高考数学串讲三直线圆圆锥曲线
- 格式:docx
- 大小:817.80 KB
- 文档页数:7
高考数学复习考点题型专题讲解题型:之直线与圆锥曲线【高考题型一】:直线与圆锥曲线在简答题中的步骤体现。
『解题策略』:答题规范模板:步骤1:设直线方程:注意设直线的技巧。
①当斜率不存在的直线不满足,斜率为零的直线满足时,一般设为b kx y +=; ②当斜率为零的直线不满足,斜率不存在的直线满足时,一般设为n my x +=;③两类直线均满足或均不满足时,两种设法均可,但两类直线均满足时,注意要对取不到的直线补充验证。
)。
步骤2:直线与曲线联立,整理成关于x(或y)的一元二次方程。
步骤3:写出根与系数的关系(如果求范围或直线与曲线不是恒有公共点,则写出)0(0≥∆>∆)。
步骤4:转化已知条件,转化为两根的关系。
步骤5:把根与系数的关系代入转化的条件中。
※注:若题目中不涉及根与系数,则.............步骤..4.\.步骤..5.可省略。
.... 弦长公式:弦长:直线与曲线相交中两交点的距离。
弦长公式:直线与曲线联立,若消y ,转化为关于x 的一元二次方程,20,ax bx c ++=则弦长=a ;若消x ,则转化为关于y 的一元二次方程:20,ay by c ++=则弦长。
【题型1】:直线与椭圆的位置关系。
『解题策略』:直线0:=++C By Ax l ,椭圆C :221(0,0,)mx ny m n m n +=>>≠;判定方法:∆法:直线与椭圆方程联立:220,00,10,Ax By c mx ny ∆>⎧++=⎧⎪⇒∆=⎨⎨+=⎩⎪∆<⎩相交相切相离。
1.(高考题)已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点。
(1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,请说明理由。
【解析】:(1)c=2,设椭圆方程为:142222=-+a y a x ,代入点A 得椭圆方程为2211612x y +=。
高三数学二轮复习《直线、圆、圆锥曲线》专题讲义专题热点透析解析几何是高中数学的重点内容之一,也是高考考查的热点。
高考着重考查基础知识的综合,基本方法的灵活运用,数形结合、分类整合、等价转化、函数方程思想以及分析问题解决问题的能力。
其中客观题为基础题和中档题,主观题常常是综合性很强的压轴题。
本专题命题的热点主要有:①直线方程;②线性规划;③直线与圆、圆锥曲线的概念和性质;④与函数、数列、不等式、向量、导数等知识的综合应用。
热点题型范例 一、动点轨迹方程问题例1.M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 2.PM PN -= (Ⅰ)求点P 的轨迹方程; (Ⅱ)设d 为点P 到直线l :12x =的距离,若22PM PN =,求PM d 的值。
1.1在平面直角坐标系xOy 中,点P 到两点(0-,,(0的距离之和等于4,设点P 的轨迹为C . (Ⅰ)写出C 的方程;(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.k 为何值时OA u u u r ⊥OB uuu r ?此时AB u u u r的值是多少?二、圆的综合问题例2、在直角坐标系中,A(a,0)(a>0),B(0,a),C(-4,0),D(0,4),设三角形ABC 的外接圆圆心为E 。
(1)若圆E 与直线CD 相切,求实数a 的值;(2)设点p 在圆E 上,使三角形PCD 的面积等于12的点P 有且只有三个,试问这样的圆E 是否存在?若存在,求出圆E 的标准方程;若不存在,请说明理由。
三、圆锥曲线定义的应用例3. 已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点,若1222=+B F A F ,则AB =3.1已知双曲线2222:1(0,0)x y C a b a b-->>的两个焦点为:(2,0),:(2,0),F F P -点的曲线C 上.(Ⅰ)求双曲线C 的方程;(Ⅱ)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交于不同的两点E 、F ,若△OEF 的面积为求直线l 的方程四、圆锥曲线性质问题例5.①已知双曲线22:1916x y C -=的左右焦点分别为12,F F ,P 为C 的右支上一点,且212PF F F =,则12PF F ∆的面积等于( )(A)24 (B)36 (C)48 (D)96②已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=u u u u r u u u u r的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1)B .1(0,]2 C.(0,2D.2 4.1.设ABC △是等腰三角形,120ABC ∠=o,则以A B ,为焦点且过点C 的双曲线的离心率为( )A .221+ B .231+ C . 21+ D .31+4.2.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于五、圆锥曲线中的定值、定点问题例6. 设A 、B 为椭圆22143x y +=上的两个动点。
高考数学 直线与圆锥曲线一、知识要点1.关于直线与圆锥曲线的交点问题:一般方法是用解方程组的方法求其交点的坐标.2.判断直线与圆锥曲线交点个数问题:即判断方程组解的个数.3.直线与圆锥曲线位置关系的判定:通法是消去一个未知数若得到的是关于另一未知数的一元二次方程,可用根的判别式∆来判断,注意直线与圆锥曲线相切必有一个公共点,对圆与椭圆来说反之亦对,但对双曲线和抛物线来说直线与其有一公共点,可能是相交的位置关系.4.直线与圆锥曲线相交的弦长计算:(1)连结圆锥曲线上两点的线段称为圆锥曲线的弦;(2)易求出弦端点坐标时用距离公式求弦长;(3)一般情况下,解由直线方程和圆锥曲线方程组成的方程组,得到关于x(或y)的一元二次方程,利用方程组的解与端点坐标的关系,结合韦达定理得到弦长公式:|AB|=]4))[(1(212212x x x x k -++.5.关于相交弦的中点问题:涉及到弦的中点时,常结合韦达定理.6.曲线关于直线对称问题:注意两点关于直线对称的条件:(1)两点连线与该直线垂直;(2)中点在此直线上.二、基础训练1.直线y x b =+与抛物线22y x =,当b ∈ 时,有且只有一个公共点; 当b ∈ 时,有两个不同的公共点;当b ∈ 时,无公共点.2.若直线1y kx =+和椭圆22125x y m+=恒有公共点,则实数m 的取值范围为 . 3.抛物线2y ax =与直线y kx b =+(0)k ≠交于,A B 两点,且此两点的横坐标分别为1x ,2x ,直线与x 轴的交点的横坐标是3x ,则恒有 ( )()A 312x x x =+ ()B 121323x x x x x x =+()C 3120x x x ++= ()D 1213230x x x x x x ++=4.椭圆122=+ny mx 与直线1=+y x 交于,M N 两点,MN 的中点为P ,且OP 的斜率为22,则nm 的值为 ( ) (A )22 (B )322 (C )229 (D )2732 5.已知双曲线22:14y C x -= ,过点(1,1)P 作直线l ,使l 与C 有且只有一个公共点,则满足上述条件的直线l 共有 ( )()A 1 条 ()B 2条 ()C 3条 ()D 4条 三、例题分析例1.过点(1,6)--的直线l 与抛物线24y x =交于,A B 两点,若9(,0)2P ,||||AP BP =, 求直线l 的斜率.例2.已知直线l 和圆M :2220x y x ++=相切于点T ,且与双曲线22:1C x y -=相交于,A B 两点,若T 是AB 的中点,求直线l 的方程.例3.过椭圆2x 2+y 2=2的一个焦点的直线交椭圆于P 、Q 两点,求ΔPOQ 面积的最大值 例4(05天津卷)抛物线C 的方程为)0(2<=a ax y ,过抛物线C 上一点P(x 0,y 0)(x 0≠0)作斜率为k 1,k 2的两条直线分别交抛物线C 于A(x 1,y 1)B(x 2,y 2)两点(P,A,B 三点互不相同),且满足)10(012-≠≠=+λλλ且k k .