数字电路实验四计数器的设计与应用
- 格式:pptx
- 大小:3.71 MB
- 文档页数:17
数电计数器实验报告数电计数器实验报告引言:数电计数器是数字电路中常见的一种组合逻辑电路,用于实现对输入信号进行计数的功能。
在本次实验中,我们将通过搭建一个四位二进制计数器的电路,来深入了解计数器的工作原理和应用。
实验目的:1. 熟悉计数器的基本原理和工作方式;2. 掌握计数器的设计与搭建方法;3. 理解计数器在数字系统中的应用。
实验器材:1. 74LS161四位二进制同步计数器芯片;2. 74LS47七段数码管芯片;3. 电路连接线、电源等。
实验步骤:1. 按照电路原理图,连接74LS161计数器芯片和74LS47七段数码管芯片;2. 将74LS161的CLK输入引脚连接到一个可调的方波发生器,用于提供时钟信号;3. 将74LS161的RST引脚连接到一个开关,用于手动复位计数器;4. 将74LS161的QA~QD引脚连接到74LS47的A~D引脚,用于输出计数结果;5. 将74LS47的LT引脚连接到一个LED灯,用于指示计数溢出。
实验原理:计数器是由触发器和逻辑门组成的组合逻辑电路。
在本次实验中,我们使用74LS161芯片作为计数器,它具有四位二进制计数功能。
74LS161芯片内部包含四个D触发器,每个触发器的输出与下一个触发器的时钟输入相连,形成级联的工作方式。
当时钟信号上升沿到来时,触发器会根据输入信号的状态进行状态转移,从而实现计数功能。
实验结果:通过调节方波发生器的频率,我们可以观察到七段数码管上显示的数字不断变化。
当计数器达到最大值时,LED灯会亮起,指示计数溢出。
通过手动复位开关,我们可以将计数器重新复位为0,重新开始计数。
实验分析:1. 在实验过程中,我们发现计数器的工作稳定性较好,能够准确地进行计数;2. 通过改变方波发生器的频率,我们可以调整计数器的计数速度,从而实现不同的计数效果;3. 计数器的应用非常广泛,比如在时钟、计时器、频率分频器等数字系统中都有广泛的应用。
实验总结:通过本次实验,我们深入了解了数电计数器的工作原理和应用。
北京科技大学实验报告学院:高等工程师学院专业:自动化(卓越计划)班级:自E181姓名:杨威学号:41818074 实验日期:2020 年5月26日一、实验名称:集成计数器及其应用1、实验内容与要求(1)用74161和必要逻辑门设计一个带进位输出的10进制计数器,采用同步置数方法设计;(2)用两个74161和必要的逻辑门设计一个带进位输出的60进制秒计数器;2、实验相关知识与原理(1)74161是常用的同步集成计数器,4位2进制,同步预置,异步清零。
引脚图功能表其中X。
3、10进制计数器(1)实验设计1)确定输入/输出变量输入变量:时钟信号CLK、复位信号CLRN;输出变量:计数输出QD、QC、QB、QA,进位输出RCO,显示译码输出OA、OB、OC、OD、OE、OF、OG2)计数范围:0000-10013)预置数值:00004)置数控制端LDN:计数到1001时输出低电平5)进位输出RCO:计数到1001时输出高电平画出如下状态转换表:CP QDQCQBQA0 00001 00012 00103 00114 01005 01016 01107 01117 10009 100110 0000(2)原理图截图仿真波形如下功能验证表格CLRN QD QC QB QA RCO0 0 0 0 0 01 0 0 0 1 01 0 0 1 0 01 0 0 1 1 01 0 1 0 0 01 0 1 0 1 01 0 1 1 0 01 0 1 1 1 01 1 0 0 0 01 1 0 0 1 11 0 0 0 0 04、60进制秒计数器(1)实验设计1)确定输入/输出变量输入变量:时钟信号CLK、复位信号CLRN;输出变量:计数十位输出QD2、QC2、QB2、QA2和计数个位输出QD1、QC1、QB1、QA1,进位输出RCO2)计数范围:0000 0000-0101 10013)预置数值:0000 00004)置数控制端LDN1(个位):计数到0101 1001时输出低电平5)清零端CLRN2(十位):计数到0110时输出低电平6)ENT:个位计数到1001时输出高电平7)进位输出RCO:计数到1001时输出高电平画出如下状态转换表CP QD2QC2QB2QA2QD1QC1QB1QA1CPQD2QC2QB2QA2QD1QC1QB1QA1CPQD2QC2QB2QA2QD1QC1QB1QA10 0000 0000 20 0010 0000 40 