备战高考化学考点一遍过08化学反应中的热效应含解析
- 格式:doc
- 大小:2.64 MB
- 文档页数:39
专题13 化学反应中的热效应考点一化学反应中的热量热化学方程式[考试标准](一)化学反应中的热量从两个角度理解放热反应和吸热反应(1)从反应物和生成物的总能量相对大小的角度分析,如图所示。
(2)从反应热的量化参数——键能的角度分析(3)记忆常见的放热反应和吸热反应放热反应:①可燃物的燃烧;②酸碱中和反应;③大多数化合反应;④金属跟酸的置换反应;⑤物质的缓慢氧化等。
吸热反应:①大多数分解反应;②盐类的水解和弱电解质的电离;③Ba(OH)2·8H2O与NH4Cl 反应;④碳和水蒸气、C和CO2的反应等。
(二)热化学方程式的书写1.注明反应条件反应热与测定条件(温度、压强等)有关。
绝大多数反应是在25 ℃、101 kPa下进行的,可不注明。
2.注明物质状态常用s、l、g、aq分别表示固体、液体、气体、溶液。
3.注意符号单位ΔH应包括“+”或“-”(“+”可省略)、数字和单位(kJ·mol-1)。
4.注意守恒关系(1)原子守恒和得失电子守恒;(2)能量守恒。
5.区别于普通方程式一般不标注“↑”、“↓”以及“点燃”、“加热”等。
6.注意热化学方程式的化学计量数热化学方程式中各物质化学式前面的化学计量数仅表示该物质的物质的量,可以是整数,也可以是分数。
且化学计量数必须与ΔH相对应,如果化学计量数加倍,则ΔH也要加倍。
正误辨析正误判断,正确的打“√”,错误的打“×”(1)物质发生化学变化都伴有能量的变化(√)(2)放热反应不需要加热就能发生,吸热反应不加热不能发生(×)(3)伴有能量变化的物质变化都是化学变化(×)(4)化学反应中的能量变化不是单一的(√)(5)化学键断裂要吸收热量,也必定发生化学变化(×)(6)书写热化学方程式时,任何情况下都没必要注明反应条件(×)(7)C(石墨,s)===C(金刚石,s) ΔH >0说明石墨比金刚石稳定 (√)(8)已知:500 ℃、30 MPa 下,N 2(g)+3H 2(g)高温高压催化剂2NH 3(g) ΔH =-92.4 kJ·mol -1,将1.5 mol H 2和过量的N 2在此条件下充分反应,放出热量46.2 kJ(×)题组一 全面认识化学反应中的能量变化1.(2016·浙江乐清市芙蓉中学高一5月月考)下列反应属于吸热反应的是( ) A .稀硫酸与氢氧化钾溶液反应 B .碳与二氧化碳的反应 C .锌与稀硫酸的反应 D .生石灰变成熟石灰的反应 答案 B2.(2016·宁波市北仑中学高一期中)图为反应2H 2(g)+O 2(g)===2H 2O(g)的能量变化示意图。
考点29 化学反应的热效应1.化学反应中的能量变化(1)化学反应中的两大变化:物质变化和能量变化。
(2)化学反应中的两大守恒:质量守恒和能量守恒。
(3)化学反应中的能量转化形式:热能、光能、电能等。
通常主要表现为热量的变化。
①吸热反应:热能―→化学能。
②放热反应:化学能―→热能。
③光合作用:光能―→化学能。
④燃烧反应:化学能―→热能,化学能―→光能。
⑤原电池反应:化学能―→电能。
⑥电解池反应:电能―→化学能。
(4)化学反应的实质与特征2.焓变、反应热(1)焓(H)用于描述物质所具有能量的物理量。
(2)焓变(ΔH)ΔH=H(生成物)-H(反应物)。
单位kJ·mol-1或kJ/mol。
(3)反应热指当化学反应在一定温度下进行时,反应所放出或吸收的热量,通常用符号Q表示,单位kJ·mol-1。
