密云18一模数学
- 格式:doc
- 大小:692.00 KB
- 文档页数:7
第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集R U =,集合{}5|≤∈=x N x A ,{}2|≥∈=x R x B ,则下图中阴影部分所表示的集合为( )(A ){0,1} (B ){1} (C ){1,2} (D ) {0,1,2} 2.已知平面向量(1,2)x =-a ,(2,1)=b ,则//=( )(A )5 (B )52 (C )5 (D )203.已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有两个不同的实根,则实数k的取值范围是( ) (A )10<≤k(B )10≤<k(C )10<<k(D )0<k4. 下列函数是以π为周期的偶函数的是( ) (A )x y sin = (B )x y 2sin = (C )x y sin = (D )x y 2sin =5. 在等差数列{}n a 中,若351024a a a ++=,则此数列的前13项的和等于( ) (A )8 (B )13 (C )16 (D )266. 设与 都是非零向量,则“0>⋅”是“向量与 夹角为锐角”的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7. 若546sin =⎪⎭⎫⎝⎛-x π,则⎪⎭⎫⎝⎛+x 26sin π的值为( ) (A )2524 (B )2524- (C )257 (D )257- 8.对于项数为n 的有穷数列{}n a ,记{}k k a a a b ,,,max 21 =,则称数列{}n b 为数列{}n a 的控制数列,如数列5,5,2,3,1的控制数列为1,3,3,5,5. 若各项都是正整数的数列{}n a的控制密云区高三年级阶段测试数学(文科)试卷 2017年9月考试时间:120分钟数列为2,2,3,3,5. 则集合⎭⎬⎫⎩⎨⎧24a a 中所有元素的和等于( ). (A )7.5 (B )8 (C )8.5 (D )9第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.实数12-与 12+的等比中项为_________.10.三个数30.40.40.4,3,log 3的大小关系为 .(用符号“<”连接) 11.等比数列{}n a 的前n 项和22n n S a a =+-,则a =________.12.函数)(x f 的定义在R 上的偶函数,并且满足)2()2(x f x f -=+,当42≤≤x 时,x x x f -=2)(,则()=9f __________.13. 在ABC ∆中, 角A ,B ,C 所对的边分别为,,a b c , 若a =,4b =,3c =,则AC 边上的高等于_________.16. 对于三次函数()()023≠+++=a d cx bx ax x f ,有如下定义:设()x f '是函数()x f y =的导函数,()x f''是()x f '的导函数。
2018年密云县高中高考模拟考试数学(文科)试卷一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.在复平面内,复数()i 1i -(i 是虚数单位)对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 2.sin 75cos30cos75sin 30︒︒-︒︒的值为( )A .1B .12CD3.已知向量,a b ,则“a b ∥”是“+=a b 0”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4. 已知等差数列{}n a 的前n 项和为n S ,且满足32132S S-=,则数列{}n a 的公差是( )A .12B .1C .2D .35.在同一坐标系中画出函数log a y x =,x y a =,y x a =+的图象,可能正确的是( )6.一个体积为则这个三棱柱的左视图的面积为( )第 5 题A. B .8 C. D .12 7.给出下列四个命题:①若集合A 、B 满足A B A = ,则A B ⊆;②给定命题,p q ,若“p q ∨”为真,则“p q ∧”为真; ③设,,a b m ∈R ,若a b <,则22am bm <;④若直线1:10l ax y ++=与直线2:10l x y -+=垂直,则1a =. 其中正确命题的个数是( )A .1B .2C .3D .481by +=与圆221x y +=相交于A ,B 两点(其中,a b 是实数),且AOB ∆是直角三角形(O 是坐标原点),则点(),P a b 与点()0,1之间距离的最大值为( ) A1 B .2 CD1B AC D第Ⅱ卷(非选择题 共110分)二、填空题(每小题5分,共30分)9、若一个底面是正三角形的棱柱的三视图及其尺寸如下图所示(单位:cm ),则该几何体的体积是 cm 3。
北京市各区2018届中考一模数学试卷精选汇编目录北京市各区2018届中考一模数学试卷精选汇编:解不等式组(含答案)北京市各区2018届中考一模数学试卷精选汇编:计算题(含答案)北京市各区2018届中考一模数学试卷精选汇编:解四边形(含答案)北京市各区2018届中考一模数学试卷精选汇编:几何证明(含答案)北京市各区2018届中考一模数学试卷精选汇编:几何综合(含答案)北京市各区2018届中考一模数学试卷精选汇编:函数计算及运用(含答案)北京市各区2018届中考一模数学试卷精选汇编:二次函数综合(含答案)北京市各区2018届中考一模数学试卷精选汇编:统计(含答案)解不等式组专题东城区18. 解不等式组4+6,23x x x x ⎧⎪+⎨⎪⎩>≥, 并写出它的所有整数解. 18. 解:4+6,23x x x x ⎧⎪⎨+⎪⎩①②>≥, 由①得,-x >2,------------------1分由②得,1x ≤, ------------------2分∴不等式组的解集为-1x 2<≤.所有整数解为-1, 0, 1. ---------------------5分西城区18.解不等式组3(2)4112x x x ++⎧⎪⎨-<⎪⎩≥,并求该不等式组的非负整数解.【解析】解①得,364x x ++≥,22x -≥,1x -≥,解②得,12x -<,3x <,∴原不等式解集为13x -<≤,∴原不等式的非负整数解为0,,2.海淀区18.解不等式组:()5331,263.2x x x x +>-⎧⎪⎨-<-⎪⎩ 18.解:() 5331, 263. 2x x x x +>-⎧⎪⎨-<-⎪⎩①② 解不等式①,得3x >-. …2分解不等式②,得2x <. ………4分所以 原不等式组的解集为32x -<<. ………5分18.解不等式组:341,51 2.2x x x x ≥-⎧⎪⎨->-⎪⎩ 18.解:解不等式①,得1x ≤, ……………………2分解不等式②,得1x >-. ……………………4分∴原不等式组的解集是11x -<≤.………5分石景山区18.解不等式组:3(1)45622x x x x +>++<⎧⎪⎨⎪⎩,. 18.解:原不等式组为3(1)45,62.2x x x x +>++<⎧⎪⎨⎪⎩ 解不等式①,得2x <-. ………………2分 解不等式②,得2x <. ………………4分 ∴原不等式组的解集为<2x -. ………………5分 朝阳区18. 解不等式组 :⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x18. 解:原不等式组为⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x解不等式①,得 5<x . ………………………………………2分解不等式②,得 21>x .………………………………………………4分 ∴ 原不等式组的解集为521<<x . …………………………………5分① ②18.解不等式组:⎩⎪⎨⎪⎧x -32<1,2(x +1)≥x -1.18.解:由(1)得,x-3<2X<5 ……………………….2′(2) 得 2x+2≥x-1x ≥-3 ……………………….4′所以不等式组的解是-3≤x <5……………………….5′ 门头沟区18. 解不等式组:1031+1.x x x ⎧-<⎪⎨⎪-⎩,≤3()18.(本小题满分5分)解不等式①得,x <3, …………………………………………2分解不等式②得,x ≥﹣2, ………………………………4分所以,不等式组的解集是﹣2≤x <3. ………………5分大兴区17.解不等式组:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 并写出它的所有整数解. 17. 解:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 由①,得21-≥x . ………………………………………………………1分 由②,得2<x . …………………………………………………………2分 ∴原不等式组的解集为221<≤-x . ………………………………………4分 它的所有整数解为0,1. …………………………………………………5分① ②18.解不等式组3(1)45,513x x x x -≥-⎧⎪-⎨->⎪⎩,并写出它的所有整数解.... 18.解:3(1)455 3 1x x x x -≥-⎧⎪⎨-->⎪⎩①② 解不等式①,得 x ≤2. ·········································································1 解不等式②,得 x >-1. ·······································································3 ∴原不等式组的解集为12x -<≤. ························································4 ∴适合原不等式组的整数解为0,1,2. ·······················································5 怀柔区18.解不等式组:()⎪⎩⎪⎨⎧<+-<-.1213,213x x x x 18.解:由①得:3x < . ………………………………………………………………………2分由②得:9x >- …………………………………………………………………………4分 原不等式组的解集为93x -<< ………………………………………………………5分 延庆区18.解不等式组:523(2)53.2x x x x -<+⎧⎪⎨+≤⎪⎩, 并写出它的所有整数解. 18.解:由①得,x <4. ……1分由②得,x ≥1 . ……3分∴ 原不等式组的解集为1≤x <4. ……4分∴ 原不等式组的所有整数解为1,2,3. ……5分18.解不等式组:()7+1,2315 1.x x x x +⎧≥-⎪⎨⎪+<-⎩18.解不等式组:()7+12315x x x x +⎧≥-⎪⎨⎪+<-⎩解:解不等式①得 x ≥3- ……………………………………………………………2分 解不等式②得 2x > ………………………………………………………………4分 不等式组的解集是 2x > …………………………………………………………5分计算题专题东城区17.计算:()2012sin 60-π-2++1-3-⎛⎫︒ ⎪⎝⎭. =217.解:原式分分西城区17114sin 3015-⎛⎫+︒- ⎪⎝⎭.【解析】原式1541)52122=+⨯-=+=. 海淀区17.计算:11()3tan 302|3-︒+. 17.解:原式=3323-⨯+- ………………4分=5- ………………5分丰台区1702cos 45(3π)|1-︒+-+-.1702cos 45(3π)|1︒+-+.=211++ ……………………4分= ……………………5分石景山区17.计算:012sin 455(3--++° 17.解:原式=2512⨯-+- ………………4分4=-- ………………5分朝阳区17. 计算:2sin30°+ .8)4()31(01+-+-π17. 解:原式 2213212+++⨯= …………………………………………………4分 225+=. ……………………………………………………………5分燕山区17.计算:4cos30°-12 + 20180 + ||1-317.4cos30°-12 + 20180 + ||1-3 =13132234-++-⨯=3 门头沟区17.计算:()201254sin 603π-⎛⎫--++-︒ ⎪⎝⎭.平谷区17.计算:(1013132sin 603-⎛⎫-+-︒ ⎪⎝⎭π.17.解:(1013132sin 603-⎛⎫-+--︒ ⎪⎝⎭π=331312-- ···········································································4 =1 ····································································································5 怀柔区17.计算:102130tan 3)3(31-︒⎪⎭⎫ ⎝⎛-+---π. 17.解:原式331132=--+ …………………………………………………4分.…………………………………………………………………5分延庆区17.计算:0113tan 301(2)()3π-︒+---.17.原式=3⨯33+3-1+1-3 ……4分=23-3 ……5分顺义区17.计算:()01312sin 452π--︒+-.17.解:()01312sin 452π--︒+-112132=-⨯+ (4)分13= ……………………………………………………………………………… 5分4=-解四边形专题东城区21.