0100 00001 0000 0001 21 0010 0001 41 0100 00012 0000 0010 22 0010 0010 42 0100 00103 0000 0011 23 0010 0011 43 0100 00114 0000 0100 24 0010 0100 44 0100 01005 0000 0101 25 0010 0101 45 0100 01016 0000 0110 26 0010 0110 46 0100 01107 0000 0111 27 0010 0111 47 0100 01118 0000 1000 28 0010 1000 48 0100 10009 0000 1001 29 0010 1001 49 0100 100110 0001 0000 30 0011 0000 50 0101 000011 0001 0001 31 0011 0001 51 0101 000112 0001 0010 32 0011 0010 52 0101 001013 0001 0011 33 0011 0011 53 0101 001114 0001 0100 34 0011 0100 54 0101 010015 0001 0101 35 0011 0101 55 0101 010116 0001 0110 36 0011 0110 56 0101 011017 0001 0111 37 0011 0111 57 0101 011118 0001 1000 38 0011 1000 58 0101 100019 0001 1001 39 0011 1001 59 0101 100160 0000 0000 (2)设计原理图截图(3)实验仿真仿真波形:仿真结果表:5、实验思考题:(1)总结任意模计数器的设计方法。
广东海洋大学学生实验报告书(学生用表)实验名称课程名称 课程号 学院(系)专业 班级 学生姓名 学号 实验地点 实验日期实验4 计数器及其应用一、实验目的1、熟悉中规模集成计数器的逻辑功能及使用方法2、掌握用74LS161构成计数器的方法3、熟悉中规模集成计数器应用二、实验原理计数器是典型的时序逻辑电路,它是用来累计和记忆输入脉冲的个数.计数是数字系统中很重要的基本操作,集成计数器是最广泛应用的逻辑部件之一。
计数器种类较多,按构成计数器中的多触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器;根据计数制的不同,可分为二进制计数器、十进制计数器和任意进制计数器;根据计数的增减趋势,又分为加法、减法和可逆计数器。
还有可预置数和可编程序功能计数器等。
本实验主要研究中规模十进制计数器74LS161的功能及应用。
1、中规模集成计数器74LS161 是四位二进制可预置同步计数器,由于它采用4 个主从JK 触发器作为记忆单元,故又称为四位二进制同步计数器,其集成芯片管脚如图1所示:管脚符号说明:电源正端Vcc ,接+5V ;异步置零(复位)端Rd ;时钟脉冲CP ;预置数控制端 A 、B 、C 、D ;数据输出端 QA 、QB 、QC 、QD ;进位输出端 RCO :使能端EP ,ET ;预置端 LD ;图1 74LS161 管脚图GDOU-B-11-112该计数器由于内部采用了快速进位电路,所以具有较高的计数速度。
各触发器翻转是靠时钟脉冲信号的正跳变上升沿来完成的。
时钟脉冲每正跳变一次,计数器内各触发器就同时翻转一次,74LS161的功能表如表1所示:表1 74LS161 逻辑功能表2、实现任意进制计数器由于74LS161的计数容量为16,即计16个脉冲,发生一次进位,所以可以用它构成16进制以内的各进制计数器,实现的方法有两种:置零法(复位法)和置数法(置位法)。
(1) 用复位法获得任意进制计数器假定已有N进制计数器,而需要得到一个M进制计数器时,只要M<N,用复位法使计数器计数到M时置“0”,即获得M进制计数器。
计数器一实验目的1、掌握中规模集成计数器的逻辑功能及使用方法。
2、学习运用集成电路芯片计数器构成N位十进制计数器的方法。
二实验原理计数器是一个用以实现计数功能的时序器件,它不仅可以用来记忆脉冲的个数,还常用于数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。
计数器种类很多,按构成计数器中的各个触发器输出状态更新是否受同一个CP脉冲控制来分,有同步和异步计数器,根据计数制的不同,分为二进制、十进制和任意进制计数器。