(4)焓变与反应热的关系对于恒温恒压条件下进行的化学反应,如果反应中物质的能量变化全部转化为热能,则有如下关系:ΔH =Q p。
(5)规定:放热反应的ΔH为“−”,吸热反应的ΔH为“+”。
注意:(1)任何化学反应都伴随着能量的变化,不存在不发生能量变化的化学反应。
(2)反应热的单位是kJ/mol,热量的单位是kJ,不能混淆。
(3)比较反应热大小时,应带“+”、“−”一起比较。
反应热的理解1.从微观的角度说,反应热是旧化学键断裂吸收的热量与新化学键形成放出的热量的差值,图中a表示旧化学键断裂吸收的热量;b表示新化学键形成放出的热量;c表示反应热。
2.从宏观的角度说,反应热是生成物的总能量与反应物的总能量的差值,图中a表示活化能,b表示活化分子结合成生成物所释放的能量,c表示反应热。
3.吸热反应和放热反应化学反应过程中释放或吸收的能量,都可以用热量(或换算成热量)来表述。
通常把释放热量的化学反应称为放热反应,把吸收热量的化学反应称为吸热反应。
类型比较放热反应吸热反应定义放出热量的化学反应吸收热量的化学反应形成原因反应物具有的总能量大于生成物具有的总能量反应物具有的总能量小于生成物具有的总能量与化学键的关系生成物分子成键时释放的总能量大于反应物分子断键时吸收的总能量生成物分子成键时释放的总能量小于反应物分子断键时吸收的总能量表示方法ΔH<0 ΔH>0联系ΔH=ΔH(生成物)−ΔH(反应物),键能越大,物质能量越低,越稳定;键能越小,物质能量越高,越不稳定常见反应类型(1)所有的燃烧反应;(2)酸碱中和反应;(3)金属与酸或水的反应;(4)原电池反应;(5)少数分解反应(如TNT爆炸);(6)大多数化合反应;(7)电石制乙炔的反应(1)大多数分解反应;(2)少数化合反应,如C与CO2、C与水蒸气的反应;(3)Ba(OH)2·8H2O与NH4Cl的反应;(4)盐的水解、弱电解质的电离4.吸热反应与放热反应的判断化学反应过程中释放或吸收的能量,都可以用热量(或换算成热量)来表述。
化学反应中的热效应(时间:45分钟满分:100分)一、选择题(本题包括10小题,每小题6分,共60分,每小题只有一个选项符合题目要求)1.下列说法正确的是( ).A.需要加热才能发生的反应一定是吸热反应B.放热反应在常温下一定很容易发生C.吸热反应只有在加热条件下才能发生D.反应是吸热还是放热必须看反应物和生成物所具有的总能量的相对大小答案D解析反应在加热条件下进行,不一定是吸热反应,例如:Fe+S FeS属于加热条件下进行的放热反应,A错误;放热反应常温下不一定容易发生,如铝热反应,B错误;有些吸热反应不加热也能反应,如氢氧化钡晶体与氯化铵晶体常温下就能反应,C错误。
2.(2018·宁波十校第一次联考)已知:2H2(g)+O2(g)2H2O(g)ΔH1=-483.6 kJ·mol-12H2(g)+O2(g)2H2O(l) ΔH 2=-571.6 kJ·mol-1;据此判断,下列说法正确的是( )A.2H2O(l)2H2(g)+O2(g) ΔH3=+X kJ·mol-1,X小于571.6B.2 mol氢气和1 mol氧气的总能量大于2 mol液态水的能量C.1 mol H2O(l)转变成 1 mol H2O(g)放出 44.0 kJ 热量D.1 mol H2O(g)转变成 1 mol H2O(l)放出 88.0 kJ 