如图,已知四边形ABCD 是平行四边形,延长BA 至点E ,使AE = AB ,连接DE ,AC .(1)求证:四边形ACDE 为平行四边形;(2)连接CE 交AD 于点O . 若AC=AB =3,1cos 3B =,求线段CE 的长.21.(1) 证明:∵平行四边形ABCD ,∴=AB DC ,AB DC ∥.∵AB =AE ,∴=AE DC ,AE DC ∥.∴四边形ACDE 为平行四边形. -------------------2分(2) ∵=AB AC ,∴=AE AC .∴平行四边形ACDE 为菱形.∴AD ⊥CE .∵AD BC ∥,∴BC ⊥CE.在Rt △EBC 中,BE =6, 1cos 3BC B BE ==, ∴=2BC . 根据勾股定理,求得=42BC 分 西城区21.如图,在ABD △中,ABD ADB ∠=∠,分别以点B ,D 为圆心,AB 长为半径在BD 的右侧作弧,两弧交于点C ,分别连接BC ,DC ,AC ,记AC 与BD 的交点为O . (1)补全图形,求AOB ∠的度数并说明理由;(2)若5AB =,3cos 5ABD ∠=,求BD 的长.BDA【解析】(1)补全的图形如图所示.90AOB ∠=︒. 证明:由题意可知BC AB =,DC AB =, ∵在ABD △中,ABD ADB ∠=∠, ∴AB AD =,∴BC DC AD AB ===, ∴四边形ABCD 为菱形, ∴AC BD ⊥, ∴90AOB ∠=︒.(2)∵四边形ABCD 为菱形, ∴OB OD =.在Rt ABO △中,90AOB ∠=︒,5AB =,3cos 5ABD ∠=,∴cos 3OB AB ABD =⋅∠=, ∴26BD OB ==.ABCDO海淀区21.如图,□ABCD 的对角线,AC BD 相交于点O ,且AE ∥BD ,BE ∥AC ,OE = CD . (1)求证:四边形ABCD 是菱形;(2)若AD = 2,则当四边形ABCD 的形状是__________时,四边形AOBE 的面积取得最大值是_______.C B EOAD21.(1)证明:∵AE BD ∥,BE AC ∥,∴四边形AEBO 是平行四边形. ………………1分 ∵四边形ABCD 是平行四边形,∴DC AB =. ∵OE CD =, ∴OE AB =.∴平行四边形AEBO 是矩形. ………………2分 ∴90BOA ∠=︒. ∴AC BD ⊥.∴平行四边形ABCD 是菱形. ………………3分 (2) 正方形; ………………4分2. ………………5分丰台区21.已知:如图,菱形ABCD ,分别延长AB ,CB 到点F ,E ,使得BF = BA ,BE = BC ,连接AE ,EF ,FC ,CA .(1)求证:四边形AEFC 为矩形;(2)连接DE 交AB 于点O ,如果DE ⊥AB ,AB = 4,求DE 的长.ABCEDF21.(1)证明:∵BF =BA ,BE =BC ,∴四边形AEFC 为平行四边形. ………………………1分 ∵四边形ABCD 为菱形, ∴BA =BC .∴BE =BF .∴BA + BF = BC + BE ,即AF =EC .∴四边形AEFC 为矩形. ………………………2分(2)解:连接DB .由(1)知,AD ∥EB ,且AD =EB . ∴四边形AEBD 为平行四边形 ∵DE ⊥AB ,∴四边形AEBD 为菱形.∴AE =EB ,AB =2AG ,ED =2EG . ………………………4分 ∵矩形ABCD 中,EB =AB ,AB=4, ∴AG =2,AE =4.∴Rt △AEG 中,EG=23.∴ED=43. ………………………5分 (其他证法相应给分)石景山区21.如图,在四边形ABCD 中,90A BCD ∠=∠=°,210BC CD ==,CE AD ⊥于点E . (1)求证:AE CE =;(2)若tan 3D =,求AB 的长.BA CE D21.(1)证明:(法一)过点B 作BH ⊥CE 于H ,如图1. ∵CE ⊥AD ,∴∠BHC =∠CED =90°,190D ∠+∠=︒. ∵∠BCD =90°, ∴1290∠+∠=︒, ∴2D ∠=∠. 又BC =CD∴BHC △≌CED △. ∴BH CE =.∵BH ⊥CE ,CE ⊥AD ,∠A =90°, ∴四边形ABHE 是矩形, ∴AE BH =.∴AE CE =. ………………3分 (法二)过点C 作CH ⊥AB 交AB 的延长线于H .图略,证明略. (2)解: ∵四边形ABHE 是矩形, ∴AB HE =.∵在Rt CED △中,tan 3CE D DE==,设,3DE x CE x ==,∴10210CD x ==. ∴2x =.∴2DE =,6CE =. ………………4分 ∵2CH DE ==.∴624AB HE ==-=. ………………5分朝阳区21. 如图,在△ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C作AB 的平行线,交DE 的延长线于点F ,连接BF ,CD . (1)求证:四边形CDBF 是平行四边形; (2)若∠FDB =30°,∠ABC =45°,BC =,求DF 的长.21.(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD . ∵E 是BC 中点, ∴CE =BE .∵∠CEF =∠BED , ∴△CEF ≌△BED . ∴CF =BD .∴四边形CDBF 是平行四边形. ………………………2分(2)解:如图,作EM ⊥DB 于点M ,∵四边形CDBF 是平行四边形,BC =24,∴2221==BC BE ,DE DF 2=. 在Rt △EMB 中,2sin =∠⋅=ABC BE EM . ……………………3分在Rt △EMD 中,42==EM DE . …………………4分∴DF =8. ………………………………………………………5分燕山区23. 如图,在△ABC 错误!未找到引用源。
目录种类1:方程(组)、不等式(组)解法 (2)种类2:列方程(组)解应用问题 (4)种类3:根的鉴别式 (6)种类1:方程(组)、不等式(组)解法1 .(18海淀一模12)写出一个解为1的分式方程:.2 .(18顺义一模11)把方程x232x用配方法化为(xm)2n的形式,则m=,n=.3 .(18房山一模18)解不等式:3x12(x1),并把它的解集在数轴上表示出来.3(x1)4x5,4.(18平谷一模18)解不等式组x5x13,并写出它的全部整数解....5x23(x2),5.(18延庆一模18)解不等式组:x5并写出它的全部整数解.23x.3(x1)4x56.(18石景山一模18)解不等式组:x6.2x23(x 2)≥x 47.(18西城一模18)解不等式组x 1 ,并求该不等式组的非负整数解.12<2x3,x12(x3),2:6x 18.(18旭日毕业 18)解不等式组: ()< 9.(18旭日一模 18)解不等式组3x 2x.2x. 22(x3)4x710.(18大兴一模17)解不等式组:x2并写出它的全部整数解.24x+6>x,11.(18东城一模18)解不等式组x2≥,并写出它的全部整数解.x33x4x1,5x33x1,12.(18附体于18)解不等式组:5x113.(18海淀一模18)解不等式组:x22x2.263x.3x12x,x,18)解不等式组:x1x 1014.(18怀柔一模15.(18门头沟一模18)解不等式组:3321.≤3(x1x+1.7x x-316.(18顺义一模18)解不等式组:x+12,17(.18燕山一模18)解不等式组:2<1,3x15x1.2(x+1)≥x-1.2x2x118.(18通18)解不等式组并把它的解集表示在数轴上.州一模xx13种类2:列方程(组)解应用问题1.(18东城一模6)甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间同样,求甲每小时做中国结的个数.假如设甲每小时做x个,那么可列方程为A .3045B.345C.3045D.3045 x6xx6x6xx6x2.(18石景山一模12)12.我国古代数学名著《孙子算经》中记录了一道题,粗心是:100匹马恰巧拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马、大马各有多少匹.若设小马有x匹,大马有y匹,依题意,可列方程组为__________ __.3.(18房山一模11)中国古代数学著作《算法统宗》中有这样一段记录:“三百七十八里关,初日健步不犯难,次日脚痛减一半,六朝才获得其关.”其粗心是:有人要去某关隘,行程为378里,第一天健步行走,从次日起,因为脚痛,每日走的行程都为前一天的一半,一共走了六天才抵达目的地.若求这人第六天走的行程为多少里.设这人第六天走的行程为x里,依题意,可列方程为__________.4 .18西城一模12G20次约用5h抵达.从2018年4月10)从杭州东站到北京南站,本来最快的一趟高铁日起,全国铁路开始实行新的列车运转图,并启用了“杭京高铁中兴号”,它的运转速度比本来的G20次的运转速度快35km/h,约用抵达。
第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{0,1,2}A =,{1,}B m =.若A B B = ,则实数m 的值是( ) A .0 B .2 C .0或2 D .0或1或22.命题p :对任意x ∈R ,210x+>的否定是( )A .p ⌝:存在0x ∈R , 0210x +≤B .p ⌝:存在0x ∈R , 0210x+>C .p ⌝:不存在0x ∈R , 0210x+≤ D .p ⌝:对任意x ∈R ,210x+≤3.函数f (x )=x -cos x 在[0,+∞)内( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点 4.已知α为第二象限角,且3sin 5α=,则tan()απ+的值是( ) A .43 B .34 C .43- D .34-5.函数()22x x f x -=-是( )A .奇函数且在R 上是减函数B .奇函数且在R 上是增函数C .偶函数且在(0,)+∞上是减函数D .偶函数且在(0,)+∞上是增函数6.已知平面向量(1,2),(2,1),(4,2)a b c =-==--,则下列说法中错误..的是( ) A .//c b B .a b ⊥C .对同一平面内的任意向量d ,都存在一对实数12,k k ,使得12d k b k c =+D .向量c 与向量a b -的夹角为45︒密云区高三年级阶段测试数学(理科)试卷 2017年9月考试时间:120分钟7.若01m <<,则( )A .1132m m > B .1122(1)(1)m m ->+ C .log (1)0m m +> D .log (1)log (1)m m m m +>-8.已知函数)30(42)(2<<++=a ax ax x f ,其图象上两点的横坐标1x ,2x 满足21x x <, 且a x x -=+121,则有( )A .)()(21x f x f >B . )()(21x f x f =C .)()(21x f x f <D .)(),(21x f x f 的大小不确定第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.已知幂函数y =f (x )的图像经过点⎪⎭⎫ ⎝⎛21,4,则f (2)=_________.10.已知平面向量,a b 满足0a b=⋅ ,||2,||3a b == ,则||a b +=_________.11.设奇函数f (x )的定义域为[-5,5],当x ∈[0,5]时,函数y =f (x )的图象如图所示,则使函数值y <0的x 的取值集合为________.12.在△ABC 中,角C B A ,,所对的边分别为c b a ,,,且sin sin cos A B C =⋅,则B =_______;若6A π=,则ac=_________. 13.函数2log (1),01()2,10x x f x x x +≤≤⎧=⎨-≤<⎩的值域是_________.14.若函数()x e f x ( 2.71828e = 是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 . ①()2x f x -= ②()3x f x -= ③()3f x x = ④()22f x x =+三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(满分13分)已知函数2()2sin cos 2cos f x x x x =+. (Ⅰ)求函数()f x 的最小正周期及最小值; (Ⅱ)若α为锐角,且()2f α=,求α的值.16.(满分13分)在△ABC 中,角C B A ,,所对的边分别为c b a ,,,若cos 2A =,5=bc . (Ⅰ)求△ABC 的面积; (Ⅱ)若6=+c b ,求a 的值.17.(满分13分)设函数f (x )=ax 3-3x 2,(a ∈R ),且x =2是y =f (x )的极值点, (Ⅰ)求实数a 的值;(Ⅱ)求函数g (x )=e xf (x )的单调区间.18.(满分13分)已知0>c ,设命题p :函数x c y =为减函数,命题q :当]2,21[∈x 时,函数cx x x f 11)(>+=恒成立.如果p 或q 为真命题,p 且q 为假命题,求c 的取值范围.19.(满分14分)已知函数21()ln (0).2f x x a x a =-> (Ⅰ)若2,a =求()f x 在(1,(1))f 处的切线方程; (Ⅱ)求()f x 在区间[1,e]上的最小值;(III )若()f x 在区间(1,e)上恰有两个零点,求a 的取值范围.20(满分14分)已知函数2()43f x x x a =-++,a ∈R .(Ⅰ)若函数()f x 在()-∞∞,+上至少有一个零点,求a 的取值范围; (Ⅱ)若函数()f x 在[,2]a a +上的最大值为3,求a 的值.