根据计数的增减趋势分,又分为加法、减法和可逆计数器。
另外,还有可预置数和可编程功能的计数器等。
目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器芯片。
如:异步十进制计数器74LS90,4位二进制同步计数器74LS93,CD4520,4位十进制计数器74LS160、74LS162;4位二进制可预置同步计数器CD40161、74LS161、74LS163;4位二进制可预置同步加/减计数器CD4510、CD4516、74LS191、74LS193;BCD码十进制同步加/减计数器74LS190、74LS192、CD40192等。
使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列就能正确使用这些器件。
例如74LS192同步十进制可逆计数器,具有双时钟输入十进制可逆计数功能;异步并行置数功能;保持功能和异步清零功能。
74192功能见表表19.1*表中符号和引脚符号的对应关系:CR = CLR—清零端;LD= LOAD—置数端(装载端)CP U = UP—加计数脉冲输入端CP D = DOWN—减计数脉冲输入端CO——非同步进位输出端(低电平有效)BO——非同步借位输出端(低电平有效)D3 D2 D1 D0 = D C B A—计数器数据输入端Q D Q C Q B Q A—计数器数据输出端根据功能表我们可以设计一个特殊的12进制的计数器,且无0数。
如图19.1所示:当计数器计到13时,通过与非门产生一个复位信号,使第二片74LS192(时十位)直接置成0000,而第一片74LS192计时的个位直接置成0001;从而实现了1——12的计数。
数字逻辑电路实验报告数字逻辑电路实验报告引言:数字逻辑电路是现代电子科技中的重要组成部分,它广泛应用于计算机、通信、控制系统等领域。
本实验旨在通过实际操作,加深对数字逻辑电路原理的理解,并通过实验结果验证其正确性和可靠性。
实验一:基本逻辑门的实验在本实验中,我们首先学习了数字逻辑电路的基本组成部分——逻辑门。
逻辑门是数字电路的基本构建单元,它能够根据输入信号的逻辑关系,产生相应的输出信号。
我们通过实验验证了与门、或门、非门、异或门的工作原理和真值表。
以与门为例,当且仅当所有输入信号都为高电平时,与门的输出信号才为高电平。
实验中,我们通过连接开关和LED灯,观察了与门的输出变化。
实验结果与预期相符,验证了与门的正确性。
实验二:多位加法器的设计与实验在本实验中,我们学习了多位加法器的设计和实现。
多位加法器是一种能够对多位二进制数进行加法运算的数字逻辑电路。
我们通过实验设计了一个4位全加器,它能够对两个4位二进制数进行相加,并给出正确的进位和和结果。
实验中,我们使用逻辑门和触发器等元件,按照电路图进行布线和连接。
通过输入不同的二进制数,观察了加法器的输出结果。
实验结果表明,多位加法器能够正确地进行二进制数相加,验证了其可靠性。
实验三:时序电路的实验在本实验中,我们学习了时序电路的设计和实验。
时序电路是一种能够根据输入信号的时间顺序产生相应输出信号的数字逻辑电路。
我们通过实验设计了一个简单的时序电路,它能够产生一个周期性的脉冲信号。
实验中,我们使用计数器和触发器等元件,按照电路图进行布线和连接。
通过改变计数器的计数值,观察了脉冲信号的频率和周期。
实验结果表明,时序电路能够按照设计要求产生周期性的脉冲信号,验证了其正确性。
实验四:存储器的设计与实验在本实验中,我们学习了存储器的设计和实现。
存储器是一种能够存储和读取数据的数字逻辑电路,它在计算机系统中起到重要的作用。
我们通过实验设计了一个简单的存储器,它能够存储和读取一个4位二进制数。
数字逻辑实验报告数字逻辑实验报告引言:数字逻辑是计算机科学中的基础知识,它研究的是数字信号的处理与传输。
在现代科技发展的背景下,数字逻辑的应用越来越广泛,涉及到计算机硬件、通信、电子设备等众多领域。
本实验旨在通过设计和实现数字逻辑电路,加深对数字逻辑的理解,并掌握数字逻辑实验的基本方法和技巧。
实验一:逻辑门电路设计与实现逻辑门是数字电路的基本组成单元,由与门、或门、非门等构成。
在本实验中,我们设计了一个4位全加器电路。
通过逻辑门的组合,实现了对两个4位二进制数的加法运算。
实验过程中,我们了解到逻辑门的工作原理,掌握了逻辑门的真值表和逻辑方程的编写方法。
实验二:多路选择器的设计与实现多路选择器是一种常用的数字逻辑电路,它可以根据控制信号的不同,从多个输入信号中选择一个输出信号。