热量答案B解析热化学反应方程式的正过程热效应的绝对值等于逆过程热效应的绝对值,即X为571.6,故A错误;氢气的燃烧是放热反应,反应物的总能量大于生成物的总能量,即2mol氢气和1mol氧气的总能量大于2mol液态水的能量,故B正确;给已知热化学方程式依次编号为①②,即①2H2(g)+O2(g)2H2O(g),②2H2(g)+O2(g)2H2O(l),由盖斯定律可知,(①-②)×得H2O(l)H2O(g)ΔH=×(571.6-483.6)kJ·mol-1=+44.0kJ·mol-1,即1molH2O(l)转变成1molH2O(g)吸收44.0kJ的热量,C错误;根据C选项的分析可知,1mol水蒸气转化成1mol液态水,放出的热量为44kJ,故D错误。
《化学反应中的热效应》讲义一、什么是化学反应中的热效应在我们的日常生活和化学研究中,经常会遇到各种各样的化学反应。
而当这些化学反应发生时,往往伴随着能量的变化,其中最常见的一种表现形式就是热的吸收或释放,这就是化学反应中的热效应。
简单来说,化学反应中的热效应指的是在化学反应过程中,反应物与生成物之间所包含的能量差异。
这种能量差异会以热能的形式表现出来,使得反应体系的温度升高或降低。
比如说,燃烧煤炭是一个常见的化学反应,它会释放出大量的热,让周围环境温度升高;而一些需要吸收热量才能进行的反应,如氯化铵溶解在水中,会让溶液的温度降低。
二、热效应的分类热效应主要分为吸热反应和放热反应两大类。
吸热反应是指在反应过程中需要从外界吸收热量的反应。
这类反应的反应物总能量低于生成物总能量,因此需要外界提供能量才能使反应进行。
例如,碳酸钙在高温下分解生成氧化钙和二氧化碳的反应就是吸热反应。
相反,放热反应则是在反应过程中向外界释放热量的反应。
在这类反应中,反应物总能量高于生成物总能量,多余的能量就以热的形式释放出来。
像氢气和氧气燃烧生成水的反应就是典型的放热反应。
三、热效应的影响因素化学反应中的热效应受到多种因素的影响,了解这些因素对于深入理解和预测热效应具有重要意义。
1、反应物和生成物的化学键能化学键的形成和断裂是化学反应的本质。
当反应物中的化学键断裂时,需要吸收能量;而生成物中的化学键形成时,会释放能量。
如果反应物中的化学键能总和小于生成物中的化学键能总和,反应就是吸热反应;反之,则为放热反应。
2、物质的状态物质的状态也会对热效应产生影响。
一般来说,同种物质在气态时具有的能量高于液态,液态高于固态。
例如,碳和氧气反应生成一氧化碳,如果碳是固态,反应的热效应就会相对较小;如果碳是气态,反应放出的热量就会更多。
3、反应条件反应条件如温度、压强等也会改变热效应。
有些反应在不同的温度或压强下,热效应的大小甚至反应的方向都可能发生变化。
化学反应中的热效应解析化学反应是一种物质转化的过程,它伴随着能量的转化与传递。
在化学反应中,热效应是描述反应放热或吸热性质的重要参数。
本文将对化学反应中的热效应进行解析,并探讨其在化学反应研究和工业应用中的重要性。
一、热效应的概念与分类热效应是指在化学反应过程中,伴随该反应产生或吸收的热量。
根据热效应的正负性质,可将其分为放热反应和吸热反应两种情况。
1. 放热反应:放热反应是指在反应过程中,系统向周围释放热量的过程。
放热反应的热效应值为负数,表示反应释放的热量大于吸收的热量。
2. 吸热反应:吸热反应是指在反应过程中,系统从周围吸收热量的过程。
吸热反应的热效应值为正数,表示反应吸收的热量大于释放的热量。
二、热效应的测定方法为了准确测定化学反应中的热效应,科学家们发展了多种测定方法。
其中,常用的方法包括恒温比热法、燃烧热法、量热器法和热电偶法等。
1. 恒温比热法:该方法通过测量物质的比热容,从而推导得到反应的热效应。
该方法适用于固态或液态反应物的热效应测定。