一、选择题:二、填空题:密云区高三年级阶段测试 数学(文科)答案 2017年9月说明:第12题第一空3分,第二空2分. 三、解答题:15. 解:(Ⅰ)2()2sin cos 2cos f x x x x =+sin 2cos 21x x =++π)14x =++.函数()f x 的最小正周期为2ππ2=,函数()f x 的最小值为1- ┅┅┅┅┅┅ 7分(Ⅱ)由()2f α=π)124α++=.所以πsin(2)4α+=. 又因为π(0,)2α∈,所以ππ5π2444α<+<, 所以π3π244α+=.所以π4α=. ┅┅┅┅┅ 13分16. 解:(Ⅰ)因为cos 2A =,所以23cos 2cos 125A A =-=. 又因为0A <<π,所以4sin 5A =. 因为5=bc , 所以2sin 21==∆A bc S ABC . ┅┅┅┅┅┅ 7分 (Ⅱ)由(Ⅰ)知3cos 5A =. 又因为5=bc ,6=+c b ,所以A bc c b a cos 2222-+=)cos 1(2)(2A bc c b +-+=20=. 所以52=a . ┅┅┅┅┅┅ 13分 17. 解:(Ⅰ)f ′(x )=3ax 2-6x =3x (ax -2).因为x =2是函数y =f (x )的极值点.所以f ′(2)=0,即6(2a -2)=0,因此a =1,经验证,当a =1时,x =2是函数f (x )的极值点,┅┅┅┅ 6分 (Ⅱ)可知g (x )=e x(x 3-3x 2),g ′(x )=e x (x 3-3x 2+3x 2-6x )=e x(x 3-6x )=x (x +6)(x -6)e x. 因为e x >0,所以y =g (x )的单调增区间是(-6,0)和(6,+∞); 单调减区间是(-∞,-6)和(0,6).┅┅ 13分 18解:由命题p 知0<c <1,由命题q 知:2≤x +1x ≤52.要使此式恒成立,则2>1c ,即c >12.又由p 或q 为真,p 且q 为假知, p 、q 必有一真一假,┅┅ 6分①p 为真,q 为假时,p 为真,0<c <1; q 为假,c ≤12,∴0<c ≤12.②p 为假,q 为真时,p 为假,c ≤0或c ≥1; q 真,c >12,∴c ≥1.综上可知,c 的取值范围为0<c ≤12或c ≥1.┅┅ 13分19.解:(I )2,a =212()2ln ,'(),2f x x x f x x x=-=- 1'(1)1,(1),2f f =-=()f x 在(1,(1))f 处的切线方程为2230.x y +-=………………………..3分(Ⅱ)由2'().a x af x x x x-=-=由0a >及定义域为(0,)+∞,令'()0,f x x ==得1,01,a ≤<≤即在(1,e)上,'()0f x >,)(x f 在[1,e]上单调递增,因此,()f x 在区间[1,e]的最小值为1(1)2f =.②若21e,1e ,a <<<<即在(上,'()0f x <,)(x f单调递减;在上,'()0f x >,)(x f 单调递增,因此()f x 在区间[1,e]上的最小值为1(1ln ).2f a a =-2e,e ,a ≥≥即在(1,e)上,'()0f x <,)(x f 在[1,e]上单调递减, 因此,()f x 在区间[1,e]上的最小值为21(e)e 2f a =-. 综上,当01a <≤时,min 1()2f x =;当21e a <<时,min 1()(1ln )2f x a a =-;当2e a ≥时,2min 1()e 2f x a =-. ……………………………….9分 (III) 由(II )可知当01a <≤或2e a ≥时,)(x f 在(1,e)上是单调递增或递减函数,不可能存在两个零点.当21e a <<时,要使()f x 在区间(1,e)上恰有两个零点,则∴即2e1e 2a a >⎧⎪⎨<⎪⎩,此时,21e e 2a <<.所以,a 的取值范围为21(e,e ).2…………………………………………………………..14分 20.解:(Ⅰ)依题意,函数()y f x =在R 上至少有一个零点即方程2()430f x x x a =-++=至少有一个实数根. 所以164(3)0a ∆=-+≥, 解得1a ≤.┅┅┅┅┅┅ 5分(Ⅱ)函数2()43f x x x a =-++图象的对称轴方程是2x =. ① 当12a +≤,即1a ≤时,2max ()333y f a a a ==-+=. 解得0a =或3.又1a ≤, 所以0a =.② 当12a +>,即1a >时,2max (2)13y f a a a =+=+-=a>,解得a=又1所以a=综上,0a=┅┅┅┅┅┅ 14分。
北京市密云区2018届初三零模 数学试卷2018.4下面各题均有四个选项,其中只有一个..选项是符合题意的. 1. 《红海行动》是一部爱国主义题材的影片,深受广大影迷喜欢.据统计3月29日,影片单日票房达到136.1万. 将1361000用科学记数法表示为A. 41.36110⨯ B. 51.36110⨯ C. 61.36110⨯ D.71.36110⨯2. 实数a b 、在数轴上对应点位置如图所示,则下列说法正确的是A. ||||ab > B. a、b 互为相反数 C. a 、b 互为倒数 D. 0a b +>3. 下列图形中是中心对称图形但不是轴对称图形的是A B C D4.右图是某个几何体的展开图,则该几何体为A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥5. 已知2210m m --=,则244().2m m m m m --- 的值为 A. -1 B. 0 C.1D. 26. 根据规定:空气污染指数为51-100,空气质量状况属于良.空气污染指数为101-150,空气质量状况属于轻度污染.空气污染指数为151-200.下面统计图反映了北京市2016年7月-12月以及2017年7月-12月月平均空气质量指数情况,根据统计图中提供的信息,下列推理不合理...的是 4题图A.2017年7-12月空气质量状况整体上好于2016年7-12月B.2016年7-12月月平均空气质量指数的平均值不到100C. 2017年7-12月中有5个月的月平均空气质量为良D.2016年12月与2017年12月月平均空气质量指数差距最大7.如图,甲、乙两人在某圆形广场上晨练.甲沿O 按逆时针方向匀速步行,乙在线段AB 上匀速往返步行,甲、乙两人同时从点A 出发按照规定的路径步行,直到有一人停止. 其间他们与点B 的距离y 与时间x (单位:分)的对应关系如图2所示.则下列说法正确的是AB图1图2A. 两人在1.25分钟时走过路程相同B. 甲比乙速度慢C. 甲比乙先到B 点D.两人走3分钟时,甲在A 点且乙在B 点.8.以下三个推断:①随着实验次数的增加,硬币正面向上的频率总在0.5附近摆动,且体现出一定的稳定性,则可估计随机抛掷一枚质地均匀的硬币正面向上的概率是0.5.②估计随机抛掷一枚质地均匀的硬币,正面向上的概率是0.5,则抛掷10次,必然有5次是正面向上.③在皮尔逊抛掷次数为24000次实验中,正面向上的频率为0.5005,则硬币正面向上的概率是0.5005. 以上说法正确的是A. ①B. ①②C. ①③D.②③二、填空题(本题共16分,每小题2分)9. 有意义,则x 的取值范围是___________.10. 多边形的每个内角都是120︒,则这个多边形的边数是_________________. 11.任写一个经过(0,1)点的二次函数的表达式___________________.12. 为测量某河的宽度,小强在河对岸选定一个目标点A ,再在他所在的这一侧选点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,然后找出AD 与BC 的交点E. 如图所示,若测得BE=90m ,EC=45m ,CD=60m ,则这条河的宽AB 等于_______________.13. 北京到上海虹桥的铁路长约为1318千米.高铁原平均速度为x 千米/时,提速后平均速度增加了80千米/时,由北京到上海虹桥的行驶时间缩短了2小时,则可列方程为________________________________________.14. 如图,在平面直角坐标系xOy 中,△DBC 可以看作是△写出一中由△AOB 得到△DBC 的过程: ___________________________________.15.在线教育2011-2017年市场规模情况统计如图所示. 根据统计图中提供信息,预估2018年在线教育市场规模为_____________亿元,你的预估理由是____________.16. 下面是“作等边三角形的内切圆”的尺规作图过程.请回答,该作图的依据是以上作图的依据是:________________________________________________.则O 为所求作的等边三、解答题(共68分,其中17~25题每题5分,26题、27题7分,28题每题8分) 17.计算:11()tan 60|12-+︒+18. 求不等式组3(1)3213x x x x -<+⎧⎪+⎨-⎪⎩≥ 的正整数解.19. 如图,ABC ∆中,D 是AB 上一点.110ADC ∠=︒,55DCB ∠=︒,35A ∠=︒.求证:AD=DB.D CBA20. 已知关于x 的一元二次方程2(1)2(1)0x m x m -++-=.其中m 为任意实数. (1)求证:方程总有两个实数根.(2)若方程的两根异号,求m 的取值范围.21. 点A(1,3),B (3,m )是函数(0)ky x x=>图象上两点. (1)求k 值和m 值.(2)点P 是直线y x =上一动点,P 点的横坐标为n. 过点P 作x轴的平行线与函数(0)ky x x=>的图象交于点D. ①当n=1时,求线段PD 的长度;②若2PD ≥,结合函数图象,直接写出n 的取值范围.22. 如图,AB=AC ,D 是BC 中点,连结AD ,过A 作AE//BC ,且AE=12BC. (1)求证:四边形ADCE 是矩形.(2)连结BE.若AB=2,AE =BE 长.EDCB A23. 如图,AB 是O 的直径,C 、D 是O 上两点,连结AD 、CD 、BC ,连结AC 并延长交O 的切线于点P ,DAC PBC ∠=∠. (1)求证:CD=BC.(2)若AD=CD ,O 的半径长.BA24. 甲乙两名同学参加射击训练班,每人打靶各20次,每次射击成绩互不影响.射击成绩按环数计分,统计结果如下:甲:7 7 8 8 9 9 10 8 6 88 10 10 9 8 9 9 8 8 7乙:610 6 9 7 7 6 8 8 997 69877899(1)根据已知条件补全表格中数据.(2①规定射击成绩8环以上(含8环)为优秀.若甲射击30次,估计达到优秀的次数为_____. ②根据统计情况可以推断甲乙两人中________的射击水平较高,理由是_____________. (至少从两个角度说明理由).25. 如图,ABC ∆中, AB=2cm ,AC=3cm ,M 是AB 中点,动点P 沿着B →A →C 的方向从B运动到C.设P 运动经过的路径长为x cm ,PM 长为y cm (当P 与M 重合时,y =0). 小华根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小华的探究过程,请补充完整:P(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:①m ≈ __________(结果保留一位小数).②当点P 在线段AC 上时,PM 的最小值约为____________(结果保留一位小数). (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:写出PM MB <时,自变量x 的取值范围___________.26. 已知抛物线:2221y x mx m =-+-.(1)求抛物线对称轴的表达式(用含m 的代数式表示). (2)该抛物线与x 轴交于A 、B 两点(A 在B 左边),与y 轴交于点C.抛物线的顶点为D.①当B 、C 两点重合时,求直线AD 的表达式. ②若A 、B 、C 点的横坐标分别为123,,x x x ,当132x x x << 时,求m 的取值范围.27. 已知Rt ABC ∆中,90ACB ∠=︒,AC=BC ,点D 是直线AB 上一点(不与A 、B 重合). 将线段CD 绕点C 逆时针旋转90︒得到线段CE.连结DE ,BE. (1)若点D 在线段AB 上,如图1.①依题意补全图形. ②判断DBE ∆的形状并证明. (2)若点D 在AB延长线上,且AC = 求AE 长.ABC备用图图1DCBA28. 已知在平面直角坐标系xOy 中的点P 和M ,给出如下的定义:若在M 上存在两点A 、B ,使得90APB ∠︒≥,则称P 为M 的关联点.(1)当O时,①点1(1,1)P ,2(2,0)P ,3(0,3)P 中,O 的关联点有_____________________. ②点P在直线23y x =-+上.若P 是O 的关联点,求点P 横坐标m 的取值范围. (2)已知(0,S T .M 的圆心在x 轴上,半径为3.线段ST 上的所有点都在M 外,且都是M 的关联点,直接写出M 圆心的横坐标n 的取值范围.备用图 备用图。