(Ⅰ)求抛物线C 的焦点坐标和准线方程;(Ⅱ)设直线AB 上一点M ,满足λ=,证明线段PM 的中点在y 轴上; (Ⅲ)当λ=1时,若点P 的坐标为(1,-1),求∠PAB 为钝角时点A 的纵坐标1y 的取值范围.四、作业 同步练习 g3.1083直线与圆锥曲线1.以点(1,1)-为中点的抛物线28y x =的弦所在的直线方程为( ) ()A 430x y --= ()B 430x y ++=()C 430x y +-= ()D 430x y ++=2.斜率为3的直线交椭圆221259x y +=于,A B 两点,则线段AB 的中点M 的坐标满足方程( ) ()A 325y x =()B 325y x =- ()C 253y x = ()D 253y x =- 3.过点(0,1)与抛物线22(0)y px p =>只有一个公共点的直线的条数是( ) ()A 0 ()B 1 ()C 2 ()D 3 4(05福建卷)已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( )A .324+B .13-C .213+D .13+5.椭圆4x 2+9y 2=36的焦点为F 1,F 2,点P 为其上动点,当∠F 1PF 2为钝角时,点P 的横坐标的取值范围是 .6.已知双曲线2290x y kx y -+--=与直线1y kx =+的两个交点关于y 轴对称,则这两个交点的坐标为7.与直线042=+-y x 的平行的抛物线2x y =的切线方程是8. (05山东卷)设双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,右准线l 与两条渐近线交于P 、Q 两点,如果PQF ∆是直角三角形,则双曲线的离心率___________e =9.已知椭圆的中心在原点,离心率为12 ,一个焦点是F (-m,0)(m 是大于0的常数).(Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M. =,求直线l 的斜率.10.一个正三角形的三个顶点都在双曲线221x ay -=的右支上,其中一个顶点是双曲线的右顶点,求实数a 的取值范围.11.已知直线1y kx =+与双曲线2231x y -=相交于,A B 两点.是否存在实数k ,使,A B两点关于直线20x y -=对称?若存在,求出k 值,若不存在,说明理由.12、(05上海)本题共有3个小题,第1小题满分4分, 第2小题满分6分, 第3小题满分6分.已知抛物线y 2=2px(p>0)的焦点为F,A 是抛物线上横坐标为4、且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B,OB 的中点为M.(1)求抛物线方程;(2)过M 作MN ⊥FA, 垂足为N,求点N 的坐标;(3)以M 为圆心,MB 为半径作圆M.当K(m,0)是x 轴上一动点时,丫讨论直线AK 与圆M 的位置关系.。
高考中的圆锥曲线问题题型一范围问题例1 已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率e=√32,直线x+√3y-1=0被以椭圆C的短轴为直径的圆截得的弦长为√3.(1)求椭圆C的标准方程;(2)过点M(4,0)的直线l交椭圆于A,B两个不同的点,且λ=|MA|∙|MB|,求λ的取值范围思维总结:解决圆锥曲线中的取值范围问题需要从以下几个方面考虑:(1)利用圆锥曲线的几何关系或判别式构造不等关系,确定参数的取值范围(2)利用已知的范围求新参数范围时,着重去寻找并建立两个参数之间的等量关系式(3)利用题目中隐含的不等关系构造不等式,确定参数的取值范围(4)利用题目中已知的不等关系构造不等式,确定参数的取值范围(5)利用函数中求值域的方法,把需要求的量表示为其他相关变量的函数,求函数的值域,确定出参数的取值范围。
变式1 已知F1,F2是椭圆C:x 2a2+y2b2=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△PO F2为等边三角形,求C的离心率(2)如果存在点P,是的P F1⊥P F2,且△F1P F2的面积等于16,求b的值和a 的取值范围.题型二最值问题例2(几何法求最值)已知抛物线C1:y²=4x和C2:x²=2py(p>0)的焦点分别为F1,F2,点P(-1,-1)且F1F2⊥OP(O为坐标原点).(1)求抛物线C2的方程;(2)过点O的直线交C1的下半部分于点M,交C2的左半部分于点N,求△PMN 面积的最小值.例3(代数法求最值)在平面直角坐标系中,O为坐标原点,圆O交x轴于点F1,F2,交y轴于点B1,B2,以B1,B2为顶点,F1,F2分别为左右焦点的椭圆E恰好).经过点(1,√22(1)求椭圆E的标准方程;(2)设经过点(-2,0)的直线l与椭圆E交于M、N两点,,求△F2MN面积的最大值.思维总结:圆锥曲线最值问题的两种求解方法1.利用几何法,利用圆锥曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;2.利用代数法,把要求最值的几何量或代数表达式表示为某个(某些)参数的函数(或解析式),利用函数方法或不等式等方法进行求解.变式2 已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y²=4x上一动点P到直线l1和直线l2的距离之和的最小值是 .变式3 椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√63,短轴一个端点到右焦点的距离为√3.(1)求椭圆C的方程(2)设斜率存在的直线l与椭圆C交于A,B两点,坐标原点O到直线l的距离为√32,求△AOB面积的最大值.题型三定点问题例4 已知椭圆C:x 2a2+y2b2=1(a>b>0)的左右焦点分别为F1(−√3,0),F2(√3,0),且经过点A(√3,12).(1)求椭圆C的标准方程;(2)过定点B(4,0)的一条斜率不为0的直线l与椭圆C相交于P、Q两点,记点P关于x轴对称的点为P′,证明:直线P′Q经过x轴上一定点D,并求出定点D的坐标.思维总结:求圆锥曲线综合问题的一般步骤(1)求出圆锥曲线方程(一般根据待定系数法或定义法);(2)设直线方程并于曲线方程联立,得到关于x或y的一元二次方程;(3)写出根与系数的关系(或求出交点坐标);(4)将第三步得出的关系式代入,解决范围、最值或定点、定值等问题;(5)反思回顾,考虑方程有解条件和图形的完备性.变式4 已知椭圆C:x 22+y2=1的右焦点为F,过点F的直线(不与x轴重合)与椭圆C相交于A,B两点,直线l:x=2与x轴相交于点H,过点A作AD⊥l,垂足为D.(1)求四边形QAHB(O为坐标原点)的面积的取值范围;(2)证明:直线BD过定点E,并求出点E的坐标.题型四定值问题例5 设F1,F2为椭圆x 24+y2b2=1(b>0)的左、右焦点,M为椭圆上一点,满足M F1⊥M F2,已知△M F1F2的面积为1.(1)求椭圆C的方程;(2)设C的上顶点为H,过点(2,-1)的直线与椭圆交于R,S两点(异于H),求证:直线HR和HS的斜率之和为定值,并求出这个定值.思维总结:圆锥曲线定值问题的常见类型及解题思路(1)求代数式为定值:根据题意设出条件,得到与代数式中参数相关的等式,代入代数式中,从而化简得出定值.(2)求点到直线的距离为定值:利用点到直线的距离公式得到相关的解析式,利用题设条件化简、变形得出定值.(3)求线段长度为定值:利用长度公式求得解析式,再根据题目中的条件对解析式进行化简、变形得出定值.变式5 已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√22,且过点A(2,1).(1)求C的方程;(2)点M、N在C上,且AM⊥AN,AD⊥MN,D为垂足,证明:存在定点Q,使得|DQ|为定值.题型五证明问题例6 设椭圆E:x 2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,过点F1的直线交椭圆E于A,B两点.若椭圆E的离心率为√22,△AB F2的周长为4√6. (1)求椭圆E的方程;(2)设不经过椭圆的中心而平行于弦AB的直线交椭圆E于点C,D,设弦AB,CD的中点分别为M,N,证明:O,M,N三点共线.思维总结:圆锥曲线中证明问题常见的有以下两种:(1)位置关系:如证明直线与曲线相切,直线间的平行,垂直,直线过定点等;(2)数量关系:如存在定值,恒成立,相等等。
