基础)【考纲要求】【:多边形与平行四边形考纲要求】1. 多边形A:了解多边形及正多边形的概念;了解多边形的内角和与外角和公式;知道用任意一个正三角形、正方形或正六边形可以镶嵌平面;了解四边形的不稳定性;了解特殊四边形之间的关系.B:会用多边形的内角和与外角和公式解决计算问题;能用正三角形、正方形、正六边形进行简单的镶嵌设计;能依据条件分解与拼接简单图形.(2)平行四边形A:会识别平行四边形.B:掌握平行四边形的概念、判定和性质,会用平行四边形的性质和判定解决简单问题.C:会运用平行四边形的知识解决有关问题.【知识网络】【考点梳理】考点一、多边形1.多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相接所组成的封闭图形叫做多边形.多边形的对角线是连接多边形不相邻的两个顶点的线段.2.多边形的对角线:从n边形的一个顶点出发可以引出(n-3)条对角线,共有n(n-3)/2条对角线,把多边形分成了(n -2)个三角形.3.多边形的角:n边形的内角和是(n-2)·180°,外角和是360°.【要点诠释】(1)多边形包括三角形、四边形、五边形……,等边三角形是边数最少的正多边形.(2)多边形中最多有3个内角是锐角(如锐角三角形),也可以没有锐角(如矩形).(3)解决n边形的有关问题时,往往连接其对角线转化成三角形的相关知识,研究n边形的外角问题时,也往往转化为n边形的内角问题.考点二、平面图形的镶嵌1.镶嵌的定义用形状,大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.2.平面图形的镶嵌(1)一个多边形镶嵌的图形有:三角形,四边形和正六边形;(2)两个多边形镶嵌的图形有:正三角形和正方形,正三角形和正六边形,正方形和正八边形,正三角形和正十二边形;(3)三个多边形镶嵌的图形一般有:正三角形、正方形和正六边形,正方形、正六边形和正十二边形,正三角形、正方形和正十二边形.【要点诠释】能镶嵌的图形在一个拼接点处的特点:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.考点三、三角形中位线定理1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.考点四、平行四边形的定义、性质与判定1.定义:两组对边分别平行的四边形是平行四边形.2.性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分;(4)平行四边形是中心对称图形,对角线的交点是它的对称中心.3.判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.4.两条平行线间的距离:定义:夹在两条平行线间最短的线段的长度叫做两条平行线间的距离.性质:夹在两条平行线间的平行线段相等.【要点诠释】1.平行四边形的面积=底×高;2.同底(等底)同高(等高)的平行四边形面积相等.【典型例题】类型一、多边形与平面图形的镶嵌1.(2015•葫芦岛)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60° B.65° C.55° D.50°【思路点拨】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.【答案】A【解析】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选:A.【总结升华】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.举一反三:【变式】如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α=_________.【答案】40°.2.(2011·十堰)现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是( )A.正方形和正六边形 B.正三角形和正方形C.正三角形和正六边形 D.正三角形、正方形和正六边形【思路点拨】注意各正多边形的内角度数.【答案】A.【解析】正方形和正六边形的每个内角分别为90°和120°,要镶嵌则需要满足90°m+120°n=360°,但是m、n没有正整数解,故选A.【总结升华】能镶嵌的图形在一个拼接点处的特点:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.举一反三:【变式】现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( )A.2种 B.3种 C.4种 D.5种【答案】B.类型二:平行四边形及其他知识的综合运用3.(2014春•章丘市校级月考)如图,已知在▭ABCD中,对角线AC、BD相交于点O,AE⊥BD,BM⊥AC、DN⊥AC,CF⊥BD垂足分别是E、M、N、F,求证:EN∥MF.【思路点拨】连接ME,FN,由四边形ABCD为平行四边形,得到对角线互相平分,利用AAS得到三角形AOE与三角形COF全等,利用全等三角形对应边相等得到OE=OF,同理得到三角形BOM与三角形DON全等,得到OM=ON,进而确定出四边形MEFN为平行四边形,利用平行四边形的对边平行即可得证.【答案与解析】证明:连接ME,FN,∵四边形ABCD为平行四边形,∴OA=OC,OB=OD,∵AE⊥BD,CF⊥BD,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF,同理△BOM≌△DON,得到OM=ON,∴四边形EMFN为平行四边形,∴EN∥MF.【总结升华】此题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.4.如图所示,△ABC中,∠BAC=90°,延长BA到D,使,点E、F分别为边BC、AC 的中点.(1)求证:DF=BE;(2)过点A作AG∥BC,交DF于G,求证:AG=DG.