2021北京各区初三数学一模试题分类——二次函数(含代数综合题)二次函数〔含代数综合题〕〔1〕二次函数图像与性质根底1〔.18朝阳毕业9〕在平面直角坐标系xOy中,二次函数yx27x1的图象如下图,那么方程x27x10的根的情况是A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断2.〔186x+5的顶点坐标朝阳毕业13〕抛物线y=x2为.3.〔18大兴一模11〕请写出一个开口向下,并且对称轴为直线x=1的抛物线的表达式y=4.〔18东城一模2〕当函数y2的函数值y随着xx12的增大而减小时,x的取值范围是A.x>0B.x<1C.x>1D.x为任意实数〔18燕山一模12〕写出经过点〔0,0〕,〔-2,0〕的一个二次函数的解析式〔写一个即可〕HA DE6〔.18顺义一模15〕如图,在边长为6cmGB F C的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为四边形EFGH的面积最小,其最小值是s时,cm2.〔2〕二次函数综合1.〔18平谷一模26〕在平面直角坐标系 xOy中,抛物线x22bx3的对称轴为直线x=2.1〕求b的值;2〕在y轴上有一动点P〔0,m〕,过点P作垂直y轴的直线交抛物线于点A〔x1,y1〕,B〔x2,y2〕,其中x1x2.①当x2x13时,结合函数图象,求出m的值;②把直线PB下方的函数图象,沿直线PB向上翻折,图象的其余局部保持不变,得到一个新的图象W,新图象W在0≤x≤5时,4y4,求m的取值范围.2.〔18延庆一模26〕在平面直角坐标系xOy中,抛物线y=ax2-4ax+3a(a>0)与x轴交于A,B两点〔A在B的左侧〕.1〕求抛物线的对称轴及点A,B的坐标;2〕点C〔t,3〕是抛物线yax24ax3a(a0)上一点,〔点C在对称轴的右侧〕,过点C作x轴的垂线,垂足为点D.①当CD A D时,求此时抛物线的表达式;②当CD A D时,求t的取值范围.y654321-3-2 -1O12345x -1-2-3〔18石景山一模26〕在平面直角坐标系xOy中,将抛〔m0〕向右平移3个单位长度后得到抛物线G1:ymx223物线G2,点A是抛物线G2的顶点.1〕直接写出点A的坐标;2〕过点〔0,3〕且平行于x轴的直线l与抛物线G2交于B,C两点.①当BAC=90°时,求抛物线G2的表达式;②假设60°BAC120°,直接写出m 的取值范围.4.〔18房山一模26〕抛物线y=ax2+bx-3分别交x轴于点A〔-1,0〕,C〔3,0〕,交y轴于点B,抛物线的对称轴与x轴相交于点D.点P为线段OB上的点,点E为线段AB上的点,且PE⊥AB.〔1〕求抛物线的表达式;PE〔2〕计算PB的值;1〔3〕请直接写出2PB+PD的最小值为.yO x5. 〔18西城一模26〕在平面直角坐标系xOy 中,抛物线G : mx 22mxm1(m0)与y轴交于点C ,抛物线G 的顶点为D , 直线l :y mx m 1(m 0). 1〕当m1时,画出直线l 和抛物线G ,并直接写出直线l 被抛物线G 截得的线段长. 〔2〕随着m 取值的变化,判断点C ,D 是否都在直线 上并说明理由. 3〕假设直线l 被抛物线G 截得的线段长不小于2,结合函数的图象,直接写出m 的取值范围.y1xO16〔.18朝阳毕业26〕抛物线yx2bxc的对称轴为直线x=1,该抛物线与x轴的两个交点分别为A和B,与y轴的交点为C,其中A〔1,0〕.〔1〕写出B点的坐标;(2〕假设抛物线上存在一点P,使得△POC的面积是△BOC的面积的2倍,求点P的坐标;(3〕点M是线段BC上一点,过点M作x轴的垂线交抛物线于点D,求线段MD长度的最大值.( 7.〔18怀柔一模26〕在平面直角坐标系xOy 中,抛物( 线y=nx 2-4nx+4n-1(n ≠0),与x 轴交于点C ,D(点C( 在点D 的左侧),与y 轴交于点A . ( 1〕求抛物线顶点M 的坐标;( 2〕假设点A 的坐标为〔0,3〕,AB ∥x 轴,交抛物线于点B ,求点B 的坐标;( 3〕在〔2〕的条件下,将抛物线在B ,C 两点之间的局部沿y 轴翻折,翻折后的图象记为G ,假设直线y 1xm 与图象G 有一个交点,结合函数的图象,2求m 的取值范围.y5 4 3 2 1–5–4–3–2–1O 1 2 3 45 x –1 –2 –3 –4–58.〔18海淀一模26〕在平面直角坐标系xOy中,抛物线yx22axb的顶点在x轴上,P(x1,m),Q(x2,m)〔x1x2〕是此抛物线上的两点.1〕假设a1,①当mb时,求x1,x2的值;②将抛物线沿y轴平移,使得它与x轴的两个交点间的距离为4,试描述出这一变化过程;2〕假设存在实数c,使得x1c1,且x2c7成立,那么m的取值范围是.9.〔18朝阳一模26〕在平面直角坐标系xOy中,抛物线ax24ax4a0与y轴交于点A,其对称轴与x轴交于点B.1〕求点A,B的坐标;2〕假设方程ax24ax4=0a0有两个不相等的实数根,且两根都在1,3之间〔包括1,3〕,结合函数的图象,求a的取值范围.10.〔18东城一模线y ax24ax3a 26〕在平面直角坐标系xOy中,抛物2a0与x轴交于A,B两点〔点A在点B左侧〕.1〕当抛物线过原点时,求实数a的值;2〕①求抛物线的对称轴;②求抛物线的顶点的纵坐标〔用含a的代数式表示〕;〔3〕当AB≤4时,求实数a的取值范围.11.〔18丰台一模26〕在平面直角坐标系xOy中,抛物线yax24ax3a的最高点的纵坐标是2.1〕求抛物线的对称轴及抛物线的表达式;2〕将抛物线在1≤x≤4之间的局部记为图象G1,将图象G1沿直线x=1翻折,翻折后的图象记为G2,图象G1和G2组成图象G.过(0,b)作与y轴垂直的直线l,当直线l和图象G只有两个公共点时,将这两个公共点分别记为P1(x1,y1),P2(x2,y2),求b的取值范围和x1+x2的值.y6543217 6 5 4 3 2 1O 1 2 3 4 5 6x1234567812.〔18门头沟一模26〕有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x2,y2)(点B在点A的右侧);②对称轴是x 3;③该函数有最小值是-2. 1〕请根据以上信息求出二次函数表达式;2〕将该函数图象x>x2的局部图象向下翻折与原图象未翻折的局部组成图象“G〞,平行于x轴的直线y与图象“G〞相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)〔x3x4x5〕,结合画出的函数图象求x3x4x5的取值范围.O x13.〔18大兴一模26〕在平面直角坐标系xOy中,抛物线,与y轴交于点C,与x轴交于yx2(3m1)x2m2m(m0),B(x2,0),且x1x2.点A(x1,0)1〕求2x1x23的值;2〕当m=2x1x23时,将此抛物线沿对称轴向上平移n个单位,使平移后得到的抛物线顶点落在△ABC的内部〔不包括△ABC的边〕,求n的取值范围〔直接写出答案即可〕.14.〔18顺义一模26〕在平面直角坐标系xOy中,假设抛物线yx2bxc顶点A的横坐标是-1,且与y轴交于点B0,-1〕,点P为抛物线上一点.1〕求抛物线的表达式;2〕假设将抛物线yx2bxc向下平移4个单位,点P平移后的对应点为Q.如果OP=OQ,求点Q的坐标.yxO(((((((15.〔18通州一模26〕在平面直角坐标系xOy中,点C是二次函数ymx24mx4m1的图象的顶点,一次函数(x4的图象与x轴、y轴分别交于点A,B.(1〕请你求出点A,B,C的坐标;(2〕假设二次函数ymx24mx4m1与线段AB恰有一个公共点,求m的取值范围.。
密云区一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 命题“,使得”是“”成立的( )0x ∃>a x b +≤a b <A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件2. 设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为()A.(1,1+ B.(1)+∞C. (1,3)D .(3,)+∞3. 已知f (x )=,g (x )=(k ∈N *),对任意的c >1,存在实数a ,b 满足0<a <b <c ,使得f (c )=f (a )=g (b ),则k 的最大值为( )A .2B .3C .4D .54. 若将函数y=tan (ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan (ωx+)的图象重合,则ω的最小值为( )A .B .C .D .5. 由两个1,两个2,两个3组成的6位数的个数为( )A .45B .90C .120D .3606. 设数集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,如果把b ﹣a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是( )A .B .C .D .7. 已知函数f (x )=xe x ﹣mx+m ,若f (x )<0的解集为(a ,b ),其中b <0;不等式在(a ,b )中有且只有一个整数解,则实数m 的取值范围是( )A .B .C .D .8. 设关于x 的不等式:x 2﹣ax ﹣2>0解集为M ,若2∈M , ∉M ,则实数a 的取值范围是( )A .(﹣∞,)∪(1,+∞)B .(﹣∞,)C .[,1)D .(,1)9. 常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底数)得lny=g (x )lnf (x ),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (x ){g ′(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断下列各函数值中最小的是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .h ()B .h ()C .h ()D .h ()10.用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( )A .πB .2πC .4πD .π11.已知x ,y 满足约束条件,使z=ax+y 取得最小值的最优解有无数个,则a 的值为( )A .﹣3B .3C .﹣1D .112.投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312二、填空题13.已知f (x+1)=f (x ﹣1),f (x )=f (2﹣x ),方程f (x )=0在[0,1]内只有一个根x=,则f (x )=0在区间[0,2016]内根的个数 .14.已知函数是定义在R 上的奇函数,且当时,,则在R 上的解析式为 ()f x 0x ≥2()2f x x x =-()y f x =15.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是 .16.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ .17.阅读右侧程序框图,输出的结果i 的值为 . 18.定积分sintcostdt= .三、解答题19.(本小题满分12分)已知等差数列的前项和为,且,.{}n a n n S 990S =15240S =(1)求的通项公式和前项和;{}n a n a n n S (2)设是等比数列,且,求数列的前n 项和.(){}1nn n b a --257,71b b =={}n b n T【命题意图】本题考查等差数列与等比数列的通项与前项和、数列求和等基础知识,意在考查逻辑思维能力、n 运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.20.已知函数f (x )=|x ﹣2|.(1)解不等式f (x )+f (x+1)≤2(2)若a <0,求证:f (ax )﹣af (x )≥f (2a ) 21.已知圆C 的圆心在射线3x ﹣y=0(x ≥0)上,与直线x=4相切,且被直线3x+4y+10=0截得的弦长为.(Ⅰ) 求圆C 的方程;(Ⅱ) 点A (1,1),B (﹣2,0),点P 在圆C 上运动,求|PA|2+|PB|2的最大值. 22.本小题满分10分选修:坐标系与参数方程选讲44-在直角坐标系中,直线的参数方程为为参数,在极坐标系与直角坐标系取相同的长xoy 3x y ⎧=⎪⎪⎨⎪=+⎪⎩xOy 度单位,且以原点为极点,以轴正半轴为极轴中,圆的方程为.O xC ρθ=Ⅰ求圆的圆心到直线的距离;C Ⅱ设圆与直线交于点,若点的坐标为,求.C A B 、P (3,PA PB +23.设M是焦距为2的椭圆E:+=1(a>b>0)上一点,A、B是椭圆E的左、右顶点,直线MA与MB的斜率分别为k1,k2,且k1k2=﹣.(1)求椭圆E的方程;(2)已知椭圆E:+=1(a>b>0)上点N(x0,y0)处切线方程为+=1,若P是直线x=2上任意一点,从P向椭圆E作切线,切点分别为C、D,求证直线CD恒过定点,并求出该定点坐标.24.如图,四边形ABCD内接于⊙O,过点A作⊙O的切钱EP交CB 的延长线于P,己知∠PAB=25°.(1)若BC是⊙O的直径,求∠D的大小;(2)若∠DAE=25°,求证:DA2=DC•BP.密云区一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案C A B D B C C C B C 题号1112答案D A二、填空题13. 2016 .14.222,02,0x x xyx x x⎧-≥⎪=⎨--<⎪⎩15. [] .16.517. 7 .18. .三、解答题19.20.21.22.23.24.。