题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。
圆锥曲线问题在高考的常见题型及解题技巧圆锥曲线作为高等数学中的重要内容,在高考中常常出现,并且是考察学生数学运算能力和理解能力的重要方面。
圆锥曲线问题在高考中的常见题型有:直线与圆锥曲线的交点问题、圆锥曲线的参数方程问题、圆锥曲线的性质和应用问题等。
下面我们来一一介绍这些常见题型的解题技巧。
一、直线与圆锥曲线的交点问题这是圆锥曲线问题中最常见的一个题型,题目通常要求求出直线与圆锥曲线的交点坐标。
解题技巧如下:1. 分析题目给出的直线和圆锥曲线,确定直线方程和圆锥曲线方程;2. 将直线方程代入圆锥曲线方程中,解方程得出交点坐标;3. 特别要注意,当圆锥曲线为椭圆或双曲线时,有两个交点,需要分别求解;4. 当圆锥曲线为抛物线时,还需要注意直线的位置与抛物线的开口方向。
二、圆锥曲线的参数方程问题圆锥曲线的参数方程问题通常考查学生对参数方程的理解和应用能力,解答这类问题的关键在于用参数代换替换变量。
解题技巧如下:1. 给出的圆锥曲线通常可以用参数方程表示,将已知的参数方程代入题目求解;2. 注意参数方程的参数范围,有时需要根据范围重新调整参数;3. 对于给出的参数方程,需要将参数代换替换变量,进而得出答案。
三、圆锥曲线的性质和应用问题圆锥曲线的性质和应用问题通常要求学生掌握圆锥曲线的基本性质,以及如何应用这些性质解决实际问题。
解题技巧如下:1. 需要牢记圆锥曲线的基本性质,例如椭圆的焦点、双曲线的渐近线等;2. 掌握各种类型圆锥曲线的标准方程和参数方程;3. 对于应用问题,需要在掌握了基本性质的前提下,将问题转化为数学模型,进而解决。
以上就是圆锥曲线问题在高考中的常见题型及解题技巧,希望对大家备战高考有所帮助。
在复习期间,建议大家多做练习题,加深对圆锥曲线知识的理解,提高解题能力。
多思考,灵活运用各种解题技巧,相信大家一定能在高考中取得好成绩!。
高考数学串讲(三)直线圆圆锥曲线二,跟踪训练1,(05广东)在平面直角坐标系x Oy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO(如图4所示).(Ⅰ)求△AOB的重心G(即三角形三条中线的交点)的轨迹方程;(Ⅱ)△AOB的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.2,(05广东)在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、AD边分别在x轴、y轴的正半轴上,A点与坐标原点重合(如图5所示).将矩形折叠,使A点落在线段DC上.(Ⅰ)若折痕所在直线的斜率为k,试写出折痕所在直线的方程;(Ⅱ)求折痕的长的最大值.3,(04全国I)双曲线C:2221xya-=(0a>)与直线l:1x y+=相交于两个不同的点A,B.(I)求双曲线C的离心率e的取值范围;(II)设直线l与y轴的交点为P,且512PA PB=,求a的值。
4,(05重庆)已知椭圆1C 的方程为2214x y +=,双曲线2C 的左,右焦点分别为1C 的左,右顶点,而2C 的左,右顶点分别是1C 的左,右焦点。
(I )求双曲线2C 的方程;(II )若直线l :y kx =+1C 及双曲线2C 都恒有两个不同的交点,且l 与2C的两个交点A 和B 满足6OA OB ⋅<(其中O 为原点),求k 的取值范围。
5,(04广东)设直线l与椭圆2212516x y+=相交于A,B两点,l又与双曲线221x y-=相交于C,D两点,C,D三等分线段AB。
求直线l的方程。
三,简明提示1,(I )设1122(,),(,),(,)G x y A x y B x y ,则消去1212,,,x x y y 得2223y x =+;(II )12AOB S OA OB ∆===1≥=,当4412x x =,即121x x =-=-时,等号成立。
2,解:设点A 落在DC 上的点E 处,则折痕所在的直线是线段AE 的垂直平分线(Ⅰ) AE 的方程为:1y x k=- ①E 点的纵坐标恒为1,代入 ① 得E 点横坐标为k -,由:02k ≤-≤,得20k -≤≤ 折痕的方程为:22AE A E y y x x y k x ++⎛⎫-=- ⎪⎝⎭得:212k y kx +=+ (其中20k -≤≤)② (II) 若折痕所在直线与y 轴的交点的纵坐标大于1,则折痕与线段CD 有交点 若折痕所在直线与直线2x =的交点的纵坐标小于0,则折痕与线段AB 有交点对于折痕上的点(x ,y )当0x =时,令01y ≤≤,得:201k ≤≤,又20k -≤≤,所以10k -≤≤ 即:当10k -≤≤时,折痕与线段AD 有交点 ③当21k -≤≤-时,折痕与线段DC 有交点 ④当2x =时,令01y ≤≤,得()2325k ≤+≤,又20k -≤≤,所以20k -≤≤即:当20k -≤≤时,折痕与BC 的边有交点 ⑤当22k -≤≤-AB 有交点 ⑥综合③、④、⑤、⑥。
直线 圆 圆锥曲线编辑人:管理员 3.1直线的倾斜角和斜率 3.1倾斜角和斜率1、直线的倾斜角的概念:当直线l 与x 轴相交时, 取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时, 规定α= 0°.2、 倾斜角α的取值范围: 0°≤α<180°. 当直线l 与x 轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是 k = tan α⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l 与x 轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在. 4、 直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x13.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即3.2.1 直线的点斜式方程1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k )(00x x k y y -=-2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(b b kx y +=3.2.2 直线的两点式方程1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠y-y1/y-y2=x-x1/x-x2 2、直线的截距式方程:已知直线l与x轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a3.2.3 直线的一般式方程1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)2、各种直线方程之间的互化。