2. 燃烧热法:该方法是通过将反应物燃烧,然后通过测量产生的热量来确定反应的热效应。
该方法适用于燃烧反应和氧化反应的热效应测定。
3. 量热器法:该方法是利用量热器测量反应过程中释放或吸收的热量,从而确定反应的热效应。
该方法适用于气态甚至溶液反应的热效应测定。
4. 热电偶法:该方法通过将热电偶插入反应容器中,测量反应溶液的温度变化来确定热效应。
该方法适用于热量变化较小的反应。
三、热效应在化学反应研究中的应用热效应在化学反应研究中有着重要的应用价值。
通过测定反应的热效应,可以推断反应的反应速率、平衡常数以及反应机理等信息。
1. 反应速率:热效应与反应速率密切相关。
放热反应的反应速率常常较快,而吸热反应的反应速率较慢。
因此,通过测定反应的热效应可以推断反应的速率特征,从而为反应动力学研究提供依据。
2. 平衡常数:热效应与反应平衡常数之间存在一定的关系。
1.1.1化学反应中的热效应基础知识清单一、反应热焓变1.体系与环境被研究的物质系统称为体系,体系以外的其他部分称为环境或外界。
2.内能内能是体系内物质的各种能量的总和,受温度、压强、物质的聚集状态和组成的影响。
3.反应热在化学反应过程中,当反应物和生成物具有相同温度时,吸收或释放的热称为化学反应的热效应,也称反应热。
4.焓、焓变(1)焓焓是与内能有关的物理量,用符号H表示。
(2)焓变在恒压的条件下,化学反应过程中吸收或释放的热即为反应的焓变,用ΔH表示,单位常采用kJ·mol-1。
注意:(1)焓变为恒压条件下的反应热。
(2)反应热、焓变的单位均为kJ·mol-1,热量的单位为kJ。
5.焓变(ΔH)与吸热反应和放热反应的关系(1)化学反应过程中的能量变化。
一个化学反应是吸收能量还是释放能量,取决于反应物总能量和生成物总能量之间的相对大小。
若反应物的总能量小于生成物的总能量,则反应过程中吸收能量;若反应物的总能量大于生成物的总能量,则反应过程中释放能量。
(2)焓变(ΔH)与吸热反应和放热反应的关系。
ΔH=生成物总能量-反应物总能量。
①吸收热的反应称为吸热反应,ΔH>0;①放出热的反应称为放热反应,ΔH<0。
用图示理解如下:吸热反应放热反应二、热化学方程式1.概念能够表示反应热的化学方程式叫做热化学方程式。
2.意义不仅表示化学反应中的物质变化,也表明了化学反应中的能量变化。
实例:已知25 ℃、101 kPa 下,热化学方程式为2H 2(g)+O 2(g)===2H 2O(l) ΔH =-571.6 kJ·mol -1,其表示在25 ℃、101 kPa 下,2_mol_H 2(氢气)与1_mol_O 2(氧气)完全反应生成2_mol_液态水时放出的热量是571.6_kJ 。
3.热化学方程式的书写方法 (1)写出相应的化学方程式。
热化学方程式中各物质化学式前的化学计量数只表示其物质的量,可以是整数或分数。
化学反应中的热效应题组训练1.(2018·太原质检)沼气是一种清洁能源,它的主要成分是CH4,已知0.5 mol CH4完全燃烧生成CO2气体和液态H2O时,放出445 kJ热量,则下列热化学方程式中正确的是( )A.2CH4(g)+4O2(g)===2CO2(g)+4H2O(l)ΔH=+890 kJ·mol-1B.CH4(g)+2O2(g)===CO2(g)+2H2O(l)ΔH=+890 kJ·mol-1C.CH4(g)+2O2(g)===CO2(g)+2H2O(l)ΔH=-890 kJ·mol-1D.CH4(g)+O2(g)===CO2(g)+H2O(l)ΔH=-890 kJ·mol-1解析0.5 mol CH4完全燃烧生成CO2气体和液态H2O时,放出445 kJ热量,即1 mol CH4完全燃烧生成CO2气体和液态H2O时,放出890 kJ热量。