北京市各区2018届中考一模数学试卷精选汇编8套全集合(解析版)计算题专题东城区17.计算:()2012sin 60-π-2++1-3-⎛⎫︒ ⎪⎝⎭. =22⨯17.解:原式分分西城区17114sin 3015-⎛⎫+︒ ⎪⎝⎭.【解析】原式1541)52122=+⨯-=+-=. 海淀区17.计算:11()3tan 30|2|3-︒+. 17.解:原式=332-+ ………………4分=5- ………………5分丰台区1702cos 45(3π)|1︒+-+-.1702cos 45(3π)|1︒+-+-.=211++ ……………………4分= ……………………5分石景山区17.计算:012sin 455(3---++°17.解:原式=2512⨯-+- ………………4分4=-- ………………5分 朝阳区17. 计算:2sin30°+ .8)4()31(01+-+-π17. 解:原式 2213212+++⨯= …………………………………………………4分 225+=. ……………………………………………………………5分燕山区17.计算:4cos30°-12 + 20180 + ||1-317.4cos30°-12 + 20180 + ||1-3 =13132234-++-⨯=3 门头沟区 17.计算:()201254sin 603π-⎛⎫--++-︒ ⎪⎝⎭.平谷区17.计算:(10112sin 603-⎛⎫-+-︒ ⎪⎝⎭π.17.解:(10112sin 603-⎛⎫-+-︒ ⎪⎝⎭π=3112-- (4)=1 (5)怀柔区17.计算:12130tan3)3(31-︒⎪⎭⎫⎝⎛-+---π.17.解:原式1132=-+…………………………………………………4分.…………………………………………………………………5分延庆区17.计算:0113tan301)()3π-︒+---.17.原式=3⨯33+3-1+1-3 ……4分=23-3……5分顺义区17.计算:()01312sin452π-+-︒+-.17.解:()01312sin452π-+-︒+-112132=-⨯+………………………………………………………4分13=……………………………………………………………………………… 5分4=解不等式组专题东城区18. 解不等式组4+6,23x x x x ⎧⎪+⎨⎪⎩>≥, 并写出它的所有整数解. 18. 解:4+6,23x x x x ⎧⎪⎨+⎪⎩①②>≥, 由①得,-x >2,------------------1分由②得,1x ≤, ------------------2分∴不等式组的解集为-1x 2<≤.所有整数解为-1, 0, 1. ---------------------5分西城区18.解不等式组3(2)4112x x x ++⎧⎪⎨-<⎪⎩≥,并求该不等式组的非负整数解.【解析】解①得,364x x ++≥,22x -≥,1x -≥,解②得,12x -<,3x <,∴原不等式解集为13x -<≤,∴原不等式的非负整数解为0,,2.海淀区18.解不等式组:()5331,263.2x x x x +>-⎧⎪⎨-<-⎪⎩ 18.解:() 5331, 263. 2x x x x +>-⎧⎪⎨-<-⎪⎩①② 解不等式①,得3x >-. …2分解不等式②,得2x <. ………4分所以 原不等式组的解集为32x -<<. ………5分丰台区18.解不等式组:341,51 2.2x x x x ≥-⎧⎪⎨->-⎪⎩ 18.解:解不等式①,得1x ≤, ……………………2分解不等式②,得1x >-. ……………………4分∴原不等式组的解集是11x -<≤.………5分石景山区18.解不等式组:3(1)45622x x x x +>++<⎧⎪⎨⎪⎩,. 18.解:原不等式组为3(1)45,62.2x x x x +>++<⎧⎪⎨⎪⎩ 解不等式①,得2x <-. ………………2分 解不等式②,得2x <. ………………4分 ∴原不等式组的解集为<2x -. ………………5分 朝阳区18. 解不等式组 :⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x18. 解:原不等式组为⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x解不等式①,得 5<x . ………………………………………2分① ②解不等式②,得 21>x .………………………………………………4分 ∴ 原不等式组的解集为521<<x . …………………………………5分 燕山区18.解不等式组:⎩⎪⎨⎪⎧x -32<1,2(x +1)≥x -1.18.解:由(1)得,x-3<2X<5 ……………………….2′(2) 得 2x+2≥x-1x ≥-3 ……………………….4′所以不等式组的解是-3≤x <5 ……………………….5′ 门头沟区18. 解不等式组:1031+1.x x x ⎧-<⎪⎨⎪-⎩,≤3()18.(本小题满分5分)解不等式①得,x <3, …………………………………………2分解不等式②得,x ≥﹣2, ………………………………4分所以,不等式组的解集是﹣2≤x <3. ………………5分大兴区17.解不等式组:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 并写出它的所有整数解. 17. 解:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 ① ②由①,得21-≥x . ………………………………………………………1分 由②,得2<x . …………………………………………………………2分 ∴原不等式组的解集为221<≤-x . ………………………………………4分 它的所有整数解为0,1. …………………………………………………5分平谷区18.解不等式组3(1)45,513x x x x -≥-⎧⎪-⎨->⎪⎩,并写出它的所有整数解.... 18.解:3(1)455 3 1x x x x -≥-⎧⎪⎨-->⎪⎩①② 解不等式①,得 x ≤2. ································································································· 1 解不等式②,得 x >-1. ······························································································ 3 ∴原不等式组的解集为12x -<≤. ········································································· 4 ∴适合原不等式组的整数解为0,1,2. ········································································ 5 怀柔区18.解不等式组:()⎪⎩⎪⎨⎧<+-<-.1213,213x x x x 18.解:由①得:3x < . ………………………………………………………………………2分由②得:9x >- …………………………………………………………………………4分原不等式组的解集为93x -<< ………………………………………………………5分延庆区18.解不等式组:523(2)53.2x x x x -<+⎧⎪⎨+≤⎪⎩, 并写出它的所有整数解.18.解:由①得,x <4. ……1分由②得,x ≥1 . ……3分∴ 原不等式组的解集为1≤x <4. ……4分∴ 原不等式组的所有整数解为1,2,3. ……5分顺义区18.解不等式组:()7+1,2315 1.x x x x +⎧≥-⎪⎨⎪+<-⎩18.解不等式组:()7+12315x x x x +⎧≥-⎪⎨⎪+<-⎩解:解不等式①得 x ≥3- ……………………………………………………………2分 解不等式②得 2x > ………………………………………………………………4分 不等式组的解集是 2x > …………………………………………………………5分函数计算及运用专题东城区22. 已知函数()30y x x=>的图象与一次函数()20y ax a =-≠的图象交于点A ()3,n . (1)求实数a 的值;(2) 设一次函数()20y ax a =-≠的图象与y 轴交于点B .若点C 在y 轴上,且=2ABC AOB S S △△,求点C 的坐标.22.解:(1)∵点()3,A n 在函数()30y xx=>的图象上, ∴=1n ,点()3,1A .∵直线()20y ax a =-≠过点()3,1A ,∴ 321a -= .解得 1a =. ----------------------2分(2)易求得()0,2B -. 如图,12AOB A S OB x =⋅△,1=2ABC A S BC x ⋅△ ∵=2ABC AOB S S △△,∴=24BC OB =.∴()10,2C ,或()20,6C -. ----------------------5分西城区22.如图,在平面直角坐标系xOy 中,直线y x m =+与x 轴的交点为0()4,A -,与y 轴的交点为B ,线段AB 的中点M 在函数k y x=(0k ≠)的图象上 (1)求m ,k 的值;(2)将线段AB 向左平移n 个单位长度(0n >)得到线段CD ,A ,MB 的对应点分别为C ,N ,D .①当点D 落在函数k y x=(0x <)的图象上时,求n 的值. ②当MD MN ≤时,结合函数的图象,直接写出n 的取值范围.【解析】(1)如图.∵直线y x m =+与x 轴的交点为0()4,A -,∴4m =.∵直线y x m =+与y 轴的交点为B ,∴点B 的坐标为(0,4)B .∵线段AB 的中点为M ,∴可得点M 的坐标为(2,2)M -.∵点M 在函数k y x =(0k ≠)的图象上, ∴4k =-.(2)①由题意得点D 的坐标为(,4)D n -,∵点D 落在函数k y x=(0k ≠)的图象上, ∴44n -=-,解得1n =.②n 的取值范围是2n ≥. 海淀区22.在平面直角坐标系xOy 中,已知点P (2,2),Q (-1,2),函数m y x =.(1)当函数my x=的图象经过点P 时,求m 的值并画出直线y x m =+. (2)若P ,Q 两点中恰有一个点的坐标(x ,y )满足不等式组,m y xy x m⎧>⎪⎨⎪<+⎩(m >0),求m 的取值范围.22.解:(1)∵函数my x=的图象经过点()22P ,, ∴2=2m,即4m =. ………………1分 图象如图所示. ………………2分(2)当点()22P ,满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0)时, 解不等式组2222m m⎧>⎪⎨⎪<+⎩,得04m <<. ………………3分 当点()12Q -,满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0)时, 解不等式组221m m>-⎧⎨<-+⎩,得3m >. ………………4分∵P Q ,两点中恰有一个点的坐标满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0), ∴m 的取值范围是:03m <≤,或4m ≥. ………………5分丰台区22.在平面直角坐标系xOy 中,反比例函数2y x=的图象与一次函数y kx b =+的图象的交点分别为P (m ,2),Q (-2,n ). (1)求一次函数的表达式;(2)过点Q 作平行于y 轴的直线,点M 为此直线上的一点,当MQ = PQ 时,直接写出点M 的坐标.22.(1)解: ∵反比例函数2y x=的图象经过点(,2)P m ,Q (-2,n ), ∴1m =,1n =-.∴点P ,Q 的坐标分别为(1,2),(-2,-1). …….…….…….……2分 ∵一次函数y kx b =+的图象经过点P (1,2),Q (-2,-1),∴2,2 1.k b k b +=⎧⎨-+=-⎩ 解得1,1.k b =⎧⎨=⎩∴一次函数的表达式为1y x =+. .…….…….…….……3分 (2)点M 的坐标为(-2,-2,……………5分石景山区22.在平面直角坐标系xOy 中,函数a y x=(0x >)的图象与直线1l y x b =+:交于点(3,2)A a -.(1)求a ,b 的值;(2)直线2l y x m =-+:与x 轴交于点B ,与直线1l 交于点C ,若S △ABC 6≥,求m 的取值范围.22.解:(1)∵函数()0a y x x=>的图象过点()3,2A a -,∴23a a -=,解得3a =. ………………1分∵直线1l y x b =+:过点()3,1A ,∴2b =-. ………………2分 (2)设直线2y x =-与x 轴交于点D ,则(2,0)D , 直线y x m =-+与x 轴交于点(,0)B m , 与直线y x b =+交于点22(,)22m m C +-. ①当S △ABC =S △BCD +S △ABD =6时,如图1. 可得211(2)(242m m -+- 解得2m =-,8m =②当S △ABC =S △BCD -S △ABD =6时,如图2. 可得211(2)(2)1642m m ---⨯=, 解得8m =,2m =-(舍). 综上所述,当8m ≥或2m -≤时,S△ABC 6≥. ………………5分朝阳区22. 如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A 、B ,与反比例函数xky =的图象在第四象限交于点C ,CD ⊥x 轴于点D ,tan ∠OAB =2,OA =2,OD =1.(1)求该反比例函数的表达式;(2)点M 是这个反比例函数图象上的点,过点M作MN ⊥y 轴,垂足为点N ,连接OM 、AN ,如果 S △ABN =2S △OMN ,直接写出点M 的坐标.22. 解:(1)∵AO =2,OD =1,∴AD =AO+ OD =3. ………………………………………………1分 ∵CD ⊥x 轴于点D , ∴∠ADC =90°.在Rt △ADC 中,6tan =∠⋅=OAB AD CD ..∴C (1,-6). ……………………………………………………2分 ∴该反比例函数的表达式是xy 6-=. ……………………………………3分 (2)点M 的坐标为(-3,2)或(53,-10). ……………………5分 ∴OM 27=215 OM=715∴⊙O 的半径是715…………………………………6′ 门头沟区20. 