2020年高考数学(理)总复习: 直线与圆、圆锥曲线的概念、方程与性质题型一 直线与圆、圆与圆的位置关系 【题型要点】(1)讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.研究直线与圆的位置关系主要通过圆心到直线的距离和半径的比较实现,两个圆的位置关系的判断依据是两圆心距离与两半径差与和的比较.(2)直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立切线斜率的等式,所以求切线方程时主要选择点斜式.过圆外一点求解切线段长可转化为圆心到圆外点距离,利用勾股定理处理.【例1】直线l :kx +y +4=0()k ∈R 是圆C :x 2+y 2+4x -4y +6=0的一条对称轴,过点A ()0,k 作斜率为1的直线m ,则直线m 被圆C 所截得的弦长为( )A.22B. 2C. 6D .2 6【解析】 由l :kx +y +4=0()k ∈R 是圆C :x 2+y 2+4x -4y +6=0的一条对称轴知,直线l 必过圆心()-2,2,因此k =3.则过点A ()0,k ,斜率为1的直线m 的方程为y =x +3,圆心到直线的距离d =||-2-2+32=22,所以弦长等于2r 2-d 2=2 2-12=6,故选C.【答案】 C【例2】.若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是________.【解析】 由题意⊙O 1与⊙O 在A 处的切线互相垂直,则两切线分别过另一圆的圆心,所以O 1A ⊥OA .又∵|OA |=5,|O 1A |=25,∴|OO 1|=5,又A 、B 关于OO 1对称,所以AB 为Rt △OAO 1斜边上高的2倍,∴|AB |=2×5×255=4. 【答案】 4【例3】.过动点M 作圆()x -22+()y -22=1的切线MN ,其中N 为切点,若||MN =||MO (O 为坐标原点),则||MN 的最小值是____________.【解析】 由圆的方程可得圆心C 的坐标为(2,2),半径为1. 由M (a ,b ),可得|MN |2=(a -2)2+(b -2)2-12 =a 2+b 2-4a -4b +7,|MO |2=a 2+b 2.由|MN |=|MO |,得a 2+b 2-4a -4b +7=a 2+b 2,整理得4a +4b -7=0. ∴a ,b 满足的关系式为4a +4b -7=0. 求|MN |的最小值,就是求|MO |的最小值. 在直线4a +4b -7=0上取一点到原点距离最小, 由“垂线段最短”得直线OM 垂直于直线4a +4b -7=0,由点到直线的距离公式,得MN 的最小值为||742+42=728. 【答案】 728题组训练一 直线与圆、圆与圆的位置关系1.已知直线l :mx +y -2m -1=0,圆C :x 2+y 2-2x -4y =0,当直线l 被圆C 所截得的弦长最短时,实数m =________【解析】 由C :x 2+y 2-2x -4y =0得(x -1)2+(y -2)2=5,∴圆心坐标是C (1,2),半径是5,∵直线l :mx +y -2m -1=0过定点P (2,1),且在圆内,∴当l ⊥PC 时,直线l 被圆x 2+y 2-2x -4y =0截得的弦长最短,∴-m ·2-11-2=-1,∴m =-1.【答案】 -12.在平面直角坐标系xOy 中,圆C :(x +2)2+(y -m )2=3.若圆C 存在以G 为中点的弦AB ,且AB =2GO ,则实数m 的取值范围是______________.【解析】 由于圆C 存在以G 为中点的弦AB ,且AB =2GO ,所以OA ⊥OB ,如图,过点O 作圆C 的两条切线,切点分别为B ,D ,圆上要存在满足题意的点A ,只需∠BOD ≥90°,即∠COB ≥45°,连接CB ,∵CB ⊥OB ,由于C (-2,m ),|CO |=m 2+4,|CB |=3,由sin ∠COB =|CB ||CO |=3m 2+4≥sin 45°=22,解得-2≤m ≤ 2. 【答案】 [-2,2]3.过点M (1,2)的直线l 与圆C :(x -3)2+(y -4)2=25交于A ,B 两点,当∠ACB 最小时,直线l 的方程是________.【解析】 当AB 垂直于直线CM 时,∠ACB 最小(小边对小角原理,此时弦最短,故角最小),设直线l 的斜率为k ,则k ×4-23-1=-1,得k =-1,又直线l 过M (1,2),所以y -2=-(x -1),整理得x +y -3=0,故直线l 的方程为x +y -3=0.【答案】 x +y -3=0题型二 圆锥曲线的定义与方程 【题型要点】(1)圆锥曲线定义的应用①已知椭圆、双曲线上一点及焦点,首先要考虑使用椭圆、双曲线的定义求解. ②应用抛物线的定义,灵活将抛物线上的点到焦点的距离与到准线的距离相互转化使问题得解.(2)圆锥曲线方程的求法求解圆锥曲线标准方程的方法是“先定型,后计算”.①定型.就是指定类型,也就是确定圆锥曲线的焦点位置,从而设出标准方程. ②计算.即利用待定系数法求出方程中的a 2,b 2或p .另外,当焦点位置无法确定时,抛物线常设为y 2=2ax 或x 2=2ay (a ≠0),椭圆常设为mx 2+ny 2=1(m >0,n >0),双曲线常设为mx 2-ny 2=1(mn >0).【例4】已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3)B .(-1,3)C .(0,3)D .(0,3)【解析】 若双曲线的焦点在x 轴上,则⎩⎪⎨⎪⎧m 2+n >0,3m 2-n >0.又∵(m 2+n )+(3m 2-n )=4,∴m 2=1,∴⎩⎪⎨⎪⎧1+n >0,3-n >0,∴-1<n <3. 若双曲线的焦点在y 轴上,则双曲线的标准方程为y 2n -3m 2-x 2-m 2-n =1,即⎩⎪⎨⎪⎧n -3m 2>0,-m 2-n >0, 即n >3m 2且n <-m 2,此时n 不存在. 【答案】 A【例5】.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1【解析】 ∵x 2a 2-y 2b 2=1的焦距为10,∴c =5=a 2+b 2,①又双曲线的渐近线方程为y =±bax ,且P (2,1)在渐近线上,∴2ba =1,即a =2b ,②由①②得a =25,b =5,∴双曲线的方程为x 220-y 25=1,故选A.【答案】 A【例6】.如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线方程为( )A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x【解析】 如图分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设||BF =a ,则由已知得||BC =2a ,由抛物线定义,得||BD =a ,故∠BCD =30°,在Rt △ACE 中, ∵||AE =|AF |=3,||AC =3+3a ,∴2||AE =||AC ,即3+3a =6,从而得a =1,||FC =3a =3.∴p =||FG =12||FC =32,因此抛物线方程为y 2=3x ,故选C.【答案】 C题组训练二 圆锥曲线的定义与方程1.经过点(2,1),且渐近线与圆x 2+(y -2)2=1相切的双曲线的标准方程为( ) A.x 2113-y 211=1 B.x 22-y 2=1C.y 2113-x 211=1 D.y 211-x 2113=1 【解析】 设双曲线的渐近线方程为y =kx ,即kx -y =0,由题意知|-2|k 2+1=1,解得k =±3,则双曲线的焦点在x 轴上,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),则有⎩⎨⎧22a 2-12b 2=1,ba =3,解得⎩⎪⎨⎪⎧a 2=113,b 2=11,【答案】 A2.设F 1,F 2分别为椭圆x 24+y 2=1的左、右焦点,点P 在椭圆上,且|PF 1→+PF 2→|=23,则∠F 1PF 2等于( )A.π6B.π4 C.π3D.π2【解析】 设∠F 1PF 2=θ,根据余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos θ,即12=|PF 1|2+|PF 2|2=2|PF 1|·|PF 2|cos θ.由|PF 1→+PF 2→|=23,得12=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|cos θ.两式相减得4|PF 1|·|PF 2|·cos θ=0,cos θ=0,θ=π2.【答案】 D3.已知椭圆x 24+y 22=1的两个焦点是F 1,F 2,点P 在该椭圆上,若|PF 1|-|PF 2|=2,则△PF 1F 2的面积是________.【解析】 由椭圆的方程可知a =2,c =2,且|PF 1|+|PF 2|=2a =4,又|PF 1|-|PF 2|=2,所以|PF 1|=3,|PF 2|=1.又|F 1F 2|=2c =22,所以有|PF 1|2=|PF 2|2+|F 1F 2|2,即△PF 1F 2为直角三角形,且∠PF 2F 1为直角,所以S △PF 1F 2=12|F 1F 2||PF 2|=12×22×1= 2.