根据书写热化学方程式的规定,要注明物质的聚集状态,标出反应的热效应,只有C项正确。
答案 C2.下列热化学方程式书写正确的是(ΔH的绝对值均正确)( )A.C2H5OH(l)+3O2(g)===2CO2(g)+3H2O(g)ΔH=-1 367.0 kJ/mol(燃烧热)B.NaOH(aq)+HCl(aq)===NaCl(aq)+H2O(l)ΔH=+57.3 kJ/mol(中和热)C.S(s)+O2(g)===SO2(g)ΔH=-296.8 kJ/mol(反应热)D.2NO2===O2+2NOΔH=+116.2 kJ/mol(反应热)解析此题考查热化学方程式的书写。
A项,考查燃烧热,生成物水的状态不是稳定状态;B项,因中和反应为放热反应,故ΔH<0;D项,未注明各物质的聚集状态。
答案 C3.25 ℃、101 kPa下,碳、氢气、甲烷和葡萄糖的燃烧热依次是ΔH=-393.5 kJ/mol、ΔH=-285.8 kJ/mol、ΔH=-890.3 kJ/mol、ΔH=-2 800 kJ/mol,则下列热化学方程式正确的是( )A.C(s)+12O2(g)===CO(g)ΔH=-393.5 kJ/molB.2H2(g)+O2(g)===2H2O(l)ΔH=-571.6 kJ/molC.CH4(g)+2O2(g)===CO2(g)+2H2O(g)ΔH =-890.3 kJ/molD.12C 6H 12O 6(s)+3O 2(g)===3CO 2(g)+3H 2O(g) ΔH =-1 400 kJ/mol解析 在101 kPa 时,1 mol 物质完全燃烧生成稳定的氧化物时所放出的热量叫做该物质的燃烧热。
《化学反应中的热效应》讲义一、什么是化学反应中的热效应在我们的日常生活和工业生产中,化学反应无处不在。
而在这些化学反应进行的过程中,常常伴随着能量的变化,其中最常见的一种表现形式就是热量的吸收或释放,这就是我们所说的化学反应中的热效应。
简单来说,当化学反应发生时,如果反应体系向周围环境释放热量,使环境温度升高,这种反应就被称为放热反应;反之,如果反应需要从周围环境吸收热量,导致环境温度降低,那就是吸热反应。
比如,煤炭的燃烧是一个典型的放热反应,它为我们提供了热能用于取暖、发电等;而氯化铵与氢氧化钡的反应则是吸热反应,会使周围环境的温度下降。
二、热效应的产生原因要理解化学反应中的热效应产生的原因,我们首先要了解化学反应的本质。
化学反应的过程实际上是反应物中旧化学键的断裂和生成物中新化学键的形成。
旧化学键的断裂需要吸收能量,而新化学键的形成则会释放能量。
如果在一个化学反应中,断裂旧键吸收的能量小于形成新键释放的能量,那么多余的能量就会以热能的形式释放出来,从而表现为放热反应;反之,如果断裂旧键吸收的能量大于形成新键释放的能量,反应就需要从外界吸收能量来弥补这个差值,这就形成了吸热反应。
以氢气和氧气反应生成水为例,氢气分子中的氢氢键和氧气分子中的氧氧键断裂时需要吸收能量,而生成水分子时新形成的氢氧键会释放能量。
由于这个反应中形成新键释放的能量大于断裂旧键吸收的能量,所以它是一个放热反应。
三、热效应的测量为了准确地研究和了解化学反应中的热效应,我们需要对其进行测量。
测量化学反应热效应的常用仪器是量热计。
量热计的工作原理基于热力学第一定律,即能量守恒定律。