如图,在平面直角坐标系xOy 中,一次函数y x =与反比例函数ky x=(k ≠0)的图象相交于点)A a . (1)求a 、k 的值;(2)直线x =b (0b >)分别与一次函数y x =、反比例函数ky x=的图象相交于点M 、N , 当MN =2时,画出示意图并直接写出b 的值.20.(本小题满分5分) (1)∵直线y x =与双曲线ky x=(k ≠0)相交于点)A a .∴a =1分∴A3k =………………………2分 (2)示意图正确………………………………3分 3b =或1 ………………………………5分大兴区22.如图,点A 是直线2y x =与反比例函数1m y x-=(m 为常数)的图象的交点.过点A 作x 轴的垂线,垂足为B ,且OB =2. (1)求点A 的坐标及m 的值;(2)已知点P (0,n) (0<n ≤8) ,过点P 作平行于x 轴的直线,交直线2y x =于点C 11(,)x y , 交反比例函数1m y x-=(m 为常数)的图象于点D 22(,)x y ,交垂线AB 于点E 33(,)x y , 若231x x x <<,结合函数的图象,直接写出123++x x x 的取值范围.22.(1)解:由题意得,可知点A 的横坐标是2,……………………1分由点A 在正比例函数2y x =的图象上,∴点A 的坐标为(2,4)……………………………………2分又 点A 在反比例函数1m y x-=的图象上,142m -∴=,即9m =.……………………………………… 3分(2)6<x 1+x 2+x 3≤7 ……………………………………………… 5分平谷区22.如图,在□ABCD 中,BF 平分∠ABC 交AD 于点F ,AE ⊥BF 于点O ,交BC 于点E ,连接EF .(1)求证:四边形ABEF 是菱形;(2)连接CF ,若∠ABC=60°, AB= 4,AF =2DF ,求CF 的长.22.(1)证明:∵BF平分∠ABC,∴∠ABF=∠CBF. (1)∵□ABCD,∴AD∥BC.∴∠AFB=∠CBF.∴∠ABF=∠AFB.∴AB=AF.∵AE⊥BF,∴∠ABF+∠BAO=∠CBF+∠BEO=90°.∴∠BAO=∠BEO.∴AB=BE.∴AF=BE.∴四边形ABEF是平行四边形.∴□ABEF是菱形. (2)(2)解:∵AD=BC,AF=BE,∴DF=CE.∴BE=2CE.∵AB=4,∴BE=4.∴CE=2.过点A作AG⊥BC于点G. (3)∵∠ABC=60°,AB=BE,∴△ABE是等边三角形.∴BG=GE=2.∴AF=CG=4. (4)∴四边形AGCF是平行四边形.∴□AGCF是矩形.∴AG=CF.在△ABG中,∠ABC=60°,AB=4,∴AG=∴CF=怀柔区22.在平面直角坐标系xOy 中,一次函数y=kx+b 的图象与y 轴交于点B (0,1),与反比例函数xmy =的图象交于点A(3,-2). (1)求反比例函数的表达式和一次函数表达式;(2)若点C 是y 轴上一点,且BC=BA ,直接写出点C 的坐标.y x–1–2–3–4–512345–1–2–3–4–512345O22.(1)∵双曲线x m y =过A (3,-2),将A (3,-2)代入xmy =, 解得:m= -6.∴所求反比例函数表达式为: y=x6-. …………………………………1分 ∵点A (3,-2)点B (0,1)在直线y=kx+b 上,∴-2=3k+1. …………………………………………………………………………………2分 ∴k=-1.∴所求一次函数表达式为y=-x+1. …………………………………………………………3分 (2)C(0,123+ )或 C(0,231- ). ……………………………………………………5分延庆区22.在平面直角坐标系xOy 中,直(0)y kx b k =+≠ 与x 轴交于点A ,与y 轴交于点B ,与反比例函数(0)my m x=≠的图象在第一象限交于点P (1,3),连接OP . (1)求反比例函数(0)my m x=≠的表达式; (2)若△AOB 的面积是△POB 的面积的2倍,求直线y kx b =+的表达式.22.(1)3y x……1分 (2) 如图22(1):∵∴OA =2PE =2∴A (2,0) ……2分 将A (2,0),P (1,3)代入y =kx +b 可得∴……3分 图22(1)∴直线AB 的表达式为:y =-3x +6同理:如图22(2)直线AB 的表达式为:y =x +2 ……4分 综上:直线AB 的表达式为y =-3x+6或y =x +2 ……5分图22(2)顺义区22.如图,在平面直角坐标系xOy 中,直线24y x =+与双曲线ky x=(k ≠0)相交于A (-3,a ),B 两点. (1)求k 的值;(2)过点P (0,m )作直线l ,使直线l 与y 轴垂直,直线l 与直线AB 交于点M ,与双曲线ky x=交于点N ,若点P 在点M 与点N 之间,直接写出m 的取值范围.22.解:(1)∵点A (-3,a )在直线24y x =+上,∴2(3)42a =⨯-+=-.∴点A 的坐标为(-3,-2). …………………………………… 1分 ∵点A (-3,-2)在双曲线ky x=上, ∴23k-=-, ∴6k =. …………………………………… 3分 (2)m 的取值范围是 04m <<. ……………………………… 5分二次函数综合专题 东城区26.在平面直角坐标系xOy 中,抛物线()02342≠-+-=a a ax ax y 与x 轴交于A ,B 两点(点A 在点B 左侧). (1)当抛物线过原点时,求实数a 的值; (2)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a 的代数式表示); (3)当AB ≤4时,求实数a 的取值范围.26.解:(1) ∵点()0,0O 在抛物线上,∴320a -=,23a =.--------------------2分(2)①对称轴为直线2x =;②顶点的纵坐标为 2a --.--------------------4分 (3) (i )当0a >时,依题意,-20320.a a -⎧⎨-⎩<,≥解得2.3a ≥(ii )当0a <时,依题意,-20320.a a -⎧⎨-⎩>,≤解得a <-2.综上,2a -<,或23a ≥. --------------------7分西城区26.在平面直角坐标系xOy 中,抛物线G :221(0)y mx mx m m =++-≠与y 轴交于点C ,抛物线G 的顶点为D ,直线:1(0)y mx m m =+-≠.(1)当1m =时,画出直线和抛物线G ,并直接写出直线被抛物线G 截得的线段长. (2)随着m 取值的变化,判断点C ,D 是否都在直线上并说明理由.(3)若直线被抛物线G 截得的线段长不小于2,结合函数的图象,直接写出m 的取值范围.x【解析】(1)当1m =时,抛物线G 的函数表达式为22y x x =+,直线的函数表达式为y x =,直线被抛物线Gx(2)∵抛物线G :221(0)y mx mx m m =++-≠与y 轴交于点C , ∴点C 的坐标为(0,1)C m -,∵2221(1)1y mx mx m m x =++-=+-, ∴抛物线G 的顶点D 的坐标为(1,1)--, 对于直线:1(0)y mx m m =+-≠, 当0x =时,1y m =-,当1x =-时,(1)11y m m =⨯-+-=-, ∴无论m 取何值,点C ,D 都在直线上. (3)m的取值范围是m ≤m海淀区26.在平面直角坐标系xOy 中,已知抛物线22y x ax b =-+的顶点在 x 轴上,1(,)P x m ,2(,)Q x m (12x x <)是此抛物线上的两点.(1)若1a =,①当m b =时,求1x ,2x 的值;②将抛物线沿y 轴平移,使得它与x 轴的两个交点间的距离为4,试描述出这一变化过程;(2)若存在实数c ,使得11x c ≤-,且27x c ≥+成立,则m 的取值范围是 .26.解: 抛物线22y x ax b =-+的顶点在x 轴上,24(2)04b a --∴=.2b a ∴=. ………………1分(1)1a = ,1b ∴=.∴抛物线的解析式为221y x x =-+.① 1m b == ,2211x x ∴-+=,解得10x =,22x =. ………………2分 ②依题意,设平移后的抛物线为2(1)y x k =-+.抛物线的对称轴是1x =,平移后与x 轴的两个交点之间的距离是4,∴(3,0)是平移后的抛物线与x 轴的一个交点.2(31)0k ∴-+=,即4k =-.∴变化过程是:将原抛物线向下平移4个单位. ………………4分(2)16m ≥. ………………6分丰台区26.在平面直角坐标系xOy 中,抛物线243y ax ax a =-+的最高点的纵坐标是2.(1)求抛物线的对称轴及抛物线的表达式;(2)将抛物线在1≤x ≤4之间的部分记为图象G 1,将图象G 1沿直线x = 1翻折,翻折后的图象记为G 2,图象G 1和G 2组成图象G .过(0,b )作与y 轴垂直的直线l ,当直线l 和图象G 只有两个公共点时,将这两个公共点分别记为P 1(x 1,y 1),P 2(x 2,y 2),求b 的取值范围和x 1 + x 2的值.)22a -,∴对称轴为x = 2.………………………………………1分 ∵抛物线最高点的纵坐标是2,∴a = -2. ………………………………………2分 ∴抛物线的表达式为2286y x x =-+-. ……………3分(2)由图象可知,2b = 或-6≤b <0.………………6分由图象的对称性可得:x 1+x 2=2. (7)分石景山区26.在平面直角坐标系xOy 中,将抛物线21G y mx =+:(0m ≠)向右平移位长度后得到抛物线2G ,点A 是抛物线2G 的顶点.xy(1)直接写出点A 的坐标;(2)过点0(且平行于x 轴的直线l 与抛物线2G 交于B ,C 两点. ①当=90BAC ∠°时,求抛物线2G 的表达式;②若60120BAC <∠<°°,直接写出m 的取值范围.26.解:(1)()A. ………………………………… 2分(2)①设抛物线2G的表达式为2(y m x =+如图所示,由题意可得AD ==∵=90BAC ∠°,AB AC =, ∴=45ABD ∠︒.∴BD AD ==∴点B的坐标为. ∵点B 在抛物线2G 上,可得3m =-.∴抛物线2G的表达式为23y x =-+,即223y x x =+ ………………… 5分②m <<-. ………………… 7分 朝阳区26. 在平面直角坐标系xOy 中,抛物线()2440y ax ax a =--≠与y 轴交于点A ,其对称轴与x 轴交于点B . (1)求点A ,B 的坐标;(2)若方程()244=00ax ax a --≠有两个不相等的实数根,且两根都在1,3之间(包括1,3),结合函数的图象,求a 的取值范围.26.解:(1)44)2(4422---=--=a x a ax ax y .∴A (0,-4),B (2,0).……………………………………2分 (2)当抛物线经过点(1,0)时,34-=a .…………………… 4分 当抛物线经过点(2,0)时,1-=a . …………………………6分 结合函数图象可知,a 的取值范围为134<≤-a .……………… 7分燕山区24.如图,在平面直角坐标系中,直线l : y=kx+k (k ≠0)与x 轴,y 轴分别交于A,B 两点,且点B(0,2),点P 在y 轴正半轴上运动,过点P 作平行于x 轴的直线y=t . (1)求 k 的值和点A 的坐标;(2)当t=4时,直线y=t 与直线l 交于点M ,反比例函数xny =(n ≠0)的图象经过点M ,求反比例函数的解析式; (3)当t<4时,若直线y=t 与直线l 和(2)反比例函数的图象分别交于点C ,D ,当CD 间距离大于等于2时,求t 的取值范围.24.解:(1)∵直线l :y=kx+k 经过点B(0,2),∴k=2∴ y=2x+2∴A(-1,0) ……………………….2′(2)当t=4时,将y=4代入y=2x+2得,x=1∴M(1,4)代入xny =得,n=4 ∴xy 4=……………………….2′ (3)当t=2时,B(0,2) 即C(0,2),而D(2,2)如图,CD=2,当y=t 向下运动但是不超过x 轴时,符合要求∴ t 的取值范围是 0 <t ≤2 ……………………….5′门头沟区26.有一个二次函数满足以下条件:①函数图象与x 轴的交点坐标分别为(1,0)A ,22(,)B x y (点B 在点A 的右侧); ②对称轴是3x =; ③该函数有最小值是-2.(1)请根据以上信息求出二次函数表达式;(2)将该函数图象2x x >的部分图象向下翻折与原图象未翻折的部分组成图象“G ”, 平行于x 轴的直线与图象“G ”相交于点33(,)C x y 、44(,)D x y 、55(,)E x y (345x x x <<),结合画出的函数图象求345x x x ++的取值范围.26. (本小题满分7分)(1)解:有上述信息可知该函数图象的顶点坐标为: (3,2)- 设二次函数表达式为:2(3)2y a x =-- ……………1分 ∵该图象过(1,0)A∴20(13)2a =--,解得12a =……………2分 ∴表达式为21(3)22y x =-- (2)图象正确………………………………………………………3分 由已知条件可知直线与图形“G ”要有三个交点① 当直线与x 轴重合时,有2个交点,由二次函数的轴对称性可求 346x x += ……………………………………4分 ∴34511x x x ++> ……………………………………5分 ②当直线过21(3)22y x =--的图象顶点时,有2个交点, 由翻折可以得到翻折后的函数图象为21(3)22y x =--+ ∴令21(3)222x --+=-时,解得3x =±3x =-6分∴3459x x x +++<综上所述345x x x ++11<<…………7分大兴区26. 在平面直角坐标系xOy 中,抛物线22(31)2(0)y x m x m m m =-+++>,与y 轴交于点C ,与x 轴交于点A 1(,0)x ,B 2(,0)x ,且12x x <.