【答案】2题型三 圆锥曲线的几何性质 【题型要点】 圆锥曲线性质的应用(1)分析圆锥曲线中a ,b ,c ,e 各量之间的关系是求解问题的关键.(2)确定椭圆和双曲线的离心率的值及范围,其关键就是确立一个关于a ,b ,c 的方程(组)或不等式(组),再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式.建立关于a ,b ,c 的方程(组)或不等式(组),要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.注: 求椭圆、双曲线的离心率,常利用方程思想及整体代入法,该思想及方法利用待定系数法求方程时经常用到.【例7】已知椭圆C :x 2a 2+y 2b 2=1,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A.63B.33C.23D.13【解析】 以线段A 1A 2为直径的圆的圆心为坐标原点(0,0),半径为r =a ,圆的方程为x 2+y 2=a 2,直线bx -ay +2ab =0与圆相切,所以圆心到直线的距离等于半径,即:d =2aba 2+b 2=a ,整理可得a 2=3b 2,即a 2=3(a 2-c 2),2a 2=3c 2,从而e 2=c 2a 2=23,椭圆的离心率e =ca =23=63.故选A. 【答案】 A【例8】.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=4x 的准线分别交于A ,B 两点,O 为坐标原点,若S △AOB =23,则双曲线的离心率e =( )A.32B.72C .2D.13【解析】 ∵抛物线y 2=4x 的准线方程为x =-1,不妨设点A 在点B 的上方,则A ⎪⎭⎫ ⎝⎛-a b ,1,B ⎪⎭⎫ ⎝⎛--a b ,1.∴|AB |=2b a . 又S △AOB =12×1×2ba =23,∴b =23a ,则c =a 2+b 2=13a ,因此双曲线的离心率e=ca=13. 【答案】 D题组训练三 圆锥曲线的几何性质1.已知双曲线M :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,||F 1F 2=2c .若双曲线M 的右支上存在点P ,使a sin ∠PF 1F 2=3csin ∠PF 2F 1,则双曲线M 的离心率的取值范围为( )A.⎪⎪⎭⎫⎝⎛+372,1 B.⎥⎦⎤⎝⎛+372,1 C.()1,2D.(]1,2【解析】 根据正弦定理可知,sin ∠PF 1F 2sin ∠PF 2F 1=|PF 2||PF 1|,所以|PF 2||PF 1|=a 3c,即|PF 2|=a3c|PF 1|, ||PF 1||-PF 2=2a ,所以⎪⎭⎫ ⎝⎛-c a 31||PF 1=2a ,解得||PF 1=6ac3c -a , 而||PF 1>a +c ,即6ac3c -a>a +c ,整理得3e 2-4e -1<0 ,解得2-73<e <2+73. 又因为离心率e >1,所以1<e <2+73,故选A.【答案】 A2.过点(0,3b )的直线l 与双曲线C :x 2a 2-y 2b =1(a >0,b >0)的一条斜率为正的渐近线平行,若双曲线C 的右支上的点到直线l 的距离恒大于b ,则双曲线C 的离心率的最大值是________.【解析】 由题意得双曲线的斜率为正的渐近线方程为y =ba x ,即bx -ay =0,则直线l的方程为y =ba x +3b ,即bx -ay +3ab =0.因为双曲线的右支上的点到直线l 的距离恒大于b ,所以渐近线y =b a x 与直线l 的距离不小于b ,即3abb 2+(-a )2≥b ,结合c 2=a 2+b 2化简得9a 2≥c 2,所以1<e =ca≤3,即双曲线的离心率的最大值为3.【答案】 3题型四 圆锥曲线的定义在解题中的应用在历届的高考中圆锥曲线都是考查的重点,无论小题还是大题,都是考查的难点,不仅考查学生的计算能力,还特别强调学生解决问题的灵活性和技巧性.而恰当地利用定义解题,许多时候能达到以简驭繁,事半功倍的效果.应用一 求周长(弦长)、面积问题我们把以焦点为顶点或过焦点的三角形称为“焦点三角形”,该类与周长、面积有关的问题与圆锥曲线的定义浑然一体,应先考虑用定义来解题.【例10】 (1)已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1 B.x 24-4y 23=1 C.x 24-y 24=1 D.x 24-y 212=1 (2)已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为双曲线C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.(3)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.【解析】 (1)由题意知双曲线的渐近线方程为y =±b2x ,圆的方程为x 2+y 2=4,联立⎩⎪⎨⎪⎧x 2+y 2=4,y =b 2x ,解得⎩⎪⎨⎪⎧x =44+b 2,y =2b 4+b 2或⎩⎪⎨⎪⎧x =-44+b 2,y =-2b4+b 2,即第一象限的交点为⎪⎪⎭⎫⎝⎛++2242,44b bb由双曲线和圆的对称性,得四边形ABCD 为矩形,其相邻两边长为84+b 2,4b4+b 2,故8×4b 4+b2=2b ,得b 2=12. 故双曲线的方程为x 24-y 212=1.故选D.(2)由双曲线C :x 29-y 216=1,知a =3,b =4,则c =a 2+b 2=5,|PQ |=4b =16. ∴F (-5,0),点A (5,0)为右焦点.又右焦点A (5,0)在线段PQ 上,知点P ,Q 在双曲线的右支上. 根据双曲线定义,|PF |-|P A |=6,|QF |-|QA |=6. 相加,得|PF |+|QF |-(|P A |+|QA |)=12, 于是|PF |+|QF |=12+|PQ |=28.从而△PQF 的周长为|PF |+|QF |+|PQ |=44.(3)根据题设条件,作如图所示的几何图形,设线段MN 的中点为P ,点F 1,F 2为椭圆的焦点,连接PF 1,PF 2.又F 1是线段AM 的中点,∴PF 1为△MAN 的中位线,|AN |=2|PF 1|.同理|BN |=2|PF 2|,又因为点P 在椭圆C :x 29+y 24=1上,由椭圆定义,|PF 1|+|PF 2|=2a=2×3=6,所以|AN |+|BN |=2(|PF 1|+|PF 2|)=12. 【答案】 (1)D (2)44 (3)12 应用二 求最值最值问题是解析几何的重点和难点,有的具有相当的难度.通过数形结合,利用图形的定义和几何性质问题可迎刃而解.【例11】 已知A (3,0),B (-2,1)是椭圆x 225+y 216=1内的点,M 是椭圆上的一动点,则|MA |+|MB |的最大值与最小值之和等于________.【解析】 易知A 为椭圆的右焦点,设左焦点为F 1,如图,由a 2=25,知|MF 1|+|MA |=10,即|MA |=10-|MF 1|,因此,|MA |+|MB |=10+|MB |-|MF 1|,连接BF 1并延长交椭圆于两点,一个点使|MB |-|MF 1|最大,最大值为2;另一个点使|MB |-|MF 1|最小,最小值为-2,于是|MA |+|MB |的最大值与最小值之和为20.【答案】 20 应用三 求离心率利用圆锥曲线的定义求其离心率是椭圆中的另一个重点.凡涉及圆锥曲线焦半径与焦点弦的问题,一般均可考虑利用定义帮助求解.【例12】 (1)已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1为左焦点,A 为右顶点, B 1,B 2分别为上、下顶点,若F 1,A ,B 1,B 2四点在同一个圆上,则此椭圆的离心率为( )A.3-12B.5-12C.22D.32(2)设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得(|PF 1|-|PF 2|)2=b 2-3ab ,则该双曲线的离心率为________.