在本实验中,我们设计了一个4位2选1多路选择器电路。
通过对多路选择器的输入信号和控制信号的设置,实现了对不同输入信号的选择。
实验过程中,我们了解到多路选择器的工作原理,学会了多路选择器的真值表和逻辑方程的编写方法。
实验三:时序逻辑电路的设计与实现时序逻辑电路是一种能够存储和处理时序信息的数字逻辑电路。
在本实验中,我们设计了一个简单的时序逻辑电路——D触发器。
通过对D触发器的输入信号和时钟信号的设置,实现了对输入信号的存储和传输。
实验过程中,我们了解到D触发器的工作原理,掌握了D触发器的真值表和逻辑方程的编写方法。
实验四:计数器电路的设计与实现计数器是一种能够实现计数功能的数字逻辑电路。
在本实验中,我们设计了一个4位二进制计数器电路。
通过对计数器的时钟信号和复位信号的设置,实现了对计数器的控制。
实验过程中,我们了解到计数器的工作原理,学会了计数器的真值表和逻辑方程的编写方法。
结论:通过本次实验,我们深入了解了数字逻辑的基本原理和应用方法。
通过设计和实现逻辑门电路、多路选择器、时序逻辑电路和计数器电路,我们掌握了数字逻辑实验的基本技巧,并加深了对数字逻辑的理解。
数电实验报告计数器计数器是数字电路中常见的一种电路元件,用于计数和显示数字。
在数电实验中,我们通常会设计和实现各种类型的计数器电路,以探究其工作原理和性能特点。
本文将介绍数电实验中的计数器的设计和实验结果,并探讨其应用和改进。
一、设计和实现在数电实验中,我们通常使用逻辑门和触发器来实现计数器电路。
逻辑门用于控制计数器的输入和输出,而触发器则用于存储和更新计数器的状态。
以4位二进制计数器为例,我们可以使用四个触发器和适当的逻辑门来实现。
触发器的输入端连接到逻辑门的输出端,而逻辑门的输入端连接到触发器的输出端。
通过适当的控制信号,我们可以实现计数器的正向计数、逆向计数、清零和加载等功能。
在实验中,我们需要根据设计要求选择适当的逻辑门和触发器,并将其连接起来。
然后,通过给逻辑门和触发器提供适当的输入信号,我们可以观察计数器的输出结果,并验证其正确性和稳定性。
二、实验结果在实验中,我们设计了一个4位二进制计数器,并通过适当的输入信号进行了测试。
实验结果表明,计数器能够正确地进行正向计数和逆向计数,并能够在达到最大计数值或最小计数值时自动清零。
此外,我们还观察到计数器的输出信号在计数过程中保持稳定,并且能够及时响应输入信号的变化。
这说明计数器具有较高的稳定性和响应速度,适用于各种计数应用场景。
三、应用和改进计数器在数字电路中有广泛的应用,例如频率分频、时序控制、计时器等。
通过适当的设计和连接,我们可以实现各种复杂的计数功能,满足不同的应用需求。
在实验中,我们还可以对计数器进行改进和优化,以提高其性能和功能。
例如,我们可以增加计数器的位数,以扩大计数范围;我们还可以添加输入输出接口,以实现与其他电路元件的连接和通信。
此外,我们还可以使用更高级的计数器电路,如同步计数器、环形计数器等,以实现更复杂的计数功能。
这些改进和扩展将进一步提高计数器的灵活性和实用性。
总结:通过数电实验,我们了解了计数器的设计和实现原理,并验证了其在实际应用中的性能和功能。
数电实验四数据选择器及其应用实验报告一、实验目的1. 了解数据选择器的原理和设计方法;2. 学会使用74LS138和74LS151等多位数据选择器;3. 掌握数据选择器在逻辑电路中的应用。
二、实验器材和器件1. 万用表2. 示波器3. 计算机、PSpice、Multisim4. 实验电路板、电路图5. TTL集成电路:74LS138、74LS151三、实验原理数据选择器(Data Selector)是用于在多个数据中选择一个或者少数几个数据的组合逻辑电路,也叫做多路选择器(Multiplexer)。
数据选择器可用于控制信号的选择,实现对信号进行分时复用、多路数据选通等功能。
常见的数据选择器有8选1、16选1等。
常用的数据选择器有两种类型:1.位选型数据选择器2.数据选型数据选择器1. 位选型数据选择器位选型数据选择器是指选中或分配单元的控制时使用二进制码,用来控制选通信号的输入。
2. 数据选型数据选择器数据选型数据选择器是由一个或多个数据信号为输入,它们与二进制控制信号一起给出n个数据信号的任意线性组合输出,通过对选择信号的控制,能够把其中的一路信号送到输出端。
例如,74LS151是一种8选1数据选择器(DMUX),它有8个输入端和1个输出端,还有3个控制端。
其中,控制端包括1个使能端(ENABLE)和2个选择端(A、B)。
输入端用来输入8个数据信号,而输出端则输出选择信号。