(1)求1223-+x x 的值;(2)当m=1223-+x x 时,将此抛物线沿对称轴向上平移n 个单位,使平移后得到的抛物线顶点落在△ABC 的内部(不包括△ABC 的边),求n 的取值范围(直接写出答案即可).26.(1) 解关于x 的一元二次方程,()223120x m x m m -+++=得x =2m +1, x =m ………………………………………………………2分 ∵m >0, x 1<x 2∴x 1=m , x 2=2m+1. …………………………………………………… 3分 2x 1-x 2+3=2m -2m -1+3=2 …………………………………………… 4分(2)符合题意的n 的取值范围是. …………………………………7分平谷区26.在平面直角坐标系xOy 中,抛物线223y x bx =-+-的对称轴为直线x =2. (1)求b 的值;(2)在y 轴上有一动点P (0,m ),过点P 作垂直y 轴的直线交抛物线于点A (x 1,y 1),B (x 2 ,y 2),其中 12x x <.①当213x x -=时,结合函数图象,求出m 的值;②把直线PB 下方的函数图象,沿直线PB 向上翻折,图象的其余部分保持不变,得到一个新的图象W ,新图象W 在0≤x ≤5 时,44y -≤≤,求m 的取值范围.26.解:(1)∵抛物线223y x bx =-+-的对称轴为直线x =2,∴b =2. ································································· 1 (2)①∴抛物线的表达式为243y x x =-+-. ∵A (x 1,y ),B (x 2 ,y ), ∴直线AB 平行x 轴.∵213x x -=, ∴AB =3. ∵对称轴为x =2, ∴AC =12. ···························································· 2 ∴当12x =时,54y m ==-. ......................... 3 ②当y =m =-4时,0≤x ≤5时,41y -≤≤; (4)当y =m =-2时,0≤x ≤5 时,24y -≤≤; ....... 5 ∴m 的取值范围为42m -≤≤-. .. (6)怀柔区26.在平面直角坐标系xOy 中,抛物线y=nx 2-4nx+4n-1(n ≠0),与x 轴交于点C ,D(点C 在点D 的左侧),与y 轴交于点A . (1)求抛物线顶点M 的坐标;(2)若点A 的坐标为(0,3),AB ∥x 轴,交抛物线于点B ,求点B 的坐标;(3)在(2)的条件下,将抛物线在B ,C 两点之间的部分沿y 轴翻折,翻折后的图象记为G ,若直线m x y +=21与图象G 有一个交点,结合函数的图象,求m 的取值范围.y x–1–2–3–4–512345–1–2–3–4–512345O26.(1)M(2,-1); ………………………………………………………………………………2分 (2)B(4,3); …………………………………………………………………………………3分 (3)∵抛物线y=mx 2-4mx+4m-1(m ≠0)与y 轴交于点A (0,3), ∴4n-1=3.∴n=1. ……………………………………………………………………………………4分 ∴抛物线的表达式为342+-=x x y .由34212++=+x x m x . 由△=0,得: 161-=m ……………………………………………………………………5分∵抛物线342+-=x x y 与x 轴的交点C 的坐标为(1,0),∴点C 关于y 轴的对称点C 1的坐标为(-1,0).把(-1,0)代入m x y +=21,得:21=m .……………………………………………6分 把(-4,3)代入m x y +=21,得:5=m .∴所求m 的取值范围是161-=m 或21<m ≤ 5. …………………………………………7分延庆区26.在平面直角坐标系xOy 中,抛物线y =ax 2-4ax +3a (a >0)与x 轴交于A ,B 两点(A 在B 的左侧).(1)求抛物线的对称轴及点A ,B 的坐标;(2)点C (t ,3)是抛物线243(0)y ax ax a a =-+>上一点,(点C 在对称轴的右侧),过点C 作x 轴的垂线,垂足为点D .①当CD AD =时,求此时抛物线的表达式; ②当CD AD >时,求t 的取值范围.26.(1)对称轴:x =2 ……1分A (1,0)或B (3,0) ……1分 (2)①如图1,∵AD =CD∴AD =3∴C 点坐标为(4,3) ……3分 将C (4,3)代入243y ax ax a =-+∴316163a a a =-+∴a =1∴抛物线的表达式为:243y x x =-+ ……4分 ②34t << ……6分 过程略顺义区26.在平面直角坐标系xOy 中,若抛物线2y x bx c =++顶点A 的横坐标是-1,且与y 轴交于点B (0,-1),点P 为抛物线上一点. (1)求抛物线的表达式;(2)若将抛物线2y x bx c =++向下平移4个单位,点P 平移后的对应点为Q .如果OP =OQ ,求点Q 的坐标.26.解:(1)依题意12-=-b,b =2, 由B (0,-1),得c=-1,∴抛物线的表达式是221=+-y x x .…………………… 2分4(2)向下平移4个单位得到225=+-y x x ,……………………… 3分 ∵OP =OQ ,∴P 、Q 两点横坐标相同,纵坐标互为相反数.∴2221250+-++-=x x x x .∴13=-x ,21=x .………………………………………………… 5分 把13=-x ,21=x 分别代入225=+-y x x .得出Q 1(-3,-2),Q 2(1,-2).………………………………… 7分统计专题东城区24.随着高铁的建设,春运期间动车组发送旅客量越来越大.相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间铁路发送旅客量情况进行了调查,具体过程如下.(I)收集、整理数据请将表格补充完整:(II)描述数据为了更直观地显示春运期间动车组发送旅客量占比的变化趋势,需要用___________(填“折线图”或“扇形图”)进行描述;(III)分析数据、做出推测预计2019年春运期间动车组发送旅客量占比约为___________,你的预估理由是_________________________________________ .24. 解:(I):56.8%;----------------------1分(II)折线图;----------------------3分(III)答案不唯一,预估的理由须支撑预估的数据,参考数据61%左右.--------5分西城区23.某同学所在年级的500名学生参加“志愿北京”活动,现有以下5个志愿服务项目:A.纪念馆志愿讲解员.B.书香社区图书整理.C.学编中国结及义卖.D.家风讲解员.E.校内志愿服务.要求:每位学生都从中选择一个项目参加,为了了解同学们选择这个5个项目的情况,该同学随机对年级中的40名同学选择的志愿服务项目进行了调查,过程如下:收集数据:设计调查问卷,收集到如下数据(志愿服务项目的编号,用字母代号表示).B,E,B,A,E,C,C,C,B,B,A,C,E,D,B,A,B,E,C,A,D,D,B,B,C,C,A,A,E,B,C,B,D,C,A,C,C,A,C,E,整理、描述诗句:划记、整理、描述样本数据,绘制统计图如下,请补全统计表和统计图.选择各志愿服务项目的人数统计表分析数据、推断结论:a:抽样的40个样本数据(志愿服务项目的编号)的众数是__________.(填A E-的字母代号)b:请你任选A E-中的两个志愿服务项目,根据该同学的样本数据估计全年级大约有多少名同学选择这两个志愿服务项目.【解析】B项有10人,D项有4人.选择各志愿服务项目的人数比例统计图中,B占25%,D占10%.分析数据、推断结论:a.抽样的40个样本数据(志愿服务项目的编号)的众数是C.b:根据学生选择情况答案分别如下(写出任意两个即可).⨯=(人).A:50020%100⨯=(人).B:50025%125C:50030%150⨯=(人).⨯=(人).D:50010%50⨯=(人).E:50015%75海淀区24.某校九年级八个班共有280名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全.收集数据调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是___________(填字母);A.抽取九年级1班、2班各20名学生的体质健康测试成绩组成样本B.抽取各班体育成绩较好的学生共40名学生的体质健康测试成绩组成样本C.从年级中按学号随机选取男女生各20名学生学生的体质健康测试成绩组成样本整理、描述数据抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下:整理数据,如下表所示:分析数据、得出结论调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比,2017年九年级部分学生体质健康成绩直方图你能从中得到的结论是_____________,你的理由是________________________________. 体育老师计划根据2018年的统计数据安排75分以下的同学参加体质加强训练项目,则全年级约有________名同学参加此项目.24.C ………………1分≤<x8085x≤<85908 10………………2分(2)去年的体质健康测试成绩比今年好.(答案不唯一,合理即可) (3)分去年较今年低分更少,高分更多,平均分更大.(答案不唯一,合理即可)………………4分(3)70.………………6分丰台区24.第二十四届冬季奥林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整.【收集数据】从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下:【整理、描述数据】按如下分数段整理、描述这两组样本数据:(说明:优秀成绩为80<x≤100,良好成绩为50<x≤80,合格成绩为30≤x≤50.)【分析数据】两组样本数据的平均分、中位数、众数如下表所示:其中a =__________.【得出结论】(1)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是________校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取一名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为________;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(至少从两个不同的角度说明推断的合理性)24.解:a=80;………………………1分(1)甲;………………………2分(2)110;………………………3分(3)答案不唯一,理由需支持推断结论.如:乙校竞赛成绩较好,因为乙校的平均分高于甲校的平均分说明平均水平高,乙校的中位数75高于甲校的中位数65,说明乙校分数不低于70分的学生比甲校多. ………………………5分石景山区24.某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.(1)按如下分数段整理、描述这两组数据:(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:24.解:(1)0,1,4,5,0,0 ………………1分(2)14,84.5,81 ………………4分(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.(写出其中一条即可)或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.………………6分(答案不唯一,理由须支撑推断结论)朝阳区24. 水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各300株分别种植在甲、乙两个大棚. 对于市场最为关注的产量和产量的稳定性,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个大棚各收集了25株秧苗上的小西红柿的个数:甲26 32 40 51 44 74 44 63 73 74 81 546241 33 54 43 34 51 63 64 73 64 54 33乙27 35 46 55 48 36 47 68 82 48 57 667527 36 57 57 66 58 61 71 38 47 46 71整理、描述数据按如下分组整理、描述这两组样本数据(说明:45个以下为产量不合格,45个及以上为产量合格,其中45~65个为产量良好,65~85个为产量优秀)分析数据两组样本数据的平均数、众数和方差如下表所示:得出结论a.估计乙大棚产量优秀的秧苗数为株;b.可以推断出大棚的小西红柿秧苗品种更适应市场需求,理由为.(至少从两个不同的角度说明推断的合理性)24. 解:整理、描述数据按如下分组整理、描述这两组样本数据分得出结论a.估计乙大棚产量优秀的秧苗数为84 株;…………………………3分b.答案不唯一,理由须支撑推断的合理性.………………………………5分燕山区22.豆豆妈妈用小米运动手环记录每天的运动情况,下面是她6天的(1)4月5日,4月6日,豆豆妈妈没来得及作记录,只有手机图片,请你根据图片数据,帮她补全表格.(2)豆豆利用自己学习的统计知识,把妈妈步行距离与燃烧脂肪情况用如下统计图表示出来,请你根据图中提供的信息写出结论: .