【解析】 (1)由题设圆的半径r =a +c 2,则b 2+22⎪⎭⎫ ⎝⎛+-c a a =22⎪⎭⎫⎝⎛+c a ,即a 2-c 2=ac ⇒e 2+e -1=0,解得e =-1+52,故选B. (2)由双曲线定义,得||PF 1|-|PF 2||=2a ,又因为(|PF 1|-|PF 2|)2=b 2-3ab , 所以4a 2=b 2-3ab ,即(a +b )(4a -b )=0. 由a +b ≠0,得b =4a ,从而c =a 2+b 2=17a , 因此双曲线的离心率e =ca =17.【答案】 (1)B (2)17 应用四 求动点的轨迹方程动点轨迹(或曲线方程)问题是解析几何的重点和难点,在求动点轨迹的诸多方法中,围绕圆锥曲线的定义设计的问题小巧灵活,综合性强,有的具有相当的难度.【例13】 (1)设圆C 与两圆(x +5)2+y 2=4,(x -5)2+y 2=4中的一个内切,另一个外切.则圆C 的圆心轨迹L 的方程为________.(2)已知两定点M (-1,0),N (1,0),若直线上存在点P ,使|PM |+|PN |=4,则该直线为“A 型直线”.给出下列直线,其中是“A 型直线”的是________(填序号).①y =x +1;②y =2;③y =-x +3;④y =-2x +3 【解析】 (1)设圆C 的圆心坐标为(x ,y ),半径为r . 圆(x +5)2+y 2=4的圆心为F 1(-5,0),半径为2, 圆(x -5)2+y 2=4的圆心为F 2(5,0),半径为2. 由题意得|CF 1|=r +2且|CF 2|=r -2或|CF 1|=r -2且|CF 2|=r +2 ∴||CF 1|-|CF 2||=4.∵|F 1F 2|=25>4,∴圆C 的圆心轨迹是以F 1(-5,0),F 2(5,0)为焦点的双曲线,其方程为x 24-y 2=1.(2)由|PM |+|PN |=4,结合椭圆的定义可知,点P 是以M ,N 为焦点,长轴长为4的椭圆上的点,椭圆的方程为x 24+y 23=1.则“A 型直线”和该椭圆有交点.容易验证直线①、④与椭圆有交点,故证直线①、④是“A 型直线”,直线②和椭圆没有交点,故证直线②不是“A 型直线”.对于直线③,由⎩⎪⎨⎪⎧y =-x +3,x 24+y 23=1得7x 2-24x +24=0,此方程无解,从而直线③和椭圆没有交点,故证不是“A 型直线”.【答案】 (1)x 24-y 2=1 (2)①④【专题训练】一、选择题1.设直线x -y -a =0与圆x 2+y 2=4相交于A ,B 两点,O 为坐标原点,若△AOB 为等边三角形,则实数a 的值为( )A .±3B .±6C .±3D .±9【解析】 由题意知,圆心坐标为(0,0),半径为2,则△AOB 的边长为2,所以△AOB 的高为3,即圆心到直线x -y -a =0的距离为3,所以|-a |2=3,解得a =±6,故选B.【答案】 B2.两圆x 2+y 2+2ax +a 2-4=0和x 2+y 2-4by -1+4b 2=0恰有三条公切线,若a ∈R ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为( )A .1B .3 C.19D.49【解析】 x 2+y 2+2ax +a 2-4=0,即(x +a )2+y 2=4,x 2+y 2-4by -1+4b 2=0,即x 2+(y -2b )2=1,依题意可得,两圆外切,则两圆心距离等于两圆的半径之和,则a 2+(2b )2=1+2=3,即a 2+4b 2=9,所以1a 2+1b 2=⎪⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛+94112222b a b a =19⎪⎪⎭⎫ ⎝⎛++222245a b b a ≥19⎪⎪⎭⎫ ⎝⎛⋅⋅+2222425a b b a =1,当且仅当a 2b 2=4b 2a 2即a =±2b 时取等号,故选A. 【答案】 A3.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点B 是虚轴上的一个顶点,线段BF 与双曲线C 的右支交于点A ,若BA →=2AF →,且|BF →|=4,则双曲线C 的方程为( )A.x 26-y 25=1 B.x 28-y 212=1 C.x 28-y 24=1 D.x 24-y 26=1【解析】 设A (x ,y ),∵右焦点为F (c,0),点B (0,b ),线段BF 与双曲线C 的右支交于点A ,且BA →=2AF →,∴x =2c 3,y =b 3,代入双曲线方程,得4c 29a 2-19=1,且c 2=a 2+b 2,∴b=6a 2.∵|BF →|=4,∴c 2+b 2=16,∴a =2,b =6,∴双曲线C 的方程为x 24-y 26=1.【答案】 D4.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为12,点P 为椭圆上一点,且△PF 1F 2的周长为12,那么C 的方程为( ) A.x 225+y 2=1 B.x 216+y 24=1 C.x 225+y 224=1 D.x 216+y 212=1 【解析】 由题设可得c a =12⇒a =2c ,又椭圆的定义可得2a +2c =12⇒a +c =6,即3c=6⇒c =2,a =4,所以b 2=16-4=12,则椭圆方程为x 216+y 212=1,应选答案D.【答案】 D5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,它的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若△AOB 的面积为3,则抛物线的准线方程为( )A .x =-2B .x =2C .x =1D .x =-1【解析】 因为e =ca =2,所以c =2a ,b =3a ,双曲线的渐近线方程为y =±3x ,又抛物线的准线方程为x =-p2,联立双曲线的渐近线方程和抛物线的准线方程得A⎪⎪⎭⎫ ⎝⎛-23,2p p ,B ⎪⎪⎭⎫ ⎝⎛--23,2p p ,在△AOB 中,|AB |=3p ,点O 到AB 的距离为p 2,所以12·3p ·p2=3,所以p =2,所以抛物线的准线方程为x =-1,故选D. 【答案】 D6.已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,对于左支上任意一点P 都有|PF 2|2=8a |PF 1|(a 为实半轴),则此双曲线的离心率e 的取值范围是( )A .(1,+∞)B .(2,3]C .(1,3]D .(1,2]【解析】 由P 是双曲线左支上任意一点及双曲线的定义,得|PF 2|=2a +|PF 1|,所以|PF 2|2|PF 1|=|PF 1|+4a 2|PF 1|+4a =8a ,所以|PF 1|=2a ,|PF 2|=4a ,在△PF 1F 2中,|PF 1|+|PF 2|≥|F 1F 2|,即2a +4a ≥2c ,所以e =ca≤3.又e >1,所以1<e ≤3.故选C.【答案】 C7.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 2作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且AF 2→=13F 2B →,则该双曲线的离心率为( )A.62B.52C. 3 D .2【解析】 由F 2()c ,0到渐近线y =b a x 的距离为d =bc a 2+b2=b ,即||AF →2=b ,则||BF →2=3b .在△AF 2O 中, ||OA →=a ,||OF →2=c ,tan ∠F 2OA =b a , tan ∠AOB =4b a=212⎪⎭⎫ ⎝⎛-⨯a b a b,化简可得a 2=2b 2,即c 2=a 2+b 2=32a 2,即e =c a =62,故选A.【答案】 A8.已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 为坐标原点,且有|OA →+OB →|≥33|AB →|,则k 的取值范围是( )A .(3,+∞)B .[2,22)C .[2,+∞)D .