它通过测量反应前后体系的温度变化以及体系的热容,来计算反应所释放或吸收的热量。
在实验中,我们将反应物放入量热计中,使其发生反应,然后记录反应前后体系的温度变化。
根据温度变化和量热计的热容,我们可以使用公式 Q =C × ΔT 来计算反应的热效应,其中 Q 表示热量,C 表示量热计的热容,ΔT 表示温度的变化。
考点08 化学反应中的热效应一、焓变与反应热1.化学反应中的能量变化(1)化学反应中的两大变化:物质变化和能量变化。
(2)化学反应中的两大守恒:质量守恒和能量守恒。
(3)化学反应中的能量转化形式:热能、光能、电能等。
通常主要表现为热量的变化。
2.反应热(焓变)(1)定义:在恒温、恒压的条件下,化学反应过程中释放或吸收的能量,都可以用热量来描述,叫作反应热,又称为焓变。
(2)符号:ΔH。
(3)单位:kJ/mol。
(4)规定:放热反应的ΔH为“−”,吸热反应的ΔH为“+”。
注意:(1)任何化学反应都伴随着能量的变化,不存在不发生能量变化的化学反应。
(2)反应热的单位是kJ/mol,热量的单位是kJ,不能混淆。
(3)比较反应热大小时,应带“+”、“−”一起比较。
反应热的理解1.从微观的角度说,反应热是旧化学键断裂吸收的热量与新化学键形成放出的热量的差值,图中a表示旧化学键断裂吸收的热量;b表示新化学键形成放出的热量;c表示反应热。
2.从宏观的角度说,反应热是生成物的总能量与反应物的总能量的差值,图中a表示活化能,b表示活化分子结合成生成物所释放的能量,c表示反应热。
3.吸热反应和放热反应化学反应过程中释放或吸收的能量,都可以用热量(或换算成热量)来表述。
通常把释放热量的化学反应称为放热反应,把吸收热量的化学反应称为吸热反应。
类型比较放热反应吸热反应定义放出热量的化学反应吸收热量的化学反应形成原因反应物具有的总能量大于生成物具有的总能量反应物具有的总能量小于生成物具有的总能量与化学键的关系生成物分子成键时释放的总能量大于反应物分子断键时吸收的总能量生成物分子成键时释放的总能量小于反应物分子断键时吸收的总能量表示方法ΔH<0 ΔH>0联系ΔH=ΔH(生成物)−ΔH(反应物),键能越大,物质能量越低,越稳定;键能越小,物质能量越高,越不稳定常见反应类型(1)所有的燃烧反应;(2)酸碱中和反应;(3)金属与酸或水的反应;(4)原电池反应;(5)少数分解反应(如TNT爆炸);(6)大多数化合反应;(7)电石制乙炔的反应(1)大多数分解反应;(2)少数化合反应,如C与CO2、C 与水蒸气的反应;(3)Ba(OH)2·8H2O与NH4Cl的反应;(4)盐的水解、弱电解质的电离4.吸热反应与放热反应的判断化学反应过程中释放或吸收的能量,都可以用热量(或换算成热量)来表述。
通常把释放热量的化学反应称为放热反应,把吸收热量的化学反应称为吸热反应。
(1)理论分析判断法ΔH=生成物的总能量−反应物的总能量。
当ΔH>0时,反应吸热;当ΔH<0时,反应放热。
ΔH=反应物的键能之和−生成物的键能之和。
当生成物分子成键释放的总能量>反应物分子断键吸收的总能量时,该反应表现为放热反应,即ΔH<0;当生成物分子成键释放的总能量<反应物分子断键吸收的总能量时,该反应表现为吸热反应,即ΔH>0。
(2)规律判断法常见的吸热反应:①大多数分解反应;②以H2、CO、C为还原剂的氧化还原反应,如C+H2O(g)CO+H2;③Ba(OH)2·8H2O与NH4Cl晶体的反应。
常见的放热反应:①金属与水或酸的反应;②酸碱中和反应;③大多数化合反应;④燃烧反应;⑤铝热反应;⑥营养物质在生物体内的氧化反应。