(写一条即可)步行距离燃烧脂肪4月1日-6日妈妈步行距离与燃烧脂肪情况统计图(3)豆豆还帮妈妈分析出步行距离和卡路里消耗数近似成正比例关系,豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为__________公里.(直接写出结果,精确到个位)22. (1)填数据 ……………………….2′(2)写出一条结论: ……………………….4′(3)预估她一天步行约为__________公里.(直接写出结果,精确到个位)门头沟区24.地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态坏境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:76 88 93 65 78 94 89 68 95 5089 88 89 89 77 94 87 88 92 91初二:74 97 96 89 98 74 69 76 72 7899 72 97 76 99 74 99 73 98 74(1)根据上表中的数据,将下列表格补充完整;整理、描述数据:908090608060格)分析数据:(2)得出结论:你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).24.(1)补全表格正确:初一:8 …………………………………………1分众数:89 …………………………………………2分中位数:77 …………………………………………3分(2)可以从给出的三个统计量去判断如果利用其它标准推断要有数据说明合理才能得分………………5分大兴区24.甲乙两组各有10名学生,进行电脑汉字输入速度比赛,现将他们的成绩进行统计,过程如下:收集数据各组参赛学生每分钟输入汉字个数统计如下表:分析数据两组数据的众数、中位数、平均数、方差如下表所示:得出结论(1)若每分钟输入汉字个数136及以上为优秀,则从优秀人数的角度评价甲、乙两组哪个成绩更好一些?(2)请你根据所学的统计知识,从不同角度评价甲、乙两组学生的比赛成绩(至少从两个角度进行评价).24. (1)乙组成绩更好一些 (2)分(2)答案不唯一,评价需支撑推断结论…………………………………………………6分(说明:评价中只要说对2条即可,每条给2分,共4分)平谷区23.为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.收集数据随机抽取甲乙两所学校的20名学生的数学成绩进行分析:甲91 89 77 86 71 31 97 93 72 9181 92 85 85 95 88 88 90 44 91 乙84 93 66 69 76 87 77 82 85 8890 88 67 88 91 96 68 97 59 88 整理、描述数据分析数据两组数据的平均数、中位数、众数、方差如下表:的值是.得出结论a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为 .b可以推断出学校学生的数学水平较高,理由为 . (至少从两个不同的角度说明推断的合理性) (2)分析数据经统计,表格中m的值是88 . (3)得出结论a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为300 . (4)b 答案不唯一,理由须支撑推断结论. (7)怀柔区24.某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格.)分析数据两组样本数据的平均数、中位数、众数如下表所示:得出结论(1)如果全校有160人选择篮球项目,达到优秀的人数约为人;(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球。
北京市密云区2018届初三零模数学试卷2018.4考生须知1.本试卷共7页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用......2B..铅笔...4.考试结束,请将本试卷和答题纸一并交回.下面各题均有四个选项,其中只有一个..选项是符合题意的.1. 《红海行动》是一部爱国主义题材的影片,深受广大影迷喜欢.据统计3月29日,影片单日票房达到136.1万. 将用科学记数法表示为A. 41.36110⨯ B. 51.36110⨯ C. 61.36110⨯ D.71.36110⨯2. 实数a b、在数轴上对应点位置如图所示,则下列说法正确的是ba21-1-2-3A. ||||a b> B. a、b互为相反数 C. a、b互为倒数 D. 0a b+>3. 下列图形中是中心对称图形但不是轴对称图形的是A B C D4.右图是某个几何体的展开图,则该几何体为A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥5. 已知2210m m--=,则244().2m mmm m---的值为A. -1B. 0C.1D. 26. 根据规定:空气污染指数为51-100,空气质量状况属于良.空气污染指数为101-150,空气质量状况属于轻度污染.空气污染指数为151-200.下面统计图反映了北京市2016年7月-12月以及2017年7月-12月月平均空气质量指数情况,根据统计图中提供的信息,下列推理不合理...的是4题图A.2017年7-12月空气质量状况整体上好于2016年7-12月B.2016年7-12月月平均空气质量指数的平均值不到100C. 2017年7-12月中有5个月的月平均空气质量为良D.2016年12月与2017年12月月平均空气质量指数差距最大7.如图,甲、乙两人在某圆形广场上晨练.甲沿O e 按逆时针方向匀速步行,乙在线段AB 上匀速往返步行,甲、乙两人同时从点A 出发按照规定的路径步行,直到有一人停止. 其间他们与点B 的距离y 与时间x (单位:分)的对应关系如图2所示.则下列说法正确的是ABO图1图232.2721.251.51OxyA. 两人在1.25分钟时走过路程相同B. 甲比乙速度慢C. 甲比乙先到B 点D.两人走3分钟时,甲在A 点且乙在B 点.8. 历史上有些学者做了成千上万次掷硬币的试验,结果如下表:试验者 抛掷次数(n ) 正面向上次数(频数m ) 频率(mn) 棣莫佛 2048 1061 0.5181 蒲丰 4040 2048 0.5069 费勒 10000 4979 0.4979 皮尔逊 12000 6019 0.5016 皮尔逊24000120120.5005以下三个推断:①随着实验次数的增加,硬币正面向上的频率总在0.5附近摆动,且体现出一定的稳定性,则可估计随机抛掷一枚质地均匀的硬币正面向上的概率是0.5.②估计随机抛掷一枚质地均匀的硬币,正面向上的概率是0.5,则抛掷10次,必然有5次是正面向上.③在皮尔逊抛掷次数为24000次实验中,正面向上的频率为0.5005,则硬币正面向上的概率是0.5005. 以上说法正确的是A. ①B. ①②C. ①③D.②③xy-4-3-2-143214321-4-3-2-1D CB O A 二、填空题(本题共16分,每小题2分)9. 1x -有意义,则x 的取值范围是___________.10. 多边形的每个内角都是120︒,则这个多边形的边数是_________________. 11.任写一个经过(0,1)点的二次函数的表达式___________________.12. 为测量某河的宽度,小强在河对岸选定一个目标点A ,再在他所在的这一侧选点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,然后找出AD 与BC 的交点E. 如图所示,若测得BE=90m ,EC=45m ,CD=60m ,则这条河的宽AB 等于_______________.13. 北京到上海虹桥的铁路长约为1318千米.高铁原平均速度为x 千米/时,提速后平均速度增加了80千米/时,由北京到上海虹桥的行驶时间缩短了2小时,则可列方程为________________________________________.14. 如图,在平面直角坐标系xOy 中,△DBC 可以看作是△AOB 经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由△AOB 得到△DBC 的过程: ___________________________________.15.在线教育2011-2017年市场规模情况统计如图所示. 根据统计图中提供信息,预估2018年在线教育市场规模为_____________亿元,你的预估理由是____________.16. 下面是“作等边三角形的内切圆”的尺规作图过程.O P请回答,该作图的依据是________________________.以上作图的依据是:________________________________________________.已知:等边ABC ∆.求作:ABC ∆的内切圆. 作法:如图, (1)分别取BC 的中点D ,AC 的中点E ,连结AD 、BE ;(2)AD 与BE 交于点O ; (3)以O 为中心,OD 为半径作圆.则O e 为所求作的等边ABC ∆的内切圆.CB A OED CB A三、解答题(共68分,其中17~25题每题5分,26题、27题7分,28题每题8分) 17.计算:11()tan 60|12-+︒+-18. 求不等式组3(1)3213x x x x -<+⎧⎪+⎨-⎪⎩≥ 的正整数解.19. 如图,ABC ∆中,D 是AB 上一点.110ADC ∠=︒,55DCB ∠=︒,35A ∠=︒.求证:AD=DB.D CBA20. 已知关于x 的一元二次方程2(1)2(1)0x m x m -++-=.其中m 为任意实数. (1)求证:方程总有两个实数根.(2)若方程的两根异号,求m 的取值范围.21. 点A(1,3),B (3,m )是函数(0)ky x x=>图象上两点. (1)求k 值和m 值.(2)点P 是直线y x =上一动点,P 点的横坐标为n. 过点P 作x轴的平行线与函数(0)ky x x=>的图象交于点D. ①当n=1时,求线段PD 的长度;②若2PD ≥,结合函数图象,直接写出n 的取值范围.22. 如图,AB=AC ,D 是BC 中点,连结AD ,过A 作AE//BC ,且AE=12BC. (1)求证:四边形ADCE 是矩形. (2)连结BE.若AB=2,AE =BE 长.EDCB A23. 如图,AB 是O e 的直径,C 、D 是O e 上两点,连结AD 、CD 、BC ,连结AC 并延长交O e 的切线于点P ,DAC PBC ∠=∠. (1)求证:CD=BC.(2)若AD=CD ,O e 的半径长.BA24. 甲乙两名同学参加射击训练班,每人打靶各20次,每次射击成绩互不影响.射击成绩按环数计分,统计结果如下:甲:7 7 8 8 9 9 10 8 6 88 10 10 9 8 9 9 8 8 7乙:610 6 9 7 7 6 8 8 997 69877899(1)根据已知条件补全表格中数据.(2①规定射击成绩8环以上(含8环)为优秀.若甲射击30次,估计达到优秀的次数为_____. ②根据统计情况可以推断甲乙两人中________的射击水平较高,理由是_____________. (至少从两个角度说明理由).25. 如图,ABC ∆中, AB=2cm ,AC=3cm ,M 是AB 中点,动点P 沿着B →A →C 的方向从B运动到C.设P 运动经过的路径长为x cm ,PM 长为y cm (当P 与M 重合时,y =0). 小华根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小华的探究过程,请补充完整:PM C(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:x /cm 0 0.5 1 1.5 2 2.5 3 3.54 4.5 5y /cm 1 0.5 0 0.5 1 0.9 1m 1.7 2.1 2.7①m ≈ __________(结果保留一位小数).②当点P 在线段AC 上时,PM 的最小值约为____________(结果保留一位小数). (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:写出PM MB <时,自变量x 的取值范围___________.26. 已知抛物线:2221y x mx m =-+-.(1)求抛物线对称轴的表达式(用含m 的代数式表示). (2)该抛物线与x 轴交于A 、B 两点(A 在B 左边),与y 轴交于点C.抛物线的顶点为D.①当B 、C 两点重合时,求直线AD 的表达式. ②若A 、B 、C 点的横坐标分别为123,,x x x ,当132x x x << 时,求m 的取值范围.y x-5-4-3-154321-5-4-3-2-15432-2O127. 已知Rt ABC ∆中,90ACB ∠=︒,AC=BC ,点D 是直线AB 上一点(不与A 、B 重合). 将线段CD 绕点C 逆时针旋转90︒得到线段CE.连结DE ,BE. (1)若点D 在线段AB 上,如图1.①依题意补全图形. ②判断DBE ∆的形状并证明. (2)若点D 在AB延长线上,且AC == 求AE 长.ABC备用图图1DCBA28. 已知在平面直角坐标系xOy 中的点P 和M e ,给出如下的定义:若在M e 上存在两点A 、B ,使得90APB ∠︒≥,则称P 为M e 的关联点. (1)当O e时,①点1(1,1)P ,2(2,0)P ,3(0,3)P 中,O e 的关联点有_____________________. ②点P在直线23y x =-+上.若P 是O e 的关联点,求点P 横坐标m 的取值范围. (2)已知(0,S T .M e 的圆心在x 轴上,半径为3.线段ST 上的所有点都在M e 外,且都是M e 的关联点,直接写出M e 圆心的横坐标n 的取值范围.备用图 备用图。