[3,22)【解析】由已知得圆心到直线的距离小于半径, 即|k |2<2,由k >0,得0<k <2 2. ① 如图,又由|OA →+OB →|≥33|AB →|,得|OM |≥33|BM |⇒∠MBO ≥π6,因|OB |=2,所以|OM |≥1,故|k |1+1≥1⇒k ≥ 2. ② 综①②得2≤k <2 2. 【答案】 B9.如图, F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 2的直线与双曲线C 交于A ,B 两点,若||AB ∶|BF 1|∶|AF 1|=3∶4∶5,则双曲线的离心率为( )A.13 B .3 C. 5D .2【解析】 设||AB =3x ,||BF 1=4x ,||AF 1=5x ,所以△ABF 1是直角三角形.因为||BF 2-||BF 1=2a ,所以||BF 2=||BF 1+2a =4x +2a ,||AF 2=x +2a .又||AF 1-||AF 2=2a ,即5x -x -2a=2a ,解得x =a ,又||BF 22+||BF 12=4c 2,即()4x +2a 2+()4x 2=4c 2,即()4a +2a 2+()4a 2=4c 2,解得c 2a2=13,即e =13,故选A.【答案】A10.在平面直角坐标系xOy 中,已知抛物线C :x 2=4y ,点P 是C 的准线l 上的动点,过点P 作C 的两条切线,切点分别为A ,B ,则△AOB 面积的最小值为( )A. 2 B .2 C .2 2D .4【解析】如图所示:抛物线C :x 2=4y ,准线l 的方程y =-1,设P (x 0,-1),A (x 1,y 1),B (x 2,y 2),由y =14x 2,求导y ′=12x ,切线P A 的方程为y -x 1=12x 1(x -x 1),即y =12x 1x -y 1,又切线P A 过点P (x 0,-1),-1=12x 1x 0-y 1,整理得:x 1x 0-2y 1+2=0,同理切线PB 的方程x 2x 0-2y 2+2=0, ∴直线AB 的方程为xx 0-2y +2=0, 直线AB 过定点F (0,1),∴△AOB 面积, S =12|OF ||x 1-x 2|=12|x 1-x 2|≥12×4=2, ∴当且仅当直线AB ⊥y 轴时取等号, ∴△AOB 面积的最小值2. 【答案】 B11.已知双曲线x 2a 2-y 2b 2=1的左、右焦点分别为F 1,F 2,过F 1作圆x 2+y 2=a 2的切线分别交双曲线的左、右两支于点B ,C ,且|BC |=|CF 2|,则双曲线的渐近线方程为( )A .y =±3xB .y =±22xC .y =±(3+1)xD .y =±(3-1)x【解析】 由题意作出示意图,易得直线BC 的斜率为a b,cos ∠CF1F 2=bc,又由双曲线的定义及|BC |=|CF 2|可得|CF 1|-|CF 2|=|BF 1|=2a ,|BF 2|-|BF 1|=2a ⇒|BF 2|=4a ,故cos ∠CF 1F 2=b c =4a 2+4c 2-16a22×2a ×2c⇒b 2-2ab -2a 2=0⇒2⎪⎭⎫⎝⎛a b -2⎪⎭⎫ ⎝⎛a b -2=0⇒b a =1+3,故双曲线的渐近线方程为y =±(3+1)x . 【答案】 C12.在平面直角坐标系xOy 中,点P 为椭圆C :y 2a 2+x 2b 2=1(a >b >0)的下顶点,M ,N 在椭圆上,若四边形OPMN 为平行四边形,α为直线ON 的倾斜角,若α∈⎥⎦⎤⎝⎛4,6ππ,则椭圆C 的离心率的取值范围为( )A.⎥⎦⎤ ⎝⎛36,0 B.⎥⎦⎤ ⎝⎛23,0 C.⎥⎦⎤⎢⎣⎡23,36 D.⎥⎦⎤⎢⎣⎡322,36 【解析】 因为OP 在y 轴上,在平行四边形OPMN 中,MN ∥OP ,所以M ,N 两点的横坐标相等,纵坐标互为相反数,即M ,N 两点关于x 轴对称,|MN |=|OP |=a ,可设M (x ,-y 0),N (x ,y 0),由k ON =k OM 可得y 0=a 2,把点N 的坐标代入椭圆方程得|x |=32b ,得N⎪⎪⎭⎫ ⎝⎛2,23a b .因为α为直线ON 的倾斜角,所以tan α=a 232b=a 3b ,因为α∈⎥⎦⎤⎝⎛4,6ππ,所以33<tan α≤1即33<a 3b≤1,33≤b a <1,13≤b 2a 2<1,又离心率e =1-b 2a 2,所以0<e ≤63.选A. 【答案】 A 二、填空题13.已知实数4,m,9构成一个等比数列,则圆锥曲线x 2m +y 2=1的焦距为________.【解析】 根据题意,实数4,m,9构成一个等比数列,则有m 2=4×9=36,则m =±6,当m =6时,圆锥曲线的方程为x 26+y 2=1,为椭圆,其中a =6,b =1,则c =6-1=5,则其焦距2c =25,当m =-6时,圆锥曲线的方程为y 2-x 26=1,为双曲线,其中a =1,b=6,则c =6+1=7,则其焦距2c =27,综合可得:圆锥曲线x 2m +y 2=1的焦距为25或27;故答案为25或27.【答案】 25或2714.椭圆C :x 2a 2+y 2=1(a >1)的离心率为32, F 1,F 2是C 的两个焦点,过F 1的直线l与C 交于A ,B 两点,则||AF 2+||BF 2的最大值为________.【解析】 因为离心率为32,所以a 2-1a =32⇒a =2,由椭圆定义得||AF 2+||BF 2+||AB =4a =8,即||AF 2+||BF 2=8-||AB .而由焦点弦性质知,当AB ⊥x 轴时,||AB 取最小值2×b 2a =1,因此||AF 2+||BF 2的最大值为8-1=7.【答案】 715.如图,F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于点B ,A .若△ABF 2为等边三角形,则双曲线的离心率为________.【解析】因为△ABF 2为等边三角形,由点A 是双曲线上的一点知,|F 1A |-|F 2A |=|F 1A |-|AB |=|F 1B |=2a ,由点B 是双曲线上一点知,|BF 2|-|BF 1|=2a ,从而|BF 2|=4a ,由∠ABF 2=60°得∠F 1BF 2=120°,在△F 1BF 2中应用余弦定理得4c 2=4a 2+16a 2-2·2a ·4a ·cos 120°,整理得c 2=7a 2,则e 2=7,从而e =7.【答案】716.已知抛物线y 2=2px 的准线方程为x =-1,焦点为F ,A ,B ,C 为该抛物线上不同的三点,|F A →|,|FB →|,|FC →|成等差数列,且点B 在x 轴下方,若F A →+FB →+FC →=0,则直线AC 的方程为________.【解析】 抛物线的准线方程是x =-p2=-1,21 ∴p =2,∴抛物线方程为y 2=4x ,F (1,0). 设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3), 又|F A →|,|FB →|,|FC →|成等差数列,∴|F A →|+|FC →|=2|FB →|,即x 1+1+x 3+1=2(x 2+1),即x 1+x 3=2x 2.∵F A →+FB →+FC →=0,∴(x 1-1+x 2-1+x 3-1,y 1+y 2+y 3)=0, ∴x 1+x 2+x 3=3,y 1+y 2+y 3=0, 则x 1+x 3=2x 2,x 2=1.由y 22=4x 2=4,则y 2=-2或2(舍),则y 1+y 3=2, 则AC 的中点坐标为⎪⎭⎫ ⎝⎛++2,22121y y x x ,即(1,1), AC 的斜率k =y 1-y 3x 1-x 3=y 1-y 3y 214-y 234=4y 1+y 3=42=2, 则直线AC 的方程为y -1=2(x -1), 即2x -y -1=0.【答案】 2x -y -1=0。
高考数学串讲三直线圆
圆锥曲线
Document number【980KGB-6898YT-769T8CB-246UT-18GG08】
直线圆圆锥曲线
O (A )
B C D
x
y 义
到定 的距离之比等于定值
的点的集合 准线配对使用) 1,(05广东)在平面直角坐标系x Oy 中,抛物线y=x 2上异于坐标原点O 的两不同动点A 、B 满足AO ⊥BO (如图4所示).