【思路点拨】(1)E、F分别为BC、AC中点,则EF为△ABC的中位线,所以EF∥AB,.而.则EF=AD.从而易证△DAF≌△EFC, 则DF=CE=BE.(2) AG与DG在同一个三角形中,只需证∠D=∠DAG即可.【答案与解析】(1)∵点E、F分别为BC、AC的中点,∴ EF是△ABC的中位线.∴ EF∥AB,.又∵,∴ EF=AD.∵ EF∥AB,∴∠EFC=∠BAC=90°,∵∠BAC=90°,∴∠DAF=90.又∵ F是AC的中点,∴AF=CF,∴△DAF≌△EFC.∴DF=EC=BE.(2)由(1)知∵△DAF≌△EFC,∴∠D=∠FEC.又∵ EF∥AB,∴∠B=∠FEC.又∵ AG∥BC,∴∠DAG=∠B,∴∠ DAG=∠FEC∴∠D=∠DAG.∴AG=DG.【总结升华】三角形中位线定理的作用:位置关系——可以证明两条直线平行;数量关系——可以证明线段的相等或倍分.此外应注意三角形共有三条中位线,并且它们又重新构成一个新的三角形.举一反三:【变式】如图,已知P、R分别是长方形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐变小C.线段EF的长不变D.无法确定【答案】C.5.如图:六边形ABCDEF中,AB平行且等于ED,AF平行且等于CD,BC平行且等于FE,对角线FD ⊥BD.已知FD=4cm,BD=3cm.则六边形ABCDEF的面积是_________cm2.【思路点拨】连接AC交BD于G,AE交DF于H.根据一组对边平行且相等的四边形是平行四边形,得平行四边形AEDB和AFDC.易得AC=FD,EH=BG.计算该六边形的面积可以分成3部分计算,即平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积.【答案与解析】连接AC交BD于G,AE交DF于H.∵AB平行且等于ED,AF平行且等于CD,∴四边形AEDB是平行四边形,四边形AFDC是平行四边形,∴AE=BD,AC=FD,∵FD⊥BD,∴∠GDH=90°,∴四边形AHDG是矩形,∴AH=DG∵EH=AE-AH,BG=BD-DG∴EH=BG.∴六边形ABCDEF的面积=平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积=FD•BD=3×4=12cm2.故答案为:12.【总结升华】注意求不规则图形的面积可以分割成规则图形,根据面积公式进行计算.6 .(2012•厦门)已知平行四边形ABCD,对角线AC和BD相交于点O,点P在边AD上,过点P 作PE⊥AC,PF⊥BD,垂足分别为E、F,PE=PF.(1)如图,若PE=3,EO=1,求∠EPF的度数;(2)若点P是AD的中点,点F是DO的中点,BF=BC+32-4,求BC的长.【思路点拨】(1)连接PO,利用解直角三角形求出∠EPO=30°,再利用“HL”证明△PEO和△PFO全等,根据全等三角形对应角相等可得∠FPO=∠EPO,从而得解;(2)根据三角形中位线定理可得PF∥AO,且PF=12AO,然后根据两直线平行,同位角相等可得∠AOD=∠PFD=90°,再根据同位角相等,两直线平行可得PE∥OD,所以PE也是△AOD的中位线,然后证明四边形ABCD是正方形,根据正方形的对角线与边长的关系列式计算即可得解.【答案与解析】(1)如图,连接PO,∵PE⊥AC,PE=3,EO=1,∴tan∠EPO=33 EOPE=,∴∠EPO=30°,∵PE⊥AC,PF⊥BD,∴∠PEO=∠PFO=90°,在Rt△PEO和Rt△PFO中,PO PO PE PF=⎧⎨=⎩,∴R t△PEO≌Rt△PFO(HL),∴∠FPO=∠EPO=30°,∴∠EPF=∠FPO+∠EPO=30°+30°=60°;(2)如图,∵点P是AD的中点,点F是DO的中点,∴PF∥AO,且PF=12 AO,∵PF⊥BD,∴∠PFD=90°,∴∠AOD=∠PFD=90°,又∵PE⊥AC,∴∠AEP=90°,∴∠AOD=∠AEP,∴PE∥OD,∵点P是AD的中点,∴PE是△AOD的中位线,∴PE=12 OD,∵PE=PF,∴AO=OD,且AO⊥OD,∴平行四边形ABCD是正方形,设BC=x,则BF=22x+12×22x=324x,∵BF=BC+32-4=x+32 -4,∴x+32-4=324x,解得x=4,即BC=4.【总结升华】本题考查了平行四边形的性质,三角形的中位线定理,正方形的判定与性质,(2)中判定出平行四边形ABCD是正方形是解题的关键.举一反三:【变式】如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是双曲线上的一点,Q为坐标平面上的一动点,PA⊥x轴,QB⊥y轴,垂足分别为A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,是否可以使△OBQ与△OAP面积相等?(3)如图2,点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.图1 图2【答案】(1)正比例函数解析式为,反比例函数解析式为.(2)当点Q在直线MO上运动时,设点Q的坐标为,,解得.所以点Q的坐标为和.(3)因为P(,),由勾股定理得OP=,平行四边形OPCQ周长=.因为点Q在第一象限中的双曲线上,所以可设点Q的坐标为,由勾股定理可得,通过图形分析可得:OQ有最小值2,即当Q为第一象限中的双曲线与直线的交点时,线段OQ的长度最小.所以平行四边形OPCQ周长的最小值:.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
图5
新初三---多边形和平行四边形
【学习目标】
1、了解平行四边形的概念、性质和判定,会用平行四边形的概念、性质和判定解决问题;
2、在解决问题的过程中,培养“抓大放小,化大为小,化难为易,分解难点”的解题策略和能力。
【基础探究】
1、在□ABCD 中,∠B =50°,AB =5cm ,BC =7cm ,则∠D = ,□ABCD 的周长为 cm .