(3)图象判断法当反应物的总能量高于生成物的总能量时,为放热反应;当反应物的总能量低于生成物的总能量时,为吸热反应。
(4)反应条件判断法反应开始需要加热,而停止加热后,反应亦可继续进行,则为放热反应;若反应需要持续不断地加热才能进行,则可能为吸热反应也可能为放热反应。
(1)反应开始时需要加热的反应可能是吸热反应也可能是放热反应。
有些吸热反应不但反应开始时需要加热,反应发生过程中仍需不断加热才能使反应继续进行下去;有的放热反应在反应开始时也需要加热,反应发生后会放出一定的热量,如果放出的热量可使反应维持下去,则反应过程中不需要再加热,否则也必须不断加热才能使反应继续进行下去。
(2)常温下就能进行的反应不一定都是放热反应,如氢氧化钡和氯化铵的反应。
(3)任何化学反应都伴随着能量变化,但能量变化不一定都表现为热量变化,还可能以声、光、电等形式表现出来。
(4)放出热量(或吸收热量)的物质变化过程不一定是放热反应(或吸热反应),如水蒸气冷凝为水放热,干冰升华吸热,它们不是放热反应或吸热反应,而是物理变化过程。
5.反应热大小的比较1.同一反应的比较(1)反应物状态不同S(g)+O2(g)SO2(g) ΔH1<0 S(s)+O2(g)SO2(g) ΔH2<0因为等量反应物S(g)比S(s)所具有的能量多,反应放出的热量就多,ΔH1<ΔH2。
(2)生成物状态不同H2(g)+12O2(g)H2O(g) ΔH1<0 H2(g)+12O2(g)H2O(l) ΔH2<0因为等量产物H2O(g)比H2O(l)所具有的能量多,反应放出的热量少,所以ΔH1>ΔH2。
(3)化学计量数不同H2(g)+12O2(g)H2O(l) ΔH1<0 2H2(g)+ O2(g)2H2O(l) ΔH2<0有2ΔH1=ΔH2且ΔH1>ΔH2。
2.不同反应的比较(1)根据反应物的本性比较等物质的量的不同物质与同一物质反应时,越活泼,放热越多。
H2(g)+Cl2(g)2HCl(g) ΔH1<0 H2(g)+Br2(g)2HBr(g) ΔH2<0因Cl2比Br2活泼,故ΔH1<ΔH2。
(2)反应程度不同C(g)+O2(g)CO2(g) ΔH1<0 C(g)+12O2(g)CO(g) ΔH2<0第一个反应程度大,放热多,因此ΔH1<ΔH2。
注意:比较反应热时,要将其数值和前面的符号“+”“−”看作一个整体进行比较,不能只比较数值的大小。
(1)若为放热反应,则有ΔH<0,反应放出的热量越多,ΔH的值越小。
(2)若为吸热反应,则有ΔH>0,反应吸收的热量越多,ΔH的值越大。
(3)对于不同的吸热、放热反应,吸热反应的ΔH大于放热反应的ΔH。
二、热化学方程式1.定义表示参加反应的物质的物质的量和反应热关系的化学方程式。
2.意义不仅表明了化学反应中的物质变化,也表明了化学反应中的能量变化。
如H 2(g)+12O2(g)H2O(g)ΔH=−241.8 kJ·mol−1表示的意义为1 mol H2(g)和12mol O2(g)反应生成1 mol H2O(g)时放出241.8 kJ的热量。
3.热化学方程式的书写与判断(1)热化学方程式的书写步骤步骤1 写方程——写出配平的化学方程式;步骤2 标状态——用“s”、“l”、“g”、“aq”标明物质的聚集状态;步骤3 标条件——标明反应物的温度和压强(101 kPa、25 ℃时可不标注);步骤4 标ΔH——在方程式后写出ΔH,并根据信息注明ΔH的“+”或“−”;步骤5 标数值——根据化学计量数计算写出ΔH的数值及单位。
ΔH的单位一般为kJ·mol−1。
(2)热化学方程式的判断①检查是否标明聚集状态。
②检查ΔH的“+”“−”是否与吸热、放热一致。
③反应热ΔH的单位是否为“kJ·mol−1”。
④检查ΔH的数值是否与反应物或生成物的物质的量一致。
⑤表示燃烧热的热化学方程式,还要注意是否生成了稳定的氧化物。
书写热化学方程式的注意事项(1)注意测定的条件:需注明反应热测定的温度和压强,如不注明条件,即指25℃,1.01×105 Pa。
(2)注意ΔH的标注:化学方程式的右边必须写上ΔH,若为吸热反应,ΔH为“+”,若为放热反应,ΔH为“−”,单位一般为kJ/mol或kJ·mol−1;根据焓的性质,若化学方程式中各物质的系数加倍,则ΔH的数值也加倍;若反应逆向进行,则ΔH改变符号,但绝对值不变。
(3)注意物质的聚集状态:反应热的数值和符号与反应物和生成物的聚集状态有关,因此必须注明物质的聚集状态(s、l、g、aq)才能完整地体现出热化学方程式的意义。
热化学方程式中不需要标出“↑”和“↓”。
(4)注意化学计量数:热化学方程式中化学计量数表示参加反应的各物质的物质的量,可为整数或分数;而普通化学方程式中化学计量数宏观上表示各物质的物质的量,微观上表示原子分子数目,只能为整数,不能为分数。
(5)注意ΔH单位的意义:热化学方程式中,ΔH的单位为kJ·mol−1。
这里的“mol−1”不表示具体物质,而是表示“1 mol反应”或“1 mol反应进度”,指“1 mol特定的反应组合”。
如“H2(g)+12O2(g)H2O(1)ΔH=−285. 8 kJ·mol−1”,“1 mol反应”指“1 mol H2(g)与12mol O2(g)生成1 mol H2O(l)”这一特定反应组合。
(6)注意可逆反应ΔH的意义:不论化学反应是否可逆,热化学方程式中的ΔH都表示反应进行到底时的能量变化。
4.化学方程式与热化学方程式的比较化学方程式热化学方程式化学计量数整数,既可以表示微粒个数,又可以表示物质的量既可以是整数也可以是分数,只表示该物质的物质的量物质状态不要求注明必须在化学式后注明正负号及单位无必须注明意义表明了化学反应中的物质变化不仅表明化学反应中的物质变化,还表明了化学反应中的能量变化遵循规律质量守恒质量守恒和能量守恒三、燃烧热和中和热1.燃烧热(1)概念:在101 kPa时,1 mol纯物质完全燃烧生成稳定的氧化物时所放出的热量,叫做该物质的燃烧热。
燃烧热的单位一般用kJ·mol−1表示。
燃烧热的限定词有恒压..(101 kPa.......时.).、可燃物的物质的量.........(1 mol)......、完全燃烧、稳定的氧化物............等,其中的“完全燃烧”,是指物质中下列元素完全转变成对应的氧化物:C→CO2(g),H→H2O(l),S→SO2(g)等。
(2)表示的意义:例如C的燃烧热为393.5 kJ·mol−1,表示在101 kPa时,1 mol C完全燃烧放出393.5 kJ的热量。
(3)书写热化学方程式:燃烧热是以1 mol物质完全燃烧所放出的热量来定义的,因此在书写它的热化学方程式时,应以燃烧1 mol物质为标准来配平其余物质的化学计量数。
例如:C8H18(l)+252O2(g)8CO2(g)+9H2O(l) ΔH=−5 518 kJ·mol−1,即C8H18的燃烧热为5 518 kJ·mol−1。
(4)燃烧热的计算:可燃物完全燃烧放出的热量的计算方法为Q放=n(可燃物)×ΔH式中:Q放为可燃物燃烧反应放出的热量;n为可燃物的物质的量;ΔH为可燃物的燃烧热。