(Ⅰ)求△AOB 的重心G (即三角形三条中线的交点)的轨迹方程; (Ⅱ)△AOB 的面积是否存在最小值若存在,请求出最小值;若不存在,请说明理由.
2,(05广东)在平面直角坐标系中,已知矩形ABCD 的长为2,宽为
1,AB 、AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合(如图5所示).将矩形折叠,使A 点落在线段DC 上.(Ⅰ)若折痕所在直线的斜率为k ,试写出折痕所在直线的方程; (Ⅱ)求折痕的长的最大值.
3,(04全国I)双曲线C :22
21x y a
-=(0a >)与直线l :1x y +=相交于两个不
同
的点A ,B .(I )求双曲线C 的离心率e 的取值范围;(II )设直线l 与y 轴的交点为P ,且5
12
PA PB =,求a 的值。
4,(05重庆)已知椭圆1C 的方程为2
214
x y +=,双曲线2C 的左,右焦点分别
为1C 的左,右顶点,而2C 的左,右顶点分别是1C 的左,右焦点。
(I )求双曲线2C 的方程;
(II )若直线l :2y kx =+与椭圆1C 及双曲线2C 都恒有两个不同的交点,且l 与2C
的两个交点A 和B 满足6OA OB ⋅<(其中O 为原点),求k 的取值范围。
5,(04广东)设直线l 与椭圆22
12516x y +
=相交于A ,B 两点,l 又与双曲线221x y -=
相交于C ,D 两点,C ,D 三等分线段AB 。
求直线l 的方程。
三,简明提示
1,(I )设1122(,),(,),(,)G x y A x y B x y ,则消去1212,,,x x y y 得2223
y x =+
;
(II )
12AOB S OA OB ∆=
==1≥=,当4412x x =,即121x x =-=-时,等号成立。
2,解:设点A 落在DC 上的点E 处,则折痕所在的直线是线段AE 的垂直平分
线
(Ⅰ) AE 的方程为:1
y x k
=- ①E 点的纵坐标恒为1,代入 ① 得E 点
横坐标为k -,由:02k ≤-≤,得20k -≤≤
折痕的方程为:22A
E A E y y x x y k x ++⎛
⎫
-=- ⎪⎝
⎭
得:212k y kx +=+ (其中20k -≤≤)②
(II) 若折痕所在直线与y 轴的交点的纵坐标大于1,则折痕与线段CD 有交点 若折痕所在直线与直线2x =的交点的纵坐标小于0,则折痕与线段AB 有交点 对于折痕上的点(x ,y ) 当0x =时,令01y ≤≤,得:201k ≤≤,又
20k -≤≤,所以10k -≤≤ 即:当10k -≤≤时,折痕与线段AD 有交点 ③
当21k -≤≤-时,折痕与线段DC 有交点 ④
当2x =时,令01y ≤≤,得()2
325k ≤+≤,又20k -≤≤,所以20k -+≤≤
即:当20k -+≤时,折痕与BC 的边有交点 ⑤当22k -≤≤-+痕与线段AB 有交点 ⑥
综合③、④、⑤、⑥。
记折痕的长度为()f k
(1) 当20k -+≤时,折痕的两个端点分别在AD 、BC 上
()21f k x x =-=
(2) 当2k =-时,()f k 有最大值=
(3) 当12k -≤≤-AB 、AD 上
(4) ()21f k y y =-==2t k =,()23
2
(1)k g t k +=,则()2
1333
g t t t =+++ ((()2
2
21t -≤≤-)对()
g t 求导数,则:()()()2
22
1211'23t t g t t t t
+-=+-=
(5) 解()'0g t ≥,得1t =-(舍去)或1
2
t ≥
,而(()2
2
1212
-≤
≤-因此:()g t 的最大值(
)(()22max max{2,1}g t g g ⎡⎤⎡⎤=--⎢⎥⎣
⎦⎣⎦从而得到:(
)(()max max{2,1}f k f f =--
(6) 当21k -≤≤-时,折痕的两个端点分别在AB 、CD 上
(
)21f k y y =-= 当1k =-时,()f k
综合(1)、(2)、(3
),得,当2k =-时,()f k
有最大值。
3,(I )由22
21
1x y a x y ⎧-=⎪⎨⎪+=⎩
,得2222(1)220a x a x a -+-=
①,有0a <<且
1a ≠
,e a ==e
的取值范围为(2,)+∞; (II )设1122(,)(,),(0,1)A x y B x y P ,由512PA PB =
,得11225
(,1)(,1)12
x y x y -=-, 有12512x x =,得222172211a x a =--,2222
52121a x a =--,消去2x ,得17
13a =。
4,(I )设所求的方程为22221x y a b -=,则2222
3,1a b c a ==-=,有2213
x y -=;
(II
)由22
14x y y kx ⎧+=⎪⎨⎪=⎩有两个不同解得2
14k >
①,由2213x y y kx ⎧-=⎪⎨⎪=+⎩有两个不同解
得73k ≠且2
1k < ②,由6OA OB ⋅<得22
37631k k +<-,即21315k >或213
k < ③由①,②,③得k 的取值范围是311313(1,(,)(,)(,1)152215
--
--。
5,解:首先讨论l 不与x 轴垂直时的情况,设直线l 的方程为y=kx+b ,如图
所示,l 与椭圆、双曲线的交点为:
),(),,(),,(),,(44332211y x D y x C y x B y x A 依题意有CD AB DB AC 3,==,由
2
2
12516
y kx b x y =+⎧⎪⎨+
=⎪⎩得 222(1625)2(25400)0...(1)k x bkx b +-+-=122
501625bk
x x k ∴+=-
+
22222
(1)2(1)0...(2)1
y kx b k x bkx b x y =+⎧---+=⎨-=⎩由得 若1±=k ,则与双曲线最多只有一个交点,不合题意,故1±≠k
2
4312k bk
x x -=
+∴由4
3214213x x x x x x x x +=+⇒-=-⇒=1316
1616410),(331
)2(,164
5
)1(,0)(0001225165022341224,322,12
2±
=⇒+=--=-⇒=+±=-±====⇒=⇒-=+-⇒b b b x x x x b x b x k i b k bk k
bk
k bk 即由得由得由时当或故l 的方程为13
16
±
=y (ii)当b=0时,由(1)得2
4,32
2,111)2(,251620k
x k
x -±
=+±
=得由
25
1616251640)(332
2
3412±
=⇒-=+-=-⇒=k k k x x x x 即由 故l 的方程为x y 25
16
±
=再讨论l 与x 轴垂直的情况. 设直线l 的方程为x=c,分别代入椭圆和双曲线方程可解得,
1,23,4y y ==2143||3||||3||AB CD y y y y =⇒-=-由
c =⇒=
,l x =故的方程为 综上所述,故l 的方程为1316±=y 、x y 25
16
±=和24124125±=x 。