2、如图1,□ABCD 的周长是28㎝,△ABC 的周长是22㎝,对角线交于点O ,则OC 的长为 cm.
3、如图2,在□ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC 的长
度分别为 .
4、如图3,已知□ABCD 的两条对角线AC 与BD 交于平面直角坐标系的原点,点A 的坐标
为(-2,3),则点C 的坐标为 ( )
A .(-3,2)
B .(-2,-3)
C .(3,-2)
D .(2,-3)
5、在四边形ABCD 中,O 是对角线交点,下列条件中,不能判定四边形ABCD 是平行四边形的
是( )
A .AD ∥BC ,AD =BC
B .AB =D
C ,A
D =BC
C .AB ∥DC ,A
D =BC D .OA =OC ,OD =OB
6、如图4,一个四边形花坛ABCD ,被两条线段MN,EF 分成四个部分,分别种上红、黄、紫、白四
种花卉,种植面积依次是S 1, S 2, S 3, S 4,,若MN ∥AB ∥DC ,EF ∥DA ∥CB ,则有( )
A .S 1= S 4
B .S 1+ S 4= S 2+ S 3
C .S 1S 4= S 2S 3
D .都不对
7、如图5,在□ABCD 中,E 是BC 的中点,且∠AEC=∠DCE ,则下列结论不正确...
的是( ) A .2AFD EFB S S =△△ B .12
BF DF = C .四边形AECD 是等腰梯形 D .AEB ADC ∠=∠ 8、如图,平行四边形ABCD 中,∠DAB =60°,点E 、F 分别在CD 、AB 的延长线上,且AE =AD ,
CF =CB 。
(1)试说明:四边形AFCE 是平行四边形.
(2)若去掉已知条件的“∠DAB =60°,上述的结论还成立吗?若成立,请写出证明过程;若不成立,
请说明理由.
9、已知:□ABCD 的对角线交于点O ,点P 是直线BD 上任意一点(异于B 、O 、D 三点),过P 点作
平行于AC 的直线,交直线AD 于E ,交直线AB 于F .
(1)若点P 在线段BD 上(如图所示).试说明:AC =PE +PF .
(2)若点P在BD或DB的延长线上,试探究AC、PE、PF满足的等量关系式.(只写出结论,不作证明)
10、如图,ABCD是矩形纸片,翻折∠B、∠D,使BC、AD恰好落在AC上、设F、H分别是B、D 落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点、
(1)试说明:四边形AECG是平行四边形;
(2)若AB=4cm,BC=3cm,求线段EF的长、
11、如图,在平行四边形ABCD中,AD=4 cm,∠A=60°,BD⊥AD. 一动点P从A出发,以每秒1 cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD .
(1) 当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;
(2) 当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1 cm的速度匀速运动,在BC上以每秒2 cm的速度匀速运动. 过Q作直线QN,使QN∥PM. 设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD所得图形的面积为S cm2 .
①求S关于t的函数关系式;
②求S的最大值.
【综合探究】
12、我们给出如下定义:如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.
例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.
(1)如图2,已知平行四边形ABCD, 请你在图2中画出一个只有一对等高点的四边形ABCE(要求:画出必要的辅助线);
(2)已知P是四边形ABCD对角线BD上任意一点(不与B、D点重合),请分别探究图3、图4
中S1, S2, S3, S4四者之间的等量关系(S1, S2, S3, S4分别表示△ABP, △CBP, △CDP, △ADP的面积):
①如图3,当四边形ABCD只有一对等高点A、C时,你得到的一个结论是;
②如图4,当四边形ABCD没有等高点时,你得到的一个结论是.
13、四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点、如图1,点P为四边形ABCD对角线AC 所在直线上的一点,PD=PB,P A≠PC,则点P为四边形ABCD的准等距点.
(1)如图2,画出菱形ABCD的一个准等距点.
(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法) .
(3)如图4,在四边形ABCD中,P是AC上的点,P A≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF,试说明:点P是四边形AB CD的准等距点.
(4)试研究四边形的准等距点个数的情况(说出相应四边形的特征及准等距点的个数,不必证明) .
14、如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB =90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME =PM,连结DE.探究:
⑴请猜想与线段DE有关的三个结论;
⑵请你利用图2,图3选择不同位置的点P按上述方法操作;
⑶经历⑵之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明)
⑷若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案) .
初中数学试卷鼎尚图文**整理制作。