控制端用来输入控制信号,用来选择哪个输入端的数据信号送到输出端。
对于74LS151,控制信号的值决定了从哪个输入信号读取数据。
A B EN Y0 0 1 I00 1 1 I11 0 1 I21 1 1 I30 0 0 Z对于74LS138,3个控制信号的值决定了哪个输入信号将被传输到输出端口。
当输出选通(ENABLE=1)时,选通输出的某一输入的高电平(或低电平)基本上与输入选通指定的控制端台,关心。
实验4.2:8位数字式LED显示器应用通过构建逻辑电路,使用74LS151实现8位数码管的控制。
计数器及其应用的实验原理1. 什么是计数器?计数器是一种电子数字逻辑电路,用于计算和记数。
它由触发器和逻辑门组成,根据输入信号的变化来记录和显示一个有序的数字序列。
计数器可以实现加法、减法、乘法和除法等运算。
2. 计数器的工作原理计数器基于触发器工作,触发器是一种可以存储和改变其状态的电子开关。
常见的触发器有RS触发器、JK触发器和D触发器。
计数器根据触发器的状态改变来计数。
2.1 二进制计数器二进制计数器是最常用的计数器类型。
它由多个触发器按照一定顺序串联而成,每个触发器表示一个二进制位(0或1)。
当计数器接收到时钟信号时,触发器按照设定的计数模式改变其状态,从而实现计数功能。
2.2 计数模式计数器可以采用不同的计数模式,如递增计数、递减计数、加法计数和减法计数等。
计数模式根据输入信号的变化来确定计数的方向和方式。
3. 计数器的应用3.1 秒表计数器可用于制作秒表。
通过将计数器连接到一个时钟信号源,每个时钟周期就会触发计数器计数一次。
当需要计时时,可以启动计数器并显示经过的时间。
3.2 频率计计数器可以用来测量和显示信号的频率。
通过将计数器连接到输入信号,每个计数器计数周期都会表示输入信号的一个完整周期。
根据计数器计数的频率,可以得到输入信号的频率。
3.3 数字表计数器可以用于制作数字表。
通过将计数器的输出与数码管连接,可以实现数字表对时间、温度、湿度等数值的显示。
通过控制计数器的计数速度,可以调整数字表的刷新速率。
3.4 电子游戏计数器还可以用于制作电子游戏。
通过将计数器的输出与游戏的计分系统连接,可以实现计分的功能。
玩家的得分通过计数器累加并显示在游戏界面上。
4. 总结计数器是一种重要的数字电路,可以用于计数、计时和计算等应用。
它基于触发器的工作原理,通过触发器的状态改变来实现计数功能。
计数器可应用于秒表、频率计、数字表和电子游戏等领域。
掌握计数器的原理和应用可以帮助我们理解和设计更复杂的数字逻辑电路。
计数器的设计实验报告一、实验目的本次实验的目的是设计并实现一个简单的计数器,通过对计数器的设计和调试,深入理解数字电路的基本原理和逻辑设计方法,掌握计数器的工作原理、功能和应用,提高自己的电路设计和调试能力。
二、实验原理计数器是一种能够对输入脉冲进行计数,并在达到设定计数值时产生输出信号的数字电路。
计数器按照计数方式可以分为加法计数器、减法计数器和可逆计数器;按照计数进制可以分为二进制计数器、十进制计数器和任意进制计数器。
本次实验设计的是一个简单的十进制加法计数器,采用同步时序逻辑电路设计方法。
计数器由触发器、门电路等组成,通过对触发器的时钟信号和输入信号的控制,实现计数功能。
三、实验设备与器材1、数字电路实验箱2、集成电路芯片:74LS160(十进制同步加法计数器)、74LS00(二输入与非门)、74LS04(六反相器)3、示波器4、直流电源5、导线若干四、实验内容与步骤1、设计电路根据实验要求,选择合适的计数器芯片 74LS160,并确定其引脚功能。
设计计数器的清零、置数和计数控制电路,使用与非门和反相器实现。
画出完整的电路原理图。
2、连接电路在数字电路实验箱上,按照电路原理图连接芯片和导线。
仔细检查电路连接是否正确,确保无短路和断路现象。
3、调试电路接通直流电源,观察计数器的初始状态。
输入计数脉冲,用示波器观察计数器的输出波形,检查计数是否正确。
若计数不正确,逐步排查故障,如检查芯片引脚连接、电源电压等,直至计数器正常工作。
4、功能测试测试计数器的清零功能,观察计数器是否能在清零信号作用下回到初始状态。
测试计数器的置数功能,设置不同的预置数,观察计数器是否能按照预置数开始计数。
五、实验结果与分析1、实验结果成功实现了十进制加法计数器的设计,计数器能够在输入脉冲的作用下进行正确计数。
清零和置数功能正常,能够满足实验要求。
2、结果分析通过对计数器输出波形的观察和分析,验证了计数